8/069431 A1 I AT A0 000 O 0O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 June 2008 (12.06.2008)

‘ﬂb’ A0 O 00

(10) International Publication Number

WO 2008/069431 Al

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/KR2007/005029

(22) International Filing Date: 15 October 2007 (15.10.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
10-2006-0124059
7 December 2006 (07.12.2006) KR
(71) Applicant (for all designated States except US): ELEC-
TRONICS AND TELECOMMUNICATIONS RE-
SEARCH INSTITUTE [KR/KR]; 161 Gajeong-dong,
Yuseong-gu, Daejeon 305-350 (KR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KIM, Hong Soog
[KR/KR]; Electronics and Telecommunications, Re-
search Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon

305-350 (KR). PARK, Nam Hoon [KR/KR]; Electron-
ics and Telecommunications, Research Institute, 161
Gajeong-dong, Yuseong-gu, Daejeon 305-350 (KR).

(74) Agent: JANG, Seong Ku; 19th Fl., Trust Tower, 275-7,

Yangjae-dong, Seocho-gu, Seoul 137-130 (KR).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DOWNLOAD SERVER AND METHOD FOR INSTALLING AND UPDATING APPLICATION PROGRAM USING

PARTITIONING OF SHARED LIBRARY

61 63 64 65
/ /
APPLICATION s PARTITIONED
PROGRAM [DEPENDEUCY L _ispiaRnD LBRARY|— DATARASE
STORAGE UNIT GENERATOR
| | —— 0
| CONTROLLER 67
T CONNECTION MODULE F_ 69

WIRED/WIRELESS
NETWORK

82
/

‘ CLIENT DEVICE | MEMORY

[~—80

(57) Abstract: A download server that transmits, when it receives a request of one or more application programs from a client
device, to the client device connected to the download server via a wired or wireless network the application programs includes a
& dependency analyzer, a partitioned shared library generator and a controller. The dependency analyzer that analyzes a dependency
& of each of the application programs on existing shared libraries to detect object codes, which are actually used by corresponding
application program, in the existing shared libraries; the partitioned shared library generator that generates, based on the analyzing
result of the dependency analyzer, partitioned shared libraries having only the actually-used object codes; and the controller that
transmits, by using a connection module, partitioned shared libraries selected from the generated partitioned shared libraries, and the
application programs linked thereto to the client device via the network.

WO 2008/069431 A1 | NI DA 00 000000000 00

Published:
— with international search report

[1]

[2]

[3]

[4]

[5]

[6]

[7]

WO 2008/069431 PCT/KR2007/005029

Description
DOWNLOAD SERVER AND METHOD FOR
INSTALLING AND UPDATING APPLICATION
PROGRAM USING PARTITIONING OF SHARED

LIBRARY
Technical Field

The present invention relates to an application program installation technique. In
particular, the invention relates to a download server that minimizes download traffic
by means of partitioning shared libraries used by an application program and using
partitioned shared libraries to install and update the application program, and a method
for installing and updating an application program using partitioning of shared
libraries.

This work was supported by the IT R&D program of MIC/IITA. [2006-S-012-01,
Development of Middleware Platform Technology based on the SDR Mobile Station]

Background Art

In case of using a static library, when fifty to a hundred processes, for example, are
run on a system, copies of executable codes for necessary functions are needed for
each pracess, which causes a significant waste of a memory.

A shared library is an object module capable of solving such drawback in the static
library. The shared library can be loaded to a certain location in a memory at runtime
and linked to programs in the memory. The shared library is often called as a shared
object. A file name of the shared library is ended with '.so' in most Unix systems and
".sl'in HP-UX systems. Microsoft Corporation calls the shared library as a Dynamic
Link Library (DLL).

To solve a problem in the static library technique that object codes shared by two or
more application programs are stored in a memory repeatedly, a shared library
technique minimizes the use of the memory by gathering the shared object codes into a
shared library and sharing them on the memory. Awordingly, the shared library
includes all object codes on which application programs are likely to have a
dependency.

Fig. 1 illustrates application programs having a dependency on conventional shared

libraries.

WO 2008/069431 PCT/KR2007/005029

[8]

[9]

[10]

[11]

[12]

[13]

Referring to Fig. 1, conventional application programs Appl and App2 have a
dependency on one or more shared libraries libA.so, libB.so, and libC.so. For
convenience of explanation, the application programs Appl and App2 shown in Fig. 1
have a dependency on two shared libraries libA.so and libB.so and shared libraries
libB.so and 1ibC.so, respectively, however, the application programs may have a
dependency on two or more libraries.

In Fig. 1, the application program Appl has a dependency on object codes al.o and
a2.0 in the shared library libA.so and an object code b3.0 in the shared library 1ibB.so,
thus resulting in having a dependency on the libraries libA.so and libB.so that include
the object codes on which the application program Appl has a dependency. Likewise,
the application program App2 has a dependency on the object code b3.0 in the shared
library 1ibB.so and an object code c1.0 in the shared library libC.so, resulting in having
a dependency on the libraries libB.so and libC.so that include the object codes on
which the application program App2 has a dependency.

