(51) Internationale Patentklassifikation:
F16D 13/38 (2006.01)

(21) Internationales Aktenzeichen: PCT/DE2015/200200

(22) Internationales Anmeldedatum: 26. März 2015 (26.03.2015)

(25) EinreichungsSprache: Deutsch

(26) VeröffentlichungsSprache: Deutsch

(30) Angaben zur Priorität:
10 2014 205 773.6 27. März 2014 (27.03.2014) DE
10 2014 206 553.4 4. April 2014 (04.04.2014) DE
10 2014 212 504.9 27. Juni 2014 (27.06.2014) DE

(71) Anmelder: SCHAEFFLER TECHNOLOGIES AG & CO. KG [DE/DE]; Industriestraße 1-3, 91074 Herzogenaurach (DE).

(72) Erfinder: REIMNITZ, Dirk; Am Eisweiber 19, 77815 Bühl (DE). HURLE, Thomas; Hatzenwürth 22, 77830 Bülhertal (DE).

(54) Titel: MULTI-DISK DUAL CLUTCH

(54) Bezeichnung: MEHRSCHIEBENDOPPELKUPPLUNG

(57) Abstract: The invention relates to a multi-disk dual clutch (10) for coupling a drive shaft (14) of a motor-vehicle motor to a first transmission input shaft (16) and/or to a second transmission input shaft (20), comprising: a first partial clutch (12) for coupling the drive shaft (14) to the first transmission input shaft (16), wherein the first partial clutch (12) has a first counter plate (22), at least one first intermediate plate (26), which is connected to the first counter plate (22) by means of a first intermediate-plate restoring spring (46) and which can be axially displaced in relation to the first counter plate (22), and a first pressure plate (24) for pressing first friction linings (28) of a first clutch disk (30) between the first counter plate (22) and the first intermediate plate (26) and between the first intermediate plate (26) and the first pressure plate (24), which first pressure plate is connected to the counter plate (22) by means of a first pressure-plate restoring spring (44) and can be axially displaced in relation to the first counter plate (22) and in relation to the first intermediate plate (26); a second partial clutch (18) for coupling the drive shaft (14) to the second transmission input shaft (20), wherein the second partial clutch (18) has a second counter plate (34), at least one second intermediate plate (38), which is connected to the second counter plate (34) by means of a second intermediate-plate restoring spring (50) and which can be axially displaced in relation to the second counter plate (34), and a second pressure plate (36) for pressing second friction linings (40) of a second clutch disk (42) between the second counter plate (34) and the second intermediate plate (38) and between the second intermediate plate (38) and the second pressure plate (36), which second pressure plate is connected to the second counter plate (34) by means of a second pressure-plate restoring spring (48) and can be axially displaced in relation to the second counter plate (34) and in relation to the second intermediate plate (38); and a main connecting element (56), in particular a rivet connection, which connects the first counter plate (22) to the second counter plate (34) in a rotationally fixed manner, wherein the main connecting
Veröffentlicht:
— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts (Regel 48 Absatz 2 Buchstabe g)

(57) Zusammenfassung: Es ist eine Mehrscheibendoppelkupplung (10) zum Kuppeln einer Antriebswelle (14) eines Kraftfahrzeugmotors mit einer ersten Getriebeeingangswelle (16) und/oder einer zweiten Getriebeeingangswelle (20) vorgesehen mit einer ersten Teilkupplung (12) zum Kuppeln der Antriebswelle (14) mit der ersten Getriebeeingangswelle (16), wobei die erste Teilkupplung (12) eine erste Gegenplatte (22), mindestens eine über eine erste Zwischenplattenrückstellfeder (46) mit der ersten Gegenplatte (22) verbundene relativ zur ersten Gegenplatte (22) axial verlagerbare erste Zwischenplatte (26) und eine über eine erste Anpressplattenrückstellfeder (44) mit der ersten Gegenplatte (22) verbundene relativ zur ersten Gegenplatte (22) und zur ersten Zwischenplatte (26) axial verlagerbare erste Anpressplatte (24) zum Verpressen von ersten Reibbelägen (28) einer ersten Kupplungsscheibe (30) zwischen der ersten Gegenplatte (22) und der ersten Zwischenplatte (26) sowie zwischen der ersten Zwischenplatte (26) und der ersten Anpressplatte (24) aufweist, einer zweiten Teilkupplung (18) zum Kuppeln der Antriebswelle (14) mit der zweiten Getriebeeingangswelle (20), wobei die zweite Teilkupplung (18) eine zweite Gegenplatte (34), mindestens eine über eine zweite Zwischenplattenrückstellfeder (50) mit der zweiten Gegenplatte (34) verbundene relativ zur zweiten Gegenplatte (34) axial verlagerbare zweite Zwischenplatte (38) und eine über eine zweite Anpressplattenrückstellfeder (48) mit der zweiten Gegenplatte (34) verbundene relativ zur zweiten Gegenplatte (34) und zur zweiten Zwischenplatte (38) axial verlagerbare zweite Anpressplatte (36) zum Verpressen von zweiten Reibbelägen (40) einer zweiten Kupplungsscheibe (42) zwischen der zweiten Gegenplatte (34) und der zweiten Zwischenplatte (38) sowie zwischen der zweiten Zwischenplatte (38) und der zweiten Anpressplatte (36) aufweist, und einem die erste Gegenplatte (22) mit der zweiten Gegenplatte (34) drehfest verbundenden Hauptverbindungselement (56), insbesondere Nietverbindung, wobei das Hauptverbindungselement (56) zur ersten Anpressplattenrückstellfeder (44), zur ersten Zwischenplattenrückstellfeder (46), zur zweiten Anpressplattenrückstellfeder (48) und zur zweiten Zwischenplattenrückstellfeder (50) in Umfangsrichtung und/oder in radialer Richtung versetzt angeordnet ist. Durch das zu den mehreren Rückstellfedern (44, 46, 48, 50) der jeweiligen als Mehrscheibenkupplung ausgestalteten Teilkupplungen (12, 18) versetzt angeordnete Hauptverbindungselement (56) ist eine Übertragung eines besonders hohen Drehmoments bei unterschiedlichen Bauformen eines Antriebsstrangs eines Kraftfahrzeugs mit Hilfe einer leicht montierbaren Reibungskupplung ermöglicht.
Mehrscheibendoppelpfupplung

Die Erfindung betrifft eine Mehrscheibendoppelpfupplung mit deren Hilfe eine Antriebswelle eines Kraftfahrzeugmotors über eine erste Mehrscheibenpfupplung, insbesondere Zweischienenpfupplung, und/oder eine zweite Mehrscheibenpfupplung, insbesondere Zweischienenpfupplung, mit mindestens einer ersten Getriebeeingeangswelle beziehungsweise einer zweiten Getriebeeingangswelle gekuppelt werden kann.


Aus DE 10 2011 0185 589 A1 ist eine Zweischienenpfupplung bekannt, bei der eine Anpressplatte und eine Zwischenplatte jeweils über eine Blattfeder mit einer Gegenplatte verbunden sind. Bei einer axialen Verlagerung der Anpressplatte relativ zur Gegenplatte aus einer geöffneten Stellung der Zweischienenpfupplung heraus in eine ge-
schlossene Stellung der Zweischeibenkupplung werden zwischen der Gegenplatte und der Zwischenplatte einerseits und zwischen der Zwischenplatte und der Anpressplatte andererseits vorgesehene Reibbeläße einer Kupplungsscheibe reibschlüssig verpresst.

5 Es besteht ein ständiges Bedürfnis im Antriebsstrang eines Kraftfahrzeugs mit Hilfe einer leicht montierbaren Reibungskupplung ein besonders hohes Drehmoment bei unterschiedlichen Bauformen des Antriebsstrangs übertragen zu können.

10 Es ist die Aufgabe der Erfindung Maßnahmen aufzuzeigen, die eine Übertragung eines besonders hohen Drehmoments bei unterschiedlichen Bauformen eines Antriebsstrangs eines Kraftfahrzeugs mit Hilfe einer leicht montierbaren Reibungskupplung ermöglichen.

15 Die Lösung der Aufgabe erfolgt erfindungsgemäß durch eine Mehrscheibendoppelkupplung mit den Merkmalen des Anspruchs 1. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben, die jeweils einzeln oder in Kombination einen Aspekt der Erfindung darstellen können.

