

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2012/174627 A3

(43) International Publication Date

27 December 2012 (27.12.2012)

(51) International Patent Classification:

F04B 39/00 (2006.01) *F04B 39/14* (2006.01)
F04B 53/14 (2006.01)

(74) Agent: RODRIGUES, Carina, S.; Daniel Advogados, Rua Joaquim Floriano, 413, 13º andar, Itaim Bibi, CEP-04534-011 São Paulo, SP (BR).

(21) International Application Number:

PCT/BR2012/000213

(22) International Filing Date:

21 June 2012 (21.06.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PI1102707-0 22 June 2011 (22.06.2011) BR

(71) Applicant (for all designated States except US): WHIRLPOOL S.A. [BR/BR]; Avenida das Nações Unidas, nº 12.995, 32º andar, Brooklin Novo, CEP-04578-000 São Paulo, SP (BR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ROMAN, Alisson Luiz [BR/BR]; Rua Higino Aguiar, 225, Apto. 101, Costa e Silva, CEP-89219-320 Joinville, SC (BR). TAKEMORI, Celso Kenzo [BR/BR]; Rua Oscar A. Schneider, 140, Apto. 302, Atiradores, CEP-89203-040 Joinville, SC (BR). COUTO, Paulo Rogerio Carrara [BR/BR]; Rua Des. Tavares Sobrinho, 326, Boa Vista, CEP-89206-500 Joinville, SC (BR). ROETTGER, Wilfred [BR/BR]; Rua Guilherme, 256, Costa e Silva, CEP-89218-500 Joinville, SC (BR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(88) Date of publication of the international search report:

13 June 2013

(54) Title: CONNECTING ROD/PISTON ARRANGEMENT FOR ALTERNATIVE COMPRESSOR AND PROCESS FOR ASSEMBLING CONNECTING ROD/PISTON ARRANGEMENT FOR ALTERNATIVE COMPRESSOR

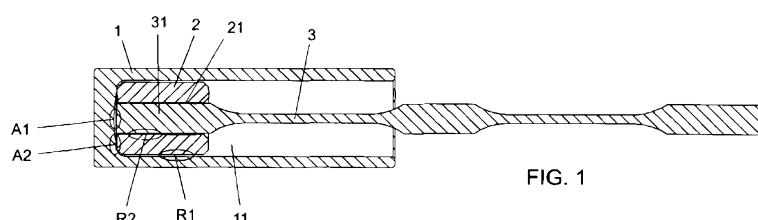


FIG. 1

(57) Abstract: The present invention refers to a connecting rod/piston arrangement for alternative compressor, comprising using at least an intermediate element capable of associating said connecting rod with the piston, wherein both do not radially contact with one another. A process for assembling said connecting rod/piston arrangement for alternative compressor is also disclosed. The connecting rod/piston arrangement for alternative compressor comprises at least a piston (1), at least an intermediate element (2) and at least a connecting rod (3), wherein said piston (1) comprises at least a non-through axial channel (11); said intermediate element (2) comprises at least a through axial channel (21); and said connecting rod (3) comprises at least a connection end (31). In this regard, the intermediate element (2) is securely housed inside the non-through axial channel (11) of piston (1); and said connection end (31) of connecting rod (3) is securely housed inside the through axial channel (21) of intermediate element (2).

WO 2012/174627 A3

"CONNECTING ROD/PISTON ARRANGEMENT FOR ALTERNATIVE COMPRESSOR AND PROCESS FOR ASSEMBLING CONNECTING ROD/PISTON ARRANGEMENT FOR ALTERNATIVE COMPRESSOR"

Field of the Invention

5 The present invention refers to a connecting rod/piston arrangement for alternative compressor, more specifically, a linear compressor applied to cooling systems and the like. The now disclosed connecting rod/piston provides for the use of at least an intermediate element capable of associating said connecting rod with the piston, wherein both do not radially contact with one another.

10 The present invention also refers to a process for assembling said connecting rod/piston arrangement for alternative compressor.

Background of the Invention

15 Those skilled in the art know that an alternative compressor comprises means to move at least a movable assembly, wherein at least a piston is capable of being reciprocating displaced in the axial direction inside a cylinder in order to effect compression on working fluid.

The present state of the art comprises some models of alternative compressor assembly, such as, for example, linear compressor.

