Title: UPS AS MODIFIERS OF THE BETA CATENIN PATHWAY AND METHODS OF USE

Abstract: Human UP genes are identified as modulators of the beta catenin pathway, and thus are therapeutic targets for disorders associated with defective beta catenin function. Methods for identifying modulators of beta catenin, comprising screening for agents that modulate the activity of UP are provided.
UPS AS MODIFIERS OF THE BETA CATENIN PATHWAY AND 
METHODS OF USE

REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application 60/495,172 
filed 8/14/2003. The contents of the prior application are hereby incorporated in their 
entirety.

BACKGROUND OF THE INVENTION

The Drosophila Melanogaster Armadillo/beta-catenin protein is implicated in 
multiple cellular functions. The protein functions in cell signaling via the Wingless 
(Wg)/Wnt signaling pathway. It also functions as a cell adhesion protein at the cell 
biol. 140:183-195). These two roles of beta-catenin can be separated from each other 
627-630).

In Wingless cell signaling, beta-catenin levels are tightly regulated by a complex 
containing APC, Axin, and GSK3 beta/SGG/ZW3 (Peifer et al. (1994) Development 120: 
369-380).

The Wingless/ beta-catenin signaling pathway is frequently mutated in human 
cancers, particularly those of the colon. Mutations in the tumor suppressor gene APC, as 
well as point mutations in beta-catenin itself lead to the stabilization of the beta-catenin 
protein and inappropriate activation of this pathway.

Uridine phosphorylase is the key enzyme of pyrimidine salvage in mammalian 
hosts and many other organisms. In the presence of orthophosphate, uridine 
phosphorylase catalyzes the reversible phosphorolysis of uridine to free bases and ribose-
1-phosphate or deoxyribose-1-phosphate. The enzyme has an important role in the 
metabolism of pyrimidine analogs used in cancer chemotherapy. Uridine phosphorylase 1 
(UPP1) was identified from a human colorectal tumor cell line cDNA library (Watanabe

The ability to manipulate the genomes of model organisms such as *Drosophila* provides a powerful means to analyze biochemical processes that, due to significant evolutionary conservation, have direct relevance to more complex vertebrate organisms. Due to a high level of gene and pathway conservation, the strong similarity of cellular processes, and the functional conservation of genes between these model organisms and mammals, identification of the involvement of novel genes in particular pathways and their functions in such model organisms can directly contribute to the understanding of the correlative pathways and methods of modulating them in mammals (see, for example, Mechler BM et al., 1985 EMBO J 4:1551-1557; Gateff E. 1982 Adv. Cancer Res. 37: 33-74; Watson KL., et al., 1994 J Cell Sci. 18: 19-33; Miklos GL, and Rubin GM. 1996 Cell 86:521-529; Wassarman DA, et al., 1995 Curr Opin Gen Dev 5: 44-50; and Booth DR. 1999 Cancer Metastasis Rev. 18: 261-284). For example, a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a “genetic entry point”) that yields a visible phenotype. Additional genes are mutated in a random or targeted manner. When a gene mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a “modifier” involved in the same or overlapping pathway as the genetic entry point. When the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as beta catenin, modifier genes can be identified that may be attractive candidate targets for novel therapeutics.

All references cited herein, including patents, patent applications, publications, and sequence information in referenced Genbank identifier numbers, are incorporated herein in their entireties.

**SUMMARY OF THE INVENTION**

We have discovered genes that modify the beta catenin pathway in *Drosophila*, and identified their human orthologs, hereinafter referred to as Uridine Phosphorylase (UP). The invention provides methods for utilizing these beta catenin modifier genes and polypeptides to identify UP-modulating agents that are candidate therapeutic agents that can be used in the treatment of disorders associated with defective or impaired beta catenin function and/or UP function. Preferred UP-modulating agents specifically bind to
UP polypeptides and restore beta catenin function. Other preferred UP-modulating agents are nucleic acid modulators such as antisense oligomers and RNAi that repress UP gene expression or product activity by, for example, binding to and inhibiting the respective nucleic acid (i.e. DNA or mRNA).

UP modulating agents may be evaluated by any convenient in vitro or in vivo assay for molecular interaction with a UP polypeptide or nucleic acid. In one embodiment, candidate UP modulating agents are tested with an assay system comprising a UP polypeptide or nucleic acid. Agents that produce a change in the activity of the assay system relative to controls are identified as candidate beta catenin modulating agents. The assay system may be cell-based or cell-free. UP-modulating agents include UP related proteins (e.g. dominant negative mutants, and biotherapeutics); UP-specific antibodies; UP-specific antisense oligomers and other nucleic acid modulators; and chemical agents that specifically bind to or interact with UP or compete with UP binding partner (e.g. by binding to a UP binding partner). In one specific embodiment, a small molecule modulator is identified using a uridine phosphorylase assay. In specific embodiments, the screening assay system is selected from a binding assay, an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay.

In another embodiment, candidate beta catenin pathway modulating agents are further tested using a second assay system that detects changes in the beta catenin pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent. The second assay system may use cultured cells or non-human animals. In specific embodiments, the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the beta catenin pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer).

The invention further provides methods for modulating the UP function and/or the beta catenin pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds a UP polypeptide or nucleic acid. The agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated with the beta catenin pathway.
In a screen to identify enhancers and suppressors of the Wg signaling pathway, we generated activated beta-catenin models in *Drosophila* based on human tumor data (Polakis (2000) Genes and Development 14: 1837-1851). We identified modifiers of the Wg pathway and identified their orthologs. The CG6330 gene was identified as a modifier of the beta catenin pathway, followed by identification of its vertebrate orthologs. Accordingly, vertebrate orthologs of these modifiers, and preferably the human orthologs, UP genes (i.e., nucleic acids and polypeptides) are attractive drug targets for the treatment of pathologies associated with a defective beta catenin signaling pathway, such as cancer.

In vitro and in vivo methods of assessing UP function are provided herein. Modulation of the UP or their respective binding partners is useful for understanding the association of the beta catenin pathway and its members in normal and disease conditions and for developing diagnostics and therapeutic modalities for beta catenin related pathologies. UP-modulating agents that act by inhibiting or enhancing UP expression, directly or indirectly, for example, by affecting a UP function such as enzymatic (e.g., catalytic) or binding activity, can be identified using methods provided herein. UP modulating agents are useful in diagnosis, therapy and pharmaceutical development.

**Nucleic acids and polypeptides of the invention**

Sequences related to UP nucleic acids and polypeptides that can be used in the invention are disclosed in Genbank (referenced by Genbank identifier (GI) number) as GI#s 31742506 (SEQ ID NO:1), 12655106 (SEQ ID NO:2), 28422563 (SEQ ID NO:3), 34782821 (SEQ ID NO:4), 23272324 (SEQ ID NO:5), 27597095 (SEQ ID NO:6), 4156143 (SEQ ID NO:7), 34222223 (SEQ ID NO:8), and 34191337 (SEQ ID NO:9) for nucleic acid, and GI#s 4507839 (SEQ ID NO:10) and 27597096 (SEQ ID NO:11) for polypeptides.

The term “UP polypeptide” refers to a full-length UP protein or a functionally active fragment or derivative thereof. A “functionally active” UP fragment or derivative exhibits one or more functional activities associated with a full-length, wild-type UP protein, such as antigenic or immunogenic activity, enzymatic activity, ability to bind natural cellular substrates, etc. The functional activity of UP proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan *et al.*, eds., John Wiley & Sons, Inc., Somerset, New Jersey) and as further discussed below. In one embodiment, a functionally active UP polypeptide is a UP derivative capable of rescuing defective endogenous UP
activity, such as in cell based or animal assays; the rescuing derivative may be from the same or a different species. For purposes herein, functionally active fragments also include those fragments that comprise one or more structural domains of a UP, such as a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2). For example, the phosphorylase domain (PFAM 01048) of UP from GI#s 4507839 and 27597096 (SEQ ID NO:10 and 11, respectively) is located respectively at approximately amino acid residues 54 to 303 and 60-308. Methods for obtaining UP polypeptides are also further described below. In some embodiments, preferred fragments are functionally active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of a UP. In further preferred embodiments, the fragment comprises the entire functionally active domain.

The term "UP nucleic acid" refers to a DNA or RNA molecule that encodes a UP polypeptide. Preferably, the UP polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof, with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with human UP. Methods of identifying orthologs are known in the art. Normally, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 10:1204-1210).

Programs for multiple sequence alignment, such as CLUSTAL (Thompson JD et al, 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human. As used herein,
the term "orthologs" encompasses paralogs. As used herein, "percent (%) sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410) with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation.

A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.

algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the "Match" value reflects "sequence identity."

Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of a UP. The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). In some embodiments, a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of a UP under high stringency hybridization conditions that are: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65°C in a solution comprising 6X single strength citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 µg/ml herring sperm DNA; hybridization for 18-20 hours at 65°C in a solution containing 6X SSC, 1X Denhardt's solution, 100 µg/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65°C for 1h in a solution containing 0.1X SSC and 0.1% SDS (sodium dodecyl sulfate).

In other embodiments, moderately stringent hybridization conditions are used that are: pretreatment of filters containing nucleic acid for 6 h at 40°C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 µg/ml denatured salmon sperm DNA; hybridization for 18-20h at 40°C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 µg/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55°C in a solution containing 2X SSC and 0.1% SDS.

Alternatively, low stringency conditions can be used that are: incubation for 8 hours to overnight at 37°C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37°C for 1 hour.
Isolation, Production, Expression, and Mis-expression of UP Nucleic Acids and Polypeptides

UP nucleic acids and polypeptides are useful for identifying and testing agents that modulate UP function and for other applications related to the involvement of UP in the beta catenin pathway. UP nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art. In general, the particular use for the protein will dictate the particulars of expression, production, and purification methods.

For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins for antibody generation may require structural integrity of particular epitopes. Expression of proteins to be purified for screening or antibody production may require the addition of specific tags (e.g., generation of fusion proteins). Overexpression of a UP protein for assays used to assess UP function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular activities. Techniques for the expression, production, and purification of proteins are well known in the art; any suitable means therefore may be used (e.g., Higgins SJ and Hames BD (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury PF et al., Principles of Fermentation Technology, 2nd edition, Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, Humana Press, New Jersey, 1996; Coligan JE et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York). In particular embodiments, recombinant UP is expressed in a cell line known to have defective beta catenin function. The recombinant cells are used in cell-based screening assay systems of the invention, as described further below.

The nucleotide sequence encoding a UP polypeptide can be inserted into any appropriate expression vector. The necessary transcriptional and translational signals, including promoter/enhancer element, can derive from the native UP gene and/or its flanking regions or can be heterologous. A variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with
bacteriophage, plasmid, or cosmid DNA. An isolated host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used.

To detect expression of the UP gene product, the expression vector can comprise a promoter operably linked to a UP gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the UP gene product based on the physical or functional properties of the UP protein in in vitro assay systems (e.g. immunoassays).

The UP protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature (1984) 310:105-111).

Once a recombinant cell that expresses the UP gene sequence is identified, the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis). Alternatively, native UP proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification). Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography.

The methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of UP or other genes associated with the beta catenin pathway. As used herein, mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur).

**Genetically modified animals**

Animal models that have been genetically modified to alter UP expression may be used in in vivo assays to test for activity of a candidate beta catenin modulating agent, or to further assess the role of UP in a beta catenin pathway process such as apoptosis or cell proliferation. Preferably, the altered UP expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared
to control animals having normal UP expression. The genetically modified animal may additionally have altered beta catenin expression (e.g. beta catenin knockout). Preferred genetically modified animals are mammals such as primates, rodents (preferably mice or rats), among others. Preferred non-mammalian species include zebrafish, *C. elegans*, and *Drosophila*. Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, *Curr. Biol.* 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.


In one embodiment, the transgenic animal is a "knock-out" animal having a heterozygous or homozygous alteration in the sequence of an endogenous UP gene that results in a decrease of UP function, preferably such that UP expression is undetectable or insignificant. Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked
out. Typically a deletion, addition or substitution has been introduced into the transgene to functionally disrupt it. The transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species. For example, a mouse UP gene is used to construct a homologous recombination vector suitable for altering an endogenous UP gene in the mouse genome. Detailed methodologies for homologous recombination in mice are available (see Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rodent transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989) 244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183). In a preferred embodiment, knock-out animals, such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out (Claesson MH et al., (1994) Scan J Immunol 40:257-264; Declerck PJ et al., (1995) J Biol Chem. 270:8397-400).

In another embodiment, the transgenic animal is a "knock-in" animal having an alteration in its genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the UP gene, e.g., by introduction of additional copies of UP, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the UP gene. Such regulatory sequences include inducible, tissue-specific, and constitutive promoters and enhancer elements. The knock-in can be homozygous or heterozygous.

Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene. One example of such a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso et al., PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182). In a preferred embodiment, both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the

The genetically modified animals can be used in genetic studies to further elucidate the beta catenin pathway, as animal models of disease and disorders implicating defective beta catenin function, and for in vivo testing of candidate therapeutic agents, such as those identified in screens described below. The candidate therapeutic agents are administered to a genetically modified animal having altered UP function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered UP expression that receive candidate therapeutic agent.

In addition to the above-described genetically modified animals having altered UP function, animal models having defective beta catenin function (and otherwise normal UP function), can be used in the methods of the present invention. For example, a beta catenin knockout mouse can be used to assess, in vivo, the activity of a candidate beta catenin modulating agent identified in one of the in vitro assays described below. Preferably, the candidate beta catenin modulating agent when administered to a model system with cells defective in beta catenin function, produces a detectable phenotypic change in the model system indicating that the beta catenin function is restored, i.e., the cells exhibit normal cell cycle progression.

**Modulating Agents**

The invention provides methods to identify agents that interact with and/or modulate the function of UP and/or the beta catenin pathway. Modulating agents identified by the methods are also part of the invention. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the beta catenin pathway, as well as in further analysis of the UP protein and its contribution to the beta catenin pathway. Accordingly, the invention also provides methods for modulating the beta catenin pathway comprising the step of specifically modulating UP activity by administering a UP-interacting or -modulating agent.

As used herein, an “UP-modulating agent” is any agent that modulates UP function, for example, an agent that interacts with UP to inhibit or enhance UP activity or otherwise affect normal UP function. UP function can be affected at any level, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In a preferred embodiment, the UP - modulating agent specifically modulates the
function of the UP. The phrases "specific modulating agent", "specifically modulates", etc., are used herein to refer to modulating agents that directly bind to the UP polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the UP. These phrases also encompass modulating agents that alter the interaction of the UP with a binding partner, substrate, or cofactor (e.g. by binding to a binding partner of a UP, or to a protein/binding partner complex, and altering UP function). In a further preferred embodiment, the UP-modulating agent is a modulator of the beta catenin pathway (e.g. it restores and/or upregulates beta catenin function) and thus is also a beta catenin-modulating agent.

Preferred UP-modulating agents include small molecule compounds; UP-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors. The modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in "Remington’s Pharmaceutical Sciences" Mack Publishing Co., Easton, PA, 19th edition.

Small molecule modulators

Small molecules are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains. Chemical agents, referred to in the art as "small molecule" compounds are typically organic, non-peptide molecules, having a molecular weight up to 10,000, preferably up to 5,000, more preferably up to 1,000, and most preferably up to 500 daltons. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the UP protein or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries for UP-modulating activity. Methods for generating and obtaining compounds are well known in the art (Schreiber SL, Science (2000) 151: 1964-1969; Radmann J and Gunther J, Science (2000) 151:1947-1948).

Small molecule modulators identified from screening assays, as described below, can be used as lead compounds from which candidate clinical compounds may be
designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the beta catenin pathway. The activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing. Additionally, candidate clinical compounds are generated with specific regard to clinical and pharmacological properties. For example, the reagents may be derivatized and re-screened using in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development.

10

**Protein Modulators**

Specific UP-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the beta catenin pathway and related disorders, as well as in validation assays for other UP-modulating agents. In a preferred embodiment, UP-interacting proteins affect normal UP function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In another embodiment, UP-interacting proteins are useful in detecting and providing information about the function of UP proteins, as is relevant to beta catenin related disorders, such as cancer (e.g., for diagnostic means).


An UP-interacting protein may be an exogenous protein, such as a UP-specific antibody or a T-cell antigen receptor (see, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory; Harlow and Lane (1999) Using

In preferred embodiments, a UP-interacting protein specifically binds a UP protein. In alternative preferred embodiments, a UP-modulating agent binds a UP substrate, binding partner, or cofactor.

Antibodies

In another embodiment, the protein modulator is a UP specific antibody agonist or antagonist. The antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify UP modulators. The antibodies can also be used in dissecting the portions of the UP pathway responsible for various cellular responses and in the general processing and maturation of the UP.

Antibodies that specifically bind UP polypeptides can be generated using known methods. Preferably the antibody is specific to a mammalian ortholog of UP polypeptide, and more preferably, to human UP. Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')_{2} fragments, fragments produced by a FAb expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Epitopes of UP which are particularly antigenic can be selected, for example, by routine screening of UP polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983) Science 219:660-66) to the amino acid sequence of a UP. Monoclonal antibodies with affinities of 10^{8} M^{-1} preferably 10^{9} M^{-1} to 10^{10} M^{-1}, or stronger can be made by standard procedures as described (Harlow and Lane, supra; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577). Antibodies may be generated against crude cell extracts of UP or substantially purified fragments thereof. If UP fragments are used, they preferably comprise at least 10, and more preferably, at least 20 contiguous amino acids of a UP protein. In a particular embodiment, UP-specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response. For example, the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune
response. An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.

The presence of UP-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding UP polypeptides. Other assays, such as radioimmunoassays or fluorescent assays might also be used.


Other suitable techniques for antibody production involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors (Huse et al., Science (1989) 246:1275-1281). As used herein, T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, supra).
The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134).

A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241). Also, recombinant immunoglobulins may be produced (U.S. Pat. No. 4,816,567). Antibodies to cytoplasmic polypeptides may be delivered and reach their targets by conjugation with membrane-penetrating toxin proteins (U.S. Pat. No. 6,086,900).

When used therapeutically in a patient, the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously. The therapeutically effective dose and dosage regimen is determined by clinical studies. Typically, the amount of antibody administered is in the range of about 0.1 mg/kg to about 10 mg/kg of patient weight. For parenteral administration, the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle. Such vehicles are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used. The vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential. The antibodies' concentrations in such vehicles are typically in the range of about 1 mg/ml to about 10 mg/ml. Immunotherapeutic methods are further described in the literature (US Pat. No. 5,859,206; WO0073469).

**Nucleic Acid Modulators**

Other preferred UP-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit UP activity. Preferred nucleic acid modulators interfere with the function of the UP nucleic acid such as DNA replication, transcription, translocation of the UP RNA to the site of
protein translation, translation of protein from the UP RNA, splicing of the UP RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the UP RNA.

In one embodiment, the antisense oligomer is an oligonucleotide that is sufficiently complementary to a UP mRNA to bind to and prevent translation, preferably by binding to the 5’ untranslated region. UP-specific antisense oligonucleotides, preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length. The oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents.

In another embodiment, the antisense oligomer is a phosphothioate morpholino oligomer (PMO). PMOs are assembled from four different morpholino subunits, each of which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiimidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods. (2000) 22(3):271-281; Summerton J, and Weller D. 1997 Antisense Nucleic Acid Drug Dev. :7:187-95; US Pat. No. 5,235,033; and US Pat No. 5,378,841).


Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790). Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway. For example, antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan JF, et al, Current Concepts in Antisense Drug Design, J Med Chem. (1993) 36:1923-1937; Tonkinson JL et al., Antisense Oligodeoxynucleotides as Clinical Therapeutic Agents, Cancer Invest. (1996) 14:54-65). Accordingly, in one aspect of the invention, a UP-specific nucleic acid modulator is used in an assay to further elucidate the role of the UP in the beta catenin pathway, and/or its relationship to other members of the pathway. In another aspect of the invention, a UP-specific antisense oligomer is used as a therapeutic agent for treatment of beta catenin-related disease states.

**Assay Systems**

The invention provides assay systems and screening methods for identifying specific modulators of UP activity. As used herein, an "assay system" encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event. In general, primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the UP nucleic acid or protein. In general, secondary assays further assess the activity of a UP modulating agent identified by a primary assay and may confirm that the modulating agent affects UP in a manner relevant to the beta catenin pathway. In some cases, UP modulators will be directly tested in a secondary assay.

In a preferred embodiment, the screening method comprises contacting a suitable assay system comprising a UP polypeptide or nucleic acid with a candidate agent under conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. phosphorylase activity), which is based on the particular molecular event the screening method detects. A statistically significant difference between the agent-biased activity and the reference activity indicates that the candidate agent modulates UP activity,
and hence the beta catenin pathway. The UP polypeptide or nucleic acid used in the assay may comprise any of the nucleic acids or polypeptides described above.

**Primary Assays**

The type of modulator tested generally determines the type of primary assay.

**Primary assays for small molecule modulators**

For small molecule modulators, screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam GS et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references). As used herein the term "cell-based" refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction. The term "cell free" encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts. Screening assays may detect a variety of molecular events, including protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicity and changes in cellular morphology or other cellular characteristics. Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected.

Cell-based screening assays usually require systems for recombinant expression of UP and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when UP-interacting proteins are used in screens to identify small molecule modulators, the binding specificity of the interacting protein to the UP protein may be assayed by various known methods such as substrate processing (e.g. ability of the candidate UP-specific binding agents to function as negative effectors in UP-expressing cells), binding equilibrium constants (usually at least about $10^7$
M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹), and immunogenicity (e.g. ability to elicit UP specific antibody in a heterologous host such as a mouse, rat, goat or rabbit). For enzymes and receptors, binding may be assayed by, respectively, substrate and ligand processing.

The screening assay may measure a candidate agent’s ability to specifically bind to or modulate activity of a UP polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein. The UP polypeptide can be full length or a fragment thereof that retains functional UP activity. The UP polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag. The UP polypeptide is preferably human UP, or is an ortholog or derivative thereof as described above. In a preferred embodiment, the screening assay detects candidate agent-based modulation of UP interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has UP-specific binding activity, and can be used to assess normal UP gene function.

Suitable assay formats that may be adapted to screen for UP modulators are known in the art. Preferred screening assays are high throughput or ultra high throughput and thus provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes PB, Curr Opin Chem Biol (1998) 2:597-603; Sundberg SA, Curr Opin Biotechnol 2000, 11:47-53). In one preferred embodiment, screening assays uses fluorescence technologies, including fluorescence polarization, time-resolved fluorescence, and fluorescence resonance energy transfer. These systems offer means to monitor protein-protein or DNA-protein interactions in which the intensity of the signal emitted from dye-labeled molecules depends upon their interactions with partner molecules (e.g., Selvin PR, Nat Struct Biol (2000) 7:730-4; Fernandes PB, supra; Hertzberg RP and Pope AJ, Curr Opin Chem Biol (2000) 4:445-451).

A variety of suitable assay systems may be used to identify candidate UP and beta catenin pathway modulators (e.g. U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); and U.S. Pat. Nos. 5,976,782, 6,225,118 and 6,444,434 (angiogenesis assays), among others). Specific preferred assays are described in more detail below.

Assays for uridine phosphorylase enzyme activity measure uridine conversion to uracil, using various methods such as TLC chromatography, which are described in the art (Liu M-P, et al (1998) Cancer Research 58:5418-5424).
**Apoptosis assays.** Apoptosis or programmed cell death is a suicide program is activated within the cell, leading to fragmentation of DNA, shrinkage of the cytoplasm, membrane changes and cell death. Apoptosis is mediated by proteolytic enzymes of the caspase family. Many of the altering parameters of a cell are measurable during apoptosis. Assays for apoptosis may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay. The TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik et al., 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara et al., 1989, J. Exp. Med. 169, 1747). Apoptosis may further be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41). Other cell-based apoptosis assays include the caspase-3/7 assay and the cell death nucleosome ELISA assay. The caspase 3/7 assay is based on the activation of the caspase cleavage activity as part of a cascade of events that occur during programmed cell death in many apoptotic pathways. In the caspase 3/7 assay (commercially available Apo-ONE™ Homogeneous Caspase-3/7 assay from Promega, cat# 67790), lysis buffer and caspase substrate are mixed and added to cells. The caspase substrate becomes fluorescent when cleaved by active caspase 3/7. The nucleosome ELISA assay is a general cell death assay known to those skilled in the art, and available commercially (Roche, Cat# 1774425). This assay is a quantitative sandwich-enzyme-immunoassay which uses monoclonal antibodies directed against DNA and histones respectively, thus specifically determining amount of mono- and oligonucleosomes in the cytoplasmic fraction of cell lysates. Mono and oligonucleosomes are enriched in the cytoplasm during apoptosis due to the fact that DNA fragmentation occurs several hours before the plasma membrane breaks down, allowing for accumulation in the cytoplasm. Nucleosomes are not present in the cytoplasmic fraction of cells that are not undergoing apoptosis. The Phospho-histone H2B assay is another apoptosis assay, based on phosphorylation of histone H2B as a result of apoptosis. Fluorescent dyes that are associated with phosphohistone H2B may be used to measure the increase of phosphohistone H2B as a result of apoptosis. Apoptosis assays that simultaneously measure multiple parameters associated with apoptosis have also been developed. In such assays, various cellular parameters that can be associated with antibodies or fluorescent dyes, and that mark various stages of apoptosis are labeled, and the results are measured using instruments such as Cellomics™ ArrayScan® HCS System. The measurable parameters and their markers include anti-active caspase-3 antibody which marks intermediate stage apoptosis, anti-PARP-p85 antibody (cleaved PARP)
which marks late stage apoptosis, Hoechst labels which label the nucleus and are used to measure nuclear swelling as a measure of early apoptosis and nuclear condensation as a measure of late apoptosis, and TOTO-3 fluorescent dye which labels DNA of dead cells with high cell membrane permeability.

An apoptosis assay system may comprise a cell that expresses a UP, and that optionally has defective beta catenin function (e.g. beta catenin is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify candidate beta catenin modulating agents. In some embodiments of the invention, an apoptosis assay may be used as a secondary assay to test a candidate beta catenin modulating agents that is initially identified using a cell-free assay system. An apoptosis assay may also be used to test whether UP function plays a direct role in apoptosis. For example, an apoptosis assay may be performed on cells that over- or under-express UP relative to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the UP plays a direct role in the apoptotic response. Apoptosis assays are described further in US Pat. No. 6,133,437.

**Cell proliferation and cell cycle assays.** Cell proliferation may be assayed via bromodeoxyuridine (BRDU) incorporation. This assay identifies a cell population undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino et al., 1986, Int. J. Cancer 38, 369; Campana et al., 1988, J. Immunol. Meth. 107, 79), or by other means.

Cell proliferation is also assayed via phospho-histone H3 staining, which identifies a cell population undergoing mitosis by phosphorylation of histone H3. Phosphorylation of histone H3 at serine 10 is detected using an antibody specific to the phosphorylated form of the serine 10 residue of histone H3. (Chadlee, D.N. 1995, J. Biol. Chem 270:20098-105). Cell Proliferation may also be examined using [³H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeoung, J., 1995, J. Biol. Chem. 270:18367-73). This assay allows for quantitative characterization of S-phase DNA syntheses. In this assay, cells synthesizing DNA will incorporate [³H]-thymidine into newly synthesized DNA. Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter). Another proliferation assay uses the dye Alamar Blue (available from
Biosource International), which fluoresces when reduced in living cells and provides an indirect measurement of cell number (Voytik-Harbin SL et al., 1998, In Vitro Cell Dev Biol Anim 34:239-46). Yet another proliferation assay, the MTS assay, is based on in vitro cytotoxicity assessment of industrial chemicals, and uses the soluble tetrazolium salt, MTS. MTS assays are commercially available, for example, the Promega CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (Cat.# G5421).

Cell proliferation may also be assayed by colony formation in soft agar, or clonogenic survival assay (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with UP are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation.

Cell proliferation may also be assayed by measuring ATP levels as indicator of metabolically active cells. Such assays are commercially available, for example Cell Titer-Glo™, which is a luminescent homogeneous assay available from Promega.

Involvement of a gene in the cell cycle may be assayed by flow cytometry (Gray JW et al. (1986) Int J Radiat Biol Relat Stud Phys Chem Med 49:237-55). Cells transfected with a UP may be stained with propidium iodide and evaluated in a flow cytometer (available from Becton Dickinson), which indicates accumulation of cells in different stages of the cell cycle.

Accordingly, a cell proliferation or cell cycle assay system may comprise a cell that expresses a UP, and that optionally has defective beta catenin function (e.g. beta catenin is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate beta catenin modulating agents. In some embodiments of the invention, the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate beta catenin modulating agents that is initially identified using another assay system such as a cell-free assay system. A cell proliferation assay may also be used to test whether UP function plays a direct role in cell proliferation or cell cycle. For example, a cell proliferation or cell cycle assay may be performed on cells that over- or under-express UP relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the UP plays a direct role in cell proliferation or cell cycle.

**Angiogenesis.** Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include
Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson). Accordingly, an angiogenesis assay system may comprise a cell that expresses a UP, and that optionally has defective beta catenin function (e.g. beta catenin is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate beta catenin modulating agents. In some embodiments of the invention, the angiogenesis assay may be used as a secondary assay to test a candidate beta catenin modulating agents that is initially identified using another assay system. An angiogenesis assay may also be used to test whether UP function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express UP relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the UP plays a direct role in angiogenesis. U.S. Pat. Nos. 5,976,782, 6,225,118 and 6,444,434, among others, describe various angiogenesis assays.

Hypoxic induction. The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glyolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with UP in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 7001 incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®. For example, a hypoxic induction assay system may comprise a cell that expresses a UP, and that optionally has defective beta catenin function (e.g. beta catenin is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the hypoxic induction assay system and changes in hypoxic response relative to controls where no test agent is added, identify candidate beta catenin modulating agents. In some embodiments of the invention, the hypoxic induction assay may be used as a secondary assay to test a candidate beta catenin modulating agents that is initially identified using another assay
system. A hypoxic induction assay may also be used to test whether UP function plays a direct role in the hypoxic response. For example, a hypoxic induction assay may be performed on cells that over- or under-express UP relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the UP plays a direct role in hypoxic induction.

**Cell adhesion.** Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2x final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader.

Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate. Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.

High-throughput cell adhesion assays have also been described. In one such assay, small molecule ligands and peptides are bound to the surface of microscope slides using a microarray spotter, intact cells are then contacted with the slides, and unbound cells are washed off. In this assay, not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip is measured (Falsey JR et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53).
**Tubulogenesis.** Tubulogenesis assays monitor the ability of cultured cells, generally endothelial cells, to form tubular structures on a matrix substrate, which generally simulates the environment of the extracellular matrix. Exemplary substrates include Matrigel™ (Becton Dickinson), an extract of basement membrane proteins containing laminin, collagen IV, and heparin sulfate proteoglycan, which is liquid at 4°C and forms a solid gel at 37°C. Other suitable matrices comprise extracellular components such as collagen, fibronectin, and/or fibrin. Cells are stimulated with a pro-angiogenic stimulant, and their ability to form tubules is detected by imaging. Tubules can generally be detected after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Tube formation assays are well known in the art (e.g., Jones MK et al., 1999, Nature Medicine 5:1418-1423). These assays have traditionally involved stimulation with serum or with the growth factors FGF or VEGF. Serum represents an undefined source of growth factors. In a preferred embodiment, the assay is performed with cells cultured in serum free medium, in order to control which process or pathway a candidate agent modulates. Moreover, we have found that different target genes respond differently to stimulation with different pro-angiogenic agents, including inflammatory angiogenic factors such as TNF-alpha. Thus, in a further preferred embodiment, a tubulogenesis assay system comprises testing a UP's response to a variety of factors, such as FGF, VEGF, phorbol myristate acetate (PMA), TNF-alpha, ephrin, etc.

**Cell Migration.** An invasion/migration assay (also called a migration assay) tests the ability of cells to overcome a physical barrier and to migrate towards pro-angiogenic signals. Migration assays are known in the art (e.g., Paik JH et al., 2001, J Biol Chem 276:11830-11837). In a typical experimental set-up, cultured endothelial cells are seeded onto a matrix-coated porous lamina, with pore sizes generally smaller than typical cell size. The matrix generally simulates the environment of the extracellular matrix, as described above. The lamina is typically a membrane, such as the transwell polycarbonate membrane (Corning Costar Corporation, Cambridge, MA), and is generally part of an upper chamber that is in fluid contact with a lower chamber containing pro-angiogenic stimuli. Migration is generally assayed after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Migration is assessed as the number of cells that crossed the lamina, and may be detected by staining cells with hemotoxylin solution (VWR Scientific, South San Francisco, CA), or by any other method for determining cell number. In another exemplary set up, cells are fluorescently labeled and
migration is detected using fluorescent readings, for instance using the Falcon HTS
FluoroBlok (Becton Dickinson). While some migration is observed in the absence of
stimulus, migration is greatly increased in response to pro-angiogenic factors. As
described above, a preferred assay system for migration/invasion assays comprises testing
a UP's response to a variety of pro-angiogenic factors, including tumor angiogenic and
inflammatory angiogenic agents, and culturing the cells in serum free medium.

**Sprouting assay.** A sprouting assay is a three-dimensional *in vitro* angiogenesis
assay that uses a cell-number defined spheroid aggregation of endothelial cells
("spheroid"), embedded in a collagen gel-based matrix. The spheroid can serve as a
starting point for the sprouting of capillary-like structures by invasion into the
extracellular matrix (termed "cell sprouting") and the subsequent formation of complex
anastomosing networks (Korff and Augustin, 1999, J Cell Sci 112:3249-58). In an
exemplary experimental set-up, spheroids are prepared by pipetting 400 human umbilical
vein endothelial cells into individual wells of a nonadhesive 96-well plates to allow
Spheroids are harvested and seeded in 900μl of methocel-collagen solution and pipetted
into individual wells of a 24 well plate to allow collagen gel polymerization. Test agents
are added after 30 min by pipetting 100 μl of 10-fold concentrated working dilution of the
test substances on top of the gel. Plates are incubated at 37°C for 24h. Dishes are fixed at
the end of the experimental incubation period by addition of paraformaldehyde. Sprouting
intensity of endothelial cells can be quantitated by an automated image analysis system to
determine the cumulative sprout length per spheroid.

**Primary assays for antibody modulators**

For antibody modulators, appropriate primary assays test is a binding assay that
tests the antibody's affinity to and specificity for the UP protein. Methods for testing
antibody affinity and specificity are well known in the art (Harlow and Lane, 1988, 1999,
*supra*). The enzyme-linked immunosorbant assay (ELISA) is a preferred method for
detecting UP-specific antibodies; others include FACS assays, radioimmunoassays, and
fluorescent assays.

In some cases, screening assays described for small molecule modulators may also
be used to test antibody modulators.
**Primary assays for nucleic acid modulators**

For nucleic acid modulators, primary assays may test the ability of the nucleic acid modulator to inhibit or enhance UP gene expression, preferably mRNA expression. In general, expression analysis comprises comparing UP expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express UP) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art. For instance, Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR (e.g., using the TaqMan®, PE Applied Biosystems), or microarray analysis may be used to confirm that UP mRNA expression is reduced in cells treated with the nucleic acid modulator (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm DH and Guiseppi-Elie, A Curr Opin Biotechnol 2001, 12:41-47). Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the UP protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, *supra*).

In some cases, screening assays described for small molecule modulators, particularly in assay systems that involve UP mRNA expression, may also be used to test nucleic acid modulators.

**Secondary Assays**

Secondary assays may be used to further assess the activity of UP-modulating agent identified by any of the above methods to confirm that the modulating agent affects UP in a manner relevant to the beta catenin pathway. As used herein, UP-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with UP.

Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express UP) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate UP-modulating agent results in changes in the beta catenin pathway in comparison to untreated (or mock- or placebo-treated) cells or animals.
Certain assays use “sensitized genetic backgrounds”, which, as used herein, describe cells or animals engineered for altered expression of genes in the beta catenin or interacting pathways.

**Cell-based assays**

Cell-based assays may detect endogenous beta catenin pathway activity or may rely on recombinant expression of beta catenin pathway components. Any of the aforementioned assays may be used in this cell-based format. Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means.

**Animal Assays**

A variety of non-human animal models of normal or defective beta catenin pathway may be used to test candidate UP modulators. Models for defective beta catenin pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the beta catenin pathway. Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc.

In a preferred embodiment, beta catenin pathway activity is assessed by monitoring neovascularization and angiogenesis. Animal models with defective and normal beta catenin are used to test the candidate modulator’s affect on UP in Matrigel® assays. Matrigel® is an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4°C, but rapidly forms a solid gel at 37°C. Liquid Matrigel® is mixed with various angiogenic agents, such as bFGF and VEGF, or with human tumor cells which over-express the UP. The mixture is then injected subcutaneously (SC) into female athymic nude mice (Taconic, Germantown, NY) to support an intense vascular response. Mice with Matrigel® pellets may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5 - 12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel.

In another preferred embodiment, the effect of the candidate modulator on UP is assessed via tumorigenicity assays. Tumor xenograft assays are known in the art (see,
e.g., Ogawa K et al., 2000, Oncogene 19:6043-6052). Xenografts are typically implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a pre-existing tumor or from in vitro culture. The tumors which express the UP endogenously are injected in the flank, 1 x 10^6 to 1 x 10^7 cells per mouse in a volume of 100 μL using a 27 gauge needle. Mice are then ear tagged and tumors are measured twice weekly. Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg. Candidate modulator is delivered IV, SC, IP, or PO by bolus administration. Depending upon the pharmacokinetics of each unique candidate modulator, dosing can be performed multiple times per day. The tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions. At the end of the experiment, the excised tumors maybe utilized for biomarker identification or further analyses. For immunohistochemistry staining, xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4°C, immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.

In another preferred embodiment, tumorogenicity is monitored using a hollow fiber assay, which is described in U.S. Pat No. US 5,698,413. Briefly, the method comprises implanting into a laboratory animal a biocompatible, semi-permeable encapsulation device containing target cells, treating the laboratory animal with a candidate modulating agent, and evaluating the target cells for reaction to the candidate modulator. Implanted cells are generally human cells from a pre-existing tumor or a tumor cell line. After an appropriate period of time, generally around six days, the implanted samples are harvested for evaluation of the candidate modulator. Tumorogenicity and modulator efficacy may be evaluated by assaying the quantity of viable cells present in the macrocapsule, which can be determined by tests known in the art, for example, MTT dye conversion assay, neutral red dye uptake, trypan blue staining, viable cell counts, the number of colonies formed in soft agar, the capacity of the cells to recover and replicate in vitro, etc.