20 Erfindungsgemäß ist eine Mehrscheibendoppelkupplung zum Kuppeln einer Antriebswelle eines Kraftfahrzeugmotors mit einer ersten Getriebeeingangswelle und/oder einer zweiten Getriebeeingangswelle vorgesehen mit einer ersten Teilkupplung zum Kuppeln der Antriebswelle mit der ersten Getriebeeingangswelle, wobei die erste Teilkupplung eine erste Gegenplatte, mindestens eine über eine erste Zwischenplattenrückstellfeder mit der ersten Gegenplatte verbundene relativ zur ersten Gegenplatte axial verlagerbare erste Zwischenplatte und eine über eine erste Anpressplattenrückstellfeder mit der ersten Gegenplatte verbundene relativ zur ersten Gegenplatte und zur ersten Zwischenplatte axial verlagerbare erste Anpressplatte zum Verpressen von ersten Reibbelägen einer ersten Kupplungsscheibe zwischen der ersten Gegenplatte und der ersten Zwischenplatte sowie zwischen der ersten Zwischenplatte und der ersten Anpressplatte mit der zweiten Getriebeeingangswelle, wobei die zweite Teilkupplung eine zweite Gegenplatte, mindestens eine über eine zweite Zwischenplattenrückstellfeder mit der zweiten Gegenplatte verbundene relativ zur zweiten Gegenplatte axial verlagerbare
zweite Zwischenplatte und eine über eine zweite Anpressplattenrückstellfeder mit der zweiten Gegenplatte verbundene relativ zur zweiten Gegenplatte und zur zweiten Zwischenplatte axial verlagerbare zweite Anpressplatte zum Verpressen von zweiten Reibbelägen einer zweiten Kupplungsscheibe zwischen der zweiten Gegenplatte und der zweiten Zwischenplatte sowie zwischen der zweiten Zwischenplatte und der zweiten Anpressplatte aufweist, und einem die erste Gegenplatte mit der zweiten Gegenplatte drehfest verbindenden Hauptverbindungselement, insbesondere Nietverbindung, wobei das Hauptverbindungselement zur ersten Anpressplattenrückstellfeder, zur ersten Zwischenplattenrückstellfeder, zur zweiten Anpressplattenrückstellfeder und zur zweiten Zwischenplattenrückstellfeder in Umfangsrichtung und/oder in radialer Richtung versetzt angeordnet ist.

erzeugen, die vorzugsweise so gering ist, dass diese Betätigungskraft sogar von der Antriebswelle des Kraftfahrzeugmotors abgestützt werden kann. Dies ermöglicht zusätzliche konstruktive Freiheiten, die beispielsweise für eine verbesserte Montierbarkeit der Mehrscheibendoppelpumpe genutzt werden können. Durch die

mit Hilfe des jeweiligen Betätigungselementes betätigungsfähige mindestens eine Zwischenplatte aufweisende Teilkupplung kann auch bei einer Reduzierung der zum Betätigen der Teilkupplung erforderlichen Betätigungskraft die Anzahl der effektiven Reibflächen erhöht werden, so dass bei geringen auftretenden Kräften eine Übertragung von großen Drehmomenten in einem Antriebsstrang eines Kraftfahrzeugs ermöglicht ist.


Die jeweilige Kupplungsscheibe kann zwischen den aufeinander zu weisenden Platten der zugeordneten Teilkupplung, insbesondere an voneinander wegweisenden axialen Stirnflächen eine Belagfederung aufweisen, über die jeweils ein Reibbelag mit der Kupplungsscheibe verbunden ist, wobei der jeweilige Reibbelag mit der zugehörigen Gegenplatte und/oder Anpressplatte und/oder Zwischenplatte reibschlüssig in Kontakt kommen kann, um die jeweilige Teilkupplung zu schließen. Der zwischen der Gegenplatte und der Zwischenplatte vorgesehene Reibbelag und der zwischen der Zwischenplatte und der Anpressplatte vorgesehene Reibbelag können in axialer Richtung
relativ zueinander bewegbar sein, wobei es möglich ist, dass der eine Reibbelag in axialer Richtung unbeweglich und der andere Reibbelag in axialer Richtung verschiebbar an der Kupplungsscheibe angebunden ist. Die jeweilige Kupplungsscheibe kann über eine Verzahnung mit der jeweiligen Getriebeeingangswelle drehfest, aber axial beweglich verbunden sein. Die Mehrscheibendoppelpulspiegelung kann insbesondere mit einem motorseitig vorgelagerten und/oder getriebeseitig nachgelagerten Drehschwinge


Die erste Gegenplatte und die zweite Gegenplatte können als voneinander verschiedene separate Bauteile ausgestaltet sein. Insbesondere ist genau eine erste Zwischenplatte oder es sind genau zwei erste Zwischenplatten oder genau drei erste Zwischenplatten vorgesehen. Vorzugsweise ist genau eine zweite Zwischenplatte oder es sind genau zwei zweite Zwischenplatten oder genau drei zweite Zwischenplatten vorgesehen. Bei jeweils einer Zwischenplatte und getrennt vorgesehenen Gegenplatten ergibt sich eine Doppelpelspiegelung nach dem „sechs-Platten-Design“. Beim jeweils zwei Zwischenplatten und getrennt vorgesehenen Gegenplatten ergibt sich eine Doppelpelspiegelung nach dem „acht-Platten-Design“. Vorzugsweise sind die erste Getriebe- eingangswelle und die zweite Getriebeeingangswelle koaxial zueinander angeordnet. Insbesondere ist die innere Getriebeeingangswelle, insbesondere die erste Getriebe-

eingangswelle, an der Antriebswelle gelagert. Vorzugsweise weist die Antriebswelle
an einer axialen Stirnseite eine Vertiefung auf, in welche die innere Getriebeneig-
gangswelle teilweise hineinragt und beispielsweise über ein Pilotlager an der An-
triebswelle gelagert sein kann.

5 Es ist insbesondere ein erster Betätigungselement zum Verlagern der ersten An-
pressplatte und ein zweites Betätigungselement zum Verlagern der zweiten Anpress-
platte vorgesehen. Das Betätigungselement kann insbesondere als Hebelfeder aus-
gestaltetes sein, die bei Einleitung einer Betätigungskraft elastisch verbogen werden
kann. Das Betätigungselement kann beispielsweise in der Art einer Tellerfeder ausge-
stattet sein. Das Betätigungselement kann einen ringförmig in Umfangsrichtung um-
laufenden Tellerfederkörper aufweisen, dessen Konizität sich bei einem Schwenken
des Betätigungselements um einen in Umfangsrichtung verlaufenden Schwenkpunkt
verändern kann. Von dem Tellerfederkörper können Federzungen nach radial innen
abstehen, so dass an einem radial inneren Ende der Federzungen die Betätigungskraft
gesteilt werden kann. Die Betätigungskraft kann von einem insbesondere hyd-
raulischen Betätigungssystem aufgebracht werden, das insbesondere einen ersten
Ringzylinder zum Verschwenken des ersten Betätigungselements mit Hilfe eines in
dem ersten Ringzylinder axial geführten ersten Betätigungskolbens und einen kon-
zentratisch zum ersten Ringzylinder vorgesehenen zweiten Ringzylinder zum

10 Verschwenken des zweiten Betätigungselements mit Hilfe eines in dem zweiten Ring-
zylinder axial geführten zweiten Betätigungskolbens aufweist. Zwischen dem ersten
Betätigungskolben und dem ersten Betätigungselement kann ein erster Ausrücklager
und zwischen dem zweiten Betätigungskolben und dem zweiten Betätigungselement
ein zweites Ausrücklager angeordnet sein. Besonders bevorzugt ist eine erste Nach-
stelleinrichtung zum Nachstellen eines verschleißbedingten Fehlabstands der ersten
Anpressplatte zur ersten Gegenplatte und/oder eine zweite Nachstelleinrichtung zum
Nachstellen eines verschleißbedingten Fehlabstands der zweiten Anpressplatte zur
zweiten Gegenplatte vorgesehen. Die jeweilige Nachstelleinrichtung kann insbesonde-
re zwischen dem zugeordnetem Betätigungselement und einem Kupplungsdeckel der
zugeordneten Teilkupplung oder zwischen dem zugeordnetem Betätigungselement
und der zugeordneten Anpressplatte vorgesehen sein. Die jeweilige Nachstelleinrich-
tung weist insbesondere einen in Umfangsrichtung vorgespannten Nachstellring auf,
der Teil eines Rampensystems ist und bei einem hinreichend großen Hubweg der
nachzustellenden Anpressplatte sich verdrehen kann, um einen ursprünglichen