20 A linear compressor has its movable assembly driven by a linear-type electric engine, wherein a portion of said engine is static (normally secured to a compressor cylinder) and at least a portion is dynamic (normally capable of linear movement and coupled to said movable assembly of the compressor). In this context, the movable assembly of the compressor follows an axial and reciprocating displacement of the dynamic portion of the engine to cause compression on a working fluid.

25 According to the present state of the art, a movable assembly of alternative compressor comprises at least a piston and a connecting rod, which includes a body responsible for connection between said engine and piston. Constructions are known where one of the connecting rod ends is directly associated with the shaft/dynamic portion of the engine (the other end being associated with the piston). Constructions where one of the 30 connecting rod ends is associated with a series of additional elements which are in turn associated with the shaft/dynamic portion of the engine (the other end being associated with the piston) are also known.

With regard to association of one of the connecting rod ends with the piston, also known are several constructions wherein the simplest construction comprises a direct fixation 35 between a connecting rod and a piston.

The present state of the art also provides for intermediate elements used between an association of a connecting rod and a piston.

An example of using intermediate elements for association of a connecting rod with a piston is described in US Patent 3,263,311. Said US Patent describes an association between a piston in a connecting rod wherein said piston is essentially hollow and receives in its interior a connection insertion which in turn receives a connecting rod end. Said 5 connection insertion is fixed inside the piston through a stop also previously formed inside the piston.

The large drawback of this example of construction resides in the fact that the connection insertion is fixed inside the piston through inner stops (inner grooves) physically existing in the piston itself. That is, in addition to the fact that said stops do not comprise an 10 efficient fixation means, they also cause an increase in the piston manufacture complexity and costs.

Another example of a similar construction is disclosed in US Patent 3,473,444, which refers to a connecting rod/piston arrangement consisting of a hollow piston and a connecting rod having a swivel end. In this case, the piston comprises a contacting insertion 15 housed in its interior, said insertion being formed by two different parts which are assembled under especial processing conditions. Said insertion is especially suitable for receiving swivel end of the connecting rod.

The large drawback relative to this constructional example resides in the fact that said insertion, assembled inside the piston, fulfills all the internal volume thereof, wherein 20 reduction in the piston mass is not possible. Moreover, said insertion is securely associated only with the piston interior while said connecting rod comprises several degrees of freedom of movement when coupling to the insertion. This is not suitable for some specific applications.

Another example of similar construction is described in US Patent 4,831,916, which 25 refers, among other elements, to a rigid piston comprising a connection opening and an insertion member housed in said connection opening of the piston. In this case, a connecting rod functionally connected to said insertion member, and, therefore, associated with the piston is disclosed. Said connecting rod is kept inside the insertion member through resilient portions disposed at the insertion member itself.

30 A large drawback concerning this example of construction resides in the fact that said insertion, in addition to being secured to the piston end (being capable of being moved away) fixes said connecting through resilient portions, which may undergo deformation and break

In view of the foregoing, it can be obviously observed that there is a need for 35 developing a solution free of the disadvantageous aspects mentioned above.

Objects of the Invention

By this way, one object of the present invention is to provide a new connecting

rod/piston arrangement for alternative compressor, which allows for the control (and reduction) of piston mass.

Another object of the present invention is to provide a connecting rod/piston arrangement for alternative compressor, which uses an intermediate element which is 5 capable of associating the connecting rod with the piston, wherein both do not radially contact with one another. A further object of the present invention is that said contacting rod and the insertion, as well as the connecting rod and the insertion, are securely associated such that they cannot move angularly.

10 Additionally, an object of the present invention is to provide a simple and effective process for assembling a connecting rod/piston arrangement for alternative compressor.

Summary of the Invention

These and other objects of the present invention are fully accomplished by means of a connecting rod/piston arrangement for alternative compressor, as now proposed.

Said connecting rod/piston arrangement for alternative compressor comprises at 15 least a piston, at least an intermediate element and at least a connecting rod. According to the concept of the present invention, said piston comprises at least a non-through axial channel, said intermediate element comprises at least a through axial channel, and said connecting rod comprises at least a connecting end. In addition, the intermediate element is securely housed inside the non-through axial channel of the piston, and the connecting rod 20 end is securely housed inside the through axial channel of said intermediate element.

Preferably, said non-through axial channel of the piston is cylindrical. Further preferably, said intermediate element is cylindrical. In this aspect, it is observed that inner diameter of non-through axial channel of the piston is analogous to outer diameter of the intermediate element.