In another preferred embodiment, a tumorogenicity assay use a transgenic animal, usually a mouse, carrying a dominant oncogene or tumor suppressor gene knockout under the control of tissue specific regulatory sequences; these assays are generally referred to as transgenic tumor assays. In a preferred application, tumor development in the transgenic model is well characterized or is controlled. In an exemplary model, the "RIP1-Tag2" transgene, comprising the SV40 large T-antigen oncogene under control of the insulin gene regulatory regions is expressed in pancreatic beta cells and results in islet cell
carcinomas (Hanahan D, 1985, Nature 315:115-122; Parangi S et al, 1996, Proc Natl Acad Sci USA 93: 2002-2007; Bergers G et al, 1999, Science 284:808-812). An "angiogenic switch," occurs at approximately five weeks, as normally quiescent capillaries in a subset of hyperproliferative islets become angiogenic. The RIP1-TAG2 mice die by age 14 weeks. Candidate modulators may be administered at a variety of stages, including just prior to the angiogenic switch (e.g., for a model of tumor prevention), during the growth of small tumors (e.g., for a model of intervention), or during the growth of large and/or invasive tumors (e.g., for a model of regression). Tumorogenicity and modulator efficacy can be evaluating life-span extension and/or tumor characteristics, including number of tumors, tumor size, tumor morphology, vessel density, apoptotic index, etc.

**Diagnostic and therapeutic uses**

Specific UP-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the beta catenin pathway, such as angiogenic, apoptotic, or cell proliferation disorders. Accordingly, the invention also provides methods for modulating the beta catenin pathway in a cell, preferably a cell pre-determined to have defective or impaired beta catenin function (e.g. due to overexpression, underexpression, or misexpression of beta catenin, or due to gene mutations), comprising the step of administering an agent to the cell that specifically modulates UP activity. Preferably, the modulating agent produces a detectable phenotypic change in the cell indicating that the beta catenin function is restored. The phrase “function is restored”, and equivalents, as used herein, means that the desired phenotype is achieved, or is brought closer to normal compared to untreated cells. For example, with restored beta catenin function, cell proliferation and/or progression through cell cycle may normalize, or be brought closer to normal relative to untreated cells. The invention also provides methods for treating disorders or disease associated with impaired beta catenin function by administering a therapeutically effective amount of a UP -modulating agent that modulates the beta catenin pathway. The invention further provides methods for modulating UP function in a cell, preferably a cell pre-determined to have defective or impaired UP function, by administering a UP -modulating agent. Additionally, the invention provides a method for treating disorders or disease associated with impaired UP function by administering a therapeutically effective amount of a UP -modulating agent.

The discovery that UP is implicated in beta catenin pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases...
and disorders involving defects in the beta catenin pathway and for the identification of subjects having a predisposition to such diseases and disorders.

Various expression analysis methods can be used to diagnose whether UP expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis. (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm and Guiseppi-Elie, Curr Opin Biotechnol 2001, 12:41-47). Tissues having a disease or disorder implicating defective beta catenin signaling that express a UP, are identified as amenable to treatment with a UP modulating agent. In a preferred application, the beta catenin defective tissue overexpresses a UP relative to normal tissue. For example, a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial UP cDNA sequences as probes, can determine whether particular tumors express or overexpress UP. Alternatively, the TaqMan® is used for quantitative RT-PCR analysis of UP expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems).

Various other diagnostic methods may be performed, for example, utilizing reagents such as the UP oligonucleotides, and antibodies directed against a UP, as described above for: (1) the detection of the presence of UP gene mutations, or the detection of either over- or under-expression of UP mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of UP gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by UP.

Kits for detecting expression of UP in various samples, comprising at least one antibody specific to UP, all reagents and/or devices suitable for the detection of antibodies, the immobilization of antibodies, and the like, and instructions for using such kits in diagnosis or therapy are also provided.

Thus, in a specific embodiment, the invention is drawn to a method for diagnosing a disease or disorder in a patient that is associated with alterations in UP expression, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for UP expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a likelihood of the disease or disorder.
Preferably, the disease is cancer, most preferably a cancer as shown in. The probe may be either DNA or protein, including an antibody.

EXAMPLES

The following experimental section and examples are offered by way of illustration and not by way of limitation.

I. Drosophila beta catenin screen

Two dominant loss of function screens were carried out in Drosophila to identify genes that interact with the Wg cell signaling molecule, beta –catenin (Riggleman et al. (1990) Cell 63:549-560; Peifer et al. (1991) Development 111:1029-1043). Late stage activation of the pathway in the developing Drosophila eye leads to apoptosis (Freeman and Bienz (2001) EMBO reports 2: 157-162), whereas early stage activation leads to an overgrowth phenotype. We discovered that ectopic expression of the activated protein in the wing results in changes of cell fate into ectopic bristles and wing veins.

Each transgene was carried in a separate fly stock:

Stocks and genotypes were as follows:

- eye overgrowth transgene: isow; P{3.5 eyeless-Gal4}; P{arm(S56F)-pExp-UAS})/TM6b;

- eye apoptosis transgene: y w; P{arm(S56F)-pExp-GMR}/CyO; and

- wing transgene: P{arm(AN)-pExp-VgMQ}/FM7c

In the first dominant loss of function screen, females of each of these three transgenes were crossed to a collection of males containing genomic deficiencies. Resulting progeny containing the transgene and the deficiency were then scored for the effect of the deficiency on the eye apoptosis, eye overgrowth, and wing phenotypes, i.e., whether the deficiency enhanced, suppressed, or had no effect on their respective phenotypes. All data was recorded and all modifiers were retested with a repeat of the
original cross. Modifying deficiencies of the phenotypes were then prioritized according to how they modified each of the three phenotypes.

Transposons contained within the prioritized deficiencies were then screened as described. Females of each of the three transgenes were crossed to a collection of 4 types of transposons (3 piggyBac-based and 1 P-element-based). The resulting progeny containing the transgene and the transposon were scored for the effect of the transposon on their respective phenotypes. All data was recorded and all modifiers were retested with a repeat of the original cross. Modifiers of the phenotypes were identified as either members of the Wg pathway, components of apoptotic related pathways, components of cell cycle related pathways, or cell adhesion related proteins.

In the second dominant loss of function screen, females of the eye overgrowth transgene were crossed to males from a collection of 3 types of piggyBac-based transposons. The resulting progeny containing the transgene and the transposon were scored for the effect of the transposon on the eye overgrowth phenotype. All data was recorded and all modifiers were retested with a repeat of the original cross. Modifiers of the phenotypes were identified as either members of the Wg pathway, components of cell cycle related pathways, or cell adhesion related proteins. CG6330 was identified as a suppressor from the assay. Orthologs of CG6330 are referred to herein as UP.

BLAST analysis (Altschul et al., supra) was employed to identify orthologs of Drosophila CG6330. For example, representative sequences from UP, GI# 4507839 (SEQ ID NO:10), and GI#27597096 (SEQ ID NO:11) share 51% and 53% amino acid identity, respectively, with the Drosophila CG6330.

T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998), and clust (Remm M, and Sonnhammer E. Classification of transmembrane protein families in the Caenorhabditis elegans genome and identification of human orthologs. Genome Res. 2000 Nov;10(11):1679-89) programs. For example, the phosphorylase domain (PFAM 01048) of UP from GI#s 4507839 and 27597096 (SEQ ID NO:10 and 11, respectively) is located respectively at approximately amino acid residues 54 to 303 and 60-308.

II. High-Throughput In Vitro Fluorescence Polarization Assay

Fluorescently-labeled UP peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of UP activity.

III. High-Throughput In Vitro Binding Assay.

$^{35}$P-labeled UP peptide is added in an assay buffer (100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl$_2$, 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25°C for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate beta catenin modulating agents.

IV. Immunoprecipitations and Immunoblotting

For coprecipitation of transfected proteins, 3 x $10^6$ appropriate recombinant cells containing the UP proteins are plated on 10-cm dishes and transfected on the following day with expression constructs. The total amount of DNA is kept constant in each transfection by adding empty vector. After 24 h, cells are collected, washed once with phosphate-buffered saline and lysed for 20 min on ice in 1 ml of lysis buffer containing 50 mM Hepes, pH 7.9, 250 mM NaCl, 20 mM -glycerophosphate, 1 mM sodium orthovanadate, 5 mM p-nitrophenyl phosphate, 2 mM dithiothreitol, protease inhibitors.
(complete, Roche Molecular Biochemicals), and 1% Nonidet P-40. Cellular debris is removed by centrifugation twice at 15,000 × g for 15 min. The cell lysate is incubated with 25 µl of M2 beads (Sigma) for 2 h at 4 °C with gentle rocking.

After extensive washing with lysis buffer, proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies. The reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech).

V. Expression analysis

All cell lines used in the following experiments are NCI (National Cancer Institute) lines, and are available from ATCC (American Type Culture Collection, Manassas, VA 20110-2209). Normal and tumor tissues were obtained from Impath, UC Davis, Clontech, Stratagene, Ardais, Genome Collaborative, and Ambion.

TaqMan® analysis was used to assess expression levels of the disclosed genes in various samples.

RNA was extracted from each tissue sample using Qiagen (Valencia, CA) RNeasy kits, following manufacturer’s protocols, to a final concentration of 50ng/µl. Single stranded cDNA was then synthesized by reverse transcribing the RNA samples using random hexamers and 500ng of total RNA per reaction, following protocol 4304965 of Applied Biosystems (Foster City, CA).

Primers for expression analysis using TaqMan® assay (Applied Biosystems, Foster City, CA) were prepared according to the TaqMan® protocols, and the following criteria: a) primer pairs were designed to span introns to eliminate genomic contamination, and b) each primer pair produced only one product. Expression analysis was performed using a 7900HT instrument.

TaqMan® reactions were carried out following manufacturer’s protocols, in 25 µl total volume for 96-well plates and 10 µl total volume for 384-well plates, using 300nM primer and 250 nM probe, and approximately 25ng of cDNA. The standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in appreciable amounts is good. The raw data were normalized using 18S rRNA (universally expressed in all tissues and cells).
For each expression analysis, tumor tissue samples were compared with matched normal tissues from the same patient. A gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample. In cases where normal tissue was not available, a universal pool of cDNA samples was used instead. In these cases, a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor – average(all normal samples) > 2 x STDEV(all normal samples)).

Results are shown in Table 1. Number of pairs of tumor samples and matched normal tissue from the same patient are shown for each tumor type. Percentage of the samples with at least two-fold overexpression for each tumor type is provided. A modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator. Prior to treating a patient with the modulator, the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator. The expression data for the gene(s) can also be used as a diagnostic marker for disease progression. The assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method.

Table 1

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>% of Pairs</th>
<th>% of Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>22%</td>
<td>15%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>Colon</td>
<td>15%</td>
<td>40%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Head And Neck</td>
<td>38%</td>
<td>25%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Kidney</td>
<td>24%</td>
<td>0%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Liver</td>
<td>11%</td>
<td>33%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Lung</td>
<td>12%</td>
<td>25%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>0%</td>
<td>50%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
### Table

<table>
<thead>
<tr>
<th>Tissue</th>
<th>% of Up</th>
<th>% of Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary</td>
<td>37%</td>
<td>7%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Pancreas</td>
<td>58%</td>
<td>33%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Prostate</td>
<td>8%</td>
<td>27%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Skin</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Stomach</td>
<td>73%</td>
<td>67%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Testis</td>
<td>88%</td>
<td>0%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Thyroid Gland</td>
<td>43%</td>
<td>11%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Uterus</td>
<td>22%</td>
<td>12%</td>
</tr>
<tr>
<td># of Pairs</td>
<td>23</td>
<td>16</td>
</tr>
</tbody>
</table>

### VI. UP functional assays

RNAi experiments were carried out to knock down expression of UP (SEQ ID NO:s:1 and 8) in various cell lines using small interfering RNAs (siRNA, Elbashir et al, supra).

Effect of UP RNAi on cell proliferation and growth. BrdU assay, as described above, was employed to study the effects of decreased UP expression on cell proliferation. The results of these experiments indicated that RNAi of SEQ ID NO:1 decreased proliferation in SW480 colon cancer and PC3 prostate cancer cells. RNAi of SEQ ID NO:8 decreased proliferation in PC3 cells. [3]H-Thymidine incorporation assay, as described above, was also employed to study the effects of decreased UP expression on cell proliferation. Results indicated that RNAi of both SEQ ID NO:1 and SEQ ID NO:8 decreased cell proliferation in LOVO and HCT116 colon cancer cells, and in PC3 cells. Standard colony growth assays, as described above, were employed to study the effects of decreased UP expression on cell growth. Results indicated that RNAi of SEQ ID NO:1 decreased proliferation in PC3 and SW480 cells.

Effect of UP RNAi on apoptosis. Phospho Histone H2B assay, as described above, was employed to study the effects of decreased UP expression on apoptosis. Results indicated that RNAi of both SEQ ID NO:s:1 and 8 increased apoptosis in SW480 and PC3 cells. Further, results indicated that RNAi of SEQ ID NO:1 decreased cell count in SW480 and HCT116 colon cancer cells, and also in PC3 cells. Multi-parameter apoptosis assays, as described above, was also employed to study the effects of decreased UP expression on apoptosis. Results indicated that RNAi of SEQ ID NO:1 caused apoptosis.
via affecting caspase activity, membrane permeability, and nuclear swelling in A549 lung
cancer and PC3 prostate cancer cells. RNAi of SEQ ID NO:8 caused apoptosis via
affecting caspase activity and nuclear swelling in A549 cells.

UP overexpression analysis. UP (SEQ ID NOs: 1 and 8) were overexpressed and
tested in colony growth assays as described above. Overexpressed SEQ ID NO:1 in
combination with TRKa oncogene caused an increase in cell growth and formation of foci
as compared with normal controls when transfected into RIE cells. Overexpressed SEQ
ID NO: 8 in combination with TRKa oncogene, and also in combination with Ras
oncogene, caused an increase in cell growth and formation of foci as compared with
normal controls when transfected into RIE cells. Further, overexpressed SEQ ID NO:8
caus ed increased colony growth in MDCK canine kidney cells, and also in RKE rat kidney
cells.

Transcriptional reporter assays. Effects of overexpressed UP on expression of
various transcription factors was studied. In this assay, rat intestinal epithelial cells (RIEs)
cells were co-transfected with reporter constructs containing various transcription factors
and luciferase along with UP. Luciferase intensity was then measured as the readout for
transcriptional activation due to overexpression of the UP. Overexpressed SEQ ID NO:1
caus ed an increased expression of SRE (Serum response element). Overexpressed SEQ
ID NO:8 caused an increased expression of EGR (Early growth response) and AP1

(Activator protein 1) transcription factors.

Beta Catenin Transcriptional readout assay. This assay is an expanded TaqMan®
transcriptional readout assay monitoring changes in the mRNA levels of endogenous beta
catenin regulated genes. This assay measures changes in expression of beta catenin
regulated cellular genes as a readout for pathway signaling activity. We identified a panel
of genes that were transcriptionally regulated by beta catenin signaling, then designed and
tested TaqMan® primer/probes sets. We reduced expression of beta catenin by RNAi, and
tested its affect on the expression of the transcriptionally regulated genes in multiple cell
types. The panel readout was then narrowed to the ten most robust probes. We then
treated cancer cells with siRNAs of the target genes of interest, such as UP, and tested
how the reduced levels of the target genes affected the expression levels of the beta
catenin regulated gene panel. Genes that when knocked out via RNAi, demonstrated the
same pattern of activity on at least one panel gene as a beta-catenin knockout, were
identified as involved in the beta catenin pathway. TaqMan® assays were performed on
the RNAs in a 384 well format. RNAi of SEQ ID NO:1 showed the same pattern of
activity as beta catenin RNAi for many of the transcriptionally regulated genes. Active nuclear beta catenin measurement assay. Beta catenin is a cytoplasmic gene, which when activated, moves into the nucleus. This assay was designed to measure the amount of active beta catenin protein in the nucleus using an anti active beta catenin antibody and a nuclear staining dye. Using this assay, we looked for genes that when knocked out, decrease beta catenin activity, and hence, the amount of active beta catenin in the nucleus. This assay was performed using Cellomics Inc. instrumentation.

For this assay, cells were transfected in quadruplicate with siRNAs in 96 well format and stained 72 hours post transfection. The amount of nuclear beta catenin was measured using two different methods. RNAi of SEQ ID NO:1 caused a decrease in the nuclear beta catenin in SW480 cells.

TOPFLASH beta-catenin reporter assay. Factors of the TCF/LEF HMG domain family (TCFs) exist in vertebrates, Drosophila melanogaster and Caenorhabditis elegans. Upon Wingless/Wnt signaling, Armadillo/beta-catenin associate with nuclear TCFs and contribute a trans-activation domain to the resulting bipartite transcription factor. So, transcriptional activation of TCF target genes by beta-catenin appears to be a central event in development and cellular transformation. Topflash beta-catenin luciferase gene reporter assay is used as a tool to measures activity of various genes in the beta-catenin pathway by transcriptional activation of TCFs (Korinek, V, et al. (1998) Molecular and Cellular Biology 18: 1248-1256). Briefly, cells are co-transfected with TOPFLASH plasmids containing TCF binding sites driving luciferase, and gene of interest. Transfected cells are then analyzed for luciferase activity. RNAi of SEQ ID NOs:1 and 8 caused decreased luciferase activity as compared with normal controls in LX1 lung cancer cells, and LOVO and SW480 colon cancer cells. As an extension of this assay, knockdown of beta catenin itself by RNAi caused an increase in the mRNA level of SEQ ID NO:1, suggesting that SEQ ID NO:1 is a transcriptional target of the beta catenin pathway.
WHAT IS CLAIMED IS:

1. A method of identifying a candidate beta catenin pathway modulating agent, said method comprising the steps of:
   (a) providing an assay system comprising a UP polypeptide or nucleic acid;
   (b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and
   (c) detecting a test agent-biased activity of the assay system, wherein a difference between the test agent-biased activity and the reference activity identifies the test agent as a candidate beta catenin pathway modulating agent.

2. The method of Claim 1 wherein the assay system comprises cultured cells that express the UP polypeptide.

3. The method of Claim 2 wherein the cultured cells additionally have defective beta catenin function.

4. The method of Claim 1 wherein the assay system includes a screening assay comprising a UP polypeptide, and the candidate test agent is a small molecule modulator.

5. The method of Claim 4 wherein the assay is a phosphorylase assay.

6. The method of Claim 1 wherein the assay system is selected from the group consisting of an apoptosis assay system, a cell proliferation assay system, an angiogenesis assay system, and a hypoxic induction assay system.

7. The method of Claim 1 wherein the assay system includes a binding assay comprising a UP polypeptide and the candidate test agent is an antibody.

8. The method of Claim 1 wherein the assay system includes an expression assay comprising a UP nucleic acid and the candidate test agent is a nucleic acid modulator.
9. The method of claim 8 wherein the nucleic acid modulator is an antisense oligomer.

10. The method of Claim 8 wherein the nucleic acid modulator is a PMO.

11. The method of Claim 1 additionally comprising:
   (d) administering the candidate beta catenin pathway modulating agent identified in (c) to a model system comprising cells defective in beta catenin function and, detecting a phenotypic change in the model system that indicates that the beta catenin function is restored.

12. The method of Claim 11 wherein the model system is a mouse model with defective beta catenin function.

13. A method for modulating a beta catenin pathway of a cell comprising contacting a cell defective in beta catenin function with a candidate modulator that specifically binds to a UP polypeptide, whereby beta catenin function is restored.

14. The method of claim 13 wherein the candidate modulator is administered to a vertebrate animal predetermined to have a disease or disorder resulting from a defect in beta catenin function.

15. The method of Claim 13 wherein the candidate modulator is selected from the group consisting of an antibody and a small molecule.

16. The method of Claim 1, comprising the additional steps of:
   (d) providing a secondary assay system comprising cultured cells or a non-human animal expressing UP ,
   (e) contacting the secondary assay system with the test agent of (b) or an agent derived therefrom under conditions whereby, but for the presence of the test agent or agent derived therefrom, the system provides a reference activity; and
   (f) detecting an agent-biased activity of the second assay system,
wherein a difference between the agent-biased activity and the reference activity of
the second assay system confirms the test agent or agent derived therefrom as a candidate
beta catenin pathway modulating agent,
and wherein the second assay detects an agent-biased change in the beta catenin
pathway.

17. The method of Claim 16 wherein the secondary assay system comprises
cultured cells.

18. The method of Claim 16 wherein the secondary assay system comprises a non-
human animal.

19. The method of Claim 18 wherein the non-human animal mis-expresses a beta
catenin pathway gene.

20. A method of modulating beta catenin pathway in a mammalian cell
comprising contacting the cell with an agent that specifically binds a UP polypeptide or
nucleic acid.

21. The method of Claim 20 wherein the agent is administered to a mammalian
animal predetermined to have a pathology associated with the beta catenin pathway.

22. The method of Claim 20 wherein the agent is a small molecule modulator, a
nucleic acid modulator, or an antibody.

23. A method for diagnosing a disease in a patient comprising:
obtaining a biological sample from the patient;
contacting the sample with a probe for UP expression;
comparing results from step (b) with a control;
determining whether step (c) indicates a likelihood of disease.

24. The method of claim 23 wherein said disease is cancer.

25. The method according to claim 24, wherein said cancer is a cancer as shown in
Table 1 as having >25% expression level.
SEQUENCE LISTING

<110> EXELIXIS, INC.

<120> UPS AS MODIFIERS OF THE BETA CATENIN PATHWAY AND METHODS OF USE

<130> EX04-058C-PC

<150> US 60/495,172

<151> 2003-08-14

<160> 11

<170> PatentIn version 3.2

<210> 1

<211> 1796

<212> DNA

<213> Homo sapiens

<400> 1
gttcagctgga gtttcgcggc ccagggcagg ccggggcgcga gcctagcgggt aaccccccgg 60
cagggcgggg ccgctgcgaag acctcattatg agattcaacct gcgaggtgtgt tcccctcaattc 120
gagtgcctcgg ggcgcacagac cccgcccggc gcgtctgcag gcctcccccgag aggcgtcccc 180
tgcgccccgccc tggcagcatt gcgtttgtcgc cgggtgctgc aagtgagggaga tcggcggcgg 240
ggtgtagcgg cttcctgcgcc ggccgaggtg ggccccagagc aggcgcagaac cccgcaagtc 300
gtcgacacgt ctcgctcccc ccattc ccagggccaggtt gaggtgactc gcgggtgccg 360
gtgactgccc ggccggacac tggctggaac gcctggagcc cctccccactg cagacgtcgtg 420
tccgccctcca gcggctcctcc tctgaagcgggt cctgcctcag ttggccggaatt gcggcgcacg 480
ggagccaaatg cagcagaagc tgaaggtcagc atagattggcc cccgctcagcc tttatgtca 540
aacatgacaa aatgcaaaagc atcatttc ctcctccttc atctcaacac tagacagcac 600
aattccccag cttcgtctgg agatggtaag tttcttggttg tttggtgtagg cccctccccg 660
atgaaagctct ccgctggcggc gcgtgtagcct gcggctgggcc tgtgagctcc ccagttgagac 720
tatcccaaaca tctgtgcggc aacctgaccgc tattgcaagt ataatggagc acgggtcgtg 780
tctgctcaagt gctggatgtgg ccattcctcct ctcctcaata tggctcatga gctcaataag 840
cgtctgtact atgcctcggttg ctctccagcct acactcactcc gcattggcacc ttctgggtcgg 900
ataggtctgg gcggcgccac tggctgaata cacagacaggg caggccgatac ctggcttaag 960
gcagaggttg aggctcattgt ccgtagggagcg ggtgtatcctg gcagaggtgc gcgggtccac ccagttggttg 1020
tcactatcat ccgccatggc acctccggtg ggataggtct ggagccgggc actgtgggcta 840
taacagagca gcgcagtggt acctctggctca aggcagagtt tgcagcagatt gtctctgggga 900
agcggttcct ccggaaaccgc acctttaaca agaagctcgtg gcagagctgc ttgtgctgttt 960
cctcagagct gacgcagttcc accaagctgg tgggaaacac catgctgacc cttgaacctct 1020
atgaggggca aggcagctctg gattggggctc tctgcctccta cagcgaagag gaaacagagg 1080
cgtatctgga ggcagaagctat gcacgcggcgg tccgcaatat cagagatggag tccctgggctg 1140
ttgcggcctct gtgcagcggcct tgcgctctcct aagcgggctctg gtgtgctgtgc acctctcctga 1200
accgccttcga agggagcagag atacagagccc tctcgaatgtg gctcagcagag taccagcagag 1260
ggccgcagcct gcgtgctgtagc taccctcaca agaagaacaat gacgaagggc ttgagcgtgc 1320
cctgcacctgc cgcagacgctg cttgtgatgc cttgccatttac aacgcacttgc ccaaaaaa 1380
aaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaa

<210> 3
<211> 794
<212> DNA
<213> Homo sapiens

<400> 3
ggatgagccgc gcgggtcgtag cggctctctc gcgcagccgaa gtcggcctgg ttgaggtgact 60
cgcggctcgc ggtgacgctgc gcggagccta tcggcctgaga cgctcgcgggc gcctcgcacact 120
gcagacgtcgc tcgcgctctcc agccgcgcctc ctctgagcggg tctcctgcctca gtggcgggaa 180
tggcggccac gcggcgcacat gcagagaagaag ctgaaagctca caagcttcga gcccgggcact 240
gttgcattaac cagagcacgcg atgggattacc tgcttcaagg gagaattggtg gcagattgtc 300
cctggggagcc ggttcattccgc gaaacgagag ctaacaacaga actgtgtgca ggagcgttgtg 360
cctgtagcttg cagagctgagc agacctcaac acagttgtgg gcgaacacct tgcacaccttg 420
gacttcctag aagggcagag ccggttctgtt gggctctcctg gctctcctacag ggagaagggc 480
aacgcaggcgt atctgaggggc agcgctatccgc gcggcggttgc gcacaatcga gatgagctcc 540
tggtgatttg gcgcattgtg cagcgctgtgc ggcccctcaag ccggcgtgtt ttggtgtcacc 600
tgttctgaacc gcctggaagg gcggcagattc agcagccctc gcatactgtgc cagcgagttac 660
cgcagagcgc gcgcacggtgt ggtgagctac ttcatacaaga agaaactgag caagggctctga 720
ggcgtgcttcgc gcacaacctgc gcagctgcttg tgaatgtccg cccataaaag catgtgctcaaa 780
aaaaaaa aaaaa aaaaa aaaaa aaaaa aaaaa
4
gcgggacactc ccaggatcag gaaggtccca gagaactccc ccagggggg gacgagggc
120
gtcagaagag atccagggtta cacacagtga cagtgcacgc tccacattcc gacacccgg
gccaggcctg gtccacgct gtcattttctc tccgcttgcc ccagccgcgg ggacacgcc
180
agacagcag acgggggtatc ctgctgtgcc gcgtgacttt gggtagttcc tagacgctct
240
tctagcccg gttcccttgc ccaggtttag gaccaagtgg gcggggcgcgc ctgctcaagct
300
ccatatgaga tgtacccctgc aagttgttcc ctcatctctag ttcctccggcc cacagacccc
360
cgcaccccgg tcgccgaccc tccggagagg cgtccctttcg tccgcccttg ggccttggcg
420
htgtcgccgg gtagcgcaggt gcggagatgg gcggcggcgg tgcgggtgcgg cctctgaggg
480
ccagatgggc ctgggtcaggt gacactgcgg gcgggggtgc gcggcgccag gacactgcct
540
gggaacgctgcc gacgcctttcc caatgcgacac ctcgtgcctgg ctacacgccgc tctctcctga
600
ccggtctctgc ctcaagtgggc ggaatggcgg ccacgagagc caatgcagag aagaagtcga
660
gtcacatga ttcggccggtc agacttttag atccaaacat acgaaaaattt aagaagaga
720
tttcttatca tttcatautcc accactagca gacacacttt cccagccttt tttggagatg
780
tgaggttggt cgtagttccgct ccgggtgaa aacccactac aggtgctgtg
840
gtgcagagct ggcctttgag tcgcccggtta gagacttccc caacactcgt gcgggaactg
900
accgctagtc catgatataaa ttaggacccgg tgcgtctgtg gacatgtgtg atggcactatc
960
cctctacttc aatcatcttg ctgagactca taaagctgct ctactatgcc cggtgtctca
1020
acgctcaatt ctcggccttg ggcacttctctgt ggagatagg ttcctgggacc gcacttggtg
1080
tcataacga gcagcggagt gcatactctgt tcaagggcaga gtttgacgag attgtctgtg
1140
ggagagcggtt cccggggaaa acggacacct caagaagcgt gtgcggaggc ctgttgagtgt
1200
gttctgacaga gctgagcgcgc tccaaccaacag tgggtggggaa acactgtgtgc accttggtac
1260
tctatatgag gcagggccgt ctgggtgaggg cctctctgtgc ctcaacggag aagaccaagc
1320
aggcgtatat gcggggcgcgggt tagcggccgg gctgacccgg caa tatgagatg gaacccctggg
1380
ttttgccggc gatgtgcaggg gcgtgctggggg tccaagcggcg cgtggtgtgt gtacccctcc
1440
tgcaacgcct gcggaggggcc cagatcagca gcctgccgaat tggtgtctgc ggtttcagcg
1500
agaggccgca gcggctgttg agctacttca tcaagaagaa actgagcaag gcctgagcgc
1560
tgccccggac ctccgccagac ctgctgtgat gacctgcaat taaaagcatt gtccaaatc
1620
cctgttggag tggactttgta gcacacttta ccacagaatc tagaaatact gtacgcgttt
1680
agagagacaga gaaaccttggaa ttaacgcgact ggagagatgtt cttccttttg taaaattcatt
1740
ggagcattttt caatgatgtt acgcctgtattt tggggtttctt caagacacatt ctaacaaatt
1800
tttgatactat ttctagggaa attttaaga catctaatgta ctaaatgttagg atagatttca
1860
tgctcactaa caaagataacct gacaaagttgg ccagaaaaacct attttcctga gactattaaa
1920
aatgcacctg caaaaaaaaaaaaaaaaaa a
1951

<210> 5
<211> 2261
<212> DNA
<213> Homo sapiens

<400> 5
gccgcgcggc acgggtgagt ggccagggac tt cacccagtcg tgcctgactgc ggccccagggc 60
tgtgcgtttgg accacagacca agaagaaggttg aggacaagggc ctggaagatg tgcctgttcc
120
cattcaacttt ccaccatgat tgaagaagttc tcggagccctt ccagccatgc ctgcctgtaca
180
gcctgtggaa ctggtaacttt tcacatagta gagaagatgg cttcgatattt acgcctgcctc
240
aataggtcaca tgagatctga caggaatata tattgtggaa aagaggttttg atcagttaaa
300
aatccctact cggattgtgt ggatgaagac atctctctatc acctggatttt gggacaaaaaa
360
acacacaacc taccacgaat gggtctgttg gtaaggtttg tcgcgtctggg gaggcgccc
420
aacagaattga aagcatttttg acgtttttatg cacaagagatc tcgggttttg gagagcttga
480
gaagacataaa aagacatctg tgcgtgggaca gacagataact gttatgtacaa aacgaggcct
540
gtgcctgcca tcataggcagc ctcggccatt cccccctttt atttatatg ctgtgactc
600
atCAAATTAC tccacatgtgc acgggtgtcgc gatgtgcaac attagaaatg ttaagacaactca
660
ggggggaatag ggatgtgacc agggactgtt gtaataacgg atatatgtgt gaactctcttc
720
ttttaaagcccc ggtttgaaaca gggtacttttg gacaaacattg tcccccgaag tactgaactg
780
gacaagac aagctgtcaga acttgttacaac tgcgcaagaa aatcccccac ccctccccacc
840
tgggatggac atccactgtg tattcatgtg ttttattaag gcacaggcccg actagatgga
900
gcaactgtgct ccccccccag agaaaaaag ttagactact tgaagagagc attttaaagct
960
gtgctcagga atattggaat ggaatctaca gtgttttgac ctagdtgtgg actctgtttgt
1020
ctaaaagctg ctgtggtctg ttgtgac acctt ctgcagagac tggacctgtgta tcagataaac 1080
ttgctctcagt atgctcctgtt ggagattgccca aacaagggcct agctcctaat ctccaaccttc 1140
atcagacggc ggcttggaact tgttgactag aagtccttaac tgggcagccc accccctccc 1200
tgcaagtttg tagctcaagt tgtaaatgtga aagtcataatt tattttgtgg cattttttata 1260
tagtttctcat ccacagtcta aatggagaat cttcttattcct aaaaaagga 1320
atttattgta aaagaattact cacactaat tacatctaaat ttccttttat gaataaagtta 1380
actaactcag tcaataaatt aaaaaatttt aacctcttgga ttatgcatt tgggttttea 1440
tatgcagcat taataatgct cacatcaaaa tagaccagcct atttgcacat agttaccagt 1500
cactctgttt ctgaaaccca tccagaaatt ctgtgtagaa cattgctcgg caactctag 1560
tattggaccac gtcagacaaaa ctgatctcct ccattccag aatatttgcag 1620
agttgaaatgt aggtcttcatat gggaagttta ccattaggga aatatggcca tactgtcttt 1680
ttacccctgac actattttcag tgcaccacag aataggattc gagatttaca tatgctgttt 1740
tgtgatatatta ttcagaata taacaaactct ggattcatt ttctctctaa ctgaaaccc 1800
tcagtaatgc aaagaaaaaggc cttccttttct cttcagaatc acaaatgact aatatgcctt 1860
ctagccatttt ttcttttgta aaaaaagtgtt tgtagagggc tgtatatatto attccatattc 1920
aatattaacc aaataggctgt agaataattcat agcaatttgaa ttaagacttg agttcagat 1980
gttaaagggat tcaattttatga tagactttgacct aggccggcct attgcctctac cggtttgatt 2040
ctctggaggg catgggtgtct cctcctggctg cacatgcctct ctgtgagaacct atggcatcttt 2100
gggttcttct caattttgca taacctggagc tcgggaatgac tggatgccccg atgggtagag 2160
gatgacgctgc acaacctgttat aagttcgaca aatattttat atggttgtgg 2220
cctcaaaatttta aaactttcc aacacaaaaa aaaaaaaaaa a 2261

<210> Homo sapiens

<210> 6
<211> DNA
<212> 2261
<213> 6
<400> DNA

gccgccgcggc agcgggtgagt gccccgggca cttcaccagtt ctgccccagtgc ggccegaggc 60
tgtgtaatgg acccagacca agaagttttgc aggacagcccc ctgagagatgt cctgtctcttc 120
caattctatgg tcaataggttcc ctgagggcttc ccagccatgc ttctctgtaga 180
gctgtggaga cttgacacctc tcaactatgt aagggataagc cttcctttaga acctgtctctc 240
gttaagggaa tccttttga tgaacctgtcc agacccgacct atggccctac cggttttgatt 2040
ctctgggagg catggtgtcc ctcctggcttg cacatgtctct ctgtaagactg atcgcatctt 2100
gggttcttct caatattgca taacctggagc tgggatgacg aatgggtagag 2160
gatgactggc aacagtgtatg atagtgtataattcttgta tattatattt atggggcttg 2220
cctcaataaaa gttttatctcc aacacaaaaa aaaaaaaaaa a 2261