Insbesondere sind die erste Anpressplattenrückstellfeder und die zweite Anpressplattenrückstellfeder im Wesentlichen vollständig oder teilweise und/oder die erste Zwischenplattenrückstellfeder und die zweite Zwischenplattenrückstellfeder im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet. Es ist möglich, dass das aus der ersten Anpressplattenrückstellfeder und der zweite Anpressplattenrückstellfeder zusammengesetzte Federpaket und das aus der ersten Zwischenplattenrückstellfeder und der zweiten Zwischenplattenrückstellfeder zusammengesetzte Federpaket im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind oder vollständig in Umfangsrichtung zueinander versetzt angeordnet sind. Die zumindest teilweise hintereinander angeordneten Rückstellfedern können in Umfangsrichtung an hinreichend vielen Stellen Bereiche vorsehen, in denen keine Rückstellfedern angeordnet sind und in denen das Hauptverbindungselement und/oder andere Bauteile der Mehrscheibendoppellkupplung und/oder des Antriebsstrangs des Kraftfahrzeugs vorgesehen werden können. Da die Zwischenplattenrückstellfedern einen geringeren maximalen axialen Betätigungsweg als die Anpressplattenrückstellfeder übertreffen, können die Zwischenplattenrückstellfedern kürzer ausgeführt werden als die Anpressplattenrückstellfedern. Indem die kurzen Zwischenplattenrückstellfedern und die langen Anpressplattenrückstellfedern axial voneinander angeordnet werden können lässt sich der Bauraum in Umfangsrichtung besonders effizient nutzen, beispielsweise zur Schaffung von genügend Bauraum für die Hauptbefestigungselemente.

Vorzugsweise sind die erste Anpressplattenrückstellfeder und die zweite Zwischenplattenrückstellfeder im Wesentlichen vollständig oder teilweise und/oder die zweite
Anpressplattenrückstellfeder und die erste Zwischenplattenrückstellfeder im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet. Es ist möglich, dass das aus der ersten Anpressplattenrückstellfeder und der zweiten Zwischenplattenrückstellfeder zusammengesetzte Federpaket und das aus der zweiten Anpressplattenrückstellfeder und der ersten Zwischenplattenrückstellfeder zusammengesetzte Federpaket im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind oder vollständig in Umfangsrichtung zueinander versetzt angeordnet sind. Die zumindest teilweise hintereinander angeordneten Rückstellfedern können in Umfangsrichtung an hinreichend vielen Stellen Bereiche vorsehen, in denen keine Rückstellfedern angeordnet sind und in denen das Hauptverbindungselement und/oder andere Bauteile der Mehrscheibendoppelpackung und/oder des Antriebsstrangs des Kraftfahrzeugs vorgesehen werden können. Die Rückstellfedern der Teilkupplungen können dadurch wechselseitig verschachtelt angeordnet werden, so dass der gemeinsame Bauraumbedarf in Umfangsrichtung gering gehalten ist. Da die Zwischenplattenrückstellfedern einen geringeren maximalen axialen Betätigungsweg als die Anpressplattenrückstellfedern überstreichen und nur an den Anpressplattenrückstellfedern Abstützelemente für die Zwischenplatten benötigt werden, benötigen die aus einer Anpressplattenrückstellfeder und einer Zwischenplattenrückstellfeder zusammengesetzten Federpakete weniger axialen Bauraum als ein Federpaket, das aus zwei Anpressplattenrückstellfedern zusammengesetzt ist. Dadurch kann durch die wechselseitige Anordnung der axiale bauraumbedarf der Mehrscheibendoppelpackung radial außen reduziert werden.

Besonders bevorzugt sind die erste Anpressplattenrückstellfeder und die erste Zwischenplattenrückstellfeder im Wesentlichen vollständig oder teilweise und/oder die zweite Anpressplattenrückstellfeder und die zweite Zwischenplattenrückstellfeder im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet. Es ist möglich, dass das aus der ersten Anpressplattenrückstellfeder und der ersten Zwischenplattenrückstellfeder zusammengesetzte Federpaket und das aus der zweiten Anpressplattenrückstellfeder und der zweiten Zwischenplattenrückstellfeder zusammengesetzte Federpaket im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind oder vollständig in Umfangsrichtung zueinander versetzt angeordnet sind. Die zumindest teilweise hintereinander angeordneten Rückstellfedern können in Umfangsrichtung an hinreichend vielen Stellen Berei-

Insbesondere sind die erste Anpressplattenrückstellefeder, die erste Zwischenplattenrückstellefeder, die zweite Anpressplattenrückstellefeder und die zweite Zwischenplattenrückstellefeder im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet. Die zumindest teilweise hintereinander angeordneten Rückstellefedern können in Umfangsrichtung an hinreichend vielen Stellen Bereiche vorsehen, in denen keine Rückstellefedern angeordnet sind und in denen das Hauptverbindungselement und/oder andere Bauteile der Mehrscheibendoppelkupplung und/oder des Antriebstrangs des Kraftfahrzeugs vorgesehen werden können. Dadurch, dass die verschiedenen Rückstellefedern in einem gemeinsamen Winkelbereich angeordnet sind, kann der Bauraumbedarf für die Rückstellefedern in Umfangsrichtung minimiert werden, so dass besonders viel Bauraum für andere Bauteile frei gehalten werden kann.

Vorzugsweise überdeckt eine der Rückstellefedern in axialer Richtung betrachtet mindestens eine andere Rückstellefeder im Wesentlichen vollständig und eine weitere andere Rückstellefeder nur teilweise. Dadurch kann ein besonders geringer Bauraumbedarf in Umfangsrichtung erreicht werden, wobei gleichzeitig die Verbindungsstellen der jeweiligen Rückstellefeder durch die zumindest leicht in Umfangsrichtung versetzte Anordnung leicht zugänglich sind und eine einfache Montage ermöglichen. Beispielsweise können dadurch für die jeweilige Teilkupplung zwei Verbindungsstellen von Rückstellefedern motorseitig und zwei andere Verbindungsstellen getriebeseitig leicht zugänglich sein, während im montierten Zustand der Teilkupplungen in der Mehrscheibendoppelkupplung die leicht zueinander versetzt angeordneten Rückstellefedern der jeweiligen Teilkupplungen in axialer Richtung hintereinander angeordnet sein können.
Besonders bevorzugt ist vorgesehen, dass die erste Zwischenplattenrückstellfeder mindestens eine insbesondere nach radial innen geöffnete erste ZwischenplattenrückstellFederverjüngung ausbildet, wobei ein an der ersten Anpressplattenrückstellfeder anschlagbares erstes Abstützelement der ersten Zwischenplatte und/oder ein an der zweiten Anpressplattenrückstellfeder anschlagbares zweites Abstützelement der zweiten Zwischenplatte zumindest teilweise in die erste ZwischenplattenrückstellFederverjüngung hinein verlagerbar ist, und/oder die zweite Zwischenplattenrückstellfeder mindestens eine insbesondere nach radial innen geöffnete zweite ZwischenplattenrückstellFederverjüngung ausbildet, wobei das an der zweiten Anpressplattenrückstellfeder anschlagbare zweite Abstützelement der zweiten Zwischenplatte und/oder das an der ersten Anpressplattenrückstellfeder anschlagbare erste Abstützelement der ersten Zwischenplatte zumindest teilweise in die zweite ZwischenplattenrückstellFederverjüngung hinein verlagerbar ist. Dadurch ist es nicht erforderlich die Zwischenplattenrückstellfeder in axialer Richtung oder in Umfangsrichtung versetzt zu den Abstützelementen der Zwischenplatten anzuordnen, um ein Anschlagen des Abstützelements zu vermeiden. Stattdessen kann das Abstützelement ohne bei einem entsprechend großen Hubweg an der Zwischenplattenrückstellfeder anschlagen durch die ZwischenplattenrückstellFederverjüngung hindurch an der Zwischenplattenrückstellfeder vorbeibewegt werden. Dadurch kann der axiale Bauraumbedarf besonders gering ausgestaltet sein. Das Abstützelement kann insbesondere von der Zwischenplatte nach radial außen abtrennen und bei einem Schließen der jeweiligen Teilkupp lung an der zugeordneten Anpressplattenrückstellfeder anschlagen, so dass die Zwischenplatte mit einer geeigneten Übersetzung über die insbesondere als Blattfeder ausgestaltete Anpressplattenrückstellfeder von der Anpressplatte mit verlagert werden kann, um die Reibbeläge der Kupplungsscheibe zu verpressen.