As such, the conventional shared library results in an exaggerated dependency f.e.,
the dependency on the shared library which includes the object codes on which the ap-
plication programs have a dependency) in comparison to an actual dependency (the
dependency on the object codes). This is because object codes on which application
programs are likely to have a dependency are included in a single shared library.

Adaordingly, though most application programs use only some of the object codes
included in the shared library, the entire shared library which also includes object
codes being not used needs to be linked.

In case of using such conventional shared library, non-used object codes as well as
actually-used object codes in the shared library will be downloaded and unnecessarily
ocupy a memory of a client device in which the application programs will be
installed. Further, when only some of object codes forming the application program
are updated, since the updated object codes cannot be downloaded separately, the
entire shared library including the updated object codes is required to be downloaded.

The above-described problems are not significant when a device in which an ap-
plication program is installed, e.g., a personal computer, has a sufficient memory
space, or when an application program is installed via a storage medium instead of
downloading. On the contrary, as in a mobile device, when an application program is
installed or updated in a limited memory via downloading, a cost increase due to an
unnecessary use of a communications line or a memory lack in running the application

program can be generated.

WO 2008/069431 PCT/KR2007/005029

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Disclosure of Invention
Technical Problem

In view of the above, the present invention provides a download server capable of
reducing download traffic of an application program and saving memory space of a
client device in which the application program is installed, by partitioning shared
libraries to generate partitioned shared libraries having object codes actually used by
the application program and transmitting the partitioned shared libraries and the ap-
plication program linked thereto to the client device.

The present invention is also provide a method for installing and updating an ap-
plication program by using partitioning of shared libraries, which is capable of
reducing download traffic of the application program and saving memory space of a
client device in which the application program is installed, by partitioning, in response
to an installation or an update request from the client device, the shared libraries to
generate partitioned shared libraries having object codes actually used by the ap-
plication program; linking the application program to the partitioned shared libraries;
and transmitting the partitioned shared libraries and the application program to the

client device.

Technical Solution

In acwordance with a first aspect of the present invention, there is provided a
download server that transmits, when it receives a request of one or more application
programs from a client device, to the client device connected to the download server
via a wired or wireless network the application programs, the download server
including:

a dependency analyzer that analyzes a dependency of each of the application
programs on existing shared libraries to detect object codes, which are actually used by
corresponding application program, in the existing shared libraries;

a partitioned shared library generator that generates, based on the analyzing result of
the dependency analyzer, partitioned shared libraries having only the actually-used
object codes; and

a controller that transmits, by using a connection module, partitioned shared libraries
selected from the generated partitioned shared libraries, and the application programs

linked thereto to the client device via the network.

WO 2008/069431 PCT/KR2007/005029

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

In acordance with a second aspect of the present invention, there is provided a
method for installing an application program using partitioning of shared libraries,
wherein a download server transmits the application program to a client device via a
wired or wireless network when the client device sends an installation request of the
application program, the method including:

determining whether the application program is linked to partitioned shared libraries
which only have object codes actually used by the application program;

generating, when the application program is not linked to the partitioned shared
libraries, the partitioned shared libraries having only the actually-used object codes and
linking the application program to the generated partitioned shared libraries; and

transmitting, when the application program is linked to the partitioned shared
libraries, the partitioned shared libraries and the application program from the
download server to the client device.

In acordance with a third aspect of the present invention, there is provided a method
for updating an application program using partitioning of shared libraries, wherein a
download server transmits the application program to a client device via a wired or
wireless network when the client device sends an update request of the application
program, the method including:

determining whether the application program is linked to partitioned shared libraries
which only have object codes actually used by the application program;

generating, when the application program is not linked to the partitioned shared
libraries, the partitioned shared libraries having only the actually-used object codes and
linking the application program to the generated partitioned shared libraries; and

transmitting, when the application program is linked to the partitioned shared
libraries, the partitioned shared libraries and the application program from the

download server to the client device.

Advantageous Effects

As described above, in amordance with the present invention, a download server
partitions shared libraries used by an application program, in response to an in-
stallation or update request from a client device, to generate partitioned shared libraries
being in one-to-one correspondence with actually-used object codes. The application
program is then linked to the partitioned shared libraries, and transmitted to the client
device.

Therefore, in acordance with the present invention, it is possible to reduce

WO 2008/069431 PCT/KR2007/005029

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

download traffic of the application program and save memory space of the client
device in which the application program is installed.

Furthermore, in acordance with the present invention, when some of the object
codes used by the application program are updated, only the updated object codes are
downloaded, thus preventing unnecessary downloading and facilitating dependency
management between the updated object codes and the application programs using the

object codes.