<210> 7
<211> 209613
<212> DNA
<213> Homo sapiens

<400> 7
gaattccttt tcagataaat cagggtatcc ttctttgtttt gggcccatgg ctgggtgagct 60
agtgtgtatt tttgcccagat ggtaagagcct cccttttctgc catatatta caagttgttt 120
tctggtttcct tctcattttat gtaggcttctg tcagagggaac gccctagggc taagggctgt 180
tggtcagatt ctttttttcccc aggggtgttt gccttgatgtt agtaaccttc ccccttttcct 240
atggagtgtgg ccctcgagca gccaagtgtg ctggtggatg atcctgtctct cggatcttgc 300
cggcctagtcg tctcctggtctgtcttgctggg agtcctatgac 360
tgtgaaccac ccggtcctct tcagccataca taccagcacc cttgttatata taaaagtttg 420
gtgcgtcgaat aaaragctca ctgcaataata aaatttttttt tttaatctcc agcaagccaa 480
ggtacctcgtg tagaagccgtg cccctctaca gatgaagcaaa tgggtgagta acactttggac 540
aagggagagg aaggggcttct tactctctgc cccggtgccc cctgtctgctg ttggctttccc 600
cctctgtgata agctgtaga gcaaatgtaa aactaatccc gactggtgaa tttttaagaga 660
gtacccgggg tgtgctgggttt gcggggaaaa atgggttatga cacaagcagtt aatcagaatg 720
agtcaggatag gaaacggttaa ctggaattag tcagggcttgg gcaagttaatc aaaaaaggtt 780
gctttatagag aagtgtaagtt ttaaagttag acggtaagca attgaacatactc agcataattt 840
gatttctttga aagaaacctatt agaaccctata tctacaacaac ttggccagttg gaggtgccag 900
aggaggagaaa tggagcctttg ggggttgtttt ctggctttcct gtttaatgac gccggttgcg 960
cctggtgtggcc tcggcagctgt gagggtgttgct ttcagagagct atcagctgtg gatagggatag 1020
gagtaaccaggt tgttgccggct gccctcagaa cttcccaagagc tataggcccttt ttggctttcag 1080
catcctgagc tggagacattg cccaggctta cggcgctccc ggtggcaaaa gcaactatgg 1140
ctttctttgt tccccccacct tgtgaggctg cacaccaagat agatgacctg gctgcccresa 1200
gttttgccca gggagaccttc cccctcagttc aaattgatatc aaaaattcagc tggagatttc 1260
ctctctccctg tggcccttttc ccaacacctt tggccatcct cccaaagccc ctctgtgaggt 1320
ccaggcacaac acaggctggcc aggggacacc gcagagcttcc aacggcttttc ccaactgtttc 1380
ccttacccctc gtatattcaact ggtgattcata attatctcag cttccaggttaa ggtccaaattc 1440
tttccccata atctagggct tcaagttttctc cagtgaggag gtgttgattgc gggcgacacaa 1500
tttcccttttc ctaacctcag tttggcgcaag cagagttattt ggggttgttcc cccgggccccgg 1560
caggaccaat ctgtttctttt caggggggttt tggggttctcc cgaagtttttc tgatttttttcc 1620
cgtcagctctg tgcggagccaa aaaaattcagc tggcgagctcc cacaacacac tgtctctgtttc 1680
agtcggagtt gcacattcagtc tccgctggcc gcacagccata gtcacctcctc atcctcctctg 1740
atattttatttt gtttcatcttc atttattttttc ggttatatttt tgatatttttaa aagctatatttt 1800	
tatgacagtt gctttctctttt agggcacaatt ctgggtctctc tctttttttcatttcttttcttg 1860
tgtgactgtgc tccacacacaatt tatttttatttt tattttttttttt ggtcaccattt atcagctgtgc 1920
tatcttttctatt gacatctggtt attttttttttt gatattttttttt cacctttttttt ggtcaccatttt 1980
cccatgtgtgt ttttcattttttt attttttattttt aagcagccagttt gcattttttttttt tccatgaocc 2040
aatattttatt tatttttttattttaa aatgagattt tcttgaataattt tccacacacaattt ccaagccacag 2100
ttcatggcttg gatttttttact tttttttaggtt attgtatttttttt tttcttaattt cttgttaacc 2160
agagacaaaaac tagattcacttg aataatctctt gtttaggggtt gaggattttttt tcagccgatttt 2220
attagttcaca atatccacact tcaacacagtc ctgctgctctc gttgctcttgat tcaagtttttttt 2280
tttctttcccttg ttttcattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
gctttaaaaa taacttcagtc cagctatgct gtcttgagca aagatgcctg aacagtccgga
2940
ttcaaaagatt tagaacctct gttgcagatac agtctttatat tggagataag aacatggggcc
3000
tacaaggtct cccgtgcgtgt aggcattacc atactcaact ccttttgtgta gttgactcaac
tcccaccaca gcacctctctct agagccacatt aacctctgtga gatcagagaa gccacagtga
taatgcaaac cagcaggcaat gatgtacgct aatgagtataa ttaatataaat tagcaaaatta
3120
gaatgtgtta ttataaaaaac cacaatattag aactctacgta gcttttacctg ttttggatata
3180
gtgaacactta cataacatttt atcatatataa cacttttgca tgtacagttc agtagcctta
3240
aatatcatttc ggtaattgta caacatcaccc cattatccat cttcagaact cttccagcttt
3300
cctacaactga aaccttctgtgc tccataaaac atgaatcctca cttctcttttt ttttctacgccc
3360
cctgtaaccc gatctctacgt tctttctctct gtgaattttgt ctactcaatgg tacctcattat
taaatgtcatc atcatctgatg tgtgtttatgt cttgacttgc ataatactcatc tctttagcat
3420
gagtttactg ctttctttagt catgttatc tagtcttttc agtacttactg acgttcttactg
3480
cttaatcttta ctacatatttt ttggaaaaactc taatattttca ttagccacaa aacgctaaatt
3540
gtttttatgcc gatcagatgc tgagatatca actgacactct ctcactctac agtcaattttc
3600
acacactgtct ctcgccacgc cttatttctcag cctggtctatc atttggaactc tccactgccc
3660
cttaacataa gaaacactttg gaagcaagctg cttcttccag tggagagcct taatttatattc
3720
tgaaattgttag aagcggctttg actttacttgg taaaacttttg aagcactctgaa cttctacaag
3780
taaggaacct gcataaacaag caaataagttg ctttgagagg cttcatcttat ctttaacctcc
3840
tcctctctctg accacactacc accacctctgg aatgtgtaac atgtgccgaa tcaagtagttttg
3900
gtcatctcaca tccagggttt tctttcattg gatcttttattc tggaaaaagca ccagtgcctgg
3960
taacaactttt cgcagcgcctg ccaatagttg cccatccttt ctaacctgact taacatcactt
4020
tttacaccttc taacatctttgc ttaaactctttg gccacccaccc gcaatcactgg ccacatctttc
4080
tspan acacctttc tctccacgca cttcagctttgcc tttgtctcttttt tttaataatgcc ttcctctctttt
4140
agttagctac ctcagcgttag aaccctctctc aaaaactact taagtaaacgc cttgctcaaca
4200
ttcataacgttt tgggtcagctt ctcacagca ctcagctcttt ccctctctctt ctcttactgcc
ttttaaacttt tcacaacact tttttttttt tttttttttt ggtgtctctttc agattatctct
4260
tgatgtgttact atccattacta cttgagactag ttgcagagta gatctttactt cttcacagga
4320
tataactgattt gcagcgcggg actttactttt cttctctcttt ctaatacagttga tggagagcct
4380
gctttttatc tataaatata tttttctcttt cttttgacgg gggcttttattc
4440
tgatgtgat ctttttttttt ttttttttttt ttttttttttt ctttttttttt ctttttttttt
...
caccacacg gctatggcc tttggtagag gacacaggtg tcttgccaca acctgaccta 6360
AGGAAGTGC ACAACCCCG GAATTTGAA CACCATTTTG CCGGATATGG ATGAAATGGT 6420
GTGTTCCTGA AGATCGGTTG CATAGAATTT ATCAGGGTTC TCCAAATGA ATCCCAAATG 6480
TTAACACTGT GGTTTGAACGA GAAATAAA AATATTTATC TATTATATCAT CTGAAGTTGA 6540
tagtttacct cccgtatgaa gcctctacag gatgcacaac actaggttaa attcttatgc 6600
tgatatataa aatgctaaaatt ttgtagttttt ggaatgaaaa atggataaca 6660
AAGCAATGAT TAAACTAAACT TTTTCTGT GCTGATTTTT GGGAATGAAA ATGGATAACA 6720
AAAGCAAATT ATTATGACTA ATATAACAT GTGACCTGTA AGACTGATTTA AGTGTGATAAC 6780
ATTGGATAA AATACCTGCG AGAGATAGTC AGCTATTATTG TGTATTATTG GTGATTATTG 6840
tcatcttcttc tctatcccttt atggagttt atttatatttttg tttgatttttt tttgatacata 6900
TTTATACATA CCAAGAAATA TGTGCTGTTA CAGTGTATTA TGTATGAATA CATAAACAAC 6960
tagtaagatt gatgaatta tttatattat agataataata tagtatataa ttacactatt 7020
ATAATTATAA AATATTTTTTA ATATACCAA TATGTATTAT AAATTATAAA CTGTTCCTAA 7080
ttttttatattataa aatgttaaaacctcttcagtc ttcctatggtg ccagcacagcgtg 7140
tgcaagttgct tggagaataa aatgagtaag atactgtggtg ctagcatcag cagtgatgtaa 7200
AGTAAAGAAA CTGATCTTCT ATATAACTAT TCCAGCAGG ACAAGGCTTA AAGATTTTTA 7260
GAAGCTTACG TGGAAGAGCA CATGCCAGAG TTCCAGACTC TTATTCTCTA TAAATTGGTA 7320
ACTCTCAACT TAGGCTGCAA AATAAAAA ATAGCTTTCCC AGTCACACCT CCAAGATAC 7380
TGATGATT TTGGTCTGGAT GGACCTCTGTG ACACTTTTTT CAAAGGCTTT CCGTGGTGTG 7440
CCACTGCTG ACCTGTGTGG AGAACCCTAG GCCTGGTGTC TGGATGAAC ACACTGACGC 7500
CCACCTGTTG CTACCCCCCA AACTCCACA CCCAGCGGTT CTGGATCCA CACTCATCCT 7560
tgcaacactgt ggcctcttag aatcaggaact aatttgctttt ctgcctgatca taagtttgca 7620
TTTTATTTTT AGAAGTGTGT TAAATTTTTT CTTCTTACGA GGCAACACT AGCITGCCCCT 7680
AAGCCCAATTC AAGGCCCAGG TTTGGTGATC GCACAGATC TATGGATAGC ACACTAGCAG 7740
AAGCCTTACAG CTGGTACACAG TGGATTTCCTG TTTCTCTCTT CTTGCCACAG 7800
tagtttcatcttt ttcctactatctgctatggtct attaatacaac tggataagct gttctcgatt 7860
CTACTCGGGGA AGAAGGAGGA ATATATATATT ATATGAATG AATGAAACAA GGAAGAAACA 7920
TACAAAATACGCACAAAA TACATGAGAA ATGACACAGAA GAGGGTTTTT GCAGGCAAAT 7980
tggtttttctg aaggggctgttc aagaggccga agaaagaatg agtagagaagagttttagc 8040
gtgaggtaaa aagcccggtgc ccagaccttag agtgtgcata ggtaagcagt cagaagatc
ctgtagagaa caaaaactcta tgacacgcta agagtacaaa ggaatgtga gctctccaa
agagaacagc ccagaaacat gaaaaagat aaatgtttcct aataaggcat ctgcagtaga
aaaaattcct gtctccccag tgcacatcct cttcataagg aaggagggaa gaagtgtagta
cataaggggaa aatggaagtt gggagccccc ccaaggaggg tgaatatttg gctttgtttt
agacagaggg aagcgtgtgt gtatgtgaga aaacaagagg ttcctagacat tcgcacagat
atagacctgat gttcacagag actttctcccc ccacagagtg agatgtgtg ggaggaacag
ccagggagag ctgtgctgac caggactgaa taaggaaggt atgagttcctg caaagattgt
gagatattag tgagagttta caaggaat gtcatgaaaaa ggttccattc ttccattgac
aatattatat tggtaggccta gtagtggctct gtagctgttt taggtgcttt aagcgataga
atgcaaaaa atatgtgcag ttttgtttcct ccacagactt atagtgtaga cgataggcat
ataaaatata atgaccctga ccagagccttc atggagttcg ctggccagct gcatactttg aagaagagtat
cgagggggtct ctggaggggg actacaggtg agcatggaag gatcctggtt tagggattag
aagaaccttc taagggagag gttccttcag ttgagatatta aaccatgacg atgatgtaag
cagggcccct tcagggagag tagacagcaca aaggtcttgga aatgggaagg gacattgcca
catagagttct ccacatccttc atataacacc attgtataaa tccagaaaaag gcccctctca
gtcacagtgg ctcaaggttg ggactagatcc acctcttgcc a tgtctcaacag ctagctggac
aggtgtgatc tcagtcaccc tttgccgccgc agtcaagcac ccccatggga tggatctgtt
gcagctcctt ccaagggat tggctcctttg tgaatctgttg ctttgggtaa gactgaagga
caaggttga tgggtctggga gggcagcac aaggagagga agtggtgtag gtgagctggg
caccaaggtt gggccacgtc aggaaatcct aacgtgcaca gagggttcttg gctcttcattc
ataagcataat tggagagcct tgaagcggga ataaaacaca atcaaatcctc aagaaatggag
caggtgtgat caggaggtgag getctctcag tgcacctggag gagagcatc ggtggtcctgg
actaggatgg tgcacaaaaa getgggaagga atgaaacagga ttggggaatat attagaggg
atcaatttata aagacttactgt gattgactgg ctgtggaaaaa taaggagaa gaactcattc
aggggttttcc caggtttctgt gctctgtcga gtagcagatt tactgaagat agaaatatcc
agtgaggaag acacagacta aatgcagatgc atgcagtcac ctgtgagcaca aaccttccttg
caggagttga agagaagatt aatgtgtaatt atttcatttt ttcctcccttc atagcctctc
ccagcatcc tagcacatgt actttttgtgt atttttgttg ttgtgtttgtg aatgtagatg 11520
cacctaactg aacctctctgg tcttcaatat tttgtgagaa tccccaccaat cacttcattt 11580
aatatttac acctaatttg ttgtagacac tctctctctc tcttttctct cacaattgac 11640
tagattaagc ctctaggaagag ctcatgttca aagataaagg agagaagcctt gcaatctgag 11700
atatgcccct ctctgcttttc ttacctattt ccagttcttta gaggtgggct tttaagggga 11760
gatatataact ggagaaactag ccgtaattc ccaaggtgaca tttttctctc ttggtcaatg 11820
gttgagtttg cctgctgcat tgcagccctt gctgaaagaa aagtaataa cagaagagat 11880
atatgacgcgt gacctcagga aatacaataa aacgtgagta ctggctctca tgaacattga 11940
gagaaaaaaa catgatatga aatgcttaaa ttgaagaagc agcaccatga aagaggaat 12000
gtattacgat ttgttctcta aagaagtaga atggaacttc ataggaaact tcggagaaaa 12060
aaaaaaagt cccttctaaa aaatggaaact tatatttttg aaaaatgtgct acaaagccaa 12120
tgtccttctg ttcctacgca agaaaaattg agtttccatat aaattctttta ttgcagtttt 12180
catacaaat cttgtgatttc aagagaatgtg ttgacccaca ttggaaatcag ttgtaggccac 12240
tttgaatttc ctaggggtata ataatttcca ttgtaaatctg cacttattttta aaaaagatttt 12300
catgtcataat gttgttccgat tggagttgctc ttgataaaca aaccttggaaag gcattaagag 12360
agttgggcat gagggtagtg ttatattttt tcgacccctct gctactccag actctctcttg 12420
aatagctaga ttggtgagaga agtagtatac ttgtaattata atagtgcatat ctatcttttat 12480
ttttaaatga caaatagtaaa ttatatataa ttataggtca caagtgtgatg tttttgatat 12540
tgtatacatt gttgaattgt taatttgcct tattacatct atctttatttc tttgatat 12600
gcatattttat gttgaaacca attaaactct acctctctaa agatgttttca ctatactgta 12660
ttaccaacctct ctatcaatct gctatggcaat agatctctctcg agcttaatacc tctttgtaac 12720
tgaaaattttg cacctctgca ccagtcttttc tctgttcccct atctctgtccc octatactct 12780
gtttaaccacc atctctactct ctaatctcatg tagttgtgttt tttctagatc ccacataataa 12840
gttaaatcccc acagttatttg tctctctgtg cctggcttat tcctaatcaca aaatgagccct 12900
ccaaacctcat ccagtttggg gcaatagtaa gaattttcctt ctttttttaag gtaatgagttt 12960
atttttctgt gttatataac cacatttttaa aagtcatctcc atctttgtgat ggacacattgg 13020
tgttccctat atctgtgcttg tttgtaattaa ttgcatgaaac aaccttggagag ggcagatgtc 13080
tgtttacagc aacgttagata cgctctctctg agatatgtcag cagaggtgagg attgttagct 13140
tatattaggg a atttattttttt ttgagagaac caccatactg ttttctctaa tggtgtgtatc 13200
aatattacatt cacactcaacac cggagagaagg tttttctcttt cttcccaatcc tgcccaaacact 13260
ttttttttctt gattagggccc attctagcacg gtgtgaagcg acacctcgcc 13320
atttttttaaa tttgcaacctt cctgtagacgt agtggagttg agtttttttt ttatatatatc 13380
tgtggtgcttt ttgtagtgct ttcttttagaa cctattcaga cctctttgccac atttccttaat 13440
ttttttttctt gctattgagt tggtaggtgct cctgtatgatc tctgtgtatt acctctttatc 13500
agatgtagaa attttagaatt ttctttctcca tgcgtttttct cacattctcc caaatcaagtt 13560
atctttttttg tttgacttag tattagcctat atgccaaagca ttatgtatct cacttaactc 13620
tttaccaccta ctcttttgagc taggattatt ttcttctcttt ttcgacagat gattaatgag 13680
gggcttagaa tgatacaacca aatggcaccag tattcacaag cttgcgtcagc ccaatacaact 13740
cctagctctcc taaaactgatg agagaagagtt cctctctcttt ccatcctcctt ctcctctgag 13800
cctagcacatg gtgaacccatt aggcctctctc ggccctaggg ttatactgac ccagcgggtca 13860
gacctgacct ctctgttcagt gcagtgaaaa gcataagaaaa tatccacactt gacgtcgggc 13920
aatattttca tcacccagga ccttattttat ttccaaactca gtcagttgta aagcaaccttg 13980
gcggatgagc taaaacagca aatggaagag ccagcagcatt cccacagcttt tccaagtttaa 14040
tgatcagcag atctggtgaag cctgacatgg gcggcgcagt gcacagaaaa gttgaaagttc 14100
ctttcctaat ccttctacctt ggcagaagga taaaaagaaaa acagttgctctt atactttttttt 14160
acaggtgaaa accgactttta cttaaatgtct tttctggatt tcaagggggg tggccaagagtt 14220
agaaaaagac aggttatagc aatctgcaagt gtgtttttcttt gacccctggag aatccactag 14280
cgagcagcat aataaattct ttgctagccaa aacctcatt attcagtttct ccatgccagc 14340
actaatcccc caaaaaactaatt tggctgctatt ccaagccagta gttttgtagc ccaatcccttc 14400
agattagggc gggaggtgagtt cttcgagggga ggaagagata cttagtgccg cagctgcaccc 14460
caagggaggtgtcgtagcaac tgtcagctgaa ccngaactgt ctggggaacac acagacgctga 14520
acaggggctg tgtcagctgaa cttgagtaggt ccgagctttt tccacccccctttt 14580
gggaacatatt tgtttgccatt tgaaaactctgt atgaaagtcct taatgtgcaac cccttttccac 14640
acaaaaatac acatctgacc ataatacaca aatatggttg tataactcct ttgggttcagg 14700
ggccccctgaa aatccacatc tgaatacctta ggaataccagc cacccttagt gaccagccact 14760
ctatacccccctt cttctctgatt cagaaggaac ttttcaacaag gttttccccat gaagctgtggg 14820
ccaagagagcc aggggtgaggc acaatatgccg atgaccacage agaaagtcctaa cagggctggtt 14880
cttgtgaaag cacagaggtg gctcagcctg gcccttttctt 14940
taccttcccc cttgatatgt ctaacctctcc cccatcgcctt ccacgctggt tggcttttatt 15000
aacagaaac cacactttgct ccctatatgc cttgtatatg aagccacagg aagtttttttt 15060
aatcaacaacc ccaagactct tctcactctc cttctctgcg cttcaacata tttctcagct 15120
atgggtgct ctttaaaaca aaggtggggga aaattgttat ccaaggggcc tggcaatagg 15180
taagagacta agaacaacttt tgtttctacta ggtctatggc ttctcataag gcctcaagt 15240
gcctctgca caagacactag agatacttag gctttatatc agacatacta aacctcaatt 15300
ggggtgggggt cggcagctgat cttccagaaac acatcttccc agttaaatta 15360
cccccccccc caatattgaa aatgactgtc tcaaacagct taaactctat ctttggaatca 15420
tacattacac aatatacaaa acctggagac cagtcctttg ggtgcccaaa caatgtcggaa 15480
ttagaacaaca tatcatatag cttggctcaaa aagggagtctatc ctttttataa 15540
aaccacactg ccacatataa tataactctg aatctctcaaa aagtgtaaaca tttggatcaaa 15600
gatttcttgac acaacccgcaaa atgcttttac tagctaatgg tggctgtata atgcacagt 15660
gtttttttttt cttgttgaaac ggtacgcttc cttgctctct gggttcacgc cattctcctc 15720
gcagtggtgc aatcctagct cactgcaagc tctggctcctc ggtttcaagc cattctcctc 15780
cctcagccct cagactagct gggactacag atgcccacca ccagcaccgg ctaatctttg 15840
gtttttttttt tattcgtagt agagacgaggg ttactccacag ttaccgagga tggcttgcat 15900
tctctgacct cgtgatttgc ccatctcggc ctcccaaatg cagtgttttt gtttacagct 15960
tggcttcag gaaacctcaga gctataacta aaggtttttaa ttggattattt tctcctgggg 16020
tggcctcccc aatctcgaga actctctgagc agacacatgg gcctctgttg cttattccag 16080
catttggaag gggtgaggca cgagggttgc ttgaacccca ggaagtccagc acagcctctg 16140
caacagagttgccgac ctggcctccta cacaagacac gacccccata ccccccata 16200
caacacacaa ttctggttttg tatgaaccttg tggctcctag tctctctgag gcggagcttg 16260
gaatggcact ttagccccag acgggtggac gcctcttgagc tggcctctcata ccaacctgtt 16320
ccactctgag ttaaagacag acagctttgtc tccaaaaa aaacccaaaa aaaaaaacttt 16380
cctactttt acttttaataa atgacctttc ctttttttttt ttactctctgt ttactttata 16440
ttatatgcct ttaactcttc atggagaagct gcctcaatatc cttttttttt ttagggcagt 16500
acaggtcaaat ctctgataga ctatatatttt actttttttggg acctttatgga atagggaga 16560
gagtggtgat gagagagag gagatgtctta ttctaaatca tctctgtttt agtctgttttc 16620
cctagggcagg tcaattacac tccttagacc tcatttccatc ctctgagcaaa gggaggagtt 16680
agatctccaa ggctctttgc aagttccacat cctcagetta catgcctcac atgattttgtt 16740
tctgtccaaa acctgtctgtc ttctccaggga gtctccagatg taaccttcagac gcccttgact 16800
tctgccagat tggagaaagct tggagagagcc tcaccagggg aatccagata gcctccctg 16860
ggtctatac tcggagggga tcggccccaaaa taatgacaac cacacagagg gttcgaatca 16920
tggcgctaaa tgattcccta tggattggttg tgggcagttgg gccagggagagagtagaatag 17040
aggtcaggag ggtggaatata aaatgaataca aacaacacta tagacactgta cctggattag 17100
aatatgtgaa aaagcaaaaa gcaccttttg taaaaatcttt gtcctccttaa aagtaataag 17160
tgaattatat accattata cctgatctttt cagctcataat gactgtatttt cttggcaca 17220
tgagggtctct gcatactataa aaaaaatgtt atgctttaatg ttttatattga tccatcatct 17280
aagtcaatta tggatgtggttc aagcctttgg gttttctgttgg ggcagttggta caactatctg 17340
tctacacacac tttaaatgga aaaaactgtca gtgggtgcata ttttggtcttc 17400
tgcgtccagaa gactatgaac attgttgaatt cacaagggaggagt gtcgtggccaa gaaatggcag 17460
gcagggtgcga aagctgtcctg agtcagccaaaa gctggttgctca aagttccagct caacgttcttc 17520
ccagctctgca gaagggtggga aagtttaatta acctcctctga gctacagtca tgtgataac 17580
atacagatgt aagttttttct tctgtaaagg tgaagagccc tgcantgtgt ctctctgttac 17640
ccctggccataa agagttttttca aatacctggtt ttattttctcc tatgggttaa agaataactc 17700
tagctccaa agattttaaaa ctttttataac ttggtgtacat ttatatcttt tatcaattgat 17760
cctcatgcag tttctagagt ccaatactcttt cattttgttg gcacaagcgaga aagataaaaa 17820
ccatggagtaa aagtcagaggat tactgtctcct cctcattgaact tgtactattgata taattttata 17880
aagactaata atttccccaa gttaccagtt gctggtccaaag gaaataaacaattgatttt 17940
aaagagaagg cacagctgtggt tgcggaaaca actagacata gaagaggatt taacgagaac 18000
ccagtccttag caaaaatatta ggcctccaatattgtcaggc aagccttggtgt caaaaaggcaag 18060
caagctctctttaaaaacagaa tacaagttaa acatacttatc cacaagtcctc cagttcacaaga 18120
gggttatatt tttctcatcag aatgtttgggg gctatattata agtagaatttt gctttaagag 18180
agacacagat atgtgcataa taaaaattga tagagaaatgt cattttattgac gctttgcaca 18240
gtcttcctag tgaacaggggt tacataattgc tgaaaattta gttttggaat aatggggtgaa 18300
attccactat ttcccttcac ctgaatctttt gttaaacaag cattggattc ccaactctct
18360
tttctaaat aatgagatca ggatagcacac agtgactttct ggggtgcagtt ggccctatta
18420
taggtagtttt gtccacactat caaatgtagga cagacccaga ggtgtagagat catgcaaat
18480
aatattttgt atagacctta gacgcaaggg aggcttgact tttaagggctt tttcccctct
18540
tgtgtgacag ttaggagata ctctcagtc ctctagaaca ttctagccca ttatatagcc
18600
tggggaataa aggttaaagt ttcgaatggc catttctcat agtcaaaaaag agttctgattg
18660
cccttttttt ttcattttct ctcactgttcc agttaaatatt gaaagcccat atgctggagcc
18720
ttatctcag aggtgggggt acagcaatga caaacaaggt cccctgcttt ttcgagcatt
18780
tggagagaa taatcaatat atgccttttat gcacataaat gcagtaaata atatataagt
18840
taacataata acagactgga aataatgctc agttgttgaat atgttgact caaataatag
18900
atagaatgc accaattgtga gtgagtgagt gtaggtagtc atgcaagact tttttagagga
18960
ggtgagattt aggtgtagat gtgtataact aactgcgaac atataatagt gtatccacag
19020
tggaccccaag gctctctctgt gtagagtaga tctagaaagca tctctgtctg caatgtgctca
19080
aactcagtaga gtaattcatac taagggctta caatgtgttct ctagagaccc tttgttttag
19140
taagttattta tataattttata gcaccactcct tagtatgaat tctgatttgt tttcagcgtca
19200
tctgtggttac taaggaaca gaagagttgt cagaggtgct tctggagaga taggatatgg
19260
tgggccataa ctaacagtgg cagggagggggttaggaga catgcctagtg ggccctgggcc
19320
tctggtgcc aggtgaatac ttttttttca tatgcttac cattagatgt cctctttaac
19380
ttctcttgtt tccagcagtct ttccatgatgc tcccttcagc cttccccca acaagcccc
19440
cggctcaca caaagttggt tagataatt gtaaaatcaaa aaggtgcagtt atgccagcct
19500
ccaagtttca gtgttacggg aaccaggtgt tagaagttt agaataaatag aagaaaaatag
19560
atagacacct atccatggggg tttcctgtct ctatacttggt tggctgtatct tccaggggac
19620
agcataccag gatcaccacct tttagaaacag taatactgtag ggagataaag acgocgtgcgc
19680
accatgaaga catcagataa gaaatactcc caagaaactac agagctgcag atgcaaccttt
19740
tagttgtgtt atgtggccagcc tagaaggggtt ctacccatag aagggctgca gcagttggcct
19800
gggggagagc tattttcgag cggaaatcag cttacagagag ctccagcagc agccatagaa
19860
agaaatgcga gtggagggca gtaactacag aatgttagag aagaaatcag ccagaggggga
19920
aacctgcagg tagcagagag agcaagttta caagatttga cagcaaggacc agaagagcct
ttttttcctt gatttttttc acatggtggt tacatcgcgac ttcatgtaaa tcagggctct 25200
ttgctgacct tcctatgcga caaagttctga gttgctcaag ggctgtgggc ttatacctga 25260
aactattttt tgccaaactgt tagtctctcc cctgctccatg ccatctctct cttcccccccac 25320
ctttcacca cacaccaagt cactcttcag gttgcagcctt aatattcctt cttgaaaagg 25380
tctgaatccca cagaagggaa gcaaaacaaat gaaaaatata aaagggcaaca cagataaggt 25440
acacatattt tcccagggcc cattttgagac ccagcttttttg acccagttctg gttttctattt 25500
aaagcttgta taagaagata tatcttttata aatgctcttag accttcctctg tcctaaccatc 25560
ttttataatt ttatatccttc cttgatataa acacatccct tataaaatgta 25620
agaacaattgt ctgtttcactg cctctctcttg gttcgtctgt ctgtcctgca cattataggt 25680
actcaataaa aatttgtcag atagagtagat gttttccaaag atagccataa gattatagct 25740
ccgcaagctt atggttcataa aacacaaatcc tggcttttga aataaattttt tattatgtc 25800
acagccaaac ccattatatctc acatattgctc tataatgtctc tttacgctct acagggagag 25860
ttgagaagtt gcataaagaa tccacagctc agcaaatcct aaaaaaaaaa tctgttttgtc 25920
ctttacagaa aacgcttggac aatcctttctt atagatgata gacttttctt ctcaggggtgc 25980
ataaatatttt aatattgcataa aagtagactt aattacaaaa tgccttttaga gatccaaacta 26040
gagacaccaag gtggccacttg ataatagacg cttgtttgggt gaataatatttt tttaattttttt 26100
atttttattt tatatttttttt ttggagatg gaggtcttgac tcctgtcacc accgtgttataa 26160
gtatgtggtt gatcttcagct cactgtcagtc tctgcctccaa ggcctgtacgc aattttctctg 26220
ccctaggcctc cagaaatgctt cggagactcag gcacatacac ccaccaactaa ctaattttttt 26280
gtatatatttag tagagatggg gtttaccaca atgggcacag cttgtttcagc acctcttggccc 26340
tcaagtgcctc cactgctccog gcctccaccctaa gtaactttgtag tttatagagct tccacacctg 26400
ccctgcagg atagttttttt acaatacctg ttagaggtgc tttcgtgtcct taaaatgtcg tcataatg 26460
cttggccaga tagttttttttt acaatacctg taggttgtcg gtttaaggttt ctcaaggggcctc 26520
cctgcatctt aattataagt ttagtgatga tataaatgcct gtttccctttg atctctgccaa 26580
aataaatctt ttaactgtgtg atggctttttt cttacagttaa gtttcccccttt cttggcttggc 26640
gcacatgtag cccacacattt gttgttatctc ttttttcccc cacaagccatat ttgctctgac 26700
aatagcacttt atcttggtaaaa gtaagtttgc agtgtaaactt ttaatgagga atatacttctc 26760
aatagaaggt gccacacacc ttagcagttgg ttaattttgacc accatccatag ggctttcatt 26820
gtgtgtcata ttgatctgtg tgcacagtaaa taataatacc tatacagag ctggagttatc 26880
attgagacat cttgcccaagtt cttgattttg ttaatataca gttgtaactg tagcagtccag 26940
gacatgtaaag tggctcatgga cggagatccc ttgtaaccca caacccaaga 27000
attatgagca acctattaagt ctatgtttat ctaaattcat gcaccaaatga gcagtttctct 27060
actactgtatt atgggggtaa tgtgttgata aacctcaactc tagaaggtgtg ccctgattctga 27120
cacttattgg tggcactcct cttctctctata tggatgaaac tccaccaagg ccctatcttctc 27180
tccagagattt aagggccttg ggctggacttt attcctggac cagggcttgg gaaaggccatc 27240
atctttttcca acatctgctga ttcttactga agctgtggct acgcattggtg ccctttggtat 27300
gttgacacca ccacctcccc acctactggtg tggaggtatttt ctgacatccc tcttttctc 27360
ataaatgtct ataattcaca ccaattttct tcccaaatct caagccttttt tataagcccc 27420
atctagttct atcgcctgtg caacaaacct tccctcatttg cccttgtcag tctgtatttg 27480
cacttctttg agatgtggaa aaccaaatcatt ccaacacattc tggagcaaaa accaagcct 27540
aagtggggag gaaacccctaa aactcatcatc taacacatctc tggagcaaaa accaagcct 27600
catacagct cagctgacagg cctaaagaaga cggaggttgg ggaggtctcg tgaaacaatt 27660
aggaagcact acctaaagcct tccctggaag cctggccctgg tttctctctata tggatgcttgat 27720
gagggagaga taagggcactag caggggctcag tagtaactct gttgaccaaa aagcaatttt 27780
tttactaagag ctttgagcttt tggctcaactta gctgataaaa ctggagcatttt tttagttattt 27840
tttttttttac tggaaacacac ttattttctgt caccttttttta aacgcctcaaa gactggaaat 27900
ttaccctaac cctaaaaaca tatctctcaaa caactttttat cactctcccc ttataaacac 27960
tcaagcactc cccgcaatacg cagctgttgct ctcctcctgt gggttttcctaat aagaaaaa 28020
ggatataagga aaaaaagcatt tgggggcaaa ttctccttaaag ttctctcaag tccagcttcc 28080
tgacactttc tagcccatttct ggtgtttttgc tgggtgtgta ataggatgttt atatctttgc 28140
agcctacgct tattcaaggg tacacgtagt tataataggt acatacaatcc tgtctacacta 28200
ttcccttctaga tgaacctgtt ctaaatattg gcattcgca gcacccgtcga tgggggagta 28260
atttgatgag cttcatgacat caataagaaag cggaggggct gcccagctcgc tgcattattgag 28320
agaaaagaga agtcactcata caccttttccag atgtatacatc gaacagcaca taatttctctc 28380
ctacattaca agttacaggg cttcagatac agtacatataa tcaatagac cttgcccaatg 28440
cggagaaagag tggtaagctct ccctaatggg cacctcaattg agatgtggctgcct 28500
atctgtgaag atcaagagga ggcacaccttc tggcattttc tggacactca gccctcataa 28560
gcaagagcag aaggtgggga tgttgtggtta tacaggtgtg tcagggcaggt gccatattccc 28620
atcttccac tgggtcttctc atgtgagcc tttgaaaaag agcttttgcg acggattgtct 28680
tgatttttgag gaatatataat ttgtgttggcc aaatcatcag tctttttcaaa ccatactaaa 28740
tgaaatagtgt aatccttttcg atttttgtgt gcctctgaag gtactagagt 28800
agaaacgtag ggtagatcccc caacttaaca atttttaaact taaactgaac atggaagtga 28860
gttttaattta ctatagatga tgaccatagc ccttgttgamma tcagatttca ggapaggtgga 28920
atcaagtcca ccagaaaggg atcaacacac ggctacagga tttagcaact ccttggtcgct 28980
accaaatgttc cattaaccttc tccagaacac tccctccattc tgtaatttggc agaaacgtgga 29040
actgattttca aacactgtaggt taacattatcgccttacataa cagcagagac tccaattgtgc 29100
tcttcaatgtc gtctctaccttt ggagacaaaa gacctttggaa aaccattggc cgtagccagt 29160
atgttttcccctcagctttcccc ttggtctatac aagaatggttg agctatatgaa acttcgaacc 29220
tctgcgtttcgc ccttttcttgag gcctctgcttcgc atttcctaat gtttagtaag 29280
caccccttggag ccagccatcg aacatgtatt gatttgatata tccaaagatta acaaggttag 29340
gaccttgggaa ctcggctcgtt gcataagtaa tataatgtcct aagttattttttcttacc 29400
tgaaataata gaagatgaac tattttttgaa ttctattgat tcttcctcagt tcagacatttt 29460
agtaagtttaa tgatcgccac ttattatgttc acgtagttga aaaaagcaca atggactttgt 29520
gctctctttt acacacacgc gcccccatttca aaccaccttg gagaggaaga attttccaaag 29580
aggaatatcc atgtgtcaat cccccgtcttg ccctagtaagg ccctattttta atgtgtaacc 29640
ttttgcacatg catattttca ggtctttttttt ccagacagagccagatcgatctcatgtcgtt 29700
ttccatatttct aatcgtggag ttttaagtctt tattttatgttg agtggcataat ttttaaggaat 29760
catacttttt tgcctttttc cattattctact acaaaaaaaca gtttagtct caaggttccac 29820
taattgttgg taaagaaaaa tttcaccagag tccgggata ttcagctttc ttctaatgtaa 29880
gatatcatgt aatggttttat tgaatgcaaca aatggaataac tcgaattggact tttcctatcttg 29940
agcaggttttc aggccgctttc ggcccaagaga cagccagcaat tttagctgcct tatttgggtgtt 30000
gcataatctttt cccctctttta ccggatgggtc tcatcattga ttgtccacac tgtaggcaca 30060
tcaatggagt aatgccttttc cctatggtag gaccccaccta cagcttgattt ccttagaatatt 30120
gccaaccctgt gcagggagact tttcccctgtt cccctggtcag gcctgcctgtgc tttcttcttg 30180
agggttttcag tgcgcccagaaat tcagatggcct tcagatgttat tggctcagaa tacagccctg 30240
tgcagagaga caaacatggg aaggcaaatg ggatgcttat gcacatacgc cctccatcagt 30300
gtggtgcccag ctgagtccaa ggagggaaatg gtctgcatct tccctaaac tgcaaatcat 30360
tctcccttca ttttgcttta ggcaactgttg tgccttcata actgtctcaaa tggattcaaat 30420
gcaggagagt aatttacaag agctcagtagt aaatgcatta gcagctttttc agcgagcatta 30480	ttatggttgt ttaaacagcag acctttagcag tctctgaaat tagcctcttgt gtactaaaag 30540
tctcaacatta ccaaaagctgg gtaagggaata gaagaaggaat aattgccgctg gcggggtgta 30600
ggggtgttta cacgattcaaa agtaaagaga aagaggggt gcttttgaga tttcccccttctagtttaa 30660
aatggtaata cctaaggtgtt aacttaataa caaaatgatt gctgcagcctg tttctcgtcgc 30720
cctggggcctt ttttccatata tgaactcata cctggacacc tggttgatt gttgtaagatt 30780
gcggacgctgg aagggaagaac aacccctcata tgtaaaggtt cccacttttt tctctagctctagtt 30840
gcaatgacatctgtaaagagc aaccaatttct cagttctctgt atggggagca caggccggtt 30900
cttcttacata cagtctgtgt ctgcttcagc acagatgctt tttatgcttt ttctccaggttttctagtt 30960
tctcaaaccccg agctcctggtt gcataacagc tgaatagcctt ttcatctttt gttgggtctccc 31020
acccacacag acaagcatttt aataaaaaat aacaagggcc tgtccatagta actggtgataa 31080
gaaccacgcttg cagttctccaa ctctaagttg tttgattttt ttgttttagt atttagacttaa 31140
gaaccacgctgt agatgctcag tttatgcttc catgaaatta ataatgcaactttcactactact 31200
gttacatatt ccacaggagg tgtttctcgttg gttttttttt tataagtgaaccct 31260
cacaaccacgc atcttttaatt gacataagaca gotcattgtg gagcattacc atgacatatg 31320
ccttaggtgt aagtcttcag gccacgcggcag tggagtgtgtg taagagcaaa agggagacc 31380
ccagtttttag gtatgtttttc tgattcttccaa tcccccataca taaattttgta tttggatatttg 31440
aggtatgtttg ccttttaatt ttaagaggaat catgtaaaga ctttttaatt tcctatctagatc 31500
agagaattctt catggcaaaaag ctccttttatg tgaatagcgg ggatctccttg gtggcattttc 31560
ataatctgca gttttttttt ttttattcctt attttttcatc ctctgtaaattt cggattttctg 31620
aggtatggttg ttcagctcaga cgggttgctaa tagaagagtgg taatacaattt gctctgagcggat 31680
tacctatata cacagtctgtt tagggtgctacc ctgagcccccag gtaccaggag ttgggagaggt 31740
ggacgcgcaggg gagaggagca gaagaacact acgggttacgc aacaaggg atggagcagtag 31800
cagacttcca cacccaggag gaagcagcagg caccagcaag gttggcaagag tcaagttctcctag 31860
ccggattttctg aagtaaggttg tggagaaatt gcagagagag agaagaacaac atagttgaggg 31920
gtctgccttt tgaggttagg taacccttgcc ttggaacctcc aaccccaatca gtagtaaga 32040
aacctgtcca gtgcacaca caatactgat gtgcctcaga acaactctcga aataaggaa 32100
acacagtaacct ttcagagaga tttggaaaga agaagcgtgag attgcatactg gcaaaagcga 32160
ttgccacagt ccagacagct ttcagctgat gtaaaaatgg taaccattat ttatatatatc 32220
atgtgtcaaat ttcctatcccc tgctcttgag cttgtaacct ttctgttatg gcagaattta 32280
gtacacagga agcttggttg agtcctcttag tggagaaagg gcagttggtg gtatctggct 32340
gatgtgaggca gcattggaca gaggactggg aggctgtgaca aggtccatca caggagataaa 32400
aatatcttgct ctaaccaaat acctaaactga gttatatagaa taggccgccc cattttcaca 32460
tgatttactc taactattgg gtgtgtgctgtg tacatgatgct atctttttttc cattttgaca 32520
tatctcctga gctattttttc tcattctatctt ggggttgtaat taaccctgta tccacggtct 32580
cgccttcccc tctatcccc cattttttttac atattttttgatt tttttttttt catttttcat 32640
aagccttaag ctagtattgta agtcgcatag aagtctgcctaa taaagactgg tagcaaaag 32700
gttaagacca tgggttctagg tggagtttaaa actattttatt gtaatttttt gtaattttttc 32760
ttttgtgtgg tatgatatgt tagactttgtg ctcagcatct aagttcagag cattttttttg 32820
acacagtaag ctagttttga aataacccctca ttggtttggtg ccagttgaaatg taaatattaa 32880
catttctagat tgcacatataa accaaacag atgtgtaaat cgccggtttgatt taaaaattctc 32940
cctttgagtg tagatattgcc tataatgac aggaattttct gaatattttct gcagatcataa 33000
agatcataag ccagagacag aagcagtttgg tctttaaagc tttccttaacct cctaaccagc 33060
acctactaata caccacactct ggacacaaat ttcgggtctcgtgt gtttttaaat gagaatgaa 33120
atataggtgaa agacacacaa ccaacattga ccttaaatag acaattacgt gtttattgtc 33180
caaacaaat gatcaatttgt cctgttttta tcaagaaagtt tagaacaaca ctggagaagga 33240
gtggagacca ttcataaaaa atgttaaaggag tttttgcttta tggggctcag aaaaaaactc 33300
agcttttagat atoccctagca ttcataaaaag ctaactatgc ccattgtgtaa ttaacttctgt 33360
ctattgcatct ttattgtcatt tgtattttcta caagggataa taataacatt caaaatgtact 33420
tgcatttac taaaattttct agttgagagat tagaggatc cagttttgtgact ttttttataaa 33480
agcatattta gatgtgatttttgagtaaattttgctttt aacccctttttttgttgctttaa 33540
ctttttttat ttatttggct tgggagaaaaaat atttttttactt aagaaaaaattttttgat 33600
aaggtcataa agatttttagt ctatatgttttttc ttcctacatt ttatgtaatt aagccctttaca 33660
acaatgagat accatctcac accagttaga atggcaatca ttaaaaagtc aggaacaac 35460
agatgctgga gaggatgtgg agaaatagga acacttttac actggtgggt ggactgtaaa 35520
ctgttcaac cattgtggaag cacagtgtgg cgagtcctca aggatctaga actagtcttc 35580
aaggatctag aactagaaaat atcatttgac ccagccatcc cattactggc tatatactca 35640
aaggattata aatctgctgt tttaaaagac acatgtcata gtagtttcaac tcgggccacta 35700
cctcacaatag caaagacctg gaaacaacc aatagtctcat caatgacaga ctggattaag 35760
caataacacc aatggaatatc atgcaagcatct aaaaaggtag agttctagtc ctttgttaagg 35820
gacaggggtg aagctgaaaaa cccatcattct cagcaaatca tccaacagac aaaaaactaa 35880
aacccgcagt tctccacctca tagttggaag ttgaaacatt aagacaacctt gacacagga 35940
gggggaacatc aacactcgg gcctgtcatg ggggtgggggc agtggggagg gattgcatta 36000
gagagataac ataatgttga tgtagagatt taatgggtcag cacaccaaca tggcacatgt 36060
atacatatgt aacacacccgt cagggtgtgc acatgtaccac tagaacttaa agtataataa 36120
aaaaatatc cttccccccca acatctgacct ttatcttatc aatatctctc tcaagcaacctct 36180
accaccacatc tgtgatataa atatggtgta tttctcatttt tctccagtttc aacactatttc 36240
cgtgcctttcc ggggaatgtga tattcttgctt tgattggagtg gagaatattta taaatgttcca 36300
ttaatcgtga atagataact tctaaaggttt ttcacccgta tgtattaatt gtctgaactt 36360
tctaggtgag tatggccagag attgattgac tgctcaacct aacagtttgc tctttctttc 36420
gggcacccag ctaaactttaa cactcagcc ctcctctccag tttagacaagg tcatctgtct 36480
ggttccagt gactagaatt tggagcagag taatgggtac catttccagt cctagcccat 36540
agaaacttcc catcctacaag ggaggtgtga tgtggtaccc tccatatattgt cgctgctcatc 36600
tgcttgacag gtgtggtcac actg gggaacac agcaattatat gccttgaaag aaacagtaac 36660
aattatggag ggaggctggg gcctcgaatc accagatgta gggaaaccat ccatcacaata 36720
agaactccc cctgtgactc aatgtgagtg agaagtaaac ttataattgta ttatagcatc 36780
 gagatctttgc agtacgaagg agcaaaattt ttaaatatat gtagaagatg gaggaaata 36840
ggaagtgttgg ctggagctgtg cagtttcccg ttttaccacc cgagttctct cttttctttga 36900
agataaatgtt attataaatg attatactct cgtgtagagac aagcctgagt ttctcaggtac 36960
tgatggatga tgaaccttttt tttagccag gcctgcgccc ctgggatatga aggaacatca 37020
gaaaattgaat gtgaatatttt ctaattcacaag gggagaacaac tggctggagg aagggcagtt 37080
tctgagagaa ccacctaatga gataatatac gacccttacac gctgctctgta aaaaattcta 37140
cctccagatta aatgagccagt tctgaaacatt tttgagcttag ttatacccgt cccataattac 37200
aaccacacac acacacacac acacacacac acacacacac acacacacac ttttgccctcc 37260
ttacatcataa aatggtccaa tcctagtagct tttgctttgt ttttgataaaa catgttttga 37320
acagacagctg ttatttttattt caaagatataa tttactgaag gttcacaacc aggtgggttg 37380
tgaatatata aatggttgata tttgttatac gacagagttgct gttgacatata gtggcataac 37440
aatcctggac aggccagcgt gaaggtctggt ttccctgggat tataaccgag atgacacac 37500
tatgtgtgtgt tggctgttgct tggctgttgct tggcttgcttg agagatacatag 37560
acatgtgagt ccccttaattt ttatctcttta aacaaagtct tccatcccaag taatttccca 37620
gaaactataa ctgggagtcg ctaaaagttac taayaactag tttttgttttt gttttttttttttt 37680
tttttttttg tattttttttt ttttttggcc agaaaaagcc catttttttt ttttattcggag 37740
aaccttaagg ctttaactctc gctattttgac ttacacagctg ttttgtgctct tattacagaca 37800
aacatatctgc ttgataacca cttctctatag ttgagccct ggtagttttttct atctgttaaag 37860
tggagaataat aacctatagtt gctggtgggga ctagaatgtac catttgcctag tggccacacag 37920
agtcctgtat agataaagcc ccacataaat ggttagagccg acacagacac ccaagatagtg 37980
tagataacag atcaacctttgc gttcacaata tatatctcca gttttttttta ttgattaacc 38040
agctgtgtgc ctattgctcat ttaattgtgaa aagtcttttca attaatccgata gtcatcccta 38100
gaccaaggctc ctgggatagtt atggagagcc atgaacccca aacctaaactc ttgaaattctg 38160
gtcaaatctc gtattattggt attaatagacc gctcttgatca atgacttcttg gagctaaagt 38220
aaccaccaac aggccagggg gagaggttta cattgagaga acaaaagcga aataagagcc 38280
agggccacacc aagcagcgtc ggacagcttg gagaggagtg aagaaagggt ggctacaccc 38340
actgcaccaga caccacacac tgccttacca cttctctctcc tagggagagag gagccagagag 38400
aaggccacac acagacacctc aatcataaggc ataatagatc cttttacttct cattttttca 38460
ttttttttttt cttctctttcc tctctctctta tttttttttt tctctctctt tttctttctgct 38520
ccacaccttt cctctctctcc cttctcctcc tggctttgta ccaactggttt aagtgaagaga 38580
gctaggatta aataattagt gactactcttg agttactgtg acctcaagggg ctctctctgag 38640
gcaatgagca aagagcttag agattggact tggagaaact taatccaggt cccagacacta 38700
cacactctagc gtgttaactgt aacctctctcc cacctctcttg aacctaaattt ctctggtttta 38760
tggagagagt ttaatatctcg ccacacccatc ccaagagcct aatctctgca gtttaggtga 38820
gatagtagat gtgacgcttt tatatattgt ctcgtaattg ctaagaagac gaaaaagtc a 38880
gatgaaaca gcgcgacctt cctattagtc aacgtaaatt agatacgagtc ttttgga a 38940
caaaagtctt tttaaatttc agtcttctttg accattttcg tgaatcacc taagcaat a 39000
ggcctaaatg tagaaatctt tagtttaca aatatcattt tggattctgt ttataatgga a 39060
aaatattttta acataaaact cagtaaatgt ctctgtaatgt tggcttacac caacttgac 39120
ccataaatga tatgtttcaca aagaatggta taataatggag aaatgttaat gatgttaacc a 39180
taaatgatga agtgcagatat gcaggatat aattttaaagtt cttattcatta a 39240
aaaaatgattg aagaaaaata atgagtgt gatcgtctatg tttaggtggc aggactattg a 39300
ggtttttttt aacaacctaa gtttctttttg ttatttcctat ttttaaatat gtacaaat a 39360
tgcttatata atttaaatat gtgatagaaat taataaatag cagaagtaca attttatgtt a 39420
agttttaaat aataaatattg tggtaaatag tttcttaatga acaaatatct taatattgaa a 39480	tattagaata tggtaaatat ccaagaatga aataattatgc ttatgtagtt ttttatgggt a 39540	tatatatatg agttaataaa acgcagatac atgtagattgaa gctataaatg tagatgcataa a 39600
ataatgagct gatctgctta aacaataatg aatcctcaac acccagcagtc atggcaata a 39660
aaatatatt tattcccaag ggccagagta gccaaataac atggtggcat tagatttattg a 39720
tgggaacct ttatgtctttg ttgaggtgga aatgattttt catgatatata ccaattccaa a 39780
tggttccaga gaatgatggt gctttcagtt cctatgtggga tcttgctgac caaggtgtaa a 39840	tagattattt tggcaaggtta aagaagaaaa ttagtagagac aacattcaac atttttcttg a 39900
aaattagaaa tgttttttacc ttcatcatc ccaacattgc ttgtagttg ttgttttttg a 39960	ttccaaacta caagtgtatg aagaatgctt cttcattcaca atccaatgaa ggatttttta a 40020
cgtgaaacaa ccctttttcttg gaaaaaaatat ttataataac aagaattttg a 40080
gagaagccta acaagaaaat aagtctgacat ataatccttc ctttagggtt aatatattg a 40140
ttgagaagca atgtgtata acatctatttt tggctaatat ttgtctcaca ttatgtgcaaa a 40200
gcatagcact gagcaagtta atggcagaaa aactcataata atcaatgca ttaaccttat a 40260
tgctccataa ctgctcccttt aagctggcta gattataaat ttgatataca aagaagcmaa a 40320
gacttacaga aagttgaagaa tttgtgcaag attaacaacc agtaaatacc aaacccagc a 40380	ttctattca gtctctgactg taacggtcat ctatattttt tgtcatggtag gctctgggaat a 40440
attaataact ttggtctgag aatgattttt cttcagatgc ctgggtttcca gtacaagtttca aaccatatat a 40500
aggtataatg aggagacca ccaatttcrra tctggcatttt acctcttggtct ttgagaggtta 45720
aaaatgttag ctaattagat aagtgttccag taattaatta ccacagtgaa ttaactagtt 45780
tgattaacat gtctgtttttc ggtgcagatt cagtcaccca gtcgatcttgga tcactaacag 45840
tgccaggttaa tggcacttcaaa gatttatgga ccccaatgtaaa caactccgcgc agacatattag 45900
gcaagtaatt gtctatttggga tgaagttcag ataatactttg tggaaatctat aaaaagtgtat 45960
gaaagtagaa tactagtttaa tgcctccctgg gcagcttctaa atattatatcc ccaaccttttca 46020
atctttctcaaa gacctcgatcc tgctctttatg tgaagttgatt tctcagcaat gctttttgtat 46080
tgactgttatt gcaaaagggc agtcacctga agacgagggc aaagggcttc gttttttttaaa 46140
attatgcaca caggagctga caggggaacc tcagaccttgg ccaactggtta attgcaccaac 46200
aaagggctgtg tgcagggccag acgccttacgc tcaagtccagc ctggtgtacaa gagggtcttt 46260
gctacagtcg tgcgaaaatcc atgctctcattg gtgtccttgcc tggacaaaaaa caactctcaatt 46320
cctacgcgtct tccttttattga tgcctggcaact attacacattt caatttccatt acagttttttct 46380
atctggttctt aatattgtcc ttgacacttaa atattagaaa aagaaagcagc agtccttgatg 46440
tacacactgga tagcatttagg gcctccctga gaccatgcttt ttggtccttt tccctgccttg 46500
ctagactgct cctgggtaccg gaggctcagtt cttctctaat ttgctcttttg ggttagctgcga 46560
aaggttgtatg tggttcactt gaggctgcag caggcaccaca ttccccagaaag aacaagccacc 46620
ttacacatgc aacacacacac tagcctccaca gcctatggga gtagggtgtgc caagcgacagc 46680
caaagtctccc acatctctccccc ctttttttttg gcggtctcaga gttgggtatgc ggtaaccacag 46740
agccctttccc tcctgccccaca tccagatcccc ttgctctttcc attccgccccct tgcacccagc 46800
aatggcttgg gagagctccca aaaaatgtcct aagctatccca ttcttgaggttc aagcagtattta 46860
tatttttttat tattccattca ataatattaata actgagcata caccatgtccg cagggagtctc 46920
aggaagtgtcat gaaagataagcg cagatgaaaaa gacagttctt gttcttttttt gccacaaaaaa 46980
atatggacat ttccatgaata aagaaacgcag aagttaccac atctctctata ctaacctttct 47040
gataggtaaa acacatatata taaggtgttaaa ttccagcatttc tctctctctg gacaataataa 47100
taaaactaat taagagttctt ttgatcttttc cttggaggttt tattttttccc tataagattgt 47160
ataggtgctt caaacccttttt gtataaaagg ggagctattta agagtgtaca attttttttatg 47220
gtatagatgt gttatatgttta aacatatta atatatagcgtg caaagaaaaa gtacagttatt 47280
ttctattaggc tattccagcttt tctctcagttt acgcacctcct cttgagagata gacacagagga 47340
cagttttttt aaactggcca attaaccagca tctctgtcct tggtttttaat agtctctcattt
47400
agatgattta tttttttttta gatacgcttg catcacaattt ctctctttg tggcccacgctc
tgggccttca tttgcttggta tttcttcttgc gctcttcttg aagtttcgacc
47460
accttcgagg tggactcgact aaaaataagat ggtgggggtg aagcaaggac aagagaaggg
gttgcgtgc tttgtgcttc tttcatagtt gcacgcttgac tactagttgg tagctctatgg
gctcttgaa ggtcctactag agatcgcagc tggcctcactc tggccataagg gacattatag
cagatagcagc cctctcaccat ctgggatgca ggccttaagct gatatgaaaa attttccttag
47760
agaatcacaag ctttcttttag gcgtgcctgca aagatgcagg eectctggctg cagttttttc
gaggtgccct atgcctagtt ggtatgggat agcacccctcc tccccctttt tctcccccaaa
47820
agttgggtggt tcacccgaca cctgtggctg cctctctgcac cattttctct gcctctttcag
47880
tctcataatt aaaaagggag acctctttgg tacattttttct ctctgttata tgtgaaatttc
cctatattcc atctcttgctgt ttctttgtgaacctagat cttcgggtgtc aagttcagac
48000
ccttatattc tctcttggatt cttctcttggt tttaagcttt gcttgctttcg aagttcagac
48060
taggtttttt ttgtgttaat gacagttaa aatatatctaa aatcttttatt tttctccaca
ttgccctattc agggactcatt aattggtatt gaaagaattc taatgcttct cttctactcc
48120
cattccccag cagatagcgac gggttgtgca ctatgaaaaa ggcctagttat acaaaaaaga
48180
aaaaaagaga ttagtttatt gtttcaaatgt aactatattat aattatatagc aagattgata
48240
tccctaggac aatgtcatac accctacggt gttgtttttt gtttttttttgg gaggtgtttt
48300
ccttccacaa ttgtgtcaca atgcactgtct gtttttcgca gggccagggca gaggggtggtgc
48360
agctgaagtgt tcgcacagac accttcccccc gagggttggt gtagttggag gtcgcctcattg
48420
tcgccgacct ggagggagatt gcagcatcgc ctaatccttg caagggagct caagtcctgtg
48480
 tttccagctc caggagatgt ggttgggttt aaaaaagttaa ataatttggtg tatagatttt
48540
agaaatatcaca aacatgacaatttccccag gacccacaag gcattgcatc cttgaaacttt
48600
tataaagttg aatattggct gaggaagaatt ttgtaattga cgaatattat tttttcaccag
48660
aattatatca acactctctc atatatataa tatataagga gagaacaagc gaaatcttctct
48720
attggacactg attaaagttta aagaaaaataa aagttttccaa ttgccgtaac atttatatt
48780
aggtttttgt gagggtttgta gtaagggaga ttgacacttt gcacctcagc cccagaaggg
48840
tctgtctcca gggataagca aacgccccac aagaaagtgc atactataca tgcagtaagt
48900
gattattaag cacctactat ttgtaaggtt tgttaatgtg cgaagatagag taattgaactta
48960
cattatatcata gttctttttg gttcatatttc ttataatagtttttttaaact ataaaaatatt
attactagtg  agattaaacg  cttttatatata  tggtgtgcag  tctttcagct  ttcttttcca  52560
 ttcctgccttt  ttggtatat  ttttttgtc  ttactattt  ttggagattt  52620
 tttatatag  atgaataacctg  atctttgtttt  gtttatatat  atgtcttttt  acctcccaac  52680
 tttcctgctc  attatgttttt  aggaggtgtat  caggttaaca  atacatcata  ggatgttcca  52740
 aaagttgtct  tttaatctat  ttgataatct  tggtttcctt  gatatatatt  52800
 tatacctttt  tttttttaccg  cctctctaca  ttctatagaa  ttgattatgc  cttggtgctg  52860
 gtgtatgtttc  atttttttacccg  cctctctaca  ttctatagaa  ttgattatgc  52920
 ggcgcgaatgg  ctcacgcttg  taatcccgcc  acctttgagg  gctgaggttg  acagattact  52980
 tgagctcagc  aggcttgaggc  caggttcgag  aatgttgtaa  aacccecaatt  ctaatssaa  53040
 tacaagaatt  agccgagtc  gatgggcgtgc  accttgtgct  cctactttctg  ggagagctga  53100
 ggcacgagaa  tcaactgtgc  ccgggagggc  gaggtttcag  tgacgagaga  tcatggcact  53160
 gcacctccagc  ctgggtgcca  aagtgtgaa  aaaaatgat  tacatgatcc  tttgcagacc  53220
 ccatttccct  ctgattatcc  ggaggttata  ttattatttt  ccattttctc  aattagttacc  53280
 cttacattttc  aacaagcata  ctttaaatca  ttgaagcta  attaataact  atactctctt  53340
 gcataaaca  agcaactttgg  acaatatattaa  cttctaatattc  tatttccatc  ttggttataa  53400
 agtaacttaa  ttctactttgt  tttctctcctt  tctctcttttt  tagctttatag  gttaccacctt  53460
 tggtgatatg  taataaatat  ttacactatc  catgtctgcc  aatgtctttg  atcacaatttg  53520
 cttcctagat  ctcctctctt  ctgggttctct  ttttttttaa  agtacatatt  ataaatgttc  53580
 ttcagcatgg  gctttgagct  gaaacacte  tttgatttttat  cctcaattttt  ggtgactat  53640
 ttagcagttt  ctagaattcgc  aagtgccagc  tgaattttttcc  tcacagacta  ttggtttttc  53700
 attcattact  ttctgtgtact  cattgtgtct  gatgaagatg  ttggttttcct  ctgctttgtt  53760
 tttagataaag  aatctgtcct  tttttctttg  ttcagcttag  attttttcttt  tatatactct  53820
 aagttttcta  aatggttttt  aggtttgact  tttttakaaa  ataactattt  cttcatggtcct  53880
 acttgctcct  caaatattga  aaaaacctttg  ctgtttatcaaa  ttttagaaa  ttctcactat  53940
 ttctctcctg  ataggttatct  ttcttgcgg  accctctgtta  gatgttattg  aggccacccct  54000
 agtttagctc  ctaathtagt  taatccctct  ttatataatt  caatgtttttg  cttcgagccaata  54060
 aaatggagaa  ttttctcaga  ttttttttttt  ttcacacactc  tctggtttgtg  ttggaccact  54120
 cttacactatc  ctggtgtgtag  ttgcagtaaat  gttctcttaat  atattaccca  cctgtagctt  54180
acacccctatt ccataaact atgcacatgcc ttctcaccat aaactgggtt acattgactg 54240
tctctgacc atggactgga tcatgccatt atttgtatca agaaaatag tcagaactga 54300
caatgtgcca gtgtgtcatg cttctgcact tccccattgt catactaca aagccccagggt 54360
agcctgctgg aggaagagaa gcatgtaaaa cggagcccgag gcacccgatgc accccaggtga 54420
gggccacgcc agatctacca aacagcccgct gacccccaga agtgagcaag cccacgaaga 54480
tcgcaaaagt cacttggcga gcgccaggtga cccagggcgc atgagtagga aatgtttgtc 54540
gtgctctttt caggacctat ggcaataagca ttatgtgc gg ccaggggtta caaatatac 54600
atgcattgat attttcctgt tactaaccct ttctctttgtt aggtaagctta attattttcctt 54660
ctctcaaatatat cccatgggttt tctctatat tctctctatat ccctgttttcct 54720
catttgctta tgaatccatt taaacatag atatatttata atttccttca gttgttggtat 54780
catcctgaag ttctttgag atgtaatcttc cccatacagc tgatctctcttt cattagttgtt 54840
tctctattttt actataattt ccaatattttg agtccataat tcaatcattat tgggatccca 54900
gtaccaagaa atatctgaaat gcataccccag gcacccagttt gttatctgtgc tctgtctagag 54960
gtacaaggtg tgtccacagct ctagggaccc tttgacacta atgtctttattt ttaagggttt 55020
tggttcactgt taggtgctag aacatgtcctt tctcaacaca caagtgaagc gcgtattcccg 55080
ctctctcactt taggacggttt tggatccacc gtcgccacgca gacaaacctct ttttgctatcc 55140
aagacaagtca ttgggacggtt agccctcttttt cactgaaggtt acagagtttcc ccaagtttggg 55200
cattatactgtag aagtctcagg ttcaacggtct acctacaaaa caggacccttg tgtatacatc 55260
cggtcagctt ccagcactct ggacacgggggc cctatctcacc gtttgatctct tctcgctcttt 55320
cagtggtcactt aagtcgtctag cttccatttt tcattttctaa aacctttgtgg gttatcttttt 55380	tagctcttaag agcataccac tggtagcgttc tagacaatata ctccttttattct ctgtttgtaga 55440
aaagttgccttc ttgggtgctcgt gcggcctgcgt gcttggcagat gtttggttttt acaagcctaa 55500
ataatttggc aaaaaattag aaatgaaatatt ttttttttaat ttatttttttatttgctatgg 55560	taaaatag attgtatatctttttttagttatat gggtttttgttttttttttttgggtt 55620	ttttgtgggttt ttgattgaccc cggagtccttcg tctctgcccc aggttgtgagct gcagttgcagcc 55680
catcctggtcat cactgcaacgc ttgccctcccc ggtttttatgcttttgcctcttc gccttcgcctt 55740
cggagtagct gcagactacgc ttgccccaccaca ccaagctctgg ctaatatttttttttattttt 55800
tagagacagg gttctcagcttg gttgacccgg atgtggctata ttccggacctg cttgatccgct 55860
cgcctctggc ctccccttttt gctggtgatta caggaagtgagc caactgtgcccc ggcactacaat 55920
ttgatgatttt aatacagggca cacaatgtgt aataatcaca ccagagtaat taaggtatcc 55980
attcacctcga gaaattatat atttgtgatta ggaacattcc aatccacccc ttttagttat 56040
ttttaaatat ataataaatgtt atttgtgacta tgtactcaac ataagccgta tcaaatacta 56100
gctctgccgg aaaaatgggag atagagggcca gccaaatatt gcagctcaca cgaggatgga 56160
aacagcagca ttagagacta aacatcactga accttttgctt caagaactac tgcagaaaca 56220
gccaagaggg tccacagacc cttggaagga gatgagactgc tgtgctcaggg cccaggata 56280
acccaaaaaa ctgtgagtgc ccaaaatgtg aagggggatt attctgcccc caaactatata 56340
ccccctactg gaaacctgaa gtcctcagac ccaatcaca gcggagggatt ttgaccttac 56400
cctggagctga gatgaaattta gagaagcagtc tgaataacag ggtagaagac agcagcgaga 56460
agagccctcttg ggcagctccag atttctacagg gatgccatatt ctagacttttgt ctcacagggaga 56520
tcctttgggg agggctgcag cagaactggg aatgtacccag agagaagcag agagccacctgt 56580
gaaacttttgta acataattcag ccagcgtcag aacccctcggg acagagtttg ggtgtaggggg 56640
tggttgaaatc gggagtgcag acacgcaca gaaactgcag cagcccaggg ggtgacaaat 56700
cagaaagccc tgctttggcttt cttaaccaggg aagggctgtag cctggggcag gtcctcagcc 56760
cctgcttaccc actgcctcagga aacaacactca gtagctgctca aagggcaggg tgtgagtagg 56820
ccagtcattt caggtgcagc agaagccggg tgaggccctgt aacataacac ttcccctccac 56880
tccctggcag aacctatctga tgcacaaagg caaccataaat cccctgtgga acgtaacctc 56940
atggcctgga gaaccacacc cctatccccg cagcagcgcag tgcagacac cacaagagg 57000
ctcagagctc aagacacacct aacccctgcc ccaacgtgatg tgtttttttc accggtcttg 57060
gtagccaaag acacacatcag taatctctctg agagctctat ggcctgcac actccctctgat 57120
cctccctaca ctatcagcag taatgtgactc tgaagacacac cccccctcggg ctggagggca 57180
accaacatga aactacacac ataagccaca ctcaaacacag gccctccacc agagttcact 57240
tcactccccct gcacactccca ccagagcagc taccctttatc tacagccgag agaocctgag 57300
acggctcaga tcacaggact ctgtgagggcc actgcagcagt accagccccag agtccagtag 57360
tggcataaggg tggtgtagtc cccagagagaa attacaatca ctgagttcta ggtcttagga 57420
gccacatccc tagagagagg gggagagcag cacatcaagg gacaccccca tgggacaaaa 57480
gaatctgaag agcagccctt gaggccacaga tctttccccct gacatagtct accoatatatg 57540
gaaggaacca gaaaaaanat cctagtaata tgaacaaaaa ggttttctttt cacccctaaaa 57600
agatcact ggtcaccag caatggatcc aaaccaagag gaaatctctg aattgccaga 57660
aaaagaattc agaaggtcga ctaatcactg aatcaaggag gttgccagaga aaggtgaaggt 57720
cgaactctat aaaaattttaa aatgtataa tgaggggaaa aagctctcagt gaataataata 57780
gctataataa aaaccaatca ctactcttgcg aaatataagga cacacttaga gaatgcca 57840
atacactgga aagtttcagc agtataagta ctagaactgtagcta aataagaact tcagagctcg 57900
aggacaaggct tttcaaatata actcaactcca acaaagaaga ggaagaagaga aatttttaataa 57960
atgataaatg cctccaaagaa gtaggggatt gttgtaaatg gcgaacacta ggaataatgg 58020
gtggtcggga ggaagaagag aaatctaataa gttttgaaaa catatattgag agaataatta 58080
cgaacacttt cccaggccctt gtaagcgatc tagactccaga aaaaacgaac cttccaaagac 58140
atttggggaa ttatattgcaaa aagacattact acctcagcat agtcatcagg tgttcctaaag 58200
tcagatgga ggaagaatct ctaagagctg tcagccaaaa aacatcaggta gcctaaaaag 58260
gaaactctat cagatataca gcaggtttctt tagccaagaat cctacaagct aagagggact 58320
gagacacat cttcctaaac aaaaacatct tccagccaga atttttgacgc gagaagact 58380
aatccttata cattggaaggag atagttcttt tttcagggca aacaagggct agaagattg 58440
ccactcccaga gcaggtctctt tagagagcgg tcagagatctg ttaagaggac tctaatattt aaacaaata 58500
cctcagaaaa gaccacatag aacactcatta aagcataaat ctcagagcat ctatatataca 58560
aaagccacat gaaaaacaaaa caaaaaaaaa tattcagggaa acaaaatagc gcctaggagt 58620
aatgtacact cactctccaa tactaaatag gatgttaaat ggctaaatag cttccactttaa 58680
aagacacaga atgggggaga ggagaatctc ccaaccaagag atcttgtctg tcagagagac 58740
tccactaca ctaagagact cacataaaact taaggttaag ggggtggaga agataactc 58800
tgcaaatgag cattcaaaaa gagcaggagt agtatctttt tatcagacc aaaaacaact 58860
taaagcaca gtagetaaaa atgcacacaa gggaacattt ataatgatata aagggacttt 58920
taaagcagaaaa aatatccaaat tcctaaacct atatgcactt aacatggagc tgccaaattt 58980		
tataaaacac ctcactttag cccccagaga ccatatatat atatcagctag gaacactctct 59040
ggaccttaat actccactaa cagcattaga cagctcattc tcagagaaag tccacaagaa 59100
atggtttata aactataattt aagacaagag gacttaacag atattttcag aacattttac 59160
ccacacactg cagagatatat atctcatttc tcagcactagt gcgcttcctt taagatagat 59220
catgtatag gccacaaaaa aagctctcaat aaatttaaga aacccaaaat tatatactagt 59280
actttttcag accacagtgat aataaaaattg gatatcaact caaaaagggaa cttccaaaac 59340
catgcaaatata cctgcaaatatt aataaactctg ttctctgaatt atcatttggt caacaatg aa 59400
atcaagatgg aaatttaaa attctttgaa ctgaaagata atagtgacac aacc tatc taa 59460
aaccctctggg atacacgaag ggtggtgata aagaagaaagtg tcataagccttt aatatctac 59520
atcaaaacat ctgaaagacc acaaatagac aaccttaaggt cacacacctga ggaactatag 59580
aaacaagac aaaccacaaacc caaacc caccagc aa gagaagaagtaa aataacaat gacagag 59640
gaactaaatg aaattgaaacct aaaaaaaata caaaagataa attaaaca aagctgtgttc 59700
tttgaaatctg taaaatatgctgatagacctgta ctagtgagat gaaacaagaa aagaagagac 59760
aatataaacaa taataataaatc ctatactgct gaattttttagt gtgtataaatg aaaaaacatac 59820
atatcaaaagat tattaattggct ctaacatgaa cactttttatg tgtataaatg aaaaaacatac 59880
ccggagacca tagaaatata taaccctccc agataaacca aggaataaatg aagaaactctgg 59940
aaacagaacaa taataagcacg tgagagataa atggtaatta aataatgccaa gaaaaagtaag 60000
tccaggatctagagtttcaactacatggtgca ctacacatgtaa cttaaagaagatcctgctgg 60060
aatctctggtg actatatttct ccaagatagaa gaaaaagggta aacctccccca aacatcctgaa 60120
tgaagctctg atctacccanta caccataacc cggaaagagc ataaacaagaa aacatcctgaa 60180
ccacatccattgc tagtgaacgctc aacaagcataa aaaaaactcttc aataaataataactgaag 60240
gaatctacacac gcatatcaca aagataatcc agcata沟aaggttggcctagatcactaatc 60300
gcagggatggg ttaaacatat agtatcataat aatagtgata caccacataaa acagaatatc 60360
aaacacaaat ccatatgtaca tctcaattag  tgcagaaaaa gcatttgacac aacacacagc 60420
tccctttatatg attaaaaacct cagacaaactt gggatatatactcataatcactaatc 60480
aaaagccccatc tagcaacaca cccaacgcccc ccctataacctg atagggaagaa cgtgtaaacg 60540
attttttctg agaactgcacaaa aacaccaagaag tgcctcttctctc ctacactatcctgctgactaag 60600
agttactagaa gttctagccat gaaagataag cacaagaaia taataaagatg atcaaatcactaatc 60660
acgttacacgaaacagc tgcattgccttgctgtgatagtttactgcataataagaacag 60720
cccctacaagt tcctctccaaag cgcctctgctc aactctgataa tgaatttcagcacag 60780
igmatataatatgtg aatacagtcttctgtgata caccaacagcc aaccaagctg 60840
agaattgacttgctgata ccactgctgtgtaatcactaatcacaacagc aacaagctg 60900
agttactagag gataacataa acacagagctg tgaagaccccctacacgaacacgaatg 60960
cactgtgctgaa aaaaatccata gacaacacaa acaaatggaacacatacttcatttcacattt 61020
tggtgataa caataagta aaaaataa caactgaa caaagtcata ttaaatattg gcttctgctg aatgcttctg aaaaataa aactcactgc 61080
atccacccc aaaaataacc aatcacatct cacccatttt taaaataaacc gaaatataa atctcaatctc 61140
tatgtaaaac aaaaaggggc tcgggtatcag cagcagaaat aaagttttttt aagaaaaaatt 61200
gagcatacag atctaaactt aaataaagcc gtagcttttct gctgagctt 61260
gctactaagta taattaaatag cactagagtag gtagaagatg cagacttctc 61320
accctcccta ctgagcactg aaccctgctg gcagctgagc 61380
agtataaag tagtaaaattg tggagcactg ataatgtaaaa agcagcactg aaaaataaa ataaaatg 61440
aactgaaacc ggatcataagta aaaaattcag aagataaatac cagaaaaacc tggagctgata 61500
cttggcttact agaagaagttt tcgagctgact 61560
ttttctgtag caccagttttag gccgaaagttt ttttacaat 61620
aatgtagatg gaacttattt aaataaataa gaagttctacg acctaaagttt gctgagctt 61680
aactagcatc ctgcagagac aaccctcactt cttggagcc 61740
atataaaag agaataaatac acaaataaag cagaaagttt gcagaaagttt ttggagctgata 61800
ttaataaaag cagaaagttt gacttctactt ccgtagagctt ccgtagagctt 61860
aatgtagatg gagaagttt cttggagcc 61920
cttggtaga cagaatgagct ctaataaaat cggtaataagta ataatgtagatg gcttctgtag 61980
ttttactgc tggagctgata aaaaataaa ataaaatg 62040
attgagaaacagct ttttactgc tggagctgata aaaaataaa ataaaatg 62100
ttttactgc tggagaaacagct ttttactgc tggagaaacagct 62160
cattgagaaacagct ttttactgc tggagaaacagct 62220
cacttcatc gctgagctt cttggagcc 62280
attgatcactc gctgagctt cttggagcc 62340
atatagaagccg ataatgcagc ctgagcttcccctgagcagc cccgacctgc 62400
attgagaaacagct ttttactgc tggagaaacagct 62460
cacttcatc gctgagctt cttggagcc 62520
attgatcactc gctgagctt cttggagcc 62580
cccaagcccc cctgagctt cttggtctgcaa cttggagcc 62640
ttttactgc tggagaaacagct ttttactgc tggagaaacagct 62700
gagatgagctt cttggagcc 62760
tgactgcata gtgttccagt gtgtatatat gcgaattttc ttatatcagt ctatcattga 62820
tggactttta aagtctttgc tatactgac agtgcgtcga aaaaactacg 62880
tgtgctgtgt tctttatatgt agaagatttt ataactctttc ggtgtatcgc ccagtaatgg 62940
gattgctggc tcaaatggta tttcctgattc tagaccttg aggaatcggcc acactgtcctt 63000
cacacatggt tgaactaatt tacactccca ccacagcgtct aaaagcattc ctgtttctcc 63060
gcactcttcc cagcattctgt tgtttctgta ctttttaata atgccatatt taaactgtatg 63120
aatcagcgtct ctcactgttag ttttgatttg aatctctcta atgaccagttt atgtgactgt 63180
ctctctcata tgggtgttgg gtcgatagat gtctctctttt gagaatgcgt ttccatattc 63240
cctccmccac ttttggtttag ggtggttttt toctgttaaa tttgttaag tttcctttag 63300
atctcggata ttagcctttt gtcagatgag tagattgcag aaaaattttc aacaactgtat 63360
ggttcctgt tgacctggtc gatagttttt tttgctgtat agaagctctg tagtttaatt 63420
aatccmccct tggcctttttt ggcctctgttt ttggtttttt cgtctagmca 63480
tttggcctca gctcactgctc atgagttgta tttctttctag gttttttatag 63540
gtttagtctt ttaagttttaa gctcttaatc catctttaagt taattttttt ataaggtgta 63600
aggagggggt ccagttttcag ttctattcat atgggtggaga ccaatattct aagttagagc 63660
actcaggaaat ggaaaaccac acattgtata ttctcatctca taagtggaga ctaagctata 63720
aggagtccaa ggctataagaa tcatacaatg gacttttaggg acttaggaga aagagttggag 63780
gtggttaagcg ataaagggct actcagttggc tcaaatgtat actgctctgag tagatgggtgc 63840
acccaaatct cacaatcacc cattaaataa ctattctcgt taaccacaggc aggtataattg 63900
gctcatgctc gtataacccag cacttttggga ggccaaagcc gaagccagttct ttgaggtcag 63960
agggtcsgaga ccaagctgtgg ccacatcgggt aaaccctcat gtactacaaaa taacaaaaatt 64020
acccggggcat ggtaataagg ccactgtgtac ccagctacccc aagaaagacgg gcgaacagcaa 64080
gaattgcttg aaccggaggct gttggaggttg cagtgaagcc agatatagcc actgcactcc 64140
agcctggagt acagagtgag actgtctcaca aaaaaaaaattttttt gtaaccacac 64200
acccaccttt ccccaaaaaa ctagaagata aaaaaataat attaaaaata atagatctta 64260
ttatattttc ctatactatat ttattatctcc attaactctc ttactttttc ccctcctcctc 64320
cctccctttt tagccctctgg taacacatctctactctcactca tttccatagg ttaaattttt 64380
ttatatttttc gttccccaaa ataagtgaga actcgtggaag tttatttttt ttggtcttggc 64440
ttattaatgt gctcagttt cactcattcta gttggaaagt gacagatttc attctttttta 64500
tggttgaata ttattttatg gtgtatagta ccacatttcc ttatatctatt caacacacgt a 64560
tcgacaccta gattgcttcc aatcttgggc tattatgaac atgtgtgcaaa taatacatgg 64620
agtgcagcta ttctttttgt agactgatltt cctttttttt ggataatatc ttcacagtga 64680
gattgctgca ttatgtggtata tagctatatgc cttttttttttaggttttg aggaacatctc atgctatttc 64740
ccataaagac tactaatttta cattcccctct aataagaaaaa aatgtttaaa ctagcctagt 64800
ccctcaagcaaa aataagacata tagtggacata caaaaaaata cgtccagggg caaagacatttt 64860
ttttaaagtg acccttaatt tgggttaagcata taataagatat cctctatcttt tgtaagcag 64920	
taaaacttgta cataaggcagt gtggggacta atgtgctctgt tttccccaaa tcatcttttc 64980
atatcatcct cccttattttc gttgtcataat tttgagaact gtatccattt ttatttttt 65040
tggtaacacttg gtttctttttg gttgtaagct cttttaggatgt aaaaacacac aataaatgc 65100
zttagaagag tacacaagccg tagacacaccct aatttttttaaaa catataatgt tatttgaaaaa 65160
tattttaaaa aatagtgcctta aataatataat cttttttataa actgtcaacggt tttttttaaa 65220
caaataactcg aggtttcttg agatctttccct tctctctctct ccagagcctg tctagggtgg 65280
agaaggtcag gggatgcaag agggagatgtac ttccccactatccttacctt ccccttaactt 65340