Insbesondere ist vorgesehen, dass die zweite Anpressplattenrückstellfeder mindestens eine insbesondere nach radial innen geöffnete zweite AnpressplattenrückstellFederverjüngung und/oder die zweite Zwischenplattenrückstellfeder mindestens eine insbesondere nach radial innen geöffnete zweite ZwischenplattenrückstellFederverjüngung ausbildet, wobei ein die erste Anpressplatte verlagerbarem erster Betätigungselement durch die zweite AnpressplattenrückstellFederverjüngung und/oder die zweite ZwischenplattenrückstellFederverjüngung hindurchgeführt ist, und/oder die erste Anpressplattenrückstellfeder mindestens eine insbesondere nach radial innen ge-
öffnete erste Anpressplattenrückstellfederverjüngung und/oder die erste Zwischenplattenrückstellfederverjüngung mindestens eine insbesondere nach radial innen geöffnete erste Zwischenplattenrückstellfederverjüngung ausbildet, wobei ein die zweite Anpressplatte verlagerbarestes zweites Betätigungselement durch die erste Anpressplattenrückstellfederverjüngung und/oder die erste Zwischenplattenrückstellfederverjüngung hindurchgeführt ist. Durch die Rückstellfederverjüngung der insbesondere als Blattfeder ausgestalteten Rückstellfeder ist es nicht erforderlich, dass das beispielsweise als Betätigungstopf mit in axialer Richtung abstehenden Betätigungsfingern zum Kontaktieren der Anpressplatte Betätigungselement die Anpressplattenrückstellfeder radial außen umgreift. Stattdessen kann das Betätigungselement beispielsweise mit mehreren Betätigungsfingern durch ein oder mehrere Rückstellfederverjüngungen der Anpressplattenrückstellfeder und/oder der Zwischenplattenrückstellfeder radial innerhalb oder radial außerhalb zur Anpressplattenrückstellfeder verlaufen, so dass radialer Bauraum eingespart werden kann. Durch die Rückstellfederverjüngungen kann Platz für Nachbarbauteile, beispielsweise die Betätigungselemente, geschaffen werden.
Wenn die Betätigungselemente die Rückstellfedern radial außen umgreifen, kann durch nach radial außen geöffnete Rückstellfederverjüngungen der Außendurchmesser der Betätigungselemente verringert werden.

Vorzugsweise sind die erste Gegenplatte und die zweite Gegenplatte über ein von dem Hauptverbindungselement befestigtes Zwischenstück axial zueinander beabstandet, wobei die erste Anpressplattenrückstellfeder und/oder die erste Zwischenplattenrückstellfeder und/oder die zweite Anpressplattenrückstellfeder und/oder die zweite Zwischenplattenrückstellfeder mit dem Zwischenstück verbunden ist. Das Zwischenstück kann beispielsweise einen in Umfangsrichtung abstehenden Ansatz und/oder eine im Wesentlichen L-förmige Ausgestaltung aufweisen, so dass zumindest eine Rückstellfeder mit dem Zwischenstück verbunden werden kann. Vorzugsweise kann das zur Verbindung der Rückstellfeder mit dem Zwischenstück vorgesehene Verbindungsmittel, insbesondere Nietverbindung, zusätzlich das Zwischenstück mit einer der Gegenplatten verbinden, so dass zusätzlich zum Hauptverbindungselement eine Verbindungswirkung des Zwischenstücks mit der Gegenplatte erreicht werden kann. Alternativ kann das Zwischenstück auch mit weiteren Verbindungsmitteln außer dem Hauptverbindungselement mit einer oder beiden gegenplatten verbunden werden, ohne dass die weiteren Verbindungsmittel auch zur Befestigung der Rück-

Besonders bevorzugt ist mit der ersten Gegenplatte ein erstes Verbindungsstück, insbesondere ein im Wesentlichen axial verlaufender Stufenbolzen oder ein im Wesentlichen in Umfangsrichtung abgekröpft verlaufendes Verbindungsblech, und/oder mit der zweiten Gegenplatte ein zweites Verbindungsstück, insbesondere ein im Wesentlichen axial verlaufender Stufenbolzen oder ein im Wesentlichen in Umfangsrichtung abgekröpft verlaufendes Verbindungsblech, verbunden, wobei mit dem ersten Verbindungsstück die erste Anpressplattenrückstellfeder und/oder die erste Zwischenplattenrückstellfeder verbunden ist und/oder mit dem zweiten Verbindungsstück die zweite Anpressplattenrückstellfeder und/oder die zweite Zwischenplattenrückstellfeder verbunden ist. Die Anpressplattenrückstellfeder und die Zwischenplattenrückstellfeder können dadurch mit dem gemeinsamen Verbindungsstück befestigt werden, so dass für die mindestens zwei Rückstellfedern der Teilkupplung ein Bauteil ausreichend ist. Die Bauteileanzahl und der Montageaufwand können dadurch reduziert sein.

Insbesondere ist mit Hilfe eines an der ersten Anpressplattenrückstellfeder anschlagbaren ersten Abstützelement die erste Zwischenplattenrückstellfeder mit der ersten Zwischenplatte und/oder mit Hilfe eines an der zweiten Anpressplattenrückstellfeder anschlagbaren zweiten Abstützelement die zweite Zwischenplattenrückstellfeder mit der zweiten Zwischenplatte verbunden, wobei insbesondere das erste Abstützelement und/oder das zweite Abstützelement als Nietverbindung ausgestaltet ist. Das Abstützelement kann dadurch gleichzeitig als Verbindungsmittel zu Befestigung der Zwischenplattenrückstellfeder genutzt werden, wodurch die Bauteileanzahl und der Montageaufwand reduziert werden kann.

Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen anhand bevorzugter Ausführungsbeispiele exemplarisch erläutert, wobei die nachfolgend dargestellten Merkmale sowohl jeweils einzeln als auch in Kombination einen Aspekt der Erfindung darstellen können. Es zeigen:
Fig. 1: eine schematische Schnittansicht einer Mehrscheibendoppelkupplung,

Fig. 2: eine schematische geschnittene Ansicht einer abgewickelten Darstellung der Mehrscheibenkupplung aus Fig. 1,

Fig. 3: eine schematische perspektivische Schnittansicht einer ersten Ausführungsform einer erfindungsgemäßen Mehrscheibendoppelkupplung,

Fig. 4: eine schematische perspektivische Ansicht einer zweiten Ausführungsform einer erfindungsgemäßen Mehrscheibendoppelkupplung,

Fig. 5: eine schematische perspektivische Ansicht einer dritten Ausführungsform einer erfindungsgemäßen Mehrscheibendoppelkupplung,

Fig. 6: eine schematische perspektivische Ansicht einer vierten Ausführungsform einer erfindungsgemäßen Mehrscheibendoppelkupplung,

Fig. 7: eine schematische perspektivische Ansicht einer fünften Ausführungsform einer erfindungsgemäßen Mehrscheibendoppelkupplung,

Fig. 8: eine schematische perspektivische getriebeseitige Ansicht einer sechsten Ausführungsform einer erfindungsgemäßen Mehrscheibendoppelkupplung,

Fig. 9: eine schematische perspektivische motorseitige Ansicht der Mehrscheibendoppelkupplung aus Fig. 8 und

Fig. 10: eine schematische perspektivische Ansicht der Mehrscheibendoppelkupplung aus Fig. 3.

Der Grundaufbau einer Mehrscheibendoppelkupplung 10 ist aus der Fig. 1 ersichtlich.