Brief Description of the Drawings

The objects and features of the present invention will become apparent from the
following description of embodiments given in conjunction with the awompanying
drawings, in which:

Fig. 1 illustrates application programs having a dependency on conventional shared
libraries;

Fig. 2 is a black diagram schematically illustrating a client device and a download
server that provides partitioned shared libraries and application programs in
acordance with the present invention;

Fig. 3 illustrates a flowchart of a process in which a download server generates
partitioned shared libraries in acordance with the present invention;

Fig. 4 illustrates an example of a dependency relationship table, stored in a download
server, between application programs and partitioned shared libraries in acordance
with the present invention;

Fig. 5 illustrates application programs linked to partitioned shared libraries in
acordance with the present invention;

Fig. 6 illustrates a flowchart of a process in which a download server transmits an ap-
plication program to a client device to install the application program therein using
partitioned shared libraries in acordance with the present invention; and

Fig. 7 illustrates a flowchart of a process in which a download server updates an ap-
plication program in a client device using partitioned shared libraries in acordance

with the present invention.

Best Mode for Carrying Out the Invention
Hereinafter, embodiments of the present invention will be described in detail with

reference to the awompanying drawings so that they can be readily implemented by

WO 2008/069431 PCT/KR2007/005029

[45]

[46]

[47]

[48]

[49]

those skilled in the art. In the detailed description, "A has a dependency on B" or "A
depends on B" means that "B must exist at a location accessible to A in order for A to
achieve a desired purpose”. Further, an "application program" is limited to an ap-
plication program using shared libraries or both static libraries and the shared libraries,
and does not indicates an application program using only static libraries.

Fig. 2 is a black diagram schematically illustrating a client device and a download
server that provides partitioned shared libraries and application programs in
acordance with the present invention.

A download server 60 of the present invention includes an application program
storage unit 61 for storing therein application programs to be provided to a client
device 80, suwch as a personal computer, a mobile device, and the like; a dependency
analyzer 63 for analyzing a dependency of each application program on existing shared
libraries to detect object codes actually used by the application program; a partitioned
shared library generator 64 for partitioning, based on the analyzing result of the
dependency analyzer 63, the existing shared libraries to generate partitioned shared
libraries having only actually-used object codes; a database 65 for storing therein
mapping information between the existing shared libraries and the partitioned shared
libraries and dependency information of each application program on the existing
shared libraries and the partitioned shared libraries (e.g., a version, depending object
oodes, and the like); and a controller 67 for controlling the components of the server to
generate the partitioned shared libraries in response to a request from the client device
80 and download (transmit) the partitioned shared libraries and the application
program to the client device 80.

The download server 60 further includes a connection module 69 for transmitting
data to the client device 80 via a wired/wireless network 70.

The client device 80 stores the partitioned shared libraries and the application
programs downloaded from the download server 60 in a memory 82, and installs or
updates the partitioned shared libraries and the application programs.

In the download server 60 and the client device 80 having the above-described con-
figuration, when the client device 80 connected to the download server 60 sends an in-
stallation or update request of a specific application program via the wired/wireless
network 70, the dependency analyzer 63 in the download server 60 analyzes the
dependency of the requested application program on the existing shared libraries, and
then, the partitioned shared library generator 64 generates, based on the analyzing

result, the partitioned shared libraries having only the object codes actually used by the

WO 2008/069431 PCT/KR2007/005029

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

application program. The download server 60 stores in the database 65 the information
on the shared libraries on which the application program depends and the partitioned
shared libraries having the object codes on which the application program actually
depends.

The download server 60 links the requested application program to the partitioned
shared libraries to thereby make the application program use only the partitioned
shared libraries, and transmits the application program and the partitioned shared
libraries to the client device 80 via the wired/wireless network 70.

Fig. 3 illustrates a flowchart of a process in which a download server generates
partitioned shared libraries in acordance with the present invention.

Referring to Fig. 3, when the client device sends an installation or update request of
an application program, the download server partitions shared libraries used by the ap-
plication program and links the application program thereto.

First, the download server checks the application program requested by the client
device and shared libraries on which the application program depends (steps S100 and
S110).

The download server checks object codes, on which the application program actually
depends, in one of the shared libraries (step S120).

The download server records information on the shared library on which the ap-
plication program depends and the object codes on which the application program
actually depends, in a dependency relationship table in a database (step S130).

The download server determines whether there is another shared library on which the
application program depends (step S140).

If it is determined in the step S140 that there is another shared library on which the
application program depends, the download server repeatedly performs the steps S120
to S140 on the shared library on which the application program additionally depends.
If it is determined in the step S140 that there is no more shared library on which the
application program depends, the download server determines whether there is another
application program requested to be installed or updated by the client device (step
S150).

If it is determined in the step S150 that there is another application program to be
installed or updated, the download server returns to perform the step S110 in which the
shared libraries on which the application program depends are checked.

If it is determined in the step S150 that there is no more application program to be

installed or updated, the download server determines that analysis of dependency in-

WO 2008/069431 PCT/KR2007/005029

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

formation of the application programs to be installed or updated, which is linked to the
existing shared libraries, has been completed. The download server partitions the
existing shared libraries to generate partitioned shared libraries being in one-to-one
correspondence with the object codes recorded in the dependency relationship table
(step S160).

The download server links each application program recorded in the dependency re