tgtctttaact cctctctctat tccccacacta atgagggcaca atgtcttgggttgc aacaaataca 65400
aggttgtggct ttgggttaaa agtcataatt ttgtttcaagtgtagaaaaaattttccac 65460
gttgggcaagtttgaattgg aactggaacta gctgggaaag ataatctatgt gtttaaaataag 65520

ttggaagggg gtatagcatac aagatatttaa aaaaacagacat aacaatatc caaatatgc 65580
attgtcaggtt gtaataacacat gttgtggata aatggaaagt aattgtatc agaagaagcg 65640

catcttcttg gcgtgtggaag caagaaaaac agtacacgcc acattctgtcag caggtatag 65700
atgtggtttt gttttcacjaat ggtgacacta caaatttgcacctacagagcg atgtgtgatat 65760
actgaaagga taaattttttt aaagcccaaat gggccatgtag atcattgggc cagcaagctc 65820
ataatcttag tgctttttttc ttgtaataatgt gaaataatataaatatatcttggtgcagagat 65880

tggggagataa aataagaaaa atatatatttaaatatatcgttgtaagcactaatattaagaag 65940
ataaaatattag tttatatggatatattatcttacttcaaatattacatttttaaatatatc 66000
atgaatatgt attaaagggg gcatgaaatgtgtgtgtgctcatggaacacatataactcatta 66060
atcaaatggaaagagdctctgaa aaggggaaattccggagagct caagagggctaa gaccaggggt 66120
atttatgtggttggtgctgtaaagcgacaatctttccatgagagggccctagagcgtgcacactaa 66180