Die in Fig. 1 dargestellte Mehrscheibendoppelkupplung 10 weist eine erste Teilkupplung 12 zum Kuppeln einer Antriebswelle 14 mit einer ersten Getriebeeingangswelle 16 und eine zweite Teilkupplung 18 zum Kuppeln der Antriebswelle 14 mit einer konzentrisch zur ersten Getriebeeingangswelle 16 angeordneten zweiten Getriebeeingangswelle 20 auf. Die erste Teilkupplung 12 weist eine erste Gegenplatte 22 und eine relativ zur ersten Gegenplatte 22 axial verlagerbare erste Anpressplatte 24 auf. Zwischen der ersten Gegenplatte 22 und der ersten Anpressplatte 24 ist eine axial verlagerbare erste Zwischenplatte 26 vorgesehen. Zwischen der ersten Gegenplatte 22 und der ersten Zwischenplatte 26 sowie zwischen der ersten Zwischenplatten 26

Wie die nachfolgenden Figuren zeigen, sind die Zwischenplatten 26, 38 und die Anpressplatten 24, 36 über als Blattfedern ausgestaltete Rückstellfedern 44, 46, 48, 50 mit den relativ zur Teilkupplung 12, 18 feststehenden Teilen verbunden. Die erste Anpressplatte 24 ist über eine erste Anpressplattenrückstellfeder 44 mit der ersten Gegenplatte 22 verbunden, während die erste Zwischenplatte 26 über eine erste Zwischenplattenrückstellfeder 46 mit der ersten Gegenplatte 22 verbunden ist. Die zweite Anpressplatte 36 ist über eine zweite Anpressplattenrückstellfeder 48 mit der zweiten
Gegenplatte 34 verbunden, während die zweite Zwischenplatte 38 über eine zweite Zwischenplattenrückstellfeder 50 mit der zweiten Gegenplatte 34 verbunden ist. Die Rückstellfedern 44, 46, 48, 50 dienen zur Zentrierung der Platten 24, 26, 36, 38 und zur Drehmomentübertragung. Gleichzeitig sind die Rückstellfedern 44, 46, 48, 50 in axialer Richtung elastisch und ermöglichen so eine geführte axiale Verlagerung der Zwischenplatten 26, 38 und Anpressplatten 24, 36. Beide Platten 24, 26; 36, 38 weisen mehrere auf dem Umfang verteilte als Blattfedern oder Blattfedernpakete ausgestaltete Rückstellfedern 44, 46, 48, 50 auf. Um die Zwischenplattenbewegung im richtigen Verhältnis mit der Anpressplattenbewegung zu synchronisieren, stützt sich die Zwischenplatte 26, 38 über ein mit der Zwischenplatte 26, 38 verbundenes Abstützungs element 74, 76 auf einer oder mehreren Blattfedern der Anpressplattenrückstellfedern 44, 48 der Anpressplatte 24, 36 ab.

Das Grundprinzip zeigt die Fig. 2, in der schematisch die drei Platten Anpressplatte 24, 36, Zwischenplatte 26, 38 und Gegenplatte 22, 34 exemplarisch dargestellt sind, zwischen denen sich zwei als Belagringe ausgestalteten Reibbeläge 28, 40 der Kupp lungsscheibe 30, 42 befinden. Sowohl die Anpressplatte 24, 36 als auch die Zwischenplatte 26, 38 ist über eigene Rückstellfedern 44, 46, 48, 50 mit der relativ zur Teilkupplung 12, 18 feststehenden Gegenplatte 22, 34 verbunden. Somit erfolgt die Kraftübertragung und die Zentrierung jeweils direkt zwischen der beweglichen Platte (Anpressplatte 24, 36 oder Zwischenplatte 26, 38) und den relativ zur Teilkupplung feststehenden Bauteilen (hier dargestellt durch die Gegenplatte 22, 34), ohne dass Tangentialkräfte und Zentrierwirkung von einer der beweglichen Platten 24, 26; 36, 38 auf die andere bewegliche Platte 26, 24; 38, 36 übertragen wird. Da die Fig. 2 nur einen Ausschnitt aus einer vereinfachten Abwicklung darstellt, ist jeweils nur eine Rückstellfeder sichtbar, die die Anpressplatte 24, 36 und die Gegenplatte 22, 34 hält. Es ist jedoch sinnvoll mehrere Rückstellfedern 44, 46, 48, 50 auf dem Umfang zu verteilen, die jeweils auf der einen Seite an der beweglichen Platte 24, 26; 36, 38 und auf der anderen Seite mit einem relativ zur Teilkupplung feststehenden Bauteil verbunden sind. Drei auf dem Umfang verteilte Positionen haben sich für die Blattfedenanordnung der Rückstellfedern 24, 26; 36, 38 besonders bewährt. Pro Position können auch mehrere Blattfedern übereinander (gestapelt) angeordnet werden. Wenn die Zwischenplattenrückstellfedern 46, 50, die die Zwischenplatte 26, 38 halten, diese auch immer in Richtung der Anpressplatte 24, 36 und somit in Öffnungsrichtung der Teil-
kupplung 12, 18 kraftbeaufschlagen, reichen einfache Berührstellen aus, um die Zwischenplatte 26, 38 zu führen. Die Kontaktstellen heben durch die Axialkraft der Zwischenplattenrückstellfedern 46, 50 bei geöffneter Teilkupplung 12, 18 nicht von den Anpressplattenrückstellfedern 44, 48 ab. Nur bei ganz oder teilweise geschlossener Teilkupplung 12, 18 kann der Kontakt abheben, wenn die Belagfedern der beiden als Belagringe ausgestalteten Reibeläge 28,40 die Zwischenplatte 26, 38 in eine andere Position schieben, als in diesem Moment über die geometrische Wegkoppelung der Rückstellfedern 44, 46, 48, 50 vorgesehen ist.

Wie die Rückstellfedern 44, 46, 48, 50 auf dem Umfang der Mehrscheibendoppelkupplung 10 angeordnet werden können, zeigen die Fig. 3 und folgende. Bei dem in 3D-Ansicht gezeigten Sektor einer Mehrscheibendoppelkupplung 10, ist in der Fig. 3 gut erkennbar, dass die Anpressplattenrückstellfedern 44, 48 der Anpressplatten 24, 36 und die Zwischenplattenrückstellfedern 46, 50 der Zwischenplatten 26, 38 auf dem Umfang gesehen abwechselnd zwischen den Hauptbefestigungsstellen, an denen die Gegenplatten 22, 34 der beiden Teilkupplungen 12, 18 mit Hilfe eines als Nietverbindung ausgestalteten Hauptverbindungselement 56 miteinander verbunden sind, angeordnet sind. Die Gegenplatten sind über ein Zwischenstück 32 befestet, das mit Hilfe des Hauptverbindungselements 56 mit der ersten Gegenplatte 22 und der zweiten Gegenplatte 34 vernietet ist. Bei diesem Ausführungsbeispiel sind die Blattfedernpakete der Anpressplattenrückstellfedern 44, 48, die die Anpressplatten 24, 36 der beiden Teilkupplungen 12, 18 halten, axial voreinander angeordnet. Somit sind auch die Abstützstellen, mit denen sich die Zwischenplatten 26, 38 auf den Anpressplattenrückstellfedern 44, 48 abstüten, fast genau auf der selben Umfangsposition angeordnet und stehen dadurch ebenfalls axial fast direkt voreinander. Diese Anordnung, die die Anpressplattenrückstellfedern 44, 48 und die Zwischenplattenrückstellfedern 46, 50 beider Teilkupplungen 12, 18 jeweils auf der gleichen Umfangsposition anordnet, hat einige Vorteile. Keine der Rückstellfedern 44, 46, 48, 50 liegt axial vor den Hauptbefestigungsstellen der Hauptverbindungselemente 56, wodurch beide Teilkupplungen 12, 18 separat montiert und teilweise auch getestet werden können, bevor die beiden Teilkupplung 12, 18 an den Hauptbefestigungsstellen mit Hilfe der Hauptverbindungselemente 56 zu einer Mehrscheibendoppelkupplung 10 zusammengefügt werden. Ein weiterer Vorteil besteht darin, dass die Anpressplattenrückstellfedern 44, 48, die größere Schwingwege sehen als die Zwischenplattenrückstellfedern 46, 50
und zudem auch zusätzlich durch die Zwischenplattenabstützung belastet werden und daher sinnvollerweise relativ lang ausgeführt werden sollten, direkt voreinander liegen. So dass man durch unterschiedliche Abstände zwischen den Hauptbefestigungsstellen der Hauptverbindungselemente 56 den Anpressplattenrückstellfedern 44, 48 bei der Teilkupplungen 12, 18 den nötigen Bauraum in tangentialer Richtung zur Verfügung stellen kann.