25 Preferably, said through axial channel of the intermediate element is cylindrical. Further preferably, the connection end of the connecting rod is cylindrical. In this regard, it is observed that inner diameter of the through axial channel of the intermediate element is analogous to outer diameter of the connection end of the connecting rod.

30 In accordance with the concept of the present invention, said intermediate element is securely housed in the closed end of the non-through axial channel of the piston, wherein same has radial and axial physical contact with the inner face of the non-through channel of the piston.

35 Further, in accordance with the concept of the present invention, the connection end of the connecting rod has radial physical contact with the inner face of the through axial channel of the intermediate element, and axial physical contact with the inner face of the non-through axial channel of the piston.

Preferably, the connecting rod/piston arrangement for alternative compressor of the

present invention comprises a binder disposed between the outer face of the intermediate element and the inner face of the intermediate element of the non-through axial channel of the piston, and a binder disposed between the end of the connection end of the connecting rod and the inner face of the through axial channel of the intermediate element. In this sense,
5 the binder preferably comprises a polymer resin.

The present invention further provides a preferential process for assembling said connecting rod/piston for alternative compressor, wherein said process comprises at least a step in which a piston, at least an intermediate element and at least a connecting rod are simultaneously fixed, wherein the intermediate element is secured inside the piston and the
10 connecting rod is secured inside the intermediate element. Preferably, said step further comprises at least an application of binder during simultaneous fixation between the piston, intermediate element and connecting rod.

Further preferably, the binder used in the preferential process for assembling the connecting rod/assembly arrangement for alternative compressor comprises a polymer resin.

15 Brief Description of Drawings

The present invention will be described in more details on the basis of figures listed below, which:

Fig. 1 illustrates a schematic cut of connecting rod/piston arrangement for alternative compressor; and

20 Fig. 2 illustrates a connecting rod/piston arrangement for alternative compressor in an exploded view.

Detailed Description of the Invention

In accordance with the main embodiment of the present application, a connecting rod/piston arrangement for alternative compressor, more specifically for linear compressor
25 used in cooling systems and the like, is disclosed. Said connecting rod/piston comprises at least a piston 1, at least an intermediate element 2 and at least a connecting rod 3.

In this regard, said intermediate element 2 has the function of essentially indirectly connecting an end of the connecting rod 3 to said piston 1 such that a reciprocating axial movement of the opposite end of said connecting rod 3 is directly transmitted to said piston
30 1.

Figs 1 and 2 (although being schematic) illustrate the preferred embodiment of the connecting rod/piston of the present invention.

By this way and in accordance with the preferred embodiment of the present invention, said piston 1 comprises a cylindrical body comprising a non-through axial channel
35 11, that is, an axial channel delimited by the "working end" of the piston, which is closed. The intermediate element comprises a tubular cylindrical body including, therefore, a through axial channel 21. Said connecting rod 3 comprises a rod-type having a connection end 31,

which is also cylindrical.

Said intermediate element 2 is securely housed inside the non-through axial channel 11 of said piston 1, and the connection end 31 of the connecting rod 3 is securely housed inside the through axial channel 21 of the intermediate element.

5 Such a disposition renders the arrangement rigid, and, hence, it is ensured that reciprocating axial movement of the opposite end of the connecting rod is fully transmitted to piston 1.

Furthermore, the present connecting rod/piston arrangement allows for the mass of piston 1 to be relieved since same is hollow and does not provide for its internal volume to be 10 fulfilled by said intermediate element 12 and connecting rod 3. Such a characteristic is extremely important concerning the frequency of functioning and vibration levels of the compressor.

15 To this effect, and in accordance with the preferred embodiment of the present invention, inner diameter of the non-through axial channel 11 of piston 1 is analogous to outer diameter of the intermediate element. This permits juxtaposition between said elements.

Inner diameter of the through axial channel 21 of intermediate element 2 is also analogous to outer diameter of the connection end 31 of connecting rod 2, and this also permits juxtaposition between said elements.

20 Optionally, the above-mentioned diameters can present a certain clearance therebetween (on the order of from 0.1 mm to 0.2 mm diametrical clearances). Such clearances are preferably fulfilled with binder.