46
cagatgatga ttacgctgaa tggtcttggtt gtctctgtgc aaatagtgcc tgacagacag 66240
gaaactgacct cocatgatac acttcacaca gaatacgttag cttctacttt gttaacactg 66300
attatataga agaacaataga atggaggagcgc atagaaactta cctctctcttc aatctctgact 66360
cactctaact catctccagca gaaacacact cattggttggaa gagcagaaac 66420
agtgacaagt caggggagaac atatcggaata aggtcttttttc tcatgcctattt gaaaaaagt 66480
tatgtaaagag aatacttatac gtggggaaca taattgaatg aagtgggaatg ggttttagta 66540
gatattaatcg cctttataatt ttctctatttt tgctcaatga tgacagggctg tacctgtctg 66600
tgatcttttgct tttcctcataac aagcccccctgg taacgtgatag atttcacatttt tataacaga 66660
ttagttcatt cttcctcagct ctggcagggag gtaataagct caaggtctctc caacccttaaa 66720
tttactctacc cccttcctgtca gccaaccaaa gaagcatactc tagggacaa 66780
ttcttataaat tgggataatcc tcaggggcaaa tatacaagta gctttttttcc ttttttttta 66840
aaaaaattatc ttcatttttttg tgcgttcacaact agtcatgtaa atatatattgg ggtatgtttt 66900
agttccctctc tcatgctgacta tgaagaataa cagcagacttc ggtaatatttt aaggggaaga 66960
tatattagc acctccacagtt ccacactgct tggggagggct caggggactt caaatcactgg 67020
cagagaagcac ctggctctcata ggtggtccagaa gagaagaattag atgctgagacg aagggggaag 67080
tctcttataaaa aacatctctga ttctgtgagg actctactgct atggaaaaacag tatagtgga 67140
actggccccaa tgattcaatc atacaccact ctttcacattt ttcactgtgc gggatttagata 67200
cacctcgcag tggatattttg tgtgaagatgtc agaaccaaac actaticcggg catatgagat 67260
acttttgtac agacatgcaac atgcacataaa cccacatcagg gtaacgygggg tatccatcccc 67320
cctacaactt ccccccccttgt gttacaatcc aatctctactc ttttctttatt tttttaaatgt 67380
gcagtcatta tgattttatg gtatctgttggt tcgctgtaaacta tactactgct cttttttcttc 67440
tttctcataac tttttgtcata cattaataact cccacacatcc ccaacctcctc cccctgtctca 67500
tctttccag cccctgttaga cactttctctc tttctctctct tctaattataa atctgtttctc 67560
atgttcatct cccccaaaaata agtgaaagtgtgt gccggtttttgc tttctctgtgcc tgtttttactt 67620
acacatgatgt agtgattgcccc agctccatcactg aatgtgttgcc aatgtgcaagctctctttcct 67680
ctttatggtct aatagtacct ctcattgttccttg tgccttatcact ttcattcactc ccaacctcctc 67740
gttgattggac acatatagtttg cttccaaatctt gtggctggttg tgaacacagc tgcacaaacc 67800
aagggagact aatcttattct tcaaatattct gattttttttc ttttttggaa tataacacagc 67860
agtgaggtttc tggagacat ttttaactgt tttctggaga aacaccaaac 67920
atctctgtgg ttgctgatt acttttaaat ctcaccaca ggttcaagg gtttttccttt 67980
tctctatcct ttcttcatgt ttgtttaatt ctgctaatgg gtctatgttg gaaataacgtt 68040
ggttgggtag atatctcatt gtagttttga ttgctatcct tcgtatgagt aatgatgttg 68100
gactttttct catgtccctc ttttgctatcc tttttccaa ttgctcatttt 68160
gatctttttgc ccatgttcttc atggaataac tagatttcctt cctataagac gcctttgaga 68220
tctttatgca ttctgttagt taatcccttg tcagatatgt aagttataag taattttttc 68280
cctttattct gcgggtggt ttcaaatcct gttgaatgtt ttctttgtgt gttgccgattt 68340
ttatcttggag ttttgttctgg ctgggtggtt gcggtttttt gttgggtaactt 68400
ttacctgcag cattgggttg atctccttga attcggactt tttcactaatg 68460
agtctaggt ccagcttatt agatcttatt cattttttgt tattttatgt agatgtatgtg 68520
gacataagg ttttagcttt ttctctggtt ctttggtgct tgcacggattt 68580
agagactgct ggctgcctcc gttaataagt gttggggatc gttggactcttg 68640
aagtgtagag atagtttttt ggtgcttcttc gttgcttttc gttggttggtt 68700
tttggctagt ccatggcttg tttttctga agtttttataa tatatactgg 68760
atggtatttc ttcttctttt cctacttttt gccaggagttt cttggtggttt 68820
tggtttctca taaaatattt tagttttttc atttttattt aatgatggata tcatttgttt 68880
atntttcgat gazggttattt tattttttgg aatatgtagg actctctttt gtttacttttt 68940
atgaaaggtg atatatattc attttttata gttttctttc atttttttt gtttttttttt 69000
atttagttta tagatctcct ttttagtttt ggctacttta taggtattta atttttgggt 69060
tggctttgat aataataagtt actttttttt ttcttctttct ccagctcactct gtttgctatc 69120
tgaaatgacgt actgttttttt cttgtgatgt tttgcttatc gcctcctttt gcgtctgttt 69180
aatcgttgggt gcagtttttt ggctttttgt cttttttcaatg gcgtctcttt 69240
actggcactc aagataatgt tttcttttct tggctcacttt tttttttcttt 69300
cttttcattgt ttaattttag ctaatttaatt tgtttttatg cattttttttt 69360
catactttcat cagacttcag ttagcttttt gggaattcc aacaccccag 69420
gattacttat gctggtgagg ttgctccatt gctttttttt gttgctattt aatgatgttt 69480
tataacccgt tttttgtatt aagctgttta ttttcttttt taatttcctg 69540
tttgcagcat tcataactg ttcatttttt ttctcatttt ctgagatgtc 69600
catgccagtgg aacacctgtcg aaaaatctctg ctctaggggtg tcagggagag ctggtcatag 76500
ggacatgcct caacagagag attctgctac aaaaagacac aaggggttct aaggggaagt 76560
gacgccacag gttcactgtga gaagccagcc actaataaag ctgtatatccg tgcacaagact 76620
agatgtttaa ggagtcaccce ctactgtgagg agctttgaggac tagagaagct ttgcacctcctg 76680
catagctcgg aacactgagga agctggccacactgagcggag cctgcccaaga gggcgtcactg 76740
gaatcagaga gcacacctcct ttcctctgcac atatctccacctgc acactactcct actacagcatag 76800
catttaacattc tgtcaacctga caagtggaacta taatgtgccc cagctctcatt tcacgtggagca 76860
agcaaaaaagg atgacctttggg atctcattgga cactataatacga acaactgaca caggtggaggaca 76920
tcaaaaagcgg ttttattaaag cataggaagggt catgaaaggtgt ctcttttaggt acctttgccc 76980
tcattttgctc cagaggcgcag tagctctcctgg acagccaaagc gctaaaaattt tagatttggt 77040
atcgtgcctgg taatcctactgc actttgagg agcggaggtgg ggcagatcagc caggtcagaggag 77100
acccactccttg tccaacactgtc aaaaatctctg ctctacttaaa aatcaaaaaattagcctcgg 77160
cgtgggtgcc gcagaggcctg tgcacacattgc cttggggagggc agatggcagtaa aatagcggcttg 77220
aacctgggag gtggagtctag cagttagcctg aagttgcccacg aacccctgggtcgc 77280
acagagtggag acctccgtctca aaaaatctcttaa aaaaaatagc aaaaaaaa aatatatatatatat 77340
atatatatatatatatatatatatatatgtgaaattcaga atgtcttttcggc guggcataactg 77400
ccactactcttat tttcatagatg ctcctacted tctcattagcat tttaaggctgta gcagcaaact 77460
tcatacaaat atgtgctgggg cccacaaacgg ccctgtcagcgc tgcgttctcgc ataccattaata 77520
ccaccttcatt ttacaggttgga ggaacagcgca tgcattaattgc gctacttctccg cccctgccccc 77580
cgtctctcgtc aatgtaaacgg aagccaggggg gggaggtaggt gcataaaacctg tccttttagtgc 77640
gtgatcttttc tcacaccagg tcaataagatg ggagggagtcact gctatggtctttgt tatattgcaca gattttgctc 77700
atttacataa aatacaagatac gttgggtaataa aataggctcgtag atatatctccta gagtagcaaga 77760
aatcaaaaaaagcaggttacactgca gactgtctccttc ttcctgggggatt aactaggcgctc atatataagta 77820
tggtcttaag taaataatcata cctaaaatctg ctaaagaaca aacccagtccgt tcaacaatttg 77880
taatagttgctatacagca attttaattgtt ttcctctactg tccttctctccg tgtcatttccgtc 77940
agacccattac ctcctcaacagtagagtgtgg ctagagttctc tacctctcttc ctaaag tagcggctgg 78000
aatctcatgc ctttctctatt aagtaactaag tggtaggctc agtcccctcacta cagagatggg 78060
ttcacaacatct ttggcaggggg ggggaaaaagataatcactagtatttagaatttttagcag 78120
ttgccaagtg  tccaatagg  ttgactgtaa  ccacaacaca  gagggtgcc  aatctgtccta
79920
gcttgtagcc  tgttaaaaact  gcttttcagtt  actcttatgg  aagttttcatt  aagcttaact
79980
aaagccaaca  tgttggctaa  taatgataac  aaatcaggtc  ctatctcaag  ttccacccctc  
80040
aaggcaatag  cactcaggac  cccagtttta  tttaactgcaaa  cagttgtatc  tatgaccacct
80100
ggagcttttg  aagttgcagcc  acatcttttaa  ggatgatact  ttcccaaatata  cacaagttaa
80160
cttgctgtta  aagctttcatt  actgcttttttt  tctttgcgaat  tgtactgcatc  cactatcttt
80220
cattttgcc  tcacattaag  ttagggcaac  aagtactgga  gctctcccaaa  ggcttgcaat  
80280
gcaatgaaca  gcatgaccaac  aatgagtttc  ttatatgaac  ttatatttca  caagaacttaa
80340
ccagtcacca  atctggttggg  atgtgttggtgc  accatcatca  aaaggtctat  cgagaacatg  
80400
gtgacccctc  ttctccagaa  gatagttgctc  ataagtggtct  ttacactctc  ttatctattg
80460
tgaaaaactcc  atactcttttaa  agttcctctta  cgaatattttg  taaggtccaac  ttggttgggt
80520
tgtgtgtagc  aagaaaactct  catggtttcct  tattgagctct  ccacagggac  tgagcagttc
80580
atgtagcga  tgtttaatttta  ttgaaagac  actccaaatgg  gttatgaaag  aatttttaaa
80640
gttgacataca  gaaatgatgc  aaagaaaaagc  aagtctcttt  caatatacttc  cacttgaata
80700
tctcagtgct  ttgagttatg  agttgtaagtt  acacaataat  gaaatgaccc  tctcaacag
80760
aagcaacact  tcttcataacct  agtaataactg  agggcaacaga  aaggaagccag  actgaggtttt
80820
accctatctaa  ggtcagaact  ctggtaaaatt  gctctatgggg  tttcaattctca  acacttctgt
80880
gtccaggaca  atgggttgcct  ctgggtagag  tagtaatgaa  tttctactgtc  tctttttttt
80940
gcatagaggt  catgctatgac  ctggcagttg  tctccactgc  ccttccagaa  cttccataaat
81000
atgtgaccaaa  gacacccaca  gaactgagga  atgtgttttat  gctatgaaaa  tgggtggtgct  
81060
ctgctgtcagtt  ctgctatgaga  gctgcagaccc  ggagcttggtc  ctattcgga  gcatcagcgt
81120
acctgaacct  aactaatact  ccagcctac  agtggagat  acgcctagttg  actgtgatca
81180
aaacagatat  atagaccaat  ggaatagacaag  agggtctcta  gaaatagcatg  tgcacatactt
81240
cacccatctg  atctttggcaaca  acctcgacac  aaaaaagcaa  tggggagaag  attcttatattt
81300
aatataatggta  tggggaataa  ctgggtagcag  atatgcagaa  aactcgaaact  ggacccctctc
81360
cttacacctct  atacaaaaat  caactcaaga  tggatcagaa  actttaacgt  aagaactttagg
81420
accataaaaaa  tctsgagaaga  aaactcggggc  aatcacattc  aggacatagg  ctgagcaaaa
81480
gcttcattga  ctaaaaaacc  aaaaagcaattg  gcaacaaaaag  ccaaaaaattga  caaatggtgtttt
81540
taatcttgat attcatcttg aagaactcgg actggggttg tggcccgttg ctataattaac 85020
catagtttagc ctgatcacat gtaaatggat taagccttag ctttactatt aagataaaccc 85080
tgaaattagct aaattttcatt cagttcaact aaattttctgg atatattaata ctggtgattgc 85140
tgtaaggacac gtagctacat caaactatat tagtcatcaca ggcgtgccata ctaaaatgccc 85200
atagaccagg tgacctaaag aacccaaacct tattttcctc aattccgagag cccggaagttc 85260
gagacatagg gttgcaagct aatgggattc tgggtgagggc tcctctctct gcagtcggtat 85320
ggccacacat tacactgtgtc ctccagatcc agggagagct tagctctctg ggtggtctct 85380
cagttttaagg gttactaacct cttattttg gctcaccctc atgactctct gccttctatka 85440
ttacccctca aagtttttcat ctccagatac ttcctctttg gaaagttggg ctccacacac 85500
cagatctttga ggggacacag tttttagcttc agcacaaccc ttccaaattaa gagaatagcgc 85560
tgcggctcttag gcatttggcac atctgctcat ggcacacaca aaagatagttc cttccatcag 85620
eagaaatatt tgatgaaagg aatactgagag tgtgtgcccc ctttctgaca tcgaaagctc 85680
agggaggagat ggaggagacag tgtctctactc accctactac ataataacta aaccttactct 85740
gacagcttac cgctgctcagc acactcctctt aaggcttttt caagttcacta cttaccctacc 85800
tccacaatata cctaaatagtc cagccctttc actacagcct atgttagaga tagagacaca 85860
cataatctgg gaaagctctta ggagccttcta tacagtgtca caatgtaatc gacagtgaagtt 85920
cccaataatata aacctcattag actaacttcca gaccccttgcc tcctaatccac catgacacctc 85980
aaccttcagg tgtgaacacac tgtcattggga ggtgctccttg tgtgatgtcat gtggtagtacac 86040
acagtgcagc agcacaacac acaaatcatg tgtggtagga aatagcgtgac atttaatgtaa 86100
tccataatata tgttattata atgttataat gctataatgt atagccatttc tctagatgga 86160
catttttaac caactagcga aatgtccttc tcttcatcata aatgtgagat tagaatctcata 86220
gaaaaaggga atttttagatgt gttggtgagag ccaaggaagaat ctttgataatt gaggcctttg 86280
aagggtggaa ggtgtaggata caaatcctgaa cttgaagacc atgaaacagcct aggggtatag 86340
acaaggggcc aatggctcgtc tgagagggaa agggagagcg cacatattgg 86400
gggaggagacg atggggtttccc aggggtctac agcagacagcc tcctgtgtgcc agacgttgtaa 86460
caaattttttc cggctcataaatct gtgtgctctgt tacacagcct cccagagaca aatcacttttt 86520
accctttttc ccaaatagac caaagtcagag ttgattttttg cccagcagaag 86580
tgccatagtt ttggcattcct tgggctgcctaatatgtagtt gccagtggct 86640
agagcctgca tgtgggaacac caactcagaggg aaggtcagaa aaggttcatag tgtggttttaa 86700
agacaagagc ccagttcaat gacagaatgg atgtgcaacc agtcataccta gcacatcaatt
86760
taaatggcga tataatttga aaggtgaca gccattagtg tcagttatga agcttgtctga
86820
ggcactagct tggttacctg atggctaagt tcattatatg gcctagagctg ggccagcaagg
86880
tctgtaagggttgagatttc ataccaatatg ttttcccatct atgcattggac ttcttggaaga
86940
tatatagttc tcacagcctt gaagtcacaac tcgcagatag atgttgttttt tgtgaagttgg
87000
tcgagcagtt gaacatggtag atcttttatac actctcctgaa gacctcctctca atggcctgaga
87060
atcagtagct tagctcaataa caaacgccttc cgctttgacc tcctcagctg actctggtgac
87120
cctctggtttg ctgcttcttc atacccctcc actctactct ctctacacctaa accacatgga
87180
tctttaacca ggaatatttt gcttgaccc tgccattgcc tcctcgccct(t) tttcatagcc
87240
attgtgctctg caactctcttt ctctctcttca gctctcctaa ccacctactt tccttttttta
87300
aaccccttttc atgggcacga tactgttggtc taatatctttctetatataaa aggaacacagg
87360
gttcgtttccc tcaacaaaaaa tggctgtattt taggaactggtg caggaatattata cacagccttg
87420
agcatcttat agttggcagaa aatattggag tgcctgttaaa agaaattttagg ggggttgatt
87480
agttctgtctag ggctgttctta aaaaaatata cacacagcttg agtgctttaaa taataagatt
87540
tttttttttttt atggctgtctag ggctgtgaaag tccagatca aggtatgtc aggggggttgg
87600
tttcgtgaga ggctgtcttt cctagctttgt agggacacac tttctcgtttag tgctctctaca
87660
cgctccttttccc ctctgtgctatg cgctcataaca cacacacaca cacacacaca cacacaggttt
87720
ggggggagag agagagagag agagagagag agagagagag agcataacaag ctgtctcctct
87780
tgtctctttgct cgtctcttcttc tctctttttttttttttttt
87840

tttgagacgg agttctgtctag tgctgcggcc agtggccatgc agttgcagccaat ccctggtgca
87900
tcgcaagctcc cctctctctgtgtcggcc ttcctccgccc tcctcactc gttgtagctggg
87960
gactacagcc gcacgccccca ataaccgact aatatatatgta atttttagta gacacgaggct
88020
tctcattgttagctattg gtgtcgtcattct ctctgtgaccc gttgtctgcggc tgtctccggccc
88080
tccaaaagagcgcactgattc aaggagttag ccacctgcgcc cagccacctt cttactttttat
88140
aagagccaca ctagttctataggtttagg cctactcttttttc ctcaccttt caactttttat
88200
tatctggttttagctctacgtt aacatagttagg cagtttaggg ctctacaccaca cccacaccac
88260
gttgatttccg gaggacacac atcgatttca taaccatgagg ttataagccca cccacaccttca
88320
caaaaatatttaatggtcggcg cattagaaaaa tactacagcga ccctgtgcaga acaaaaaaag
88380
aagttaaaaa acaaaaaaga atctgatcag accttataa tatataataa ataaaaatta 88440
agttaaaaaa ctaaaagaat cgaatcaac tatagactgt agtttaaat aatgtatcac 88500
tattggatca ttaatggaat caaaatgacc atatgttaaat ataggatat aataagggaaa 88560
aaacttggttg ggggttagatt agaactctgct agtacttcct caaagggaaa cacatgcacaa 88620
ctcaaaagatc ttcactggcc aatgtcagaa taatctgagtc aacaaatatg agtagtaatgt 88680
gattataatc caatgtataa aatatcccatag aggtctagct gatataataat catgatattaa 88740
taaatataa aatgggggga aacagacaaa tctctccacac agatgaaattt caaataattt 88800
atgtagatct ttcacccgga aagacggcag ccaatctttc ccaactccctt aggtgcgggcc 88860
tgtcataagc aaattcttttc ccaaatggcact aatgtggaaca gggagaaaaa agatgtaacct 88920
tacagtagag aacacctgaca aacatcactc tgggccaggt gaccaaggtt aacatcacaaca 88980
gtacataaatc ttggtgacaac tgtgtataacttgatgatatag tgaataaatat atcaacctttac 89040
cctctgtgacc ttctgtgacc caacataaaca ccccatggtt atcataagaa aagctctgaga 89100
cacattccaa aaaaagggag atcctttcaca aacccattcc atgtgtcctc aaatttggttg 89160
agtcctcaag agataagggaa aatctgaaaaa actgccacag ccaagcccaagg cctaaagaga 89220
catgacataa tggtggtgtcttg gtggatgagat cttggttattg gtaattaagct cttcttttca 89280
gaaaaaaaaa ttgattgaca ttatctccttc cagtcaccaac gatataaaccc taatattgaaa 89340
ataaggtcat tgtgattgtaa ctagttaagt tgggatgcacg tctagataggt gtaggtctctg 89400
aatccagtc gactggccgct ccctcctaaagaa ttcctgccc cacgatgaagat acatgggaga 89460
gggccatttga cggtggaagc ggggatggga aatagtgtgac tgtaagcctt gggccaccaaa 89520
agagtcctgag cagcctcagag aagctggggaa ctgtgaaagga agggccttttc tcaacagtttc 89580
agaggagcca tagcttttctg gcaccccttt tttattgtttt ctagctctctg taagcaacaata 89640
cattcttttt attttttaaagc caccagcttt gcacaaaaatttt ttaagctcgttg tacaacagat 89700
gaatctggaac tccttggaacaa gaaaaagta aataaacaaca acaagacat cgaactcaaca 89760
tatagactgt gtagatataat aatgttctttc ctaactggtggt atatattgta acaaaatgtac 89820
cagtggtttaa tataaatggt gaatctctctgt gttgggttaga tgggagctct 89880
gcacactgct cctatttttt ataaatagaa aatctggtttttt taaataaagtt tataatttaaa 89940
aagaaccttt tcctcttttc aagcattggtt gaataaagttt ctcctttttt caaaccctttg 90000
attttggaac cactgtgcctt tgtgtactttt atataaattga tattcttattattt taaaagaaetic 90060
aggaactttct ccacagaaag ccatcactctt aaaggcatcag tgcctccacag tttagttcttg 90120
atcaattatt tataagctat aaaaaaaaaa cttgcactgt tttttctttt ttatttatct
attatattac tttttctttga gacagggtct cactctgtca ccacaggctg agtgcaaggtg
cccatcataa gctcattgca acctccccca ggttcaaaacc attctctagtc ctcagtagct
gaaactacag aotgtgtgcc ca tgcggccccag ctatatattttg ttttttttagt agagacgggg
ttcctctagt tgggcccagc tggctctttgga cttcctgacct caggttaatcc acccacctctg
gtttcttttt gcactccttctt aaaaaatgca gctttttattc aacacagctta ctaattttttt
gctgttaagtc accacaaatg tgtgaataag ctttgagcacag atagtttcatc gtgctcactca
gaccttggtaa agaagaaaa ctttccggga taacacgctga ttagttttttt cactatttatc
ttttcctcata taagagggcc tatactgtg cttgccccca ttctcctcact tggattgtgta

gaaatataat tccctcacact tccagtaaac tatggttaatg tggagacat cctgtagctta
aaatcttcca aatccctgag aaaaaacctaat ctagtcacata taagattatt tttataacat

gttaacacatt tcggccaaaggg tcaagtagcct aagtagttaa taatgatat gctagaacatc

aaacoccttat c oatctctcc atcccatcatc ccattttcgtt cttcctagaa tgtgtataaga
atgggtctgga atccagcgctt gcatacgtgta ctgagctagg cctgtacaag atacaagcaat