Die Fig. 4 zeigt ein weiteres Ausführungsbeispiel, bei dem die Hauptbefestigungsstellen der Hauptverbindungselemente 56 ebenfalls nicht von den Rückstellfedern 44, 46, 48, 50 verdeckt werden, die Anpressplattenrückstellfedern 44, 48 der einen Teilkupplung 12, 18 aber axial vor den Zwischenplattenrückstellfedern 46, 50 der anderen Teilkupplung 18, 12 liegen. Diese Anordnung ermöglicht es die Teilkupplung 12, 18 radial außen in Bereich der Rückstellfedern 44, 46, 48, 50 axial sehr kurz zu gestalten. Dieser Vorteil ergibt sich dadurch, dass vor den Anpressplattenrückstellfedern 44, 48, die durch ihren großen Bewegungsbereich (Abhub plus Verschleißreserve jeweils für beide Reibbeläge 28, 40 der Kupplungsscheibe 30, 42) und die mit ihren zusammenwirkenden Abstützstellen der Zwischenplatten 26, 38 vergleichsweise viel axiales Bauraum benötigen, nur die deutlich weniger axialen Bauraum benötigenden Zwischenplattenrückstellfedern 46, 50 angeordnet sind. Werden hingegen die Anpressplattenrückstellfedern 44, 46 beider Teilkupplungen 12, 18 voreinander angeordnet, benötigt diese Kombination in diesem Beiche deutlich mehr axialen Bauraum, der dann den benötigten Rotationsbauraum für die Teilkupplung 12, 18 bestimmt.

Eine weitere Blattfederanordnung zeigt Fig. 5. Bei diesem Ausführungsbeispiel liegen die Anpressplattenrückstellfedern 44, 48 und die Zwischenplattenrückstellfedern 46, 50 in Umfangsrichtung versetzt voreinander. Dadurch kann die Befestigungsstelle zwischen der Zwischenplatte 26, 38 und ihren Zwischenplattenrückstellfedern 46, 50 gleichzeitig auch als Abstützposition der Zwischenplatte 26, 38 auf den Anpressplattenrückstellfedern 44, 48 genutzt werden. In dem Ausführungsbeispiel sind dazu die Niete, die die Zwischenplattenrückstellfeder 46, 50 mit der Zwischenplatte 26, 38 verbinden, mit einer Kontaktgeometrie für die Anpressplattenrückstellfedern versehen (Kopf mit einem zentralen abgerundeten Fortsatz). Durch die versetzte Anordnung der Rückstellfedern 44, 46, 48, 50, wird höchstwahrscheinlich die Verbindung zwischen den Anpressplattenrückstellfedern 44, 48 und deren relativ zur Teilkupplung 12, 18

Es gibt auch spezielle Mehrscheibendoppelempfugungen 10 bei denen nicht der gesamte Außenbereich für die Rückstellfedern 44, 46, 48, 50 und die Hauptverbindungselemente 56, die die Gegenplatten 22, 34 verbinden, genutzt werden kann. Bei diesen Mehrscheibendoppelempfugungen 10 sollen die Blattfederpakete der Rückstellfedern 44, 46, 48, 50 sehr kompakt und dicht biegeisdi und angeordnet werden. Zwei Ausführungsbeispiele, die ein ähnliches Grundprinzip nutzen, um die Rückstellfedern 44, 46, 48, 50 dicht zusammen anzuordnen, zeigen die Fig. 6 und 7. Dabei werden jeweils die Blattfederpakete der Rückstellfedern 44, 46, 48, 50 für die Anpressplatte 24, 36 und für die Zwischenplatte 26, 38 der selben Teilkupplung 12, 18 direkt axial voneinander angeordnet. Dies ist möglich, wenn man die Rückstellfedern 44, 46, 48, 50 auf der Seite, wo sie mit den relativ zur Teilkupplung 12, 18 feststehenden Bauteilen (z.B. Gegenplatten 22, 34) verbunden sind, aufeinander oder axial versetzt voneinander befestigt. In den abgebildeten Ausführungsbeispielen ist dies durch ein als Stufenbolzen ausgestaltetes Verbindungsstück 62, 64 realisiert, der beide Blattfederpakete der Rückstellfedern 44, 46, 48, 50 mit der Gegenplatte 22, 34 verbindet. Statt durch einen Stufenbolzen kann dies auch über eine Niete oder ein anderes Befestigungsmittel erfolgen, das beide Blattfederpakete der Rückstellfedern 44, 46, 48, 50 aufeinanderlie-
gend oder durch ein Distanzstück (z.B. eine Hülse) getrennt mit einem relativ zur Teilkupplung 12, 18 feststehenden Bauteil verbindet. Bei dem Ausführungsbeispiel aus Fig. 6 befinden sich vier Rückstellfedern 44, 46, 48, 50 axial gestaffelt zwischen zwei Hauptbefestigungsstellen der Hauptbefestigungselemente 56. Wenn pro Platte jeweils drei Rückstellfedern 44, 46; 48, 50 auf dem Umfang der Teilkupplung 12, 18 verteilt angeordnet werden, lassen sich alle Rückstellfedern 44, 46, 48, 50 in drei Blattfederonordnungen in der abgebildeten Weise kompakt unterbringen. Auf dem Umfang der Teilkupplung 12, 18 ergeben sich dann zwischen den Blattfederonordnungen große Stellen, in denen sich keine Rückstellfedern 44, 46, 48, 50 befinden. Diese Stellen können dann für andere Kupplungsbauteile oder mit der Teilkupplung 12, 18 verbundene Bauteile genutzt werden.

Das Ausführungsbeispiel, das in der Fig. 7 zu sehen ist, nutzt für die Rückstellfedern 44, 46, 48, 50 das selbe platzsparende Befestigungsprinzip. Allerdings ist jeweils nur eine Zwischenplattenrückstellfeder 46, 50 und eine Anpressplattenrückstellfeder 44, 48 einer Teilkupplung 12, 18 axial voreinander angeordnet. Die Rückstellfedern 44, 46, 48, 50 der anderen Teilkupplung 18, 12 werden in gleicher Weise angeordnet, befinden sich aber auf einer auf dem Umfang der Teilkupplung 12, 18 versetzt angeordneten Winkelposition. Somit entstehen ebenfalls Freiräume auf dem Umfang der Mehrscheibendoppelkupplung 10, die für andere Zwecke oder andere Bauteile nutzbar sind. In der Fig. 7 sind die Rückstellfedern 44, 46, 48, 50 immer radial über den Platten 24, 26, 36, 38 angeordnet, mit denen sie verbunden sind. Dadurch ist in der Figur die Zuordnung der Rückstellfedern 44, 46, 48, 50 zu ihren Platten 24, 26, 36, 38 und die Funktion der Rückstellfedern 44, 46, 48, 50 leichter ersichtlich. In einer realen Mehrscheibendoppelkupplung 10 können die Blattfederbefestigungslaschen der Platten 24, 26, 36, 38, an denen die Rückstellfedern 44, 46, 48, 50 angenietet oder auf andere Weise befestigt sind, ebenso wie die als Abstützlaschen ausgestalteten Abstützelemente 74, 76 nicht nur gerade sondern auch abgekröpft hergestellt werden. Dadurch lassen sich die Rückstellfedern 44, 46, 48, 50 in einer etwas anderen Lage anordnen, als die mit ihnen verbundene Platten 24, 26, 36, 38. Besonders interessant ist es, bei dem Ausführungsbeispiel der Fig. 7 die Blattfederlaschen der motorseitigen ersten Teilkupplung 12 in Richtung der getriebenseitigen zweiten Teilkupplung 18 zu kröpfen und die Blattfederlaschen der getriebenseitigen zweiten Teilkupplung 18 in Richtung der motorseitigen ersten Teilkupplung 12. Dadurch werden die Rückstellfe-
dem 44, 46, 48, 50 beider Teilkupplungen 12, 18 in Richtung Kupplungsmitte verlagert. Somit muss im Rotationsbauraum der Mehrscheibendoppelkupplung 10 nur in der Mitte der Mehrscheibendoppelkupplung 10 Platz für die Rückstellfedern 44, 46, 48, 50 und ihre Anbindeelemente freigehalten werden.

Die auf dem Umfang der Mehrscheibendoppelkupplung 10 freigewordenen Bereiche lassen sich bei Teilkupplungen 12, 18, die mehr als zwei Belagringe 52, 54 und mehr als eine Zwischenplatte 26, 38 pro Teilkupplung 12, 18 aufweisen, auch nutzen um weitere Zwischenplattenrückstellfedern 46, 50 für die weiteren Zwischenplatten 26, 38 anzuordnen.