25 In this context, the use of a binder disposed between the outer face of the intermediate element 2 and the inner face of the non-through axial channel 11 of said piston 1 is disclosed. It is also contemplated the use of a binder disposed between the end 31 of the connecting rod 3 and the inner face of the through axial channel 21 of the intermediate element 2.

In both cases, the binder preferably comprises a polymer resin. More specifically (but not limitative), said polymer resin preferably comprises a monocomponent epoxy resin.

30 In accordance with this disposition between said elements, it is observed that intermediate element 2 is securely housed at the closed end of non-through axial channel 11 of the piston 1 so that the referred to intermediate element provides radial R1 and axial A1 physical contact with the inner face of the axial channel of non-through axial channel 11 of piston 1.

35 In this context, it can also be noted that the connection end 31 of connecting rod 3 provides for radial physical contact R1 with the inner face of the through axial channel 21 of intermediate element 2, and axial physical contact A2 with the inner face of the non-through

axial channel 11 of piston 1.

As formerly said, the present invention additionally provides a preferential process for assembling said connecting rod/piston arrangement for alternative compressor as above depicted.

5 Generally, said process comprises a (assembling) step where piston 1, intermediate element 2 and connecting rod 3 are simultaneously attached.

As can be noted, the intermediate element 2 is secured inside the piston 1, and the connecting rod 3 is secured inside the intermediate element 2. In this assembling step, application of a binder during simultaneous fixation between said piston 2, intermediate 10 element 2 and connecting rod 3 is also contemplated.

After describing a preferred exemplary embodiment of the connecting rod/piston arrangement for alternative compressor, in addition to a preferential process for assembling, it should be understood that the scope of the present invention encompasses other variations, which are limited by the contents of the set of claims, including therein possible 15 equivalents.

CLAIMS

1. Connecting rod/piston arrangement for alternative compressor, comprising at least a piston (1), at least an intermediate element (2) and at least a connecting rod (3), CHARACTERIZED in that:

5 said piston (1) comprises at least a non-through axial channel (11);
 said intermediate element (2) comprises at least a through axial channel (21);
 said connecting rod (3) comprises at least a connection end (31);
 said intermediate element (2) is securely housed inside the non-through axial channel (11) of piston (1); and
10 said connection end (31) of connecting rod (3) is securely housed inside the through axial channel (21) of intermediate element (2).

2. Connecting rod/piston arrangement for alternative compressor, in accordance with claim 1, CHARACTERIZED in that said non-through axial channel (11) of piston (1) is cylindrical.

15 3. Connecting rod/piston arrangement for alternative compressor, in accordance with claim 1, CHARACTERIZED in that said intermediate element (2) is cylindrical.

20 4. Connecting rod/piston arrangement for alternative compressor, in accordance with any of claims 1, 2 or 3, CHARACTERIZED in that inner diameter of the non-through axial channel (11) of piston (1) is analogous to outer diameter of said intermediate element (2).

5. Connecting rod/piston arrangement for alternative compressor, in accordance with claim 1, CHARACTERIZED in that said through axial channel (21) of intermediate element (2) is cylindrical.

25 6. Connecting rod/piston arrangement for alternative compressor, in accordance with claim 1, CHARACTERIZED in that said connection end (31) of connecting rod (3) is cylindrical.

30 7. Connecting rod/piston arrangement for alternative compressor, in accordance with any of claims 1, 5 or 6, CHARACTERIZED in that inner diameter of the through axial channel (21) of intermediate element (2) is analogous to outer diameter of the connection end (31) of connecting rod (3).

8. Connecting rod/piston arrangement for alternative compressor, in accordance with claim 1, CHARACTERIZED in that said intermediate element (2) is securely housed in the closed end of the non-through axial channel (11) of piston (1).

35 9. Connecting rod/piston arrangement for alternative compressor, in accordance with any of claims 1 to 8, CHARACTERIZED in that said intermediate element (2) has a radial (R1) and axial (A1) physical contact with the inner face of the non-through axial channel (11) of piston (1).

10. Connecting rod/piston arrangement for alternative compressor, in accordance with any of claims 1 to 8, CHARACTERIZED in that said connection end (31) of connecting rod (3) has a radial physical contact (R2) with the inner face of the thorough axial channel (21) of intermediate element (2), and axial physical contact (A2) with the inner face of the 5 non-through axial channel (11) of piston (1).