tatggttgtgg gatggaggcc tccagacatt ggagtcagac tgccttgaat tgaactcttgg

ataaccatgta tcacagactct tttccaaattt cagtttctctt atctaatata cctgctctctt

gagaaatgagg ggtgtaacta atgagaaaaat gcataaaagc gtctgagcac aggcagccgac

acataacaga gccacccagtg tatgttaggt attattatga aagtagttaa aaccccaaccc

ttgccttcac ca gtttttattgta gaaaggctac acctttctcta cttttccttc taatacagga

cctccccaaaag ggtctattgtt atccacaca cagagttgc acaccagttct tcctacacct

ttttcaacttg tgggtgtgggg gcttctacac acctctctgtg agaagggctg tccagccttat

catcaggtta tgtatattttg gcggctgtttt tccagactgta atggccagagtt gctgctctttgg

gacgtgagcca cttatgcca cagaaacctcc aatgtttaact atcctggacct ttcagaaaaa

catttaccag tctctactct agataatgtg gatgagagagt atgtgacgca gatgtaagaaaa

gacaagcctag ttctgcacatt tattggccaa aagcaataaa tatattttctt atctcatcaaa

taaagacatt gacggccccaa gatgttattg aacccctatca aagtgacaga gctaatatat
ggcaaccaaat gtcactccta agttgttctt cccaatcctag tcattcata cccataata
93600
gaatggctac tggtggtgct cagggccatta gccactagg gtagaatgtt aggccttaacct
93660
ccaaggaata ataactgact cctctcctagg taagagttaac tcctgatagt gttctcgttct
93720
atggaagct taccccaagt atactccttt cccagttacc cacatcttga tatgcccacc
93780
atcatacatct ctcactacgc ctcattgtat agaataagtc aggtacatct tttgttcttt
93840
aggaaccattc ctcactgtttt atggaggctt agacccattg tgtggtctcca attcctattc
93900
atcattttccc ttcaggtgac attttccctt tattccccttta cctagagttta ccagataaaa
93960
tacagagac acaggtgagaat atatatattttt cttccaaatag tctctaagtt
94020
gtccacacata cattttggga cattgaaaaggt gtgtctctctt tttttatttg ctaattcgtt
94080
cacaccccctac ctaaatatttt ttgtgtagcttg aagaatttactc cactgttgttg agcaggttat
94140
ttaagtggaa gccctcaattgt cctattgcag aacagcattgg cttgccccagc agagagaattg
94200
tgtgacccaggcgacgtgttcctt cacagatggg aatgagagc cccaccaattc
94260
aggtctgttgat aagactcagtt gaaatgtgttg atatgaaattatc cattgttttg ttgcaattttg
94320
agttgttttttt ttttttttttt ttggtggtgttt cttgtgtgat cctggttgcctt ggttccagttc
94380
gggctggagt gcgatggcat gcattggtgact cactgaacc tctgctcctct ggtttccaagct
94440
gatttcctctg ctctagcctcc ttcaggtatgtt gggattacag tgcggccgcca cacacaccaga
94500
ctaatatattg tactttttattg agagatgggga ttggtctatgt ttggtcagttc gttgccccagc
94560
tcctctgacct cggtgtcctcc ccgcttaagg ctctcctgatt ggttgattga caggcgtgtag
94620
ccacgcgcgcc tgaaccagtga gttgtgtattt atctctacdt ccaagtaatat tgtttccttc
94680
atttaagtca ttcctctctgg tagttcagat tctaaaaacc agatattctct caatatcctcc
94740
tcgaccagcc actgtcctagat tggttctctc ttttctgagg atctctactga
94800
agattttaaa tgaactcatcaaa agttaatatttt atattgaagt atgcaaaatgt cttctctcctcc
94860
tttataaattt ccatggtgatt aaaaaagggat ttggagagca ctgggtgggttt atgcaaatgaa
94920
agatattata cacatataca cacacacaca cacacacaca cacacacaca cacacacaca
94980
tttctagagtt gaccctcaatt gtttttttttt taaaatatttt ggttgctatag tagtattttt
95040
atatttata atgtttatttgt gttgctatag atatatatttt atgggtttaata tttatataatttt
95100
atatttata atgtttattgt gttgctatag atatatatttt atgggtttaata tttatataatttt
95160
agaatgtgtt atccactgccc tcaagcaact ctttgatttta caaactgtttc aatattttttt
95220
atccaagtc aaccattatt ttgaacccca gtgcttttagt aagaatcacc tagtaaggcc 97020
cgaagggacc aacaggttta caatattaat ttgatgaggg tgggcgaagc ggaatgtcttg 97080
gaacaccctt gggaacctct aaatttgctag ggtcCACACAC cactgcACACG gttgctgtgga 97140
gcaagggaaga tgcctatagtg gagaagggag agatgtcaca gccacattga ctcaacatcac 97200
atttttcaca agcctgctct gcttggcagg cagaagggga ggggttgaaa ttgagtggcaga 97260
gttctcctct atgcttacaac accccctctag cccctcagtt ggctttgtgc ttcctctcttct 97320
tcaagccaca caaatggttag atccccacggga agcagagaag tagtttaaca aagcatcagg 97380
cacctgtgta agctattttt caatatttttt tatatttttat ataactttttta aacactttttt taacttttaga 97440
gagagactgt gcactccaaa ggccaaagcc tgagagggga gatagttgg aggtcctcag 97500
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 97560
cctgaagtca gtagtgcaat cacagctcac tgcaagctcc atttctttggg ctgaacaata 97620
cctccccacct tagcctctcaa agtagctggg acctagctggg ctacggcaca tcgctgggta 97680
atatttttttt tttgtttgaga tgggttgtoa ctattttgtct caggtgcgttt tcaaacctctt 97740
gggctcaagt gatccctcca ctgtgctgctt ccacagctgcc ggcagctgcgg cccggtcgcc 97800
ccaatgtggcc cctctacgcc ttttttttttt ttttttttttt ttttttttttt ttttttttttt 97860
gggggccccta ctgaggatag caaatcttttt ctctgccccct gcccaaatgc aacctcccttg 97920
tccagtgtttt cctctccccca acacagatgt cacaattcga ggagagttct tggcaaaact 97980
tgtgcttcttt tttttttttt tctagtgact ttttagtgccc cttatatgttag aggtgctttgg 98040
ggaatgccc agagcgctca cccctctactt cttctctgtt tgaacactctg gotatgttatg 98100
cactagctcc cccagcctttt attacccctc acctgaacctc ctgcctcaag tcgcctaatc 98160
tacatctcct tctctccaga ttttgagctg tgacggggac aaaaacttcc caacacttaa 98220
aatatctttag cattagagaggt cccctttcag gcattttttttttt ttatgtctag aatattgaaa acaatattg 98280
gagacttcttg aatccacgcaat ttcacacaga gcctggcata tagtatatgt tcaccaagtta 98340
cctgtggaaaaa aaaaaaatatat taggacatgg ccaactgtgg caaatggaata aaggatgata 98400
tgcttacctc tacgtgcaac gctactgctca cttatatttt ggtctcctattc 98460
tgatattttt tttataaattt acagataacttg attaataaggt gcattttttttt gacatagcag 98520
actaaggagt ggtgctggga aaaaaagactc cctgtgcctt ctcatctcaca cttgtgctcttt 98580
ggtttggcct tgggtaaacc catatgttat cttctgatag aagaacattgc cccggttttaa 98640
acgggatgcc agctacaaaa tccttatattc agcagcttcc tcttgccact gacacataaa 98700
cgggaaaaaa ggcaggttta aactcagctg atgttagacgc ttcaagttaaa ccagtagcca 98760
cetctctgttc ccaacacccc tgggggctatcc atgtggctttt gceatcaagt aatcgagcttg 98820
tgctcatgtct aaagtttctca tcacctaaaa tgggcttttcc agttggtttcc ccttaaatga 98880
acaccaatctgccgctgtgg tgaacatgttg gattcctcctga taaagatgtt tattgaggtag 98940
gaaatgcaacc aagggcaccc ctgaaatcttg ttttgggttg aatgaaacct aagacaattctg 99000
caacacgaga tatacattata aagctgaccttg gactatttaa ccaaaactcc ctcagatgca 99060
cataagaag acaatgtagat ctcatttcttc tatttataac cccagagagac tcgaaatattc 99120
tgaaactatttactct gcagcaaggg ctcggttttag tgtgatctctt ttaatatatct 99180
taaattctttt ggaattaatctttatcttatca aatgagcaaca tcttattaac tataaatattct 99240
agatgttat taaaaataaaa tcctgctagta gaaagaaattg aagtgatccct tgggtctcta 99300
tataaggggaa agagatgaaact ctaacagaac ttctctaatct ttatctctgtt aagtgaaaaa 99360
cctcaatcataaa attactataaag ttggagaggttg tgtaggaatta acataatgta agaggtttatat 99420
aagattataaa taattgggaga ggtttaaagg gaagcaacgtt gttgtcacaaga cagaaacttt 99480
tcaatatcctt gacaaggcat ttttcccaagt tcctctttttg ctcataacgttt aaccatatggc 99540
aaacagttgga aaaaagact aataaaaattact ccacattctca acccttcacaacc 99600
tttggtgtgtag ctctgtcctcc ctattttctta accccaattt caaatctcacaaccctacaacc 99660
cctgacacaga aaaaacacct cgggcaacgca gattctctggg cttgaggagtt cctcgaattta 99720
ataaataatgtg acagagcctag atgcctttaaga gttaaaagttg aagtgttagtg tgtatgtatta 99780
aagagctattg gagaagttggg ctgggagtctgc atgtaggtacct atatttcaagt gagggggagt 99840
ggaacaactag agcaacacata ccacccctgcc agtggaggtat acatttatttt aaactacaat 99900	tcacctatgc agacaaaaata tagctctctttttt atttattttta gaacagctccta atcttgatgta 99960
atgagccctta cccacagttag aacaaagaag acaaaaccaaaa aataactacacattt ttagtctagt 100020
tcttagttag aagcaataaatg ttcacatttc cttgagctaat ctcctattttta ttagaatcttt 100080	ttttttttccc ttctctgctata atgtggtattgg tggggtcata cggcagatttg gacctgtatatc 100140
gatcttggtgg gcgttgaggg gaaagagggg ccaatgtccat ttaatttctct tgtcctctcct 100200	tagtcctcagc agcagcagacgt tggaaagagct gctccgagctg ggcggccacgcgt gtcattggcag 100260
cacacatgg cggctggctag cctcttgcatt ttagccttcttc gtagctttggtt ggtggtctgga 100320
tggcccttccc tgggctcattgt ggccctgccag cactttactgt aatgcaatatt caacccctcaaa 100380
agggttgtgc ctcccatttg tctgtcacag catcaaaca cgttaactga gaaatagaac 100440
tcccaaaact ctgtttcttc tacattgaat ctacatcact ggag caccca aagccacc 100500
aaaaga taaa acatcaggaa gtttatctca ccaacatggga ccctccaggtt gacaaccttg 100560
tgaagtctgc ccagaggtgc agagggcac aatggaagtg actgcctctct agagtcccgag 100620
gcatgtgtag gacgcaataat ctcagtcacc ccaattactct ggagtgttctct 100680
aaagctgccacctgcccttg aatgttgaggct gttggagat eagaggaat g 100740
tagctccccct atctctgccct ctctctctt tccacccgctg cttcaggctgc aataggggttg 100800
gtttctcct tgtctgtgcct gcatcttacc atccttttcc ca tacaactgt taagcctggt 100860
gactaagcct tattagatatg aagggattac atctctataca ctctaggagga attctatgtt 100920
cagttattcc caagagtgctt cctgaatccc taaagggat tttgaaattc cttcgcctgta 100980
tctaagccct tgtttacagcc ccattatttt ctcagggac aagggggttt catggtctaa 101040
cctacaagag atatgatttg gaagggaca gaataataca tcagggaaaa ggtggaagag 101100
tggaaatttg caaagaaatag gatttgaggg ggaagaaaaa taacaacattc taacattcat 101160
ttaatatattt caaaaagatt gcctcttacc tcacaggaatt gaaataata tttataaagg 101220
gtaggaatt tgtcagaaagt gagagcatctg ctgttcagac acatggagcg gatttgaagc 101280
tgtgattgtg agggactaa atgaaacagc aacaactctaa ctagagccgt tgtaggctaca 101340
gagactcttc tgggtacggct cttgctgtag cctctgcttg ttagtattgtt tttttttttc 101400
tgtgttcctct cgcacttgtga caaatctctta atcaactgatattacattag tcagttctc 101460
ctctctttaaa cccaaatacc ttgatgcaata taagcattaa attaagactt ttaatatattc 101520
tgatgtgtat acatgtgcc acagaggttc actaatcttc attctcgttt ccctgtaaat 101580
gtctgtaataat ctcagatcct gggtggtcaca acctcccggt caccaccatg caccctatag 101640
tgggtcgacttc gactctctttt ggggttatct tgtatcctctg gccccttttg gctccctgaa 101700
actccactgtg cactacatcct tctctggccc gaggactcta cattgtctct caccctctct 101760
ccagtctatt gcaagttgaga tttgccctcag tcagttccct cgggttcgcc cattttataa 101820
aatccacttcc cacacttcttg cggcatctagt gcaagccctc acatccaaatg 101880
gctgtgtaag gggacacacc ctgctgtgtcttg ctgtctctctcatttctgctg tttcttcag 101940
atatatatcc ccatctacag ctagtatcaa tcttaaccct tttctcaagc tttccctccaat 102000
ccacatattt ttcttttttcca tggatgtgtta ttgcctctcag gccatgtctc tttagagctt 102060
aattatatct catctttttgta taataggtat ctaagacctta ttttttgttga gcacacctttta 102120
tggcccaaagt gtctttctcg catagctcat tttgtcttga ctctccacctt gtggagtugg 102180
cacaatgatg tacatacattg aatatgaggaa atggagctctc ctgtgactat aagaacttttc 102240
cataagctca aagcctgtttggat taataagtggact ggaactaaaa ttcaccaatcagt gatatacgtat 102300
tccagagact aaacttttctcg ttaatgcttgag caaaccgccc ccagaaatca actgccttcca 102360
atctcaagctg cctctatcttt atctccccaa ccagaggttc gtaactaatc tggcgagaaat 102420
atggcgaaga ttaatagacct ggagtgtttact gcacactctcct aagcaacagcatacaagac 102480
cctatgatg gatacttttctct gactgctcct acacactctctg cccacatttc cctccccatata 102540
gagcaacatgt gcctttttacat ttgaggcttta tctgactctt gcgggttggga acctgctgcc 102600
tctctctttt ccctttcttt ctcaggctgag ccctctctttta aggctgtaagg ttctgaggcgc 102660
cacacgctagg agggcactgtgg atggtctttccc cagagacttata ctttctcttct ctttgccacatc 102720
tgccagagttt gactcttgtct gctctgtagac ccctgtgaccct ccctgcttata 102780
gtgagatagg caataatgctc atgcagcatc ttcggcagaca gaaacattctcc aagaggtttc 102840
atggacccgga ttaagcctgct gagaagctgtg gctcagccttg gactttggcttt gctggctgcttt 102900
cttgcattgtg tgggaagaga gacccggata gttttctcttt gaaatgctgtc ccagccctgtt 102960
gatttatgatggaggaacctgcacagctgggctcag agaaatgtctt agtgggtggaag 103020
cagatagctaa acatgtttacat ttaagccttt acagtgggtt ttcctcaaggg gctgctgttct 103080
ccctgctctta aatgaaagcag tacaagcatct ccgctctttct gtaagatgtg gttaaagatgag 103140
agctggagatg tggacacattt ggttctgggt ctctccgggag gggtcgtggcc aagctgcacag 103200
ggctggccct ggccggggaa ggcctgggag gggccctcttcttg ggtgggctatg gattttggggtg 103260
gggagactatg ccgttccttttta aagggcctcct ttcgcagccat caggtgggcg cctctctctg 103320
tctctgacgt cctggctcgcg ccctctctctt ctcgatgctt cctctgccaa cccatgggtcc 103380
tctccccgcc agggctgctgtg tttgctcataa ttctgctccca cagctgttgggt ttaagagacc 103440
aggtcaccctc aaaaaagtct ccacaccatcc ttaggtgca agttcttttg tatatccaggg 103500
ctctgtgcaa gaaactagaggt gtaacccctt cagtgtagac atcgagaaatg catttaagga 103560
ctcccccttta aagccctgtgg ttgtgccataa ttctccaccttc tgaacgctgtaa ctatccacaac 103620
cacacagacattgagta tccgtttggcag tcacaccctc ttcgccagatg ggcctgtggt atcagcagac 103680
aggtggagatgttgagctggattttaagatg gggagagggcc ggcatctgggtt gatcatgacat 103740
acaacaagatg aacatcaagcttg ctagactttaa cagggatttg ttaggcttatt gggagatgct 103800
tatggatgcc ccgatggaac ctatttgtca ctctctgcac aacactagct ttggtgaacct 107280
ggtctctgag gataaaat ttgatggtgc cagagcaata caacccttttc tttctctcgct 107340
ccatcttttag agaataacccctt aataagagttg taatgcacccctc aatgagcat catgttcttt 107400
gggaggtcag gaagcagaga gataaaaaat tttctctacc caatggagtatt ttcacaatgg 107460
gccatagcata cagctctttc cagctcaagg gtaagagagg gcaacaaaccc cttttttttct 107520
cgcctataaa aagatgaaa attatatcctt attatatctat gctataaatcgt tataaatgcg 107580
acttggaaaaa atatagctt gctcttttctact gttggtgaaca tataacaaatattatatatct 107640
tcaccatctc gcacagtcga aataacaagta aacactagca aacatgtgca acaaaagtcat 107700
ctttagttttg ctctctcact tactgtgca taacaaatgg gttattaaat caacagtttct 107760
aatcactact attatgttcat eacatatttca aataacacca caacacacaca caatacagcc 107820
tcactacttta taacagcctg tggatattatt cttttctctct cttctctactct atgaaagcaca 107880
agttaaataaagtctctgttaaagccccag taagaggaac caccctgtaat aaaaataaaaaa 107940
aatcagagtttgttatgataacaa atactanattt caaggtgctgtg agatcttttaa acctgggaaca 108000
cgagttgca acatctctgcc ttagtcttttctactaat gtaaaggaacttgcttttggtt 108060
acttggagca tctacttactcg aacagaaatag ggaacaaacaac gcgacaggtta tttttaggcg 108120
catcaglcctc atattgtgctt actaagggccc cattagactt ggcacccataa acaatggtggtc 108180
tcacaatattcagtaa atttggac aattttactaacttaggcc ttttggcacc aacatccaatat 108240
agatatttccc tcacccctctg cattggtattt atatattttct cccccccaccc cccacaaaaat 108300
gcataaatc tataaccccaacac cactcctggag ttaacctatg ctaagattttaa ggtgctttgc 108360
agtgaataactaacaggtcacttgagattgtgtcagattccttaa tgcattattgtgtgcttt 108420
tgctgtctcctt tataagaggg tattgcttgtatg acacacagc acacacagc aacacacagc 108480
agagttgacc cggagattttctttt gcacgacacat cagctctccc acgggtcaggt cagctctctg 108540
ccagacttcag agagctcatat cgggtggcg ctcagctctcc aacacagcgtg cttttttttttt 108600
attacccctg ctcagactctg gatttttggac ttctgacacct ttagaataacta gagaataaccata 108660
ttttgctgtga ctaaagttgcttt cactctttctt aaataagagc ctaacattgtgtagaataatga 108720
atatcctgcc cccacagatgg cttttttttttt cttttttttttt tggacatgtctccact ttcagagcttg 108780
ctttggcagta ccttttttttttctt ccttcctgacctcct gcaactccgg ctctcctgcttt 108840
tcagctgatt cttctctgcctg acgcctccga gcacctggga ttacagatgc ccgccacaccac 108900
tacagaacct gtaccattcc ggcagctctc tcctgggaaa ttcttggttt ccagagtctc 114120
tcatgaaagt tgccacccag aggggaacac aatatcagc tgtatgaaga tgtgtgctct 114180
gaatgatgaa catactcag ggaaggtatct tggtgataat ggtgatgatc atgatcaaga 114240
tcaaatctct aaccacctttt aaaaacgag gaaattgcta aagaagaac gcattgtattt 114300
taccatcctga agggattccaa gtttgaaga aaaaaaagaattgagat cgcacacct 114360
ggattgtggtc agacatttga tctactctctt caatagttatt tcatagcttt cttgatggttag 114420
tagtgctgttt tgaattggttt atacaagaaga tttcatgtat cttgatattacc aatctttatg 114480
gttaccaact tgggaaggatt ctaagccttt ccaacacgcac actggctgccc tctgcaagct 114540
cctggttagac tagagctgggc tcggaaccctc aagcgtctcgtg gagaagttc aacagctcag 114600
gttccccaga tctctgcaact ctcaccaacct ccctagagct cctcgccggg ctcctaatcct 114660
cggagaatcc ttaaaagagg caaattagatc aatcaatgta tgaagaaatac 114720
caccaggag aagcactttt cttttccacca agtccctcaca ctcaccaacgc aatgtccttc 114780
gtagggtttag ggcctgtgggg gcaccagattac gcctattgttc tttgagggcct tttatatgagc 114840
cacagacacct taccgtgatg aatcctccac ctgggcccttc actttatcttc ctacactcaaa 114900
atcatgacat ctaagttctca acaaatttga aggaggaaag cctgataaga aatcaaatga 114960
tccctcaaat caacgccagc caccaagatc ctttggcttc ttttaattct gaggtcatatta 115020
ttttctgctac cattttataa attttaatatt tttgctgcct ttttttatattt attctcataa 115080
atataaaggat agtaagctct aggaaaaa aaataaaacac aactctacacta tacccctgga 115140
aagttgagg aactgactgg cttaaagttg caaagctgat tagtacagata atacagataa 115200
ccacccgca tagatgtcatt gcctcagaga ggtcagaaaga aaacaggttg cacacatcctt 115260
ccttttagat ccaacaccga gcctacctttt aataagatgtg cctcaggtca cctttataagc 115320
aaacaggatt aagctttttg tctataatcctg aagagctttttt aagagaagttg gtagaagaa 115380
aacatggccc gggacatattta gttatctcgg cttgcacatcct caaagctgta ggtatcttttc 115440
atattcaaata ctccttaacct taaatgtgttt gcattttttg aagacagtag atctgcctgat 115500
acatccagcc aagcaagcag tagctcactag ttcacatgcc ttcacctgcct acctgagctc 115560
cctgatgaagt ttctggcccagc aaagaaagtt gaggctccct tattatccca agccattact 115620
tcaggagtct gcctgccccaa actttacagc acacagaaact tttatgtgtta ttataacata 115680
tgtctcaataatagagctggcc aacaattacaa agtgatttcc tcaagaaca gccaaagaa 115740
tttatatattt tcatcttttt ttggatcttt ctgctacccca 120960
ggttgttggct tcacactgcc caaaggccag acgctactgc actgcagcct withcctcagcg 121020
atctctctgc ctcagccttc caagtagtgtc ggataacagg cccgccgcac tgtgctgcttg 121080
cataaaaaaa taatgtatgtat gagacggggt gttcactagtt gttcaccgtct ggtctgcaac 121140
tcctgacctt agttgatcctt ccggtctggtg cctcctccaaatt gctggtggatt cacgggtgta 121200
gccactgcac tgcgcctctat tttctgatct tgaattgca ccaataaaaaa gaaaaatattta 121260
ccagatgata aaaaaaaaaa aaaaaatgtg accagattgc accgtgtact tttccaaaaa 121320
gccacacctt cagaatgtct ttgaaaaacc tccctttaag tgacacatattt cattttgcaaa 121380
agactatggc ttttttttcag acagat ttgttatttttctggggtctgag tgggtaaggtcgttac 121440
tcaacttaatt ctcacctcttc gtatgtgttc gatgtaatatttctgggtggtggc tttggaaggct 121500
cctcctgtgaa gccctttctctt ctgtgcaaat ttttaaaattatatctaccgc tcaaatgctga 121560
tgacatttaa tattgtgaaatt cagtaaaacc ttgatgtaagtttgcctgtcttgacct ttgctcatgtg 121620
acgccgaaag tgtgccaccttt gtggcgttgttg tgggaactgg caacttaataag ttttaactggtg 121680
cggcggtttgg ggcctctactgt caataaaatatcctttgccaaagttgacattttattgctctcctggcattttcctcgctcctcctttccttccctgggctttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ctgatgttc ctctatgtgc ccccatgtag agcctgtctt aagatgaatgt atatatctatg 124380
tctctctctttt ttctctcctc agtgaaag ccattttttct aagaattagta gaaaagaaatg 124440
gatattagc catttctaaat ttcctatatc aatatcaacctttt tattttcatat 124500
agtctccagg gaatacatgac atacagcatc aaggaacctg 124560
aatatatcatt tagcctttttt tccccagag ccatctgtttt tacacctaat ttttcctttgcn 124620
tctctcttct gcctatgacag cgtcctgttc ggtgcttct gtccctctttt 124680
gcctataacac tgcctctttag gcacatcattg ggtgattgct cgctttctttg 124740
tttatagag ttctctctgtt cattttaaat ttaaggtttg tatacagacac cctcctttttg 124800
cccaatccga cctctcttcg gtttgtaaaat agctttcatg ttaacagttta 124860
aaagtagc gagaatcactt tctctctttag gttttctttag aagtttaaat 124920
aatagagct gcaagaccaac tattactcag tttgttcagat ttcctctttg 124980
aggccctcct gtttctttta cagtttcctc tgtaataccta tttattttat 125040
taaacctccag cctcatacct ggtctctcctg ccctctctttt 125090
aaaaacctgc acatgttgagc ggttttcctt cagctctgttgc 125100
cccaatccga cctctctctc ctctctcttt ctttctcttttt 125160
ttttctttcct ctctttctct cctctcctttc ggtctctgttgc 125220
tcataacttt tctctcttttc tttctcgtttg ctttttttctg 125280
gaaatagagc gagaatcactt tttttttttttt ttttttttttttt 125340
agcctcttcnc cctcctctct cctctctttttt ttcttttttttttt 125400
ccctgttcagc ccctctctct tttttttttttt ttttttttttttt 125460
agctctctttt cctctctctct ctttttttttttt ttttttttttttt 125520
agctctctttt gctctctctct ctttttttttttt ttttttttttttt 125580
agctctctttt cctctctctct ctttttttttttt ttttttttttttt 125640
cttttttttt ttttttttttt ttttttttttttt ttttttttttttt 125700
ccctctctctct cctctctctct ctttttttttttt ttttttttttttt 125760
ccctctctctct cctctctctct ctttttttttttt ttttttttttttt 125820
ccctctctctct cctctctctct ctttttttttttt ttttttttttttt 125880
ccctctctctct cctctctctct ctttttttttttt ttttttttttttt 125940
ccctctctctct cctctctctct ctttttttttttt ttttttttttttt 126000
taaaaaaaac aaaaaaccac cagggcttgt ttaaatgcatt aatatattaa cagagcaagt 126060
cggggcccccc caagcaacat tagtcgtcat tcaacaagtc caattgcctt tggctgatgt 126120
ataaagagac agattttgga ttttgtatgg agaatgggtct ttttgtgaca gtaaaatgtt 126180
ttattttatt tttaaaattt atataataaat aaaaatagcat ttttttttgg gttgataaa 126240
tttaaacacc tgggtgaatt tacgttaacc ccttcaggtt acagatctct cacctctaaaa 126300
aactctgctc tgcgtgtctc ttgctttaaa aataatatat atgtgtgtaa atgtgaaaaat 126360
gaagctaaac ggataatttg aataaaattt gtcatatattta tccatatgaa atcaagatag 126420
aatctctctc tcctctcttc tctctcttgt gttgtgtgtgt gttgtggttgt gttgtggttgt 126480
gttgtggtgt gttgtggtttta aaggattgta tttctcttca ctttggagga tataaatctc 126540
tgagaataaa cctatacagg ctatcattaa agagaatttt caataattct ttaaaaagat 126600
atgtggtttt gaccaattttc agatggtagc ggaaggacta agaagagaca agatgcaacaa 126660
cgggggttgc gcctaatcag ccggggcctc ccgtgcgttc acacctttgc cttggatgtc 126720
ccaccccaac aggttcctctg cgccctactat acctctccgct ccgctctctc gcgtaatgcctc 126780
tgtatatctc tccaggtttg tcctctcttc tcctctctgc tctctcttat cttccacccaa 126840
tctgctctctt ttttaccttt cttgagagac aagttgactc caactttggt gctaattccac 126900
cctcctgact tccctctcag ccctcatttc aagaggcctc ctgtttcttt tttatatattc 126960
tgaccctgctt gcaagaacat gtgcctcctga ttttctcctta aagcaatctt gatgttcttc 127020
cacaataattt agggtatagc acatataagc ttcttgcttg ttctggatgg tttaatttcg 127080
ttgcgtagat atgtataaccc ttctctctatg gttgataaga cttggtttttg tggagtaacc 127140
atgtggtgat ctaccttatct tggggcccag ccagaccagt cttcttgctt taagtctctt 127200
cataaatgtt cataaatcacc acaagttaa cttgtctacc accctctttta gttttctggc 127260
tccctgcgcc ctggaggctt gtaagaacat tatggcctgt ttcacagagc tctcagaaac 127320
aggagataa aagatcccaag aagagtggga aagagagactt gtctctgagc acagagatgt 127380
aagagtcatg tgcacaaaaag gaaaagatatt ccttttttctg ccctcataaa aagttacttt 127440
gtttggactc tcctctgccct ccaacattgg cctaaagattaa caggtagctg tctctctctc 127500
taacctgtct tccaatataa aagatttagc agcccccccc cccccactgcc acctggaaaa 127560
caccccatcgc cctggctctcc gcgctctcttc tcgccactttc tggactccatt gtcctcaacc 127620
tgcccggg cccctctctct agaagagagg tgggagctga gagaaaaaag aggaggagag 127680
agagaagaga agggaggaaa cattgtattac ggttaaaagg aagcaatagc tcacatgtagc 127740
tcagtggaatt cctaataaga aaaaaagaca cagtgccaagtt tcacactgccc tctataataa 127800
ttggaacaga gaataattgc ataatccaaa ccgttcttaat aagarctcttg aattctgttaa 127860
acaagtgcac ccttactaga tatttttgcga agtagctatt tccttgaggata tcacaggaag 127920
cggagtcttt attagttcac ta aaaactagtgt gcccttggga taatgtctaa tagacaccca 127980
catacagag agctgtttagt aaatgttttt cattggtttat gatatacatct agtatattctta 128040
tgtgtcttcca gtgggaaaga gaagaaatgac ctaagtcaattagtttaaagttgttgtaa 128100
attaatttc attaacatcaca aatgagcatt cacaatacagt gtaagggtaa agaccccaact 128160
gtattcatttg tgtagcata taatatgac atatatattaa tagactacaagct tataacaact 128220
atttttcaag tattataactt ttaaaaagga aacaacaagga taataaaaaaa tagaatgttta 128280
gttgtcctatt gaaaaatgta caagagtttg agtataatcga agaatgcaag cccagtgaaa 128340
tttttgcccat aagtaaaaaaaaaa cacttgaaca tccttaatttag ttttggagttc aaatitgttta 128400
ccccctctat taggataagacc cctcccaaca ggccccacact agottacaga gtttgtatgccc 128460
caaaaacgaa taactacata caaccagatac tgagagttag tcacgttcccc agtcttcaaca 128520
cctagcattag caagatgattg actttattgtg tcctataatctc tctatttttaca 128580
cctgttttcaac cttggtagca gaatatgttata gttgtgcccct ttaggttacta acctagttactac 128640
ttctagactgtaa aatattgtgggt aataagcctaa ctaagatgtc tcaagatggct 128700
cggttgctctg ctgtctctcttc ccagagagaga ttataattactt aagatgacttt cttgtatgccc 128760
cagaaaggtt aatatggggc tttatattgtc gtgtctatatta tcacacaggtt acctttggttga 128820
ccacctttgcct attaaattgag agactattttt taaaataaaggg ttaggacacc ctccctataaa 128880
gttttacaac tcacttttaaa tcatagaga gcctgtatat tcaagatgga gattaagcttc tcccttcgcttc tcccttcaga 128940
ctgttttattttt aacagggtttc taagaggccag gatgtgtctgtgt gcataactat ctgtgtgcactt 129000
atatattcatt aggtctttta tgggttgggtttaaatctcctaa gaataagttt attttatctaa 129060
gttctacatgca ccaagctgac cattatatc atagaaatgtctcagc tctacttttact 129120
ctttattttgta agatgtagcct cctctctat agtatctttg gtctattataa 129180
tgtgctcatgc taaaagcagc agatggccct gtattgagca gtattttaaat caagttcacc 129240
atttttttcttttttt gttttttccagggcttattaga gaggattttg cctgtgctttc 129300
aacacattaac cacctggttcc tgctttgggt gttgggacag aaaaagccccc tctcaacactt 129360
taattttgtaa aatactcttta cgtatctctcc aggattttag aaagagatta aaaaactcatca 129420
ggccaggtgt gatggctcat gcctgtaatg ccagcactttt gggagggcga agtcagaggag 132900
tcaacttaag cccagggttt gacgccgcgg tgtgcaacat agtggaacct catctccaca 132960
aaaatataaa cttttttaaa aaattagcga gtttttggtgg caataacctgt ggttttagct 133020
acctcgggaga cttgagatggtt aggattgctt gaggccagga gctacagattg caccacgcca 133080
tccgggcttg gcacacagca agaatctatt tccaaaaaaa aaataaatat aacaatacgt 133140
taaattctaa acaatctaaa tatccaaaag tgggccatttg atgaatttta ttatatattt 133200
ttcctcatata gtagggttagt agatcatcac tttaaatttt tagtaataag ttatatggag 133260
ttaaagctaa taaagttttct ttaatattttg aagagtttctt aaaaattggc ataattagggg 133320
tactaataaa cccagtgaacct aacaaaaatag ttacactcct cttgtagtga ttccataaat 133380	tatatatct tcatactatt agtatattttct aaaaattggc ataatagggg aaaaattacaa 133440
attataataa aaaaatattttt tagttttttta tattaagcttt tcagagtacg tcttttaagg 133500
attcaaaagag tggtttaaatc tcacaagata atttatctca attgtattcag taatttttaaa 133560
attatatcag ctaggcagcg tgtgctcaca ctgtaatcccc agccactttgg cagggcaggg 133620
tgggtggctc acttgaggttgc agaggaggtg gaccagccttc gcacatgtgg tgggaaaaccg 133680
ttcctactaa aatcaacaac atccagcaggc tgtggtgcgca cgtgctctgta atcgcaagctc 133740
tccgggagagc tgagggcagga gatacatcgg atacgggttg gcagaggttg gcagcagggc 133800
agatcggttc actgtactccc agcctgggca actggagacc cctctctcaca aaaaaaaa 133860
aagttgagaa caatcagaaa agattatttgac acctttgaaa ctctcctcatg 133920
tttatcctgt tcttttaatt tttctttttttt ttcagagtgta ttagaataca aaccttttttt 133980	taaaaggtctt acaatgtactgt ctcttagcgg gcagagagta caggagggct cagagagtga 134040
gcatcataac gccagtgagg gcagagagta cggagagcct cagagagtga 134080
cttcactgtct ccagcactgt ccacagagta tggggttgttg tctcttttcc aaagggcagaa 134100
ggtggtcttc ttcagctcga ggtatagcga aacacacccc ccaccccccct cctcctccct 134280
tttcctact ccagcactgt tctctttttt cccatattttt ccaccaagttt 134340
tttttagtct atggtgccagg catagcagggc aggaaaggttc aatgttttct 134400
cttcagcactgt ccagcactgt tctctttttt ccccttagctt aacagcaacctt 134460
cctcctcca gacagcaggc tctgtgtggaa acttgatcgt ttcacagcgc cctacacctt 134520
cctcctcagtt gcattggtcgcc cccagcagattt 134580
gaaaagcctc aaaggattct gaatttgaaa tatcctttact tccattaac ttccatgtta 138060
tccaaattca agtttaattt acattctttt caatccattt tgagaccttt aaatgtattc 138120
ttagatcctg aaccttgaaaa ttgattgtct ttatttttatattaatgttaa catacgaagcc 138180
atctggtttaa tgaaaaataaga gatacatgaa aagccagggca ggtggtactct ctcctgtaatt 138240
cccacgaatct ttgagggctct gtaatccagac caacctttggga gttcaagggcaa ggcggatcacc 138300
gaggtcaggaga gttcaagacag agctgacccaa cattgtgaaaa cccctgtcctct agcccgatgtt 138360
ggtggtgtgct gccctgtaact ccagcctactg agaggctgaa ggcaggagaa ttggtgttaac 138420
cgtgggaagtgg gaggtttgcaag tgaatcactcc actgcacactcc actgctgacggc agacagcaag 138480
actcgcctttttt aaaaaaaaaaaaa aaaaaaaaga gagagagaaaa tacgtgaaaaa accccaagcttc 138540
ccttagcaaa atggctgatgg aacaaggaac tggccggtggt taaaagtgcc cagggcaggcc 138600
agcagagacc acttcacaat gacatggtta gatgggcccc tcaagccaaag ctggtgtgcca 138660
gggaaacactc agggccacctg aagataagggcc aagatcaatt tggtaaggggg aagttcagcct 138720
aatgcagagcc tgaaaaagaga aagttgcaagc cagagggcaac aagaaagagc tgaagtccaga 138780
gtggaagagct tgtgggctttg gaagtcacgaa aacccctgact tcggacctttt atcacaatgtg 138840
tcaacacctg gaaagggaaac acctttgtcct ccctcgaccttg gtggttttcca cttgctcaact 138900
gagctaaatgt atagcaccgc ctcgcaagat tattatatgg tttataagtg atgcataatac 138960
agcactttagc acactgctata tgagtcacca gaaaggttgtg agccaagagat atgagattata 139020
cactgtaagtgt ctgtctgcagc aagggcgtgc aaggggaaag tgaatgcccc gttcagagaa 139080
ggataacatg gggtagatccca cagagtcaaa gtcagggagg caaagggagac aagggcaggg 139140
gaactaggat ggtggtggaat ctccctcacta ggggcttggtg tgaaccaagg gcctttgctttg 139200
acacacaaactc ttcgcaccagtg aatatgtccc cttggaatgct tcaccccttctg ogacccctgtc 139260
tttaagatattc cttgctcttaa atcagtgctat tgtgaacagc gttcctggagc aagcaaatcctg 139320
gttcacaattt gatgttggcaaat agtgcttttgtag agttaaggccta ggaagggagaa gttcatttccctc 139380
ttggaagggct actcttgagta ttcctctggag gacgcccaact ggagatgggt ttgttaggtgct 139440
tttgccaaaaaa caactgcggcct gttggaaggttg cttttatattt tttattctcaag tggaatgggtc 139500
cctttatatatttt tttaaatgttg aggttaagttt ccctccctttg ttcttggaga agatggtgaa 139560
gtctccagactcgctaggtgc agacactgca gttcctggaaga tgtgtgagttttg tctgtctactt 139620
atgggaatt atggactttttttttttttttt gacaggaggctc tcgctctttttt 139680
acccaggtgt ggtgtcagcg gtagcacttc ggctcattgc aagagccag gtcgccccctc 139740
cctggtaacac gccttttctec tgccctcagcc tcacagtagt ctgggactac agggccccac 139800
caccacgcc cggcataatct tttatatctt agtaaagaact aataaacacg gggggtccac 139860
gtggtagccaa ggagtttgctt ggtcctgctg aectgcagatc tgccggccttc gtcctccca 139920
agtgcttgga ttacagcgtc gacccacgct gccccagcatt tattgacatt tttctaaccac 139980
tgtgctctct gaagaaatatt ataatcttttat tagccataaa atggtgttgg taggctgaac 140040
tccctctctac ttactctcctt ttagcattaa cagccccagac tggggtttaag gggatgcggc 140100
tttggtgtgtc ttgctgtata ccagctgttaa cgcaagcttct cagcggttaga 140160
gtgagaggg ggtgatgacac cgcctcagga ttagagagga gagagcctta ttgtgctccaa 140220
ningaractggt ggttgtgccagcc agagactagg ctggccgattt cctgaggttc ctctgtgctg 140280
aggtgagct cgtcctggcc atggagagcc ctcgaggggc tggggccagga cctcgaagtct 140340
tgttttaggg ttcgtgtaag cgggaagagc ccctacttggct cctgagacg 140400
aacttcgcc aactggcact tagtaaaggct tttattaaat atcagtttag ttgtcccttttt 140460
tggtaatagcg cagagctaaca tatattcacc aaaaagttca aacctgaaaaa ctctcctttc 140520
cctccatattc ttcacgtgaa acctacacaa gttacatactc atctgccttc cagagagcct 140580
taagtctcaag ctcctgctct cttgtactttt cctgttctccc acctgatttc tattctgattt 140640
gttttcctacc ttggtgcaca aacggatcttc ttctcctctct gctcttccttt ccctttcttc 140700
cctcacctct ttataccacaa acctgagaatt cccccttataa atatatattga agttcaacgtg 140760
tttctctgct tacatccattc agttccccaggt tatctcaggg tataagatcc aatcgttag 140820
cattggttggc aagggcagct cttggctttgg ttagctttgg agaactcgatt gagagccccctg 140880
gctctggga aagagtgcct ggaaagacaatta attatgctca actgaggaagttg atcacttaa 140940
gttgtgggggt cagggttaggt cacaagagac cataaagatg ttctttgagat tcccttctagt 141000
aggggaccca cagagcaaca aagtctcctca ttctgttgg ttagaggttttg gacagggccat 141060
gttaaaaagc cttgactaag cttggtgaggca cttggtgata agatgtggagttt atatatcagt 141120
gacacaccca acctgtggcct ctgtaactgt aataaaatttt ctgctttaaa tagttaaaaaa 141180
aacaagaccc aaaaattgtta cccttttaaca tcttttattttct tataaggctc 141240
tgcgaaaggg cttgcttttttt gcccagggatt ctactatatc gattccccaa acctttataag 141300
ataattatta ttctctctttt tctatttatgg ccagcagcgct gcaccagttc tccaagggctt 141360
aatgaaataa taagggcccaca aacctttttttt aagtttaaccac atttgcctttc tttatgaagg 141420
aaaggacag acctaatgtt aattgttat taactgagga agcacagaaa gttgggcttt 141480
tacatttctt tatccatcct cccccgacta ggaggagaga gccattcagag gggagacct 141540
gttttgatcc cagctgcttc cccagcacac ccgaagatga ctggctgcag cagacctgta 141600
ggggtttgtt cacagactga agcaatgaag tttggagctt ctctccatatt cctcaggttt 141660
ttgatccaga gctttacaa agtagggaaa aataagttga atatccatatt ttccatagat 141720
tagtggttgg atatatatat ttccattctt ctccactcag tactgctatt aaataacaac 141780
taagcccttat ccacgaggggg ctctccatatt gcaacaagaa ttaatttaaat tattagctcat 141840
cagcagatga cagacatcct ccgcacagatg atttttttttt atttttctaaa 141900
tataaaaaat aatataagtaa agaactacag caagattttct taatttttaaa aagttagttc 141960
aggtttagaaa atatattttta atatttttat tagtgaaag aataatagttg agaatagttg 142020
tcattgttaag ctttttctccca attgagatag ataatattttt attgagactt tactgggtgctc 142080
cagccattat attatatccca cgtcgatgaatt tacctcattttt ataaccttcaaat taaccacctg 142140
ttgtggaac tataacatttattagactatg atctctattag aataatttcct attgtctctca 142200
tattatatatttttt cttttttttttt attttgttaa atccagacact tagagaaatttg tcagcaactg 142260
cacaatcagc atacacacac acacagcatat acatgtgtac atttttattttttgcttact 142320
tctatatacc catatatattta aagccatgag gtgtacttaa tatactcaat ttacactctaa 142380
ggcccagcag ttgtagtttt ctctttttttttt tattttttttgaa aacagcttct 142440
cactctgttg gccagcgttgg agtgcagttg cttgatctca gccatttacca cctctgctgct 142500
cccagttctca agttgatcttct ctgcctccagc ctccacacata gctggagattc caagcacaac 142560
ccacccacgct ggctgaaatatt tggtagatatc aagttgccca actgtgtctgcttc 142620
ggctggtctc gacactctgga ctgcagtgta cccaccaccc cttgcctgcag aagttgctgtt 142680
gattacaggc atagacacacc ctgcctccagct gctctctttt cttatagtttt cttattttttc 142740
ccaaatattctg aagcgacagtg ccctcaattttt cttcaatatta tttattttcat cgaactctct 142800
cctggctcc ctccctgcttc aggaagtggtc ctctccctccca cttgctctcag cctctccagcc 142860
ccactctgcat ccgacccttc caccctccac aaccctcaag acctggtgcc ccaatcagttc 142920
cctgacaecc ccacacacac aagctctctt cttctcttggt tcaagacctc cttgcacccc 142980
ctaaggtgtga acacccacac taccacatcc ctccacacag cagctccctcg ccacactacag 143040
ataacacatga ggaggtttgc ttctggttctc tagttatattg agacgtgtctc aaaccttaata 143100
tattatgtgg tgaatgacta tagcagtcatt ggttattaaa acaggttat aactataagtct 146580
tatatgttta agaagatgaa ggaacacctct agtctgcttaa gaaagacatat agatgtgatcag 146640
atataaaagaga cccaaataagg ctggttgaggg tgtctcaacac tgttaatccc gcacactttgg 146700
gagagcacaag cggagtggac aagtggagttc aggagttcac gacccagcctgt gcacaacatag 146760
tgaaccccttg tctctactaataaaatataagtggtttgt gtctggtgagag gccacctgtaa 146820
tcccaagtac tttgggagctt gagccagaag aatcgctttga gcccaggagt ggaggttgtg 146880
ggtgagctataa gatcacacccct aggctgctgg caagctggctaaa cagaggtgact acacatctca 146940
acaacaatata caacaacaacc aacaacacc ctagagttggtggt gaaagactat gttgagacagat 147000
aaaaatacatata atgtgagatg gaaaaataaact tagatgggat tgaagagataag ttgagcaacacta 147060
caaatgagaga cggctcaaat gaaacactctt aaaaatgaac accagataaaa aataagctg 147120
aaaaagatcaa acgaatctt accgtgacagct gggacaacct ctgtgcagct cacttgaatgtg 147180
atatatgttgtt actcaagatag agagagagga gaggagagag cccaaagttgg aagaatattg 147240
gctgaaattt ccccaagttt gttggaagac ataaaaatatt agatccaaaga aactcaataa 147300
actttatatttt attttttattttt atttttgtccga cagagttcttg cttgtgttacc 147360
cgcacgtgcc aggggtgctca actctggctca ctgcaacacct caacctgtg gttcaagttg 147420
tttctctgcct taggctttccc tgaagttgctgtt ggattacaggg cagtcgcacc cccacccacc 147480
taatatatgtt atttatatgata gagatgggag ttcaccaagtt tggcagtgctt gattacagat 147540
tcctatscctt aagttgaccc ccgccagctgg ccttctcaaaaa tggcagttatt gccaggtcata 147600
gccgctgttg ccctgtctcaataa gtaatgtttaa tggaaaagaaaa gattgaagacca ccaataagg 147660
cacataataa tcaaatccag cggcccatctt aagtgctgcaaac actttcttcttgc 147720
gaccttcgaag tgttagataa cacagagcat ttcaaggtatt cagacgtgtgcc ctgcaactaa 147780
gtatattctg gtaagggaaat tctctggagtt ttcgtgttgg cattaggtgt 147840
gggaggtggg caccaggttg cacatgataata cccagattc atctttgctca ctggagctgt 147900
ggatctctcctt ctccatatgaca tgccaaagga acctgctggctt ggcatactccaa tataatgtg 147960
actacccttg agttcagggct ttagcttcacata ccagccagaga gattttttactt ccaccttcttgg 148020
ttcgtatgac tatactacaata aatcccaagttt ctctactaag tacccctataa tccatgtatttt 148080
aaccatatct aatatggtaatt ctcttttataaa aataagcaccct gtagacactaact actccacacta 148140
gttccoccaggg tttctttggctt tatatatata ttagcaaaagt ttgggaactgt ctg 148200
caagttaatttttttct cccctacgtttt acttatccac ctacacatca ctagatgttc 148260