Wenn die Rückstellfedern 44, 46, 48, 50 aus Bauraumgründen immer dichter zusammen angeordnet werden sollen, rücken auch ihre Befestigungselemente und die Anbindeelemente, die die Rückstellfedern 44, 46, 48, 50 mit der Teilkupplung 12, 18 und/oder den Platten 24, 26, 36, 38 verbinden immer näher zusammen. Es ist daher sinnvoll die Rückstellfedern 44, 46, 48, 50 nicht nur axial sondern auch tangential und radial zu staffeln. Die Figuren 8 und 9 zeigen dafür ein Ausführungsbeispiel aus zwei unterschiedlichen Perspektiven. Da die Anpressplattenrückstellfedern 44, 48 in radialer Richtung so nah wie möglich an den Kupplungsscheiben 30, 42 entlanglaufen und die Zwischenplattenrückstellfedern 46, 50 in ihrem Mittelbereich radial nach außen verlegt wurden, kann sich das Abstützelement 74, 76 der Zwischenplatte 26, 38 weiterhin an den Anpressplattenrückstellfedern 44, 48 abstützen und bei ihrer Bewegung unter den Zwischenplattenrückstellfedern 46, 50 durchtauchen. Um die Rückstellfedern 44, 46, 48, 50 radial weiter außen oder innen anzuordnen, könne diese natürlich durch die Verlagerung des Befestigungsteilkreises neu positioniert werden. Eine besonders interessante Alternative ist jedoch, bogenförmige Blattfedern für die Rückstellfedern 44, 46, 48, 50 zu verwenden und/oder die Rückstellfedern 44, 46, 48, 50 zu taillieren. Durch die taillierte Form mit Hilfe von mindestens einer Anpressplattenrückstellfederverjüngung 66, 68 kann der Mittelteil der Anpressplattenrückstellfeder schmaler sein als deren Befestigungsbereiche. Um bei dem Ausführungsbeispielen radial unter den Zwischenplattenrückstellfedern 46, 50 genug Platz für das Abstützelement 74, 76 zu schaffen, wurden die Zwischenplattenrückstellfedern 46, 50 nach radial außen bogenförmig gekrümmt, tailliert und die Anbindebereiche nicht mittig sondern nach radial innen verlagert an den Zwischenplattenrückstellfedern 46, 50 ausgeformt.
Zusätzlich ist bei dem Ausführungsbeispiel erkennbar, dass die Rückstellfedern 44, 46, 48, 50 unterschiedlich lang sind. Somit liegen die Befestigungsmittel, die die Rückstellfedern 44, 46, 48, 50 an der Zwischenplatte 26, 38 oder der Anpressplatte 24, 36 anbinden nicht direkt voreinander und können bei der Bewegung der Platten 24, 26, 36, 38 zumindest teilweise aneinander vorbei schwenken.

Durch mit Hilfe von Verjüngungen 58, 60, 66, 68 taillierte Blattfedern für die Rückstellfedern 44, 46, 48, 50 lassen sich verschiedene Bauaumschwierigkeiten lösen. Beispielsweise wurde in der Fig. 5 bereits gezeigt, dass durch eine als taillierte Blattfeder ausgestaltete erste Zwischenplattenrückstellfeder 46 die für die Montage wichtige axiale Zugänglichkeit zu einer Nietverbindung ermöglicht wird.

Die Fig. 10 zeigt das bereits aus der Fig. 3 bekannte Ausführungsbeispiel aus einer anderen Perspektive. Die zweiten Anpressplattenrückstellfedern 48 der getriebeseitigen zweiten Teilkupplung 18 sind hier an zwei Stellen tailliert, um eine Versachtlung mit dem als Drucktopf ausgestalteten zweiten Betätigungselement zu ermöglichen. Dass die taillierten Blattfedern der Rückstellfedern 44, 46, 48, 50 unterschiedlich breite Bereiche aufweisen, lässt sich auch für die Spannungsoptimierung der Rückstellfedern 44, 46, 48, 50 nutzen. An den Stellen, an denen die Rückstellfedern 44, 46, 48, 50 besonders stark beansprucht werden, ist die Blattfeder breiter ausgeführt, als an weniger stark beanspruchten Stellen. Die Befestigungsbereiche, an denen die Rückstellfedern 44, 46, 48, 50 angebunden, insbesondere vernietet, sind und in deren unmittelbaren Nähe hohe Biegebelaustungen auf die Rückstellfedern 44, 46, 48, 50 wirken, sind daher breiter als die schmalen weniger beanspruchten Stellen. Der Bereich in dem sich die Zwischenplatte 26, 38 auf den Anpressplattenrückstellfedern 44, 48 abstützt ist ebenfalls durch seine breite Form verstärkt. Durch die Verstärkung des Blattfederquerschnitts in diesem stark beanspruchten Bereich, können die Spannungen, welche durch die vom dem Abstützelement 74, 76 auf die Anpressplattenrückstellfedern 44, 48 wirkende Kraft entstehen, reduziert werden.

Die Blattfedern der Rückstellfedern 44, 46, 48, 50 werden wegen ihrer geringen Reibung insbesondere in trockenen Doppelkupplungen eingesetzt. Alle hier vorgestellten
Anordnungs- und Ausgestaltungskonzepte lassen sich aber auch in nasslaufenden Kupplungen verwenden.
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mehrscheibendoppelpulplung</td>
</tr>
<tr>
<td>12</td>
<td>erste Teilkupplung</td>
</tr>
<tr>
<td>14</td>
<td>Antriebswelle</td>
</tr>
<tr>
<td>16</td>
<td>erste Getriebeeingangswelle</td>
</tr>
<tr>
<td>18</td>
<td>zweite Teilkupplung</td>
</tr>
<tr>
<td>20</td>
<td>zweite Getriebeeingangswelle</td>
</tr>
<tr>
<td>22</td>
<td>erste Gegenplatte</td>
</tr>
<tr>
<td>24</td>
<td>erste Anpressplatte</td>
</tr>
<tr>
<td>26</td>
<td>erste Zwischenplatte</td>
</tr>
<tr>
<td>28</td>
<td>erster Reibbelag</td>
</tr>
<tr>
<td>30</td>
<td>erste Kupplungsscheibe</td>
</tr>
<tr>
<td>32</td>
<td>Zwischenstück</td>
</tr>
<tr>
<td>34</td>
<td>zweite Gegenplatte</td>
</tr>
<tr>
<td>36</td>
<td>zweite Anpressplatte</td>
</tr>
<tr>
<td>38</td>
<td>zweite Zwischenplatte</td>
</tr>
<tr>
<td>40</td>
<td>zweiter Reibbelag</td>
</tr>
<tr>
<td>42</td>
<td>zweite Kupplungsscheibe</td>
</tr>
<tr>
<td>44</td>
<td>erste Anpressplattenrückstellfeder</td>
</tr>
<tr>
<td>46</td>
<td>erste Zwischenplattenrückstellfeder</td>
</tr>
<tr>
<td>48</td>
<td>zweite Anpressplattenrückstellfeder</td>
</tr>
<tr>
<td>50</td>
<td>zweite Zwischenplattenrückstellfeder</td>
</tr>
<tr>
<td>56</td>
<td>Hauptverbindungselement</td>
</tr>
<tr>
<td>58</td>
<td>erste Zwischenplattenrückstellfederverjüngung</td>
</tr>
<tr>
<td>60</td>
<td>zweite Zwischenplattenrückstellfederverjüngung</td>
</tr>
<tr>
<td>62</td>
<td>erstes Verbindungsstück</td>
</tr>
<tr>
<td>64</td>
<td>zweites Verbindungsstück</td>
</tr>
<tr>
<td>66</td>
<td>erste Anpressplattenrückstellfederverjüngung</td>
</tr>
<tr>
<td>68</td>
<td>zweite Anpressplattenrückstellfederverjüngung</td>
</tr>
<tr>
<td>70</td>
<td>erstes Betätigungselement</td>
</tr>
<tr>
<td>72</td>
<td>zweites Betätigungselement</td>
</tr>
<tr>
<td>74</td>
<td>Betätigungssystem</td>
</tr>
</tbody>
</table>
74 erstes Abstützelement
76 zweites Abstützelement
1. Mehrscheibendoppelpupplung zum Kuppeln einer Antriebswelle (14) eines Kraftfahrzeugmotors mit einer ersten Getriebeeingangswelle (16) und/oder einer zweiten Getriebeeingangswelle (20), mit einer ersten Teilkupplung (12) zum Kuppeln der Antriebswelle (14) mit der ersten Getriebeeingangswelle (16), wobei die erste Teilkupplung (12) eine erste Gegenplatte (22), mindestens eine über eine erste Zwischenplattenrückstellfeder (46) mit der ersten Gegenplatte (22) verbundene relativ zur ersten Gegenplatte (22) axial verlagerbare erste Zwischenplatte (26) und eine über eine erste Anpressplattenrückstellfeder (44) mit der ersten Gegenplatte (22) verbundene relativ zur ersten Gegenplatte (22) und zur ersten Zwischenplatte (26) axial verlagerbare erste Anpressplatte (24) zum Verpressen von ersten Reibbelägen (28) einer ersten Kupplungsscheibe (30) zwischen der ersten Gegenplatte (22) und der ersten Zwischenplatte (26) sowie zwischen der ersten Zwischenplatte (26) und der ersten Anpressplatte (24) aufweist, einer zweiten Teilkupplung (18) zum Kuppeln der Antriebswelle (14) mit der zweiten Getriebeeingangswelle (20), wobei die zweite Teilkupplung (18) eine zweite Gegenplatte (34), mindestens eine über eine zweite Zwischenplattenrückstellfeder (50) mit der zweiten Gegenplatte (34) verbundene relativ zur zweiten Gegenplatte (34) axial verlagerbare zweite Zwischenplatte (38) und eine über eine zweite Anpressplattenrückstellfeder (48) mit der zweiten Gegenplatte (34) verbundene relativ zur zweiten Gegenplatte (34) und zur zweiten Zwischenplatte (38) axial verlagerbare zweite Anpressplatte (36) zum Verpressen von zweiten Reibbelägen (40) einer zweiten Kupplungsscheibe (42) zwischen der zweiten Gegenplatte (34) und der zweiten Zwischenplatte (38) sowie zwischen der zweiten Zwischenplatte (38) und der zweiten Anpressplatte (36) aufweist, und einem die erste Gegenplatte (22) mit der zweiten Gegenplatte (34) drehfest verbindenden Hauptverbindungselement (56), insbesondere Nietverbindung, wobei das Hauptverbindungselement (56) zur ersten Anpressplattenrückstellfeder (44), zur ersten Zwischenplattenrückstellfeder (46), zur zweiten Anpressplattenrückstellfeder (48) und zur zweiten Zwischenplattenrückstellfeder (50) in
Umfangsrichtung und/oder in radialer Richtung versetzt angeordnet ist.