11. Connecting rod/piston arrangement for alternative compressor, in accordance with any of claims 1 to 10, CHARACTERIZED in that it comprises a binder disposed between the outer face of the intermediate element (2) and the inner face of the non-through axial channel (11) of piston (1).

10 12. Connecting rod/piston arrangement for alternative compressor, in accordance with any of claims 1 to 10, CHARACTERIZED in that it comprises a binder disposed between said end (31) of connecting rod (3) and the inner face of the through axial channel (21) of intermediate element (2).

15 13. Connecting rod/piston arrangement for alternative compressor, in accordance with claim 11 or 12, CHARACTERIZED in that said binder comprises a polymer resin.

14. Process for assembling a connecting rod/piston arrangement for alternative compressor, as defined in claims 1 a 13, CHARACTERIZED in that it comprises a step in which at least a piston (1), at least an intermediate element (2) and at least a connecting road (3) are simultaneously attached, wherein said intermediate element (2) is secured 20 inside piston (1), and said connecting rod (3) is secured inside intermediate element (2)

15. Process for assembling a connecting rod/piston arrangement for alternative compressor, in accordance with claim 14, CHARACTERIZED in that it comprises at least an application of binder during simultaneous fixation between said piston (1), intermediate element (2) and connecting rod (3).

25 16. Process for assembling the connecting rod/piston arrangement for alternative compressor, in accordance with claim 15, CHARACTERIZED in that said binder comprises a polymer resin.

1/1

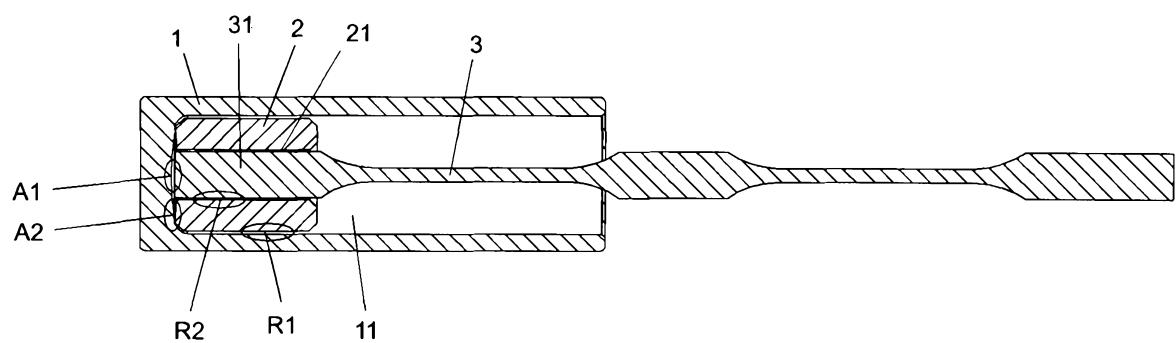


FIG. 1

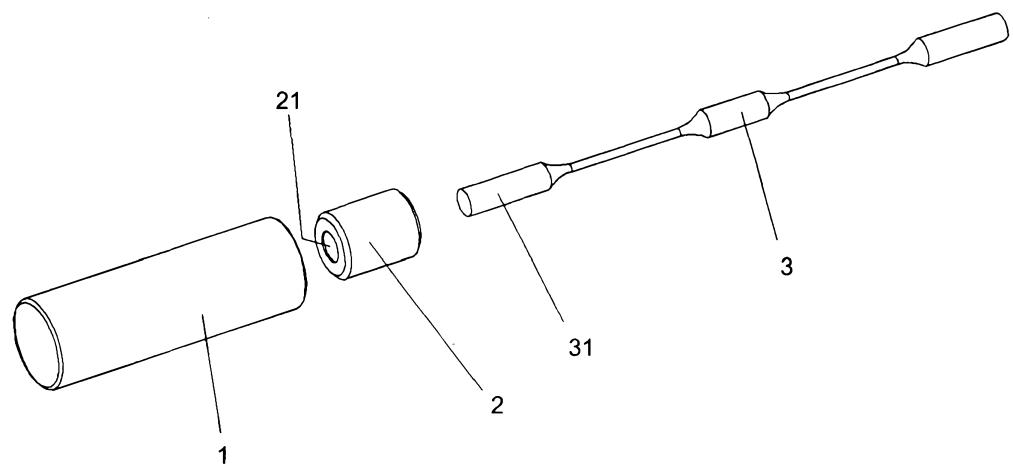


FIG. 2