94
gacctgttca aacgtttagt ggtaagaggg ggtgattgta gtgcatacctta aggaaaaatga 148320
acatccccct tcaagcactc tcctcccgagat gaaaggttccc ctacgaatgta tctaaatgccc 148380
tcatcacaca ccaaatcctc cagaaatgccc tgggctattt caaaagctgga atagttcaact 148440
gaagaactcag ttatggttgcc aacctggggaga caacggcttta aaaaaatgatat ttctgctttc 148500
aacaagagtgt ggtatcgacct ggaaatagtaa agcagcagca aatctgctctc ccaatcaaaat 148560
atatagtgtg ctggagatagagcagcagga gttgaagagc aatctgcttcat ccaaaatgaat 148620
ttcaaatttt taccctctata aacagaaagta ttgcataca accataaatc tttatatccc 148680
agttttctctt ccaacttttct ccctttactc accagggcaac aagtttccaa aaaaaatatta 148740
acattcaacttt ttaggattca aatatagtaa aagaagatgga gcaagagttc cccaaatagcg cagtagaatg 148860
actggcagta aataaaatata aaaaaaaaaat aggagttccta aaccaadaata attatgtgat 148920
gtctcaacta ttattttactg atttttgtgat aagctctcata gttctacctc ttatttgctc 148980
tataatacag acaacaggttt cccctgattct acaggcaaat gaattacctt cagagtttccc 149040
aagagaancttg ttaggagaaacctagggag aactgcagcatctagcttcgtgcagttgatgt 149100
gaagacaacactcgttaggtgg aaaaagcttcaa ggtcagttggt gttggtattct cttggttccc 149160
tgcaggttgatactatcgtata tttctggagagaagacagct cagttgagaag aattatgtgat 149220
acctttattag cattactgaa taaaattcctt ttcagataacc aagtttataacttttc acaaaaaacct 149280
gtcatgtggcctcaaaatatttacattctttcttctggcag agaggatttcc ttataagaga 149340
agacccctct attaaccactctctcctt cataggtaat ttaataaatctgctgcc atatgtgatc 149400
cctaaagcct tctctaggtat tgaagaggaaga tctaatgtatg tgggctttcata tgagtaatat 149460
tgcagctcata cttcactccaa aaggtttgggg ttcagggcttg ttctttctctt attctgaaga 149520
lctctagcag gcccataagactccttcctt aatcagcaagatgataaaaaaatttctctacaataa 149580
aagattttata ataggccgaga ataatattttcttttgagttcttaa atctctatattacc aaaaaatcatttct 149640
ttaggaccc ccaatagggc caaaactatgca aacaagtctact ctagaggtgg 149700
aanaagccat aaccttttctcttagggagtaa aaaaaatcttactgtagagata tggagagagaa 149760
taaattaata atacactttc acaagaaaaaagagccccatat ataatatatgacactctta 149820
aaaaaagaaaaagagatgtgt tagggagata gtttgatctc cccacataag gtaggtaatag 149880
taagataa gccaagagctcttgaatgacagaaagacgttctctcag taggagagagaaaa 149940
gaggtggggc cttagagagag gtgtgtgggt ctgtgagagat caatatccctca aatggcttgg 151740
gtgcctattct tgcgggattg agtgggtttct cactctttagat tcctgtttaga tcgtttaaag 151800
agtctgaca ccctcctcctcc accctcttcct cctctctctcc ccctctctct cctctctcttt 151860
tccctctactg ccctctctcct ctccctctcct ccctctctcct ccctctctct ccctctctct 151920
agccctctacc agaagcagac gctgtgtcaac tgcgctagcag cctcaagcccc 151980
gataaaccttc ttactcttttac aaatccaccag gatgtgagta ttcttttttata gcaacatgaa 152040
acagtcttaag aagaagtctca tttcttaagag tgccaagctttgg agaatttgagg atgtgtggttc 152100
tcgtgctcc cactccacatct cgttggtgaa tttgtgacct tgtgtggttg ggttagggcct 152160
ggtgggaggt gatttgcatca taggggtgggt ttcgtatatgt tgtggcacct cccctctgta 152220
cgtcctcagtag cttaatttc cccaaagctc gtttggttgga aagtggtgtag caacctccccc 152280
ctctgctcct cccctcctccct ctgctccgcct cagatgaatat atgtttggtt tcgctctcatc 152340
tccgccatata attaaaaagtt ttcgggacct gcggccagct gcggctcata cagcgctcgag 152400
aatgtgctaatatttaattcc tacttttctc ataatttagc cagcttctcag tggattcttta 152460
atacagtgtta aagacacctc atataagggt ctctctctctg atattaagatt ttattttgtt 152520
atccattacc tacgaaacaa aatgaaatag cacattatg catataaggg ccccttaact 152580
tcaggttttta tcaaccttttc tttactctcaca ccacctcaccac ccctctcttc 152640
taattgttac ttatttttttct ttttcctttaaa gaacagatga atataattagc atagatgtag 152700
aatataaaaa ttggcaattgc ccacggcaatct tgtcatactcct tcaggtggggag ggaataactca 152760
ctctccactc cctgctctttt cctcctcaag agagagcgcct tgtgctgccg atgagctgtct acaattccctg 152820
atcttccac ctcctcttatt atctctctcttt gcggcaaggt aaggtgagcata atctctgtgtat 152880
tgtattcca gctctctctctt cttcttggtat caactctcag agggagccatg attttagggac 152940
agctgtgtaag atagtggcaag gacacccccct gcgggtggac gacccattggt ccagcactc 153000
tgatgagcctc ttgggtgcctd ggcatatatg atggctagctt tagttgctcttct cctaaatctgctf 153060
ccagagctcagg atgattctctg ttcggctctgcc gttgctgctctg tgtgttgtctta gattcttttct 153120
aatgtggctca gacactggggt ggggaatggt ggtatatttt actgaagagcagcttaagttgtc 153180
ccaaagaaaagctcacttctatggtgactaagg tagagtgcggctgtagcggtaa gcaactgtcggctgag 153240
tatc attacatttcctaaagtttattagtaagag tagaatggactgcgttagcggctgag 153300
aatcagagatt cgaaagatat gtcgctcttct ccgctttcttttattttattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ccacctcccc ccccggtgata ttgcagattt cacacaacaca aggcaccacc tcggggagcag 155160
agagcagctc tccaaacatt aatgcctagca cctgctatct gggcttctca gotttccatara 155220
ttgtaagaaa ccacatatct ttcttttataa gttaccacgc ctaaggcatt tgtttatggc 155280
agcacacaaca gactaagaca tatagagtc atggctggcca cttttttaaa aaatgtacaa 155340
agaaacttag gcaactgag gcaatgact ggtctcaagaat ctagcaaaacg atgatcaagt 155400
aatattgag gatacatattt taatcaaacct tcctctgcta acctgtgatgt gaaaaagatt 155460
ttcaaatattc aatattcctct tcactacagc aggagagagc tcaagagcgt ggcaccaact 155520
tattttgtcct tattgtagaac atatcttgac ttgaggttgta gaattccaca tcgaaatcta 155580
tagcctttttt ccctctgcca gtgagattta gtgccttacc ttcaatctct gcacacaagca 155640
atccctctacc cctctggtttt aagccggcttg ttctaaaatag tgccgggttttg ttagcgtgtg 155700
aacagaccgt ctagtttctc ttctgaatgc cccttttaaat gaggcaatat caagaatatac 155760
tgtgataaat caccgacaca cagacttcac tcggagggagt tttgctttggg aaataatcata 155820
aaaaagaccg cagaagaagct cagcagttaa tgcacacagag aaaaagggc cagatttggga 155880
ggggcaaat gcgagagatgc cagacagttgc cgtcaggcag caaatcagaa gcagcttcaaa 155940
ccagagccttt aaatataaag cgtctcctga aggctttcct gacatgctgta gcgacaaattc 156000
cttggagaggg ggaatggttaa agtgagaggt ggtgagggca agagttgtggt atgtctctgca 156060
gagggctggtg tatattttaag ctctcattttg tattttttatgtgtaattaagtcctgtaata 156120
cagaaagcgt cctctctttgt ttctctattt cccacctatc gacagcaagtc gacattgcctca 156180
ccttggagagg acaataatgga cttaaatgtgc gacttctgcct taagtgttatt tcacagcacc 156240
cctgattactc cacattctcc aacagacatac ctgactttgat aatggtcggc gatttctgtaa 156300
ttatcctttt atctcattctt ccacattaaat atttccacagc agggtaaacgt tacttaaaac 156360
cattgtcaca cattgggttgg gaaagacaca cttcctctaatt acctcaagagc agaactgtca 156420
cttcactcccttg ttagattgta atataaaactc ctggtcctca cttataaaaaagctctctagt 156480
cttaacttggg ttgagggcag gaggctgagcc taaaagagcct ttaacattgca ctgttaagtcg 156540
cttgccaggg cttccagagtc cttctctttac gccatctctc tggcgctgca egggaaagcac 156600
cagggacagc agtcagattcag gggtttgacag gcggagagcagtgctttgacttca acggctacttc 156660
ctccagttctca ccgggagagt ggttgagaca gggagcgccac agagaggggg gctctcctg 156720
gaatcctgca gggattttact gcattgtgtcgtttatatc agtagatggc actgtctgcta 156780
ctcttgggct cacatgatcc tccccacctta atctctctaaa tagctggaaac tacagccagt 158580
taccaccag tcctggtcag tttttgaccc tttttgtatc agatgggtcc tcactgtggtt 158640
tcctaggtg tccttgcaacct cctggcctca aagttcccct ctgcctcagc ctctcaaagt 158700
gctgggatta taagcatgag gcaccacccta actaaccctct ttcttaaatcct cgttttaagtt 158760
ttttctattta aaaaacaaaa aaaaatctctt tggcataaac agaacttctctt ccctatacagc 158820
tc้าaatgc ctccttcctgt cactgacct ctgcttaaat acgatcttcct cgttttatc 158880
ccttcttacct ccctctccat cttctcctgca gttcccccaac aggacagctg 158940
cctttatgga ctttacaaaa tagtaagaaa ataggtgtgct aatgtgtcag taacacatca 159000
ccttcaaatc aaccaccaag ctccccctct gttgtgcttctt cttctgtgg 159060
gttcaaaggg ctcagttgca caagttctct ttctctgccac gaaactgcaag caacagtgaa 159120
cgctgagtc gctgccaaaa aacatgctct caagtttctctt cttctgtggg 159180
tttgtgcttg aactcagctg aagttgtgct cttctcctctt tgcctcttcc acatgtgctgg 159240
ttttttgaac atgaggtgtg aatgcttaaga gcctctcaatc cccatatggtttaaagttatcctaatc 159300
tggctgctcc tacagctctg gttggctctc gttggactgct cttctctttc cttctctctt 159360
tccagccccac aaccacagta aagctaacag atctctcctct cttgatagaga gaacagccaa 159420
taatattacag ctatctttaaa tgtacccagct ttatataata atttttttatc ttatataatc 159480
aatgaaaaa ataagttctt tatttttgct cccctcagtc ttgctctctttc tttctggtca 159540
tctttcttctc atgacaaaacc actctccttc cctgctcagctc accttttagg cttctctcctt 159600
ttttttgg cattttctct tccctctcaag tccacataata atctgtcttctt gattccccatc 159660
tttttttctt cttattctcg acttatataaa ctctagtggt gcattcttgta aacattacta 159720
gcttcctatt caactctcaactcctatcactc acatatcactc actatcactc actatcactc 159780
tgtctcacttt agttccccatc atagactactc attctttttat tgcactcttc tctttacttct 159840
ttaatctgcc acaaatctcag acaatataa aagttctaaa actgagctttg ttgcttttttt 159900
ttttttccagt ctctttctttt ctttctatgtt cttcagtatc acgcctatcct catctctctcctt 159960
acatagtaca cgaaggttaaa cattttttctt cttctctttt cttcataaatc actactactact 160020
acacatagcct gttatattata tatttttttaaa ttttttttaaa ttttgctgctta gctctctgttcc 160080
tttttttttttt cccttcttttctt ccctttcttttctt cttttttttttttt cttttttttttttt 160140
agcagccttg ttcattttttt gctcctcactc acctttttttttttttt cttttttttttttt 160200
ctgctcagagt gaagttttta atggttaaat cggattacat tgtgtcataat tcagcaacac 160260
atataccaaa attagaacaa ttccagagaag actagtatg gccccttgca aggatgacct 160320
aagattgcca aagcatttca tattttttttc gtatcacaaggc gcacacaatg tactgagagat 160380
gatcagtaaa gatgaggata tcctaatgta gaattatgtga ttataatgctctgacacaata 160440
acaaacaaaaa atgaggggaa aggggatggc ctagatgcc acataggttggtatattattg 160500
gtaattaagt tgtgattaac ctcggagattaga cttgttataa cttataattg ttgatcattgtaa 160560
caccaacctg tgtgattaac ctttttattg ttcactttgact gcctcaggaatggtgtaagctc 160620
cccttatagct gtttaaaagact tattattttat tgttctgtctg aaggttttttc cttgacaaaggt 160680
tagtatagttta atcaacagac cgacccaagag agacccaccc ttcattcagatg gctgtggaacat 160740
aatctaatct tgtgacagctct ctaatgtaaat ctttttttttgc ggtggccatatct 160800
cctttcttta atctggccaca gctgcctctc atctccagtctccag tattattaactattgttgctct 160860
tgggcctttg gactccctggtt ctcaccaaatgc ttccacaacctc aagttgcttcaagac 160920
ttccaccagtt gcacccatc caccaggattta aagttttttcgc cgcctgagc acctgatctatc 160980
aggtagtctt gttctcagcc attxtgaacttc atttttatttc actgacccaacctgccttctgttccttc 161040
aggaaatatgg cagacccagt atcaatgagc cctctgtgcccc ccatggcccc atgatctcatct 161100
cctataata atctctctcc tacatatctc tatataccctt atttttttttg ccctctctgcgta 161160
gaaccctggtgca taacacatacc ccactaagaa aacaatccaa aaatagccaa cagacacact 161220
aggtaggtgta ctaggtttttttt ttactctcacttg tgtggtggccc cccgaccccaac 161280
acaagacccgtt gggtgatgag cttgctcgtt cgaacagagag tagggctgctgg cggctttggcc 161340
agcgtatgcgt tttgtaggccc tagagcatgct aagttttgagat gataggagttgg gttgggg 161400
atcagaggcc cttgctggcc cccagctgctgc tgtgtgtgagtc ctgggtgtctctgctggtgctc 161460
ccattggggt gctagctctgc gggggagggg gttgggtgtctg cttcctcagc cccgctgtgcc gttctg 161520
gaacagagaa agagacgcaca tctttttttt ggagttcgcagta aagagagagatgagttgc 161580
ctggcttattacagagagcta cttttctcagag cccattccaa gccagcagtaattggactct 161640	tatgttttctgc agagacccag cggcattggtg gttcctcctcagac ccacccagagagtggctga 161700
aaacacctactc ctttttacttctgagggagctctctctagagctag 161760
ccagactgtgtagagactcgc taaatactctccatttctgctg caccagactgc agagagtagctcttc 161820
cagatattacagtattgctctg gaaaaatatcctccacaaaa ccataagaagagcttcagtg 161880
ccaccaatcc tggagaacata gagatattgtag actgccctgactgactctgagctctcactgctactac 161940
agaaataata agcaaatatt atcagagcata gagagagaga gagaatccaa tacaatagta 163680
actggagatt tcacccaccc acttttcgcga ctgaacagat ctcccgaga gaaatcaac 163740
aagaaacaag tagggccatttg ccacaagaga cattgtacta tatacacaat gatcttagta 163800
atacattaata gaacatttcc tcacatggct gcagaataca cattcttttc ctcaagtacat 163860
gtggatatcc cagagataaa ctagttgtta ggtcactata tgtgtgtgca caaaacaaagt 163920
tctaaaaatc tcaaaaaattag taagatataa tcaacatccc tgtctgacca caacagaattc 163980
atatacagaa tcaataaaaa gggggggg ggggtgtgca ccgggtgtaat cccagcacctt 164040
tgggggacct acgcaagggt atccagaggt cagagatcga agacatcctt gcctctaaca 164100
gtggaccccc gtacctacta aaataaaaaa aaattagcaca gggctgtggtt ggggggcttg 164160
tagtcgcccc tgcctgacgc gctgccgsga tagaatggca agagccgggg agggcgagtc 164220
tgcgctgagc ggagatcagc ccagcgtcact cagcgtggtaa agcttcatcc 164280
tccagcact tggggggcgg aaggttgggg gttcacaaggt cagagacgtc aagacattc 164350
tgttggcttg taatccccgc taatgctgaat tcgtctcgac tgataaaagc agacccaca 164400
tctggctcatt tacaaaaaa agaaatctaa tgggccaggg cacgtggtcc atgcctgtaa 164460
tccccagcact ttggggaggc aaggtggggg gttcacaaggt cagagacgtc aagacattc 164520
tggccttcacc ggtgacatcc tgtctctacata aaataataaa aaattagctgg ggtggtgcc 164580
ccggctgccg taatccccgc tgcctgagc gctgagaaag gagaatctct tgaacccagg 164640
agggcagagt tgcagtgagc tgagatcatg ccagcgcact cccagctggtt gacagagcta 164700
gactccattc caaaaaaaa aacaaaaaagg agggtttaat gcacatcctt ttccacattg 164760
cagccgctgg cttgcaatgc tagttggagg ccagagggag caagtcagtg cttacagtgta 164820
tggccagcg cccgagaga gagtttgtgt acagaaacte ecctttataa aacacatcgg 164880
tccctgaga ttatctcact atccagaga cagcctggga aataactgcc ccagtttca 164940
attacacctcc ctgggggctgctc ttcacacaca catgagcattt caagttgtaa tgggggtgcc 165000
agcagccca aaccaaatc cttccaccgg ccccttcaca aatctcatgt cctacatc 165060
caaaacctgc tagctccctcg ctatagtcct ccaaggtttt aactcatttc agcattaact 165120
caaagtcctg aagttcctgaa ctcagatcgc gcaagggcag ggtctctccac atgggctc 165180
gtataaatc aaacagctag tcaccctcata gatactgtaag ggtcagcagga gttggtaaat 165240
aacactttcc caaatggaag aattgggca acactataggg gcgatggccc ccagcagagc 165300
tggagatccca gcaggggtcg aatcctttcaag tggagaatc tgaatcacaat 165360
tcctctcatcc aggtcatgtct gatgcaagag gtgggtttcc atggttcttgg gcagctcttg c 165420
tctgtggct ttgcaggtta cagcatctct cccagctgct ttcatggtgc ggtgttgatt 165480
gtctgtgggt ttccccggtta tatggtgcaag gtctgctagt gactctacat tctggaagttct 165540
ggaggatgg ggcctcttttc tcacagttccc actaggtggt gccacagtag ggactcttgctg 165600
tggtggccttc gaccccaaat ttccttttctg caactgctctag gcagaggttc tccatgagg 165660
cctccacctt tcagcaaacct tcttcacccc ttgcaacaaact ttctctcttag ttctctctga 165720
aacctagatg gaggttccca aaacccaaatt ctggacttct gtcgactcctatt agactcaata 165780
ccatgtggga agctgcacagag ctggtggctct gcacccctctg aaaccaagcc ccaaatccacta 165840
cttcagcactt ggctttagggtg gctcggtagtc agggcacacaa gtcctctagac gcacacacgc 165900
atgggacctt ggggctggcgc caaaaaacca ttctctctctc ctaggcttcc aggcctgttac 165960
tggaggggcc tgcgtgcaaaag gctctctggga tgcctctggag acaatttccct catgtgtcttg 166020
gggattaacact ttgggtactct tgattacctac gcataatctct gcagcctctct ctagatta 166080
cttagaaaat gagttttttctttctcttgacttgcttgc gcaagtttttattgttattttt tc 166140
atggtcttgcttt cctccatttaaa aactgataagc ctgctgcaacg acccaagttccttcctgtaat 166200
gctttgctgc ttgaaattcttt cttcttcagc agtcatctttaa ctaacttcttt taatgctcataa 166260
agatccaccta ttgctccagt tccaaaaaagat ttctctctctt ctctcattag gcacccaacaagc 166320
ctagattctca tttttttctatttattcct atttggagc aaagccattcata acaagttctcttctc 166440
agggagtctc caacctcccc acatatttcta cttttttctct gcagctctctaa cttttttcttc 166500
acctctgtcct gttaaccaggt tccaagatggg cttccaccatt cttggttactc atttcaagcag 166560
ccacctctca tattgtgacc aatattaatgt gtagttgctgt ttcctgatgtg cttgataagag 166620
caatatgctg ctttcaccag atcaggtttctg gctctctttctct cctctccatttc aacaagcatc 166680
agatcacaag acctggcactt tttacaaagaga aaggagttta ttgagctctg tcctccatgt 166740
ggatggggag gctccacaatt tcatcattgaa ggcaagaggg agcaagtccctt catccaagctctg 166800
gatggccagca ggcacacagg gaaagggcttg gcagggagac ccctttctttctct ctttctaaactttaa 166860
agatccacattg catttctctgctc catcagcacaac cagagctctcttg gcccacatggg 166920
ggaggacacag ccaaaaaagca tcaagcctgg gattaaacat tatttctgtag aatgggaccag 166980
aggtctatag aataattcata aaggaattttt aaaaaaaaaatttgctcagttgaa 167040
agcacattat ctggccatcga attatacttc acgactatag taaccaaaaac atcatgggtac 168840
tagaataaaa acagacacac agaccaatgg gatagaatag agaaccceaga aacaaatcca 168900
cacaoctaca gtgagctctat gttcgaacaa agtaccaaga agatacacta gggaaagacc 168960
agtctcttccc ataaatagtg ctggggaaac ttggacattca tattcagaaag aaagagacta 169020
gacccctactctctctcataataaaatc aaatccaaat ggatataaga ctttaagac 169080
tcaaatcagttaaactac aagaaaactag tggggaacct tccagcagcac gtcagctgcc 169140
taagattttct tggatataac ccacaacgaca cagggcgaca aagcacaacaac gbetaataag 169200
gatccatatg caatgttata gcaagagaaaa caaccccccaaa agaagcgag 169260
caccccaacag aatggggctattttccttca aactctctat ctaacaagggg attataataa 169320
agtataatatag aagtttcatca cccaaactctgtt caaaaaaaag aaaaactcttg ccagggatgg 169380
tgggccacac gctgcaatttcc agacacttttgg gaggccaaagcg gggtgtggatc accagaggtc 169440
aggagttaga gaccagctttg gccacactgg tgaaccccca tctctactaa aataacaaaa 169500
attaccgcccctg cgtgatatcag catgctctga atcccatgctgt ctcggggagcc tgggcgagga 169560
gatcgctttg aaccccgagg ggtgaggttc cagtgagcagc agatcgccacg attgcactcc 169620
agcttgaggtg acacaaaaac caaaaaaag ataaaacaca atataataatg gacccaaatg 169680
gcaggagat cttgaaagac aattactcata acaagagatg caaatggtcaa acggagctat 169740
gaaagatgct caatgtagtg atcatcagag gaggccaca aaataaacta caatgagatag 169800
tctatcctacc ccacattaaaa tggccctcaa aacagggcata acataaatgt ggctagggtg 169860
tggagaaagt ggaaccttttg tacactgtgtt atgggaatgta aatagatgata gcaacctgtag 169920
agaacagttttggagattttcc caaaaaatga aaaaataggt taccatatga tccagcaactc 169980
ccacaccggtc gtatatcacc caaaagaaagg aatagaggttg gctgaaaggg tatctacact 170040
ccccctgttg gtttaggtctgt ctatatcata gtaaagattt gaagagcatattt aaggggttatct 170100
caacgacata tggataagaa aataagattt tctataatac gtttactaattt aataactc 170160
aataaagattt aagattccacct tggatggaac cagaaaccatat catgtaaagt 170220
gaataaagcggcgcagaa aataaaaaccat caagttgtct cattacttttg tgggacccaa 170280
aaataaagact aattaagccact attttggtatg agaagtaggtg agaggtgttaggc agagttgac 170340
aaggttagtttg ggggattagc gggactacagct taataatagt tataaaatg aatagagtat 170400
ataataaagg ccataatttt gactgcaaca caggagctgt accattaata taatattatc 170460
gtgcattttc tattaagat agcaagacac tgaacacac cttaatgccc atcaacgata 170520
gactggataa agaaaaatag gtcatcatac accatgtaat actagcagc cacaagaaga 170580
aggatggagat catgtccttt gcaagggagct gatgggagtt gaaagccatt atctccagca 170640
aactgtgcac ggaacagaaa accaaacacc acatgttctc acttatataagc aggactaaa 170700
tgatgagaac acagggcact agttgagcctt gatgggctgtg tggagcaggc 170760
gtgaaggcag gcagagcttc agggagcact tgaatgtcag atggggtcctt atacataggt 170820
gatggagta tcatactgcac aaacagccac agcaacatct tacataggtg aaaaaaccct 170880
gaacatctgg cacatgtacc tctgaactta aataggaagt tgaagaaaaa aattaaataaa 170940
ttaatttgtg cattttttaa taactaaaaa gatacaactct gtttggtagt gaccaaaaaa 171000
aatgatatctt gagagtgtga atactccatt ttccatgtag tgattataac acatagcatg 171060
acctatcctaa aacatctcat gtaacccagt aatatatata gctgctgtgt accccacagaa 171120
attgaaatatt aaaaattatt tttaaaagga aataaaaaat aaatatacga aaagaaaaaa 171180
tgaaggatta aacaaataca ttagaaataa tatttttaac acaaaagtag gtattaataa 171240
aggaaggatt gaaaaagaca tgaacactct aaaaaacagg tagaaaaatg gcaaatgaga 171300
acattacatt attagcaatt ctataataatc aaaatctgtt gacacattca aattaaaaata 171360
agagattcag ccaggtgcag tgtgtcctcag cgttaatccc agcactttgg gaggttggaga 171420
tgagtggatgc acctgaggtc aggagttcag caccagcttg gccaacattgg tgaattcccg 171480
tccttattaa aaatacaaaa aaaaaaaaaa aattagccag gtgtggttgg caggtgcttg 171540
tagttcgaac tacctggagag ctgtagggcag gagaatttgtg tgaacccagg aggcagaggt 171600
tgcagtgagc cgagatgttg ccattgcact ccaagactggg tgacaagagt gaaactatgt 171660
ttcacaaaaa gaaaaaaaag ggtttagcag atttaaaaagc aagatcacc gcattagctt 171720
catagaga aatgtagcact aaagacacaa agaggttga aataaaaga aatgaaaaag 171780
tgtaccagtc ctttagattt aaagacaca agaggttaga aataaagata tgaaaaaaga 171840
taagacaaaaa aatgtagctt aaagacactt agagacactg tacaatgata aagagtttaa 171900
tcagccaggc atggtgtctc atgcctgtaa tccagcacttg gggtgagcgc aggccaggtg 171960
gatcactgga gttcagggagt tcgagacccag cttgggcaacac atggagaaac cctgtctcta 172020
tcataaatc caaaaatagg cagggtaggt ggcagtcacc tgtaatccca gctataataag 172080
aggtctaggc aagagataca cttgaaccccag ggaggttggag gttcagctga gctgagatcg 172140
tacccactgta ctataagctc tgaacacacag atgtagactct tgtcctcataa aaaaaagag 172200
ttaattgatc aaaaacatgt aagaattata aacatatatg caccaaaacaa ccccaaattc 172260
taacagaatt gaaactgaca gatattgaag aggaaatagt caattcaaca gtattggag 172320
attaatataac ccactttccaa tgattggtaga aatagtctag cagatgtcct tacagaaatat 172380
ggaagacttg aacaaggtat agttcagttt ccagagatct aaagaacctc catttattaa 172440
taaaataata cacattttcc tcaagcacaac aagtaaccttg tcagcaggata aaacatagt 172500
tacaccataa agcaagttctt ataataagttt aaaaagctgt aatgtctaa attatatctt 172560
gtgaccacag tgaaatgaaa ttggaattta ataataatgaa aatattggaattttcacaagaa 172620
aaatttgaca cagttgttaaaa taattaaaggg tttttttttttttataaat 172680
aatgctcttga gataataagtaa aaaaaaca cagttaccca cacatttaga gatgctattta 172740
aaatagtgcc tagaggaaaa tttatataa gaaatgccta tttttttttttttataaat 172800
gatctcaaat caaaacaaaaa actttatatcc aaagagctaa aaaaaaaag cacattggaa 172860
gcaaaacaga gaaaaaaca cttatattt ataggaataa aaaaaatatt 172920
aaatcatag agaattctgg taaaaacaa cagtttctttttgaaacagc 172980
gacaaaaaactt tagcatattct cacagggcag ggataaaaca ccaaaagact customize cagccggggcg 173040
tggtgctctca tgtctgaatt cccagattct tggaggtcgtt aggcaggtgg actctctctag 173100
tgctagggtcct ctggccaaaca tgttttaacc tctactctac taaataataaaa 173160
aaatagctcc aggtgtgagg gacgcctctca gtaatctctag ctagttcctg ggttgaggcc 173220
ggagaatcac tggaccccaag gaagcaaggt ctgagttgac gctgattggca gcacgcgtccct 173280
ccagctctgg tggacagagct gacagaggca gcactctgtat cccaaaaaa aaaaaagaag 173340
gaaagaaaaa aaaaaacaga ctaaatattc taatactcaga aatgaaataa gggacacatt 173400
tataaactttt acaaaacaaaa aatatattata aggtgtttttt gacgtaattgt tccccctcaca 173460
tgattatcataa tccactagtc gaaagccctag ccgctcaaatatatgttatt aagatgggg 173520
attaggtaag gtaaataggag ttagtttagg tctagtcttt ccgccctctat ctagggaaaa 173580
gtggaccttag aaaaagaaggg agagatgaga tcattgagcag cagcaggagc tagatggaag 173640
cctccccacct gccagacacca acagccttcttg gaggctttgta cttgtgacatc tgtctcgcgt 173700
atgacgtagttag atatatatta ggaagaccaaa gagaacccat atatatccccg aagagaatgg 173760
attggctctag cagacacttt gagacaccccc aataacgttg agtgccctcata cctgcaagtg 173820
gggaaagggaa gattgttctcc ccatgaacat cacccccctc cgggggactaatggaatt 173880
ctagacatta tacaagaaca tcaaagaaca tctgggaaca tctacacaaa aagatcattg 175680
cccaggcaca ttgctcatcaa cttatctgaa gttaagatga aggaaaaat attaaaacag 175740
gtgagggcaaa aacaccaggt aacctataaa ggaaaaacct tcaagattaat agcagatttc 175800
tcagagaagaag tcatacaagct agaagggatt ggggccctat cttcagccct ccacaaacaa 175860
caaattatcag ccaagaatttc tgtacccagt gaaacatatc ttttgtagatt aaggaaaaat 175920
aacgaatctt tcaagacaca aaatggtaga aatcaacact acacagccag cactacaaga 175980
actgctaaaa ggagctctaa attttgaac aatctctgac aacacataac aacagaacct 176040
cattttaagca taatatctcag aagacctaca agacaaaaat aacatccaa aaaaaaaaaa 176100
caacaccaag aacaactgga aacaaatgca taatgaatgg aatgatagct cacaacctcag 176160
tcataacggtt aatgtaaatg gcctataatgc tccactgaa acagatacag attgaagaag 176220
gatagaatt caccaacact ctgctgctct caagagacac acctaacaac aaaaaagtc 176280
cgttaactga agggagggga tggaaaaaga cattgcatgc aatggcacag caaaaagaag 176340
caggggtagc tgtattata tcagacaaaa caaacaattca agcaacagca gttgaaaaat 176400
caaagaggg tattatataa tcataaaagg tttggtctca cagggaaata tcacattcct 176460
aaatatatat gacacataca ctgggttccc caaatattgta aagagattat taatgagaag 176520
aaagaataag atagacaagaa acacaataaat agtggggcc tttatatcct cactgacagc 176580
actagacagg tcatcaagac agaaagtcac caaaaaacaa taaatccccaa cattacccctg 176640
gaaaacaggg acctaagtga tatatacagaa acatctttcc caacacaacc aagagataaa 176700
ctctattcag cagtgcagtgg aacttttctcc aaaaagacat atgataggt gaaaaacag 176760
ccctcataaaa ggttaagcaca ttgaaatgga attcaagtat tctctcaggg cacagtggga 176820
tacaacagga acataactcc aaaggaacc aatccaaaccac tgcacaattcg tggaaatta 176880
ttttctctgt aatgatcact gatgcaaaaa tggaaatcaag atgaaaattt aaaaaattct 176940
ctaaactgga gacaaatagt acacaacacc aatccaaacc cttggaatacag caaaggcagt 177000
gctaaacgga aagtgctagc ccctaaatgc ctacataaata aagttggga gacacagacg 177060
aatctaaagt cactacccag ggaactagag aagcaacacg caaactaaacc caaaccagc 177120
agaagaaag gactacacaa gatcagagca gactaatag aaatgggaac aaacaaaaaa 177180
ataacaaaag taaaacaaacc aaaaaaaaaat cttcttgaaa agataaaataa acttgataaa 177240
ccattagaa gattaacaccag gagagagaa atatcacaaaa aagcacaatta gaaacggatat 177300
atatctctga tgaacataga tgttaaataa cttacaagaag tactacctaa ccaagtcxaaa 179100
caacatatca aaaaagataat ccaccatgat caagtggtgt tcataccagg gatgcggcag 179160
ttgtttaaca tatgcaagtgc aataaatggt atacaccact taaaaagatat caaaaaaaca 179220
aatcacagca tcatctcaaat agatgcagaa aaagcatctca acggcaacttca gcacccctttt 179280
atgattaaga cttctcagcaca aatcagactca caagggcacat acctcaatgt aataaaagct 179340
gtctagcaca agccccagcgc caaaaaataata ctagatatataa aaaaaagaagcacttccct 179400
cagcagatactg gaataaagaca agggatgcgcca ctctctcacc tcccctctca caatgagactg 179460
gaaatctctgg ccaagacacta agagaataataa agggagatcaca aattggttaaa 179520
aaggaagctgc aaggctgtttg gtggcgtgtg gatatgtcc tttacccgata aacaccataaa 179580
gacctctcaaa aacagccctaa gaagtctataa aagaacctag ccaagtttctt ggatacaaaa 179640
tcaatgtagtga caatacaataata gctctctctatat accaaccaggt caaaacagtctaa 179700
ttaagaactc gaccacgccc aggccgttggc gtcacactct gtaatcccgaa cactttggga 179760
ggccgagggtg ggccagatcaca gaaatctgac aggctcagagc cttcagacacc acatagtgaa 179820
acctcgcttt cttcaaaat cccaaaatat tagctgggcga tgtggtgcag tgcatgtgagt 179880
ccccagctact caggagggtg agggcaggaga atcactttgaaa cctggaggag ggggttgcgg 179940
gtgaaggccag attggtgctcc tgtactccag cttgggctaat agagtgtgagc ttgctctcaaa 180000
aacaacaaca acaacaacaaca caaactctaa cccctttttac aatagctgca aaaaaataaaa 180060
ataaatgtct taggaataata cctaaaccag gaggtgaaag actctctacaa gcacaatggc 180120
aacaaccctgc tgaataatata catagatgac acaaacaataa ggaacacatt ttcattcctta 180180
tggattggtgtc gaaatctatgtgaaatgg ccaggtgctg ctcgctctgcc ctgtaatcct 180240
cgaaacttggga gaggctgagc tgggtggtgta acttgaggcc aggagtcctaa gaccagctgt 180300
gccacatgg caaaccctta ctctactaaata aatataaaaa ttagctagg gaaggtgagtc 180360
acacctttgta ttcagctact tcaggaggtc gaggctggactg aatcactttgac acccagggtt 180420
caggtgctgcg agttgagcctca gatcatgtga cttgcactgcac gccagatgca gaggtgtgac 180480
cgtgctctca aaaaaaaataatggtgaaa aatgacctag ctgcccaaat caaatcttaaa 180540
attaagtcagc attcctttgata aataaccatac gttctctcaca gaatttagaa aaacaatattc 180600
aaaattaataa tgcaaccctac taagaccccaga ctagccaaac gcacaacatgt gcaaaagaa 180660
catatcttgg ggctatctatg taccctgattt ccaaatataag tataagacca tagtctctcaaa 180720
aacagcgtgg tactggcata aaaaatgga acaagccaa tggacagaa tagagaaccc 180780
agaaatgaag ccaactgatc ttggcacaag ccaacaaaaa tataaagtgg ggaaggaca 180840
caccttatc aacaaatgtt gcctgggaaga ttggcaagcc acacgtagga gaatgaaact 180900
ggctctctatt ctctcactct atacaaaaat caacctcaaga tggatcaagg acttaaatct 180960
aagacataaa actataaaaa ttctagaaga taaccttgga aaaccccttct tagacatttg 181020
cctaggcaag gatttcatga ccaaaaaacc aaaaagaaaa ctgacaaaaaa aagacatat 181080
agctgggact taataaaacta aagagttttt gcatggcaaag aagcaacttc agcagatgaa 181140
acagacaacc cacagatttg gagaactctc ctgcaactctg tacatatgac aaaaaactaa 181200
taccaggat ctacaaaaaa ttagcagaggg aaaaaaaca catacctact aaaaattggt 181260
catatctcaaa aagaaatatat acaaaaggtc aacaaacata tgaaaaatagct ctaacgctca 181320
ctaatgtcga gggaaatgga aatcacaacc acaatgtgat accataatgg tattacatta 181380
atggccataa tcaaaaaact aaaaataaat agatgttggc atggtatcag tgaacaggga 181440
acacctctac actgtcttgtg ggaatgttaa ctagtacac caacttggaa aacagtcttg 181500
agatccctta aagaactaa aatgagatct caacctgtcag cagcaatctc actatgtgggt 181560
atctacccag agaaaaagaa gctcatctat gaaaaatata cttgcaagcc cgtgttttta 181620
gttgcataat ttgcaagtta aatcatggaa ccaaccccaa tgcctcatca aatacatgtg 181680
gataaaaaaa ctgtttataag gctggccata gttggctccgt cctggaaccc cagcaactttg 181740
gggggtgccga ggcagatgga tcatttgagg tcaggatgtc aagaccagct tggccgaacat 181800
ggtgaaacc gggtttctact aaaaaataat aaaaaaagaa ggcagggcca tgggttgtca 181860
catatgttaat ccgacgtact caggaggctg aggcatgaga atcactttgaa cccaggaggt 181920
ggaggttaca gtggagatgtg attgtcccaac ttcactccag cctgggtggcc aagatgagac 181980
cccttctaa aaaaaaaaaa aaaaaatgtt gaacttctgtg tgtgtgtgtg aatatatata 182040
tatatgattg aatcactact aacccataaa aaggaatgaa taattggcact cacagtgcct 182100
tggatgagat tggagacatt tattctaatg gaggttaactc aggagttgga aactaaacat 182160
cgtatgtctt cactcataag tggagtttta gctgtgtagga tggccagaca taagagggac 182220
aaaaatgtgc tggatatactc agggggaaaaa ggggaaaaag gagatgagaa aaaaaacca 182280
caaaattggt actagtgtata ctgctccaggt gtagtgcaca ccaaaaatctc aaaaaattacc 182340
accaagaacc ttacctagttt aacggaaaatc cagctgttcccc ccaataaccc acggaaataa 182400
aaaaataaat aaaaaagagg gagagatcttc atctctctctct tctttcagtc gctctctctt 182460
tacatgcatg caccacaagaa aagcttttgcg aggacatato aagatagttg ctgtctgttta 182520
gtcaggaagc aagccctcga gaggaagttaa atcagctagg acctttgatct tggaccttccc 182580
aaagtccaga actgtaagaa atgaatctctt gttgttttaag tcacacagtgc tgtgatatttt 182640
tgttaagcag aacccagccaa actaagacat taggctactt atgaacaaat tataagccaa 182700
aaagtagata acttagatga aatagacaaa ttcctagaaa catacaaaaa accaaatcta 182760
attgaaagag gaataagaca cttcgaagaga tcaataacaa gagtctgatag tagtaataaa 182820
aaaaccttttg aaaaagcctca ggaactataca gatttaactgg tgaatcttcat caaaccgtttg 182880
aaagaagaatt aactactgatt ctctcataacgc ttctgtcaaa atataaaagag gagggaacag 182940
tttttcaacctc cattattgtgat gcagttgactct ctctgttaca aaagcaacag aacacatgtaa 183000
caaagaaaga aacctacaga cgcagatcttt tataaatattg gaagacaatacg ttgctcaacca 183060
aatattggcaca aacticgttcc aaaaaatcactat ataaaaccat tttagaccaccc ttcagcaatccc 183120
cttcccttcct ctgtctctttt cccttctgctt ctttttccctt cctcccagac gcctttccc 183180
gttgaggtgcc agttggtgca atggggttctaa actgggtcttt cggtaacagg agcgggggctc 183240
ggcagacatttg gcggccacaaca tgtaccaggtt agaactttatgc tctactttgta agaatcccttc 183300
cagcaatcca taatataatca ggataagaaa ttcctgaccaag actgcaagttta gcaacatgga 183360
agcaaaagta gttatgcttttt acaagatatac ctgatatatttt aacaactagta tattgcattttg 183420
ggagaagcat gctaaagaaa tttgaggaaga atcgtgaaca atagttgguc cttaccttgc 183480
caatatacg aacatctcact caaaactataa gttacttctct tttgttacccc aatatgaatct 183540
tttgccttca acacatatta ggggaaatgtg catggttcagtt ttagataatgc gagacaatcaca 183600
gtattgtcat atcctcttataa aaggtactct tctctctctct attgtctactt gaccctctcat 183660
cgaacaactc attagctgatg gaaggtgtaat tcagaatgagtg acctagattat caagtgaatgc 183720
tcccaataat gtctcataagag gggaatcagtt atgagagggga cgctgtgaaa tgcgaagttta 183780
aagtttgggg aatcaaatag cccactttaaa gattgtatcc btaacccttta ttaatgtta 183840
gcaagtgtatc tttggaacact ctctagactcct cttgatgtcga gcagttctttt gaggccagctc 183900
agtttgtcatc tgattgtgcacgc tcagcctttcc caagacacacca ctctctctctcct tgcctatcat 183960
acattgtcga gacactatcag tgaatttgacg acgtgaatagttgtgctagtt accaaacttga 184020
gagctgttttt tattgcagataa aatattgtgaa gatgtgctacg cctcttttaagc tagctttatttc 184080
gaagaggtact tggaaaaaat agggcaagaa cttcagacac tatgtgcaatc acttttttccc 184140
caggagagt aggcaggagt attgtttgaa cccaggagcc agaggtttgtg gtgagccgag 185940
attgcacctg tgcacccag ttgggcaac aagagcgaaa ctcgaatatt aaaaaaaca 186000
caaaaaaca caaacccttc tttaaccttc aaattaaggtc ctttcaggtgt ggtctttact 186060
agcagtttga gaacagacta atacagttaa ttgaattcag gaatggagct ttgccggtaa 186120
acataaccca aatgtgtgaa gtgcactggtt aaccaggtaa cagcggaggg ttggaagagt 186180
ttggaagagt tagaagacaa cagaaagata ttgggaaatt ttggaacttcc tagaaacctg 186240
ttgaatggtct ttgacaaaaa tgctgtagatg gataatttca aaaaagttcga agctgagttg 186300
gtctcagatg agcgtgagga accttgttggc aacagatctt tactgcctca aagctcccaa 186360
gacacttgatg acattttgctt cctgcctctag agatctgtgca aaccttgaac ttgagagaa 186420
tgattttagta tacctctgac aagaatttt atagttgcaaa acgctttcaag agagagtaga 186480
acataaaagt ttggaatatttg cgcagctgta ttaaagctctaa aaccattttct 186540
taggagaaga ttcacaagcc cttcagataa ttgcaatttgg aaaaaaagagc caccagtttaa 186600
tcaccagac gatggagaaa aacagctcag ggcaggttctg gagacacccag aacatctcctt 186660
ttcacacag gccaggacaggg tctgagggga aaaaattgattt catgctgtgg gcctgggcaca 186720
accctgtctct atgcagctctc tggacagttgt gccacagcata cccgctgtctt cagcttccagc 186780
catgaacctaa aagggaccaat gtaaactctg gatgctttgct tcagagttgtg caagcccttgg 186840
gtggctccca caaggtttgtg ggcctgtagg tgcacagaag tcaagaactct gaaatgagggga 186900
acccctcaact agatatttcca ggatatattg aaaccatactg atgcacagag aaggtttttcc 186960
tgcaggggttg gaacctctctgg gagaaacctt cttgtaggcgc ggttgggaagg gaatggtggg 187020
tcagagcccc caaaccacagg ctccacatgg gcgtctgtgcct gctagagctgt tgagaagagg 187080
gcactgctct tacccagagaa ttgtagatgtt accacacagtct acccccatgt gtccagttgc 187140
gtcaacagaca cccaatgcca gcccataaag gcagctgagga gggagcttgtt atcctgcca 187200
gccacaaagg tgagcactgtct caagggcata ggagccaccc ttcttgatatca gcctgacctg 187260
gatgtaagac atgaaactca aagagatcat ttcgatataa ttgagtttaa taggtgcctg 187320
gtggggtttc agatctgtgat gggcctataa accctggtgtg ttcgccaat ttttccccca 187380
ttggaatgag tgtattttgct caatgctctgt accccagatg taactagaaa gtaaactactt 187440
tgcttcatgt ttgacaggtct catagccaga gggtttttgcc tttggtctcag ataaacacttt 187500
gaacctgggac tttttagctg atgcaggtaat gaattaagat ttcggtttggc ttttggaagag 187560
tgcctaaactc caaactctctt agtgaagaat tatataactct ctatttgctta aactacttgtt 191040
ggtttgggttt tcctgacttc acacgctagaa attaataagtta ttttggagat ttaatatatta 191100
tataactcatt caacaccatac atcaaatagc atgttatataa tacataataaa tggccagacaa 191160
tgttttataaa tagattttttt cattaggggt ggtttaacta ttagttgca aataaaacat 191220
ttgtagaaaa gtttttttttgt ttttactaacc ggaaggcaact aacattttagt gatggggtac 191280
tgggaataca ataatetett ttttacatctt tatatatatatatatatatatatataagacagattt 191340
tgctctttgtt gccccaggctg aagtgcatgt gttgaactcct cgctcactgt acgcacttgcc 191400
tccgggggttc aagcgattctt ccctcccccag cctctcggat agctgagatt acacgcatgac 191460
accaccacac ccggctaatatt tgtatkttttt agtagagaca ggggtttcctt atgtgttggca 191520
ggtggtgctt gaacctccgcag cctcagctgga tctgcctacacc tcagctcctxaa aagtggttag 191580
gataacaggc ataagcactgt gccgccccagc aatacagaaa atctaaaaat gcataagact 191640
gtcccatgca gtaagaatgtt ccctacatctt cgcatacttt tcctaaagccta ccaagacacat 191700
atctctagcct gaaaaaggtg ttttttaatgt tctttaaatga gacataatctt cattttgcaaa 191760
ataaatacca aaagtttttct tctagttttt atatatatata aatrrrrrrcc aarrrrrrrrr 191820
taagagacca ggccctttgct ctattgccca ggcttggagggt cagttggaagt atccgtgctc 191880
acctcgcatct ccaactctca gccataacgac gcctctccac ccctacactctt gcctctgtag 191940
tagctaggact tacaggggtta gtcttcccat ttagctaggtt agtagtaactt acacgtgccaa 192000
gctttttgttt ttttttttttttt tttttttttttt tagatgggggg cctcctcaatgt ctcctggagc 192060
tggtctttgga ctctggctcact aaggtatccct cctctctttgg cctctcaaggt tgcgggtattt 192120
acagacatgac gcacacaccaag ccagctctccaa gaaatatattt aatgagatttt gtaggataata 192180	tattccacat ttaggaaatagt cacataataca ctcgcaatgtc tcgcatagatt cttaaagtttt 192240
ccatataac ccacctatat cagactacat gtataagcagct tccttttactt tatttttctatt 192300
attttaggtgtagtagacattctagtttaatttagctagatttttagttgctaggata 192360	tctttagtttcttatatatcatacacttatattattttttttttttaactataaatccac 192420
gtttttagttatgctattatatatttctttttactagagtttagttgatcagcgcgggcttacg 192480
gacagagaattgtaacaggggtccttataaatatacttatattatttatagagttgatttcagcgcgggcttatcgcggttgcgggcttacg 192540
gagatattaataaatagattctaatcagacgctcctaccacccctccctcactctctactctattttatattttatcttttactattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
tcttgagtt taataactta aaaaaagtgg cttactacag gcacaacaatag gaaaaataga 194460
taatggtata aatgggattaa catcccaaac aaaaaggctct gtataacaa gaaaaaatctca 194520
aaagggtga aaaaaacact acagagaaggg agaaaaatttt tcgaatctctc acaaaagagggti 194580
taatgttcct aatataattaa gaaacctgtc agccctcctagt taaaacggca aaataaccctaa 194640
ttttatatccttttatattttt atttttttctgttctcttcaag gacgtatacttttgccgtg 194700
ggcggccacaggt cagccgcaaat tttataatgg acacaaacacc tgaataacaca atttttgtcaa 194760
aaagacatc cacagtggcccc caggtatatg aaaaagagct taataatcact acataattgaa 194820
aaatgcacaat tttttatctat gctggtcatg aaccccatgtct gttttagata ggcctataata 194880
gaaacacaa aaggtggtgc ggtggtgaggg aagagagaaa gcctggtcacaga tgggggttgga 194940
aatgttaaat attggcagcca ttataagaa aatattggag gttcttcaacaa aacataataaa 195000
atagaactac catatgtacc ogaaacccca cttctggtgta tatataccaa ggatatgaana 195060
ttataatgtc aaaaaagataac ctatatgtccc atttttttata gagcattgtg cacaataacacc 195120
aagatatgat atacacactaa gttgctcatca agtggatgaat aagagaaagtt tgtatctata 195180
caatgggaatgt tattgcagtc ttttaaaaga aggggaatcct tgcgtgtagc aacatggatata 195240
aacgtggaggg agatttaatgc aagttgaaata tgccagggac gaaagacaa acctgaacaaa 195300
taataacatcg agaaacgagac agtagaatta gatggtggttt tattaaggggc ctatggttccc 195360
ccgttgggtcg ggaaggctcaac aacataaanat agcaggattg gagatataaga tgtatgtcaca 195420
gaaaagttcaaa gaaatatatatttttgagtaa actataacaa aatactctcc gcctggtatg 195480
ttcggtgtgc tatggattta aacataattgga atataattttgc gtagctaaagatggttggacc 195540
taatgtttctc cagcccaaataa aaataagtga agttatcttc tgcgttaatta gttgatttaa 195600
gcattccac aatgtgatgca tatataacaat cttacatggctg taccatataac tatataacaaa 195660
tttttattcctc tcaagtttaaa aaagggagga aaaagttggtct cacatttttc ggactaatg 195720
tctttttttttcttctatcag tcagctcctcc gggattttgttc ccggacccca 195780
cagagttacct ctttacatag gaaatttgct tccctgatataaa agtätttggtct ctcttttggct 195840	tattatctga cacacatcct cttacacttctc taatttcatct ctgtattacacetataat cccaca 195900
acacaattgtga aatgtctagttg agacagtcttg tgcattatgct tcttttttcgaat tggcattttc 195960
ttttttataatttttttttcttggccat caattttctgactg 196020
gttaatcctcg agaatgggaa accacagaca cacaagaga ccaactataa cttccacattttgtg 196080
atagtttcct tatattgtgag gagagtaaaag gaaaagataa ttcataagtc acaagatatt 196140
taattgacaa ggtagaagct cagttctcct aagtctctage caagcttctct tgtatatagta 196200
aagtatttac aaagggctca atgttcaact ctataataa tatggtggat taaaaggttttt 196260
cattatcctc ttatacctggg ttcctctcgtt axttgtttact actcccccaact cgtcgcaacgt 196320
catgctctct tactggtgata ctgagttgatt ttcctccctttt atactgggcgatt tttcccatttt 196380
ggctctacca gacaaatttct attaagcaaa attattagaa tcagaagcaga aatitattaag 196440
gcaatgtgac acgtttttgcc taagactttgg gcacatattct gaaactctctc atactccagtt 196500
tcattttattt acctatactgc tgttacctgtg ccttttataa atactcaacaa caggggattac 196560
atatccccggg atatatgatcgc gctgcgaggtc tttgctgtgag aagggattagag 196620
gaaagagaca gacgtgtgct taccggtgggt ccaacagagc tttggtgat gttgactgtttt 196680
cctgtttttgct cgtgtaagat tgtccgagc ttaagtaaga aaacatgtgg aagagtattag 196740
gataataat aggacaaagag gtagaaaaatg gacaagagaga aataaatatatagcttttac 196800
attttataa attaaggttga aaggtattggc tggaggtgtgt ggtgtggtggc cctgatccctaa 196860
gctacctggtc aggctctgaggt gggagaatgat ttttataagc ccagagagttg gacagtgcag 196920
gagcgtgtagt atacgccactgt ccactttagtgcc tgggcagcagc agttgacgctc tgtctctaca 196980
ttaatttaaa gatgttaaaag gggagcccagc cacagtaaca ccactctgtgta aataactttaa 197040
cctggagggc cggagttgagc ggattactgg agacccagcag tttgaggtcag cccctgacca 197100
catagtgaga cccacatctct acataaaaga aaagaagaaga atgtgaaggg gaaagtcgcag 197160
gttgtattgcc tattgcatcctc acgtctacta tatccaaagc aatcaatttta gctgttaaatt 197220
acagagacct taaaaaatggc tgtacctaacc attaggaaggt ttcttctctaa acaagcaagc 197280
atctggaggt aggtgaattc cagttgggggt agggactcat gcatagcataa gggggcacac 197340
cccccccacc tggctтагагg acatccctctc gcaggtccgac cagtttttccc atttttgtca 197400
taagggggct ctgagttgggcc acacgcaccca attctccacat ctcagttttct atcaataactt 197460
aatcagaggg aagatgggata tgggttaaga gagaacttttc ttttttctatg cttttctcttt 197520
aactgagagg aacgtccctt tactaaactc tccacaagagc aataggtcagc gcccctagac 197580
caacacacac aacaaattggc ctgacgttttt gtaaaccaaat ctcataaccat gcctttgagat 197640
tagacataactactaagag aaaaaggtgtga cttggccaaatgt ggtaggccagc catcagactc 197700
agtcacacaa atacacacac acacacaacac acagaattcagc tccataactca gaattaataa 197760
gggatttggc cggagttgagc aacagcgaaga ctataactttaa aacgggatttg ccttttagcct 197820
caataacaa ataagagat attgttaatt atgccattca tttttgcaac aaaaaataaa 197880
tatcttaaat taacccgagat attttgttaa cattagccaa ttgaccaaga atacacaaga 197940
catctatgga ggaactttaa agactttttat aaagggcaca gatagatta tagtatagta 198000
aagacaccttata gatctcaca cataaatatt taaatatcta attacactaa gtttaaatct 198040
aatataataa tgaataagcag ttgattaaa ttccccagttag attttcttgag aatattatta 198120
cctcagattt tatatgccaacta ataccctctt agaactaagtt gccatatttta attgtagctc 198180
cctctttgta atattaaac ataacagta gtaataagga gcaggagttgt gtttttatgta 198240
ataaggaatt gaaaaaggga gcagaggtctc tatctagataga attatggatt tactatatgtg 198300
nttaagcttta ggcacatttg ggagctggca gaagacctta tataagcttt tgcgtctgca 198360
tctagtgttc acctccagcg ttatatgtgc agacagacta gcagatggaa aggaagcta 198400
agtgtggtctc agagatggg ccaactggaa ccagtgaga caaactggag ctggaactgct 198480
aacccacaag acagagcaga accagtgtgt gttcttctgcc atttccacaa tcgatgtcat 198540
gatgtgtgac tagaaggtgac ccctttctca catgggaacttg cccacactact cggggcgaga 198600
atggagaatt ctgggttgagc tttccagagaa gctggaggtgg ctggatgtct cagttgtattc 198660
aatataaatgaa cgcagcagat catataacat gcatccaaag cgatgctata ctcgactcct 198720
tctcgaggacc ttcagacgacg atagatgata gatagataa tagatatagata gatagataga 198780
tagatatagata gatagatagca cagatacaca gatagatgca cgattgtgcttg cccctctcact 198840
taccaccttt caaatatatcc acaaaaatgcc tcccgttgcc aaacaaaaact gaggacaca 198900
agggaaaaat aattacagga aatgttaacct cagttataact aatctgacag agtttcaagc 198960
tatcacaat tttgatttttg gtttcttgctc aagaaacaaac agacaaaaac acaagttgag 199020
tgccccgggac atgttactac agaaacttaaa tagacactaa aggaaaacta gctatatgca 199080
cacaaaagact ggatcttttat acaacaataa aaaaaatgga cttcagatag attttgaat 199140
aatatgtctg taatcccagcc acttggcggag gccgaggggcttg tagatcaca aggtgcggag 199200
ctcccagatcagc gccgtccggg ccctttctgc actaaaaata caaaaataa 199260
gatggctttg gttggtgcgg ccctgtctcc cagctactctg ggaggctgtgag gggagaatt 199320
gcttgcaatcc gggagaagcgag ggtggcagttg agcaccacgat gcaccacgtc actccagctc 199380
gggatgacagag cggacaacctc ttcctcataa aataataaaata tgaatgaata aataataaa 199440
agaatataata tgaatgtttat aatctaataa ttataataataatatagaa cttttttggtg 199500
actaggagt agggaggggt taacttataa aaactgaaga agccacagct ataacaaaaa 199560
gaaaaaaaaat aagtaaattt gattacacct aaatttgaggc ttctctgttgta acagagaata 199620
cattggacaa gattggttag ttaggccctgg gggtggtggtgt gacaccccatat aatcccaagca 199680
cattgggatag ctgaggccag agggtcacat gagggccagg gtattgagacc gtttggtggc 199740
acagatgtgg aacctctcttc tcattaaaatgc aaaaaataata attttttttaataatata 199800
ttgaaaatccc aaataaaatc acagttggac aaaggaatacc aaaaaaacac tcaagtgtatat 199860
tatgtgggttag cccacataatt ttatccgccct ccctttgtgtgtttaaacaagctgccttc 199920
cataaaaagaag gtttccgtgta ttctttggccaa gatgataacttc tctcttgtcg ctctgcccgtc 199980
cctgacacaca aagagctatg aatgctcttt gttggtttggtgt ctctacaattt ggtggatcctc 200040
cattgcaaaaa cgggtccctct tcggtatttacc ggaacccttcacctcggagc cttaggtttgt 200100
gggggagagaag atgttccaagct tgttctctgttt tcttggagtgtt gctctgtctcgt ggggtctactc 200160
cattgtttcttc tctcccttgc ttttgaggcttgat agttggataag aatggtcacc 200220
taaaatgattg tgtgttctcttc cctggtggattg atgggagcca atctatctcgtg atggccagta 200280
getggagccc tttcttgagga atggaaaccct tttttgttaa atgtttggtct tcaagctagc tccttgctat 200340
atttcaacctg tgttccctgccc atgacacttctc aatctccggac cttgcacctcgc tctgtagttggt 200400
gttgtatgttg atagaggcacag tggatcccaat tcattctacttc acctctcttcg 200460
catgtaagttg aactccctgct tcataacagtgtcgaaagaggtt accttctttctcgtaaggaat 200520
catgtaacaca aactccctgc ttcataacagtgtcgaaagaggtt accttctttctcgtaaggaat 200580
ccacttccaac cccttggttttt attctcttattt gaaaccaacc tttggtttttt ccctatatatctta 200640
aggggctttgtg atgtttaaccc ttaccactaa attgtctctct tcgaagagaatta tatatatc 200700
getccagatc aagttccgct gctgcaagagt taaccaattttg atggccagca cagctataatt 200760
ccacccggtaa aagttccgcctg cctttcattcttg ggagcacataca taacatcctgtctctcctac 200820
atgagccacatt catttccatcc ccttttcggtc agcactggtttaga tggcatgat gcggctattc 200880
tgtagatagt gttgctctcttc ggttcttttaga atcataatcttc agttggataag atggccagttgctt 200940
ratatgtggc acaaaagaactt cttctactcc cttctactcc ctttggttccaccaaccctctctctcttc 201000
tatacctttctt cttctttcttcc atctctctttc gggctctcctgc ccatgatgctg gattttatttc 201060
attatccag aagggatcaccc tgttgcccataa aaggtgacacta caggtgatac ttcacacactc 201120
acaggttagtg aaggttggctt cttgcctacatc cttataataatc cttggaaatcaatgaaat 201180
gactggatgttc catttttttgc attttttttcg aaaaaaaaaacc ttcagcctcttc cttatcttata 201240
tcaagctttg gattttggtt cttccattag cttgtcatga gagatccca atatgatcat 201300
agttagattga agggagagct ttagatgcga gttgtaaat tcatggtggt gtgggtcaga 201360
tgtcataagttg cttgggttct tcttgcagct cttcgtttcc cattacacag 201420
gataactttag gggcttttagc tggatggagat aactgtttctt gataagctct 201480
agtctggcc tttcttgagg gcatgccact tgtgtgcctcct cggcaggca 201540
ttcattgaaa gcgggagcgt atccagcttag ttttggtttg gtttttttcaat gtatataatt 201600
ctttttgctc cagacaatccaa gacgctggca ctgttatctc cctgtctggg cttactgtag 201660
cccatggccc cacttttgtt acgtggtattc ctaatccacag ttagatgtga 201720
gatcctttgtc gtccaaagtag tgggagttgct agtctcctccac cttgatttgc gatcaagaaat 201780
cctttgtaga ctagacgtct cttagaatct gcgtgtctgcct ctttttttttt ctttttttttt 201840
ccccccccctt gacaggtttcagt cttgcttgagct taggtgacatatt tggggtcaca 201900
gctcgagcgc gcctcaactcc cccaggtcat agtgattcct ctagccagctc gctctgcaga 201960
gctggactcai cagcagcttg gccaccaccc agtgattttc ttttatatttt gtagatagttg 202020
aggtttttgca agtttggcagc gcaataagat ggtctattttcg cttaagctttc 202080
cataagtttag cctttagtcag gaaaaagctcg gtaaaaaagaat gtagggacat gatattagca 202140
tagagggttctt tctcttgtaga tgaaaggtgcc aagatgttaat gtgggttgcc tttactgttgg 202200
atatgtgccct tggatatattt ccacatatgagc ctataaaaaat tggctgatag 202260
tccagccccagc gtaatttattg cattagctata catctctcct gaggaccagat gtcttactca 202320
agctcccttg caggtgtagtcat ataaaaatataa ccttattttttt cattagctttc 202380
tgtgtagtagct tatttttactg ctgctttcgagc gctcattacttg cttgctgtcag 202440
tattattacc cagcagcagag gaaaaagactgt tccctgggttaa ctagaaagcactg 202500
tttccccattc cctagagatat gcaacaggcttct cttgtagacaat atataaaaagaatgttatggc 202560
caagtcagttag gttaagatagctg acctcctgttc atctctctctgc gcaagatgataagc 202620
taattattac tagtcctcttg gttgaaatttt gggaaacacact tttattaaggg gacagtttctc 202680
tggcagttctt cccagggctcttg ccgggctttgttgtgggctttcgagcacaatggctttccaaataaatggtcagcctaatgcagttgcaatgcttggatatactttagtttattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
gttccctgtt tccaggctag caaccttttg ctgctgcttc atatgtttga agagatgga 203040
ggaataaac ctgctctctc aaaccccttt ataagctctta atcctaatcca ggtggtgctt 203100
gcccctcataa tttaatcacc tccaaaaggc cctccatcttg gcagatcact tgaggtaag 203160
agttcaagac cagcctggac aacagtctga aaactcatct ctactaaac tacaanaatt 203220
agccagggcat gtgtggcatac gctctgaatcc caaactactt gggaggctga gccaggagaa 203280
ttgcttgacac ccagggaggt gagggttgag tgggtgtgga tccaccacca gcactccgac 203340
cctggcaaca gacgaaatttg cttcctcaac aaacaaaaa ccaaaaaaac cttccccctct 203400
aatactatc tattaaccct taagttcaa cacatgaatt tgggggacac catttagacc 203460
gtatcagatg ggatgtggtg gaagagtggg tatttttaga ggcctccact tcggctttcc 203520
cactatgaga tcccctactc tacagccaa agacccaataag ttaggtggtg gcacagtact 203580
acataggcca atccccataa tactttttgtg aaccaggga agacagcata gttgggaaaa 203640
caacaccaaat aggctgctca taagcaagac ttttgctata acactgtatg gctctattct 203700
aacaggaga ccatgtgttt actttggtcc tctggttttt atgttccact cagacccctt 203760
cctcccaacaa tgtccaaaat atttgggtga ccctgaattag tcggctttcc atcccttttg 203820
gaagagactag caggttatatt taacacgtaat atttggtctgg gcacagtacg tccacccctgt 203880
aatcccaagca cttttgggagg ccagggggtg tggattacact gaggtcagag ttcgagaccc 203940
agcctgacca acatgaataa accccttcctc tactatattaat acaaaattag ctgccttgag 204000
ttgctatgct cttatatccg agcctatcgag gaggtcgtagg cagggagaatc gcttgaactt 204060
gggagggcca gtgtgagcgca gagatgtgcgc acgtgcacct cgcctggggt aacaagagca 204120
agcctccatc tccaaaacca aagaaaaaca cacacaaaaa aatgtatatt tggcatgagg 204180
tttaggtctca tccctgtgca aggcctgccc ttttttctgt caatggtgctg tcgcgtggtc 204240
aacgaattta gtcacaggag ctaaattgtc ctcataatttag tgtctcaccac tatttataat 204300
cctctgtag tacagccgca gttataactc tactgtctaat atatatttgcc cctatggata 204360
cctgtatccca accatctctc ttactctcttg acgggtcagcc cctttttggtt ataaaccctat 204420
gagctgtgctc ctcaatttaga taatattgtc aatgtggtctt ccggcatgct ctcataacac 204480
acacccctctta tgtttttgga atccatatcc ccacactgct tttattgagt ttcactctgta 204540
atggctcttc ctaatattaa cccgtgctaa taaagaattc ccacagcacta acattttagtt 204600
gatgctggta cccctctcact ctgtgcttga ctaatggttg gtcacaatag 204660