2. Mehrescheibendoppelkupplung nach Anspruch 1 dadurch gekennzeichnet, dass die erste Anpressplattenrückstellfeder (44) und die zweite Anpressplattenrückstellfeder (48) im Wesentlichen vollständig oder teilweise und/oder die erste Zwischenplattenrückstellfeder (46) und die zweite Zwischenplattenrückstellfeder (50) im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind.

3. Mehrescheibendoppelkupplung nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die erste Anpressplattenrückstellfeder (44) und die zweite Zwischenplattenrückstellfeder (50) im Wesentlichen vollständig oder teilweise und/oder die zweite Anpressplattenrückstellfeder (48) und die erste Zwischenplattenrückstellfeder (46) im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind.

4. Mehrescheibendoppelkupplung nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass die erste Anpressplattenrückstellfeder (44) und die erste Zwischenplattenrückstellfeder (46) im Wesentlichen vollständig oder teilweise und/oder die zweite Anpressplattenrückstellfeder (48) und die zweite Zwischenplattenrückstellfeder (50) im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind.

5. Mehrescheibendoppelkupplung nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die erste Anpressplattenrückstellfeder (44), die erste Zwischenplattenrückstellfeder (46), die zweite Anpressplattenrückstellfeder (48) und die zweite Zwischenplattenrückstellfeder (50) im Wesentlichen vollständig oder teilweise in axialer Richtung hintereinander angeordnet sind.

6. Mehrescheibendoppelkupplung nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass eine der Rückstellfedern (44, 46, 48, 50) in axialer Richtung betrachtet mindestens eine andere Rückstellfeder (46, 48, 50, 44) im Wesentli-
chen vollständig überdeckt und eine weitere andere Rückstellfeder (48, 50, 44, 46) nur teilweise überdeckt.

7. Mehrscheibendoppelkupplung nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die erste Zwischenplattenrückstellfeder (46) mindestens eine insbesondere nach radial innen geöffnete erste Zwischenplattenrückstellfederverjüngung (58) ausbildet, wobei ein an der ersten Anpressplattenrückstellfeder (44) anschlagbares erstes Abstützelement (74) der ersten Zwischenplatte (26) und/oder ein an der zweiten Anpressplattenrückstellfeder (48) anschlagbares zweites Abstützelement (76) der zweiten Zwischenplatte (38) zumindest teilweise in die erste Zwischenplattenrückstellfederverjüngung (58) hinein verlagerbar ist, und/oder die zweite Zwischenplattenrückstellfeder (50) mindestens eine insbesondere nach radial innen geöffnete zweite Zwischenplattenrückstellfederverjüngung (60) ausbildet, wobei das an der zweiten Anpressplattenrückstellfeder (48) anschlagbare zweite Abstützelement (76) der zweiten Zwischenplatte (38) und/oder das an der ersten Anpressplattenrückstellfeder (44) anschlagbare erste Abstützelement (74) der ersten Zwischenplatte (26) zumindest teilweise in die zweite Zwischenplattenrückstellfederverjüngung (60) hinein verlagerbar ist.

8. Mehrscheibendoppelkupplung nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass die zweite Anpressplattenrückstellfeder (48) mindestens eine insbesondere nach radial innen geöffnete zweite Anpressplattenrückstellfederverjüngung (68) und/oder die zweite Zwischenplattenrückstellfeder (50) mindestens eine insbesondere nach radial innen geöffnete zweite Zwischenplattenrückstellfederverjüngung (60) ausbildet, wobei ein die erste Anpressplatte (24) verlagerbarendes erstes Betätigungselement (70) durch die zweite Anpressplattenrückstellfederverjüngung (68) und/oder die zweite Zwischenplattenrückstellfederverjüngung (60) hindurchgeführt ist, und/oder die erste Anpressplattenrückstellfeder (44) mindestens eine insbesondere nach radial innen geöffnete erste Anpressplattenrückstellfederverjüngung (66) und/oder die erste Zwischenplattenrückstellfeder (46) mindestens eine insbesondere nach radial innen geöffnete erste Zwischenplattenrückstellfederverjüngung (58) ausbildet,
wobei ein die zweite Anpressplatte (36) verlagerbarem zweites Betätigungselement (72) durch die erste Anpressplattenrückstellfederverjüngung (66) und/oder erste Zwischenplattenrückstellfederverjüngung (58) hindurchgeführt ist.

9. Mehrscheibendoppelkupplung nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass die erste Gegenplatte (22) und die zweite Gegenplatte (34) über ein von dem Hauptverbindungselement (56) befestigtes Zwischenstück (32) axial zueinander beabstandet sind, wobei die erste Anpressplattenrückstellfeder (44) und/oder die erste Zwischenplattenrückstellfeder (46) und/oder die zweite Anpressplattenrückstellfeder (48) und/oder die zweite Zwischenplattenrückstellfeder (50) mit dem Zwischenstück (32) verbunden ist.

10. Mehrscheibendoppelkupplung nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass mit der ersten Gegenplatte (22) ein erstes Verbindungsstück (62), insbesondere ein im Wesentlichen axial verlaufender Stufenbolzen oder ein im Wesentlichen in Umfangsrichtung abgekröpft verlaufendes Verbindungsbblech, und/oder mit der zweiten Gegenplatte (34) ein zweites Verbindungsstück (64), insbesondere ein im Wesentlichen axial verlaufender Stufenbolzen oder ein im Wesentlichen in Umfangsrichtung abgekröpft verlaufendes Verbindungsbblech, verbunden ist, wobei mit dem ersten Verbindungsstück (62) die erste Anpressplattenrückstellfeder (44) und/oder die erste Zwischenplattenrückstellfeder (46) verbunden ist und/oder mit dem zweiten Verbindungsstück (64) die zweite Anpressplattenrückstellfeder (48) und/oder die zweite Zwischenplattenrückstellfeder (50) verbunden ist.

11. Mehrscheibendoppelkupplung nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, dass mit Hilfe eines an der ersten Anpressplattenrückstellfeder (44) anschlagbaren ersten Abstützelement (74) die erste Zwischenplattenrückstellfeder (46) mit der ersten Zwischenplatte (26) und/oder mit Hilfe eines an der zweiten Anpressplattenrückstellfeder (48) anschlagbaren zweiten Abstützelement (76) die zweite Zwischenplattenrückstellfeder (50) mit der zweiten Zwischenplatte (38) verbunden ist, wobei insbesondere das erste Abstützelement
(74) und/oder das zweite Abstützelement (76) als Nietverbindung ausgestaltet ist.