127
aggccttgg gagataaattc ggtttgataa aggtcatcag agaagagctcc tctttagtggg 208140
attatgtcct ttataaaaaag aagaaagagt taccaagagcg ctctctctgc cacatgagga 208200
cacagcaaga tgacagcttt ctgcaagccg agatggtgttc ctccaccagaag ctcacattcg 208260
ccagcaccct gccatctggtc ttccaacctcc cagaacttggg aaaaagttctc ggtagtatattttta 208320
aatcaccagt ctatgtatgt tgtatattgt ggtgccaacag ccacactaaaga cacactatgccc 208380
atccatgaac gcacccctgat cttgctcttc caacctctgac aacgtgtgaaag aggtctcttg 208440
ttatataaat caccagctctaa tgggttgggt tagtagtgggt gcacaaagcaccctta actaaagacaa 208500
ccatgccccat ccagccagcct cccctcatgg cttctcccaac cctcccagacg tgggtaaaaggg 208560
agtctttatc cactatcatg atgtgtgtatg aagaggtgtcc caaccccccttc caggaactatatg 208620
agagaagcaga ccacgagctac ccctctttttt ggaagcagcct tcacaaatctt gagaagtttt 208680
tttttttttttt tagacacaggt ctcacttttgct acaccaggtgc gaggatcgacga atggcatgtg 208740
cttggtccat gcggacaccttc gcttccccaggg ttcagatcgtgg tctctctctgc ctgcacctcc 208800
agtagctgag attacaggtct cttgccaccata tttttctttgtctatagataa 208860
gacggggtttc caccattgtg gcccaggtctgg tgtgaacactc tctggttcagatgtgcacc 208920
catctaggca gcctctataatg gagaactcaag gcccgggttcct cggggtccaca cactctaatctc 208980
cacactttgtg gaggcccgag gcagggcatg caacatgctcag ggaattgaga caccactttgg 209040
cc acct tagt gaaaccctat ctctactaaa aataacaaaaa ttagccgggc atgatgtggc 209100
gggcctgttaa tccacagctac gacggtgggc gacggagcag aatggctgtac acccgggaggg 209160
cggaggtcagg ccagccagcccttg ctgacactcc agctgggttgga cagatgtagctgacaact 209220
catccgcttca aaaaaaaaaaaaaaaaagcttacag cacaggcccc tctacaaaaa ccagcataac 209280
agacacttcca ggggagatgt gcagagacat ctgggggtgt cgaatggggtgt ttttcctcatg 209340
gcatgaccta aggaagagac gatgtatatc ctgtagactaa agttcggatt gctctctctgc 209400
ctctctcttct ccaacagcctg gccatctgggt gtttctttttta attctggtaca cgataaaaagt 209460
tcactccttta ccacctacctg atcaggtgatc gtctctctcttc ttttttttttc gatctca 209520
gcaactggaggt ctgacagctg ccacagcagg gcaaacacaccttg cagatgtgggaa 209580
atagcaagattagttgccag gcagatagtaa ttc 209613

<210> 8
<211> 2236
<212> DNA
<213> Homo sapiens
<400>  8  
gggactacct tacgctggcc atgtgctggc caggtctgtga gtggaccacca gcccaagaag  60  
tgttgaggag aagccctgaa gatgtgcctgt ctctccattc aacctccacc atgattgtaa  120  
tgtgcctctg cccctcccagc ccctctctctg cgacacccgt gtaactgttg aacttcctca  180  
tagtagagag aatgtgcttg ccctccaatag gtccatgaga tctgacagga  240  
atataataatgt tggaaaaaggt ttggttccag tttaaatatt ctatctgttg ttgagtgttg  300  
aagcattctgt ccctacattc gatttgggaa caaacaaca caacaataca gcataagtta  360  
gagatgtaaa gttttgctctg gtcgggtgga gcccaacag aaggaagca attgcactgt  420  
tatatgacaa ggaactcggg tgtgaggaag ctgaagaaga cataaagac atctgtgctg  480  
gagacagcag atactgtgagt cacaaaccg ggccgttgct gcgcctcagtt caggcgactg  540  
gcactcccctc cattttcttt attgctccatg aacactcctaa attactccac catgcaacggg  600  
gctgcctgatgt caccatttct aagaactgga catcaggggg aatagggttt gaccaagggga  660  
ctctactaaat aacggctata gcctgagact cctctttttaa gcccgggtttt gaacaggtca  720  
cttttggcaca catttgccac cggaagtctcg aacctggcaca aacaactgtct gaagaactgt  780  
tcaactgttag caaagaatac cccaaacttcc caaacctcgtg tgtgatacaata atgtgactt  840  
atgattttta tgaaggccaa gccgagaactg atggagcaat ctgctctcttt tccagagaaa  900  
aaaagtttga cacactctagag gaagcattta aagcttgttg caggaatttt gaattttgaa  960  
gtacactgttttg acaagtcaaat tgtgactctg tgtgtctaaat aagctgtctgtg gtctgtgtag  1020  
acactccctga cagactcggc gtgtgactcag tcaacctccgc ctcatgtgtc ctgctgtgattg  1080  
accagcaagcg gggtgactct ctaaactccc acctcactcag acggccgattt gacactttag  1140  
actagactgc tcaactcgggc agcccaaccc tccccctgca aatgtctgct caagtgtaaa  1200  
tgtgaaagtgc atatattatt tgtggtcactt ttatatagtt ctctcatcctc ctgtaaatggc  1260  
aaagactttta tcgaattcct ctctttttta aaggaattta ttgtaaaga atactccacac  1320  
taaatttaat tcaaaatttta attgtaaatgt aatcagtcatta taattttaattattttta  1380  
ttaaactactgtgctt cttccatttg acatcctgtg cttccatattg agcattaatt aagctccact  1440  
caaatagac cagccatattc ccaattgcagtc cttggtctgga accaattccag  1500  
aaattctagtt taagacacttg tcagggactct tcagggattg gcaagactgac agaaactgatg  1560  
catcttagtta ccaaatattc acaagaaaaa ttgctagtcg aatgtctggtct tatgtgaaaa  1620  
tagttacattt aggaaaaatat gcgctcattagt ttttttacct cctgcttaata ttcagtgca  1680  
131
cagagaatag gattcgtgat ttaatatgtgc ctgttttgc ttttatctca gaatataaca 1740
actctggatt acatatttctt cttcaactgaa aaccctcagt aatgcagaaga aaggccctcc 1800
ttttttctca gaaacaaga tgaactaatgt gctttctgc catattttttct gttaaaaaaa 1860
gtgtttttgag gaggctgtat tttttatttcc attttcataat taaccaaaata ggctgagaa 1920
ttcatagccaa ttgaatgata acttgcagttc aagatgttaa aggaatctcttt tttgtatgact 1980
tgtccagacc ggctatttgc ctcacccggt tgattctctgt ggaggcatgg ggtctccctctt 2040
ggctgcaacat gctctctgttg aactgtcagc atctttggtt cttcctcaatt tgacatactt 2100
ggagtgtagg atgactgtgat gggggattgg tagagggtga cggtgcacact tgtatagttat 2160
gtaatgttgtgt gtcacatatta ttatatgtgt tgtggctcaaa ataaagttta attccaaacac 2220
aaaaaaaaaa aaaaaaaaa

<210> 9
<211> 2236
<212> DNA
<213> Homo sapiens

<400> 9
gggacttcac cagtgctgcc atgcgtggcc caggctgtga gttggaccca gaccaagaag 60
tggtgaggac aaggcctgaa gatgtgcttg cttcctcattc aacctccacc atgattgtaa 120
gtgtctcttgag gccctccagcc catgctttcct gtacagccttg tggactgttg accttttcca 180
tagtagagag aatggcctcga gttatacttg cctcacaataag gtcagctgag tctgacagga 240
atacatatgt tgtaaaaagg ttggttcacg tttaaaaaac ttactttggat tgtatggttg 300
aagacattct ctatcactttg gatttgggaa caaacaacaca cacaattcca gcaatgttgg 360
gagatgtgaa gttgttctgt ctgcggtgag gcccaccacag aatgaagaagaca ttggactgatg 420
atatggccaa gggactccggg tttgggaaga cttgtaagaag acataaaagac atcttgctgg 480
ggacagacag atactgtatg tacaataacgg ggccgtgtgtg cgcacatcgt caagggcatgg 540
gcattccctc ctttcttatt atgccctcag aacctccatcag cttaactttgctagctg 600
gctggagtct gaccattttt aagactggta cttccgggg gataggggtg gtcaccaggga 660
cctttagttat aaccggtata gctgtgactc cttccttttaa gcccgggtttt gacacgtcga 720
ttttgccaa cattgtcaac cgaagatcgtg aactggcaca aagaactgtct gaagaactcg 780
tcaactgtag caaagaatac cccaactcacc caacccctgt tggacataca atgtgtcaacct 840
atgaatattta tgaagggccaa ggccgacatag atggaacactgt ctgctcctttt tccagagaa 900
aaagttgaga ctacgtaag aagcctatga aacgtctgtg caggaatatt gaatggaat 960
tcagtttct tgcagctag tgggtggtcct gtggcctaa aacgtctgtg tgcctgtgga 1020
caattctcag cagacatcag tcagctgcag tcacactgcct tcacactgcct tcgctgtgag
1080
accacaaga gcctcagcgc tcaacttccca acctccactc aggcgacggtt ggacattttg 1140
actagactc tcaactcgggc agcctcaacc cccccctcgaag tgggtagct caagttgtaa 1200
ttgaaagttgct atatatatttg tgggcaatttt tataatattgct cctatccaca tgaataatgg 1260
aaagacattta tgaattccct ttcctcttaaa aagaatttta tttttaaagta atactcacaac 1320
taataaatat tcaatatttca ataaaaatata gtagtctcaaa taatttaaat 1380
ttttaaaatcct atggattatgtg ccatttttagg ttttcatatgc agcattaattttaaasctcagat 1440
caaatatcgc cagcctatttg cacatgtaa ccagtcacgc tgggtctgaa accatccag 1500
aaatccagtgt tagaacattgc caggcacttc ttaggtatttg gacaaagctag aaagactgat 1560
catccatatt caaattatattt agagaaaaaaa gttgcagttg aataggtggt tttatgaaaaa 1620
agttgcaattg cagaaatatgg ggcctactgg tttttttacc cctgcaactt ttcagttgcac 1680
cacagaataag gattcagagat ttcacagatc ctggttattgta ttttatctca gaataaaaca 1740
actctcggatt acatcttacct tccaactggaa aaccctcagt tttgcagaaaa aagggctttc 1800
tttttcttca gactaaataa gcctctcagct cattttttct tgaatattaaag 1860
tagtttttagg gaggctgtat tttttatccc atttcattatat aacccttataa ggcctgaaa 1920
ttctcagaaa ttaaatgttaa actggagtcc aagatgttaa agaataccctt ttgttgact 1980
tggtcagacc gcctcttattgc ccctacccctt tgatgtcctgt gaggctagtgg tagctctcct 2040
ggctgcacat gtctcctgtg aacctgcactc atctgggttt cttctcatttg gagatcactt 2100
gggagtcgga atgagtcggat gggggtatgg tagaggtatga ctggcactgc ctgtatatatt 2160
gtaatgttgtgt tacatattt tttatatggt tgggtctcaaa ataaagttaa attcctcaacac 2220
aaaaaaaaaaaaaaa 2280

<210> 10
<211> 310
<212> PRT
<213> Homo sapiens
<400> 10

Met Ala Ala Thr Gly Ala Asn Ala Glu Lys Ala Glu Ser His Asn Asp
1 5 10 15

133
Cys Pro Val Arg Leu Leu Asn Pro Asn Ile Ala Lys Met Lys Glu Asp
20 25 30

Ile Leu Tyr His Phe Asn Leu Thr Thr Ser Arg His Asn Phe Pro Ala
35 40 45

Leu Phe Gly Asp Val Lys Phe Val Cys Val Gly Gly Ser Pro Ser Arg
50 55 60

Met Lys Ala Phe Ile Arg Cys Val Gly Ala Glu Leu Gly Leu Asp Cys
65 70 75 80

Pro Gly Arg Asp Tyr Pro Asn Ile Cys Ala Gly Thr Asp Arg Tyr Ala
85 90 95

Met Tyr Lys Val Gly Pro Val Leu Ser Val Ser His Gly Met Gly Ile
100 105 110

Pro Ser Ile Ser Ile Met Leu His Glu Leu Ile Lys Leu Tyr Tyr
115 120 125

Ala Arg Cys Ser Asn Val Thr Ile Ile Arg Ile Gly Thr Ser Gly Gly
130 135 140

Ile Gly Leu Glu Pro Gly Thr Val Val Ile Thr Glu Gln Ala Val Asp
145 150 155 160

Thr Cys Phe Lys Ala Glu Phe Glu Gln Ile Val Leu Gly Lys Arg Val
165 170 175

Ile Arg Lys Thr Asp Leu Asn Lys Lys Leu Val Gln Glu Leu Leu Leu
180 185 190

Cys Ser Ala Glu Leu Ser Glu Phe Thr Thr Val Val Gly Asn Thr Met
195 200 205

Cys Thr Leu Asp Phe Tyr Glu Gly Gln Gly Arg Leu Asp Gly Ala Leu
210 215 220

Cys Ser Tyr Thr Glu Lys Asp Lys Gln Ala Tyr Leu Glu Ala Ala Tyr
225 230 235 240
Ala Ala Gly Val Arg Asn Ile Glu Met Glu Ser Ser Val Phe Ala Ala
245  250  255

Met Cys Ser Ala Cys Gly Leu Gln Ala Ala Val Val Cys Val Thr Leu
260  265  270

Leu Asn Arg Leu Glu Gly Asp Gln Ile Ser Ser Pro Arg Asn Val Leu
275  280  285

Ser Glu Tyr Gln Gln Arg Pro Gln Arg Leu Val Ser Tyr Phe Ile Lys
290  295  300

Lys Lys Leu Ser Lys Ala
305  310

<210>  11
<211>  317
<212> PRT
<213> Homo sapiens
<400>  11

Met Ala Ser Val Ile Pro Ala Ser Asn Arg Ser Met Arg Ser Asp Arg
1   5   10   15

Asn Thr Tyr Val Gly Lys Arg Phe Val His Val Lys Asn Pro Tyr Leu
20  25   30

Asp Leu Met Asp Glu Asp Ile Leu Tyr His Leu Asp Leu Gly Thr Lys
35  40   45

Thr His Asn Leu Pro Ala Met Phe Gly Asp Val Lys Phe Val Cys Val
50  55   60

Gly Gly Ser Pro Asn Arg Met Lys Ala Phe Ala Leu Phe Met His Lys
65  70   75   80

Glu Leu Gly Phe Glu Glu Ala Glu Glu Glu Asp Ile Lys Asp Ile Cys Ala
85  90   95

Gly Thr Asp Arg Tyr Cys Met Tyr Lys Thr Gly Pro Val Leu Ala Ile
100 105  110

Ser His Gly Met Gly Ile Pro Ser Ile Ser Ile Met Leu His Glu Leu

135
<table>
<thead>
<tr>
<th>115</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile Lys Leu Leu His His Ala Arg Cys Cys Asp Val Thr Ile Ile Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>Ile Gly Thr Ser Gly Gly Ile Gly Ile Ala Pro Gly Thr Val Val Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Thr Asp Ile Ala Val Asp Ser Phe Phe Lys Pro Arg Phe Glu Gln Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Ile Leu Asp Asn Ile Val Thr Arg Ser Thr Glu Leu Asp Lys Glu Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Ser Glu Glu Leu Phe Asn Cys Ser Lys Glu Ile Pro Asn Phe Pro Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Leu Val Gly His Thr Met Cys Thr Tyr Asp Phe Tyr Glu Gly Gln Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Arg Leu Asp Gly Ala Leu Arg Cys Ser Phe Ser Arg Glu Lys Lys Leu Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Tyr Leu Lys Arg Ala Phe Lys Ala Gly Val Arg Asn Ile Glu Met Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Ser Thr Val Phe Ala Ala Met Cys Gly Leu Cys Gly Leu Lys Ala Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Val Val Cys Val Thr Leu Leu Asp Arg Leu Asp Cys Asp Gln Ile Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Leu Pro His Asp Val Leu Val Glu Tyr Gln Gln Arg Pro Gln Leu Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Ile Ser Asn Phe Ile Arg Arg Arg Leu Gly Leu Cys Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
</tbody>
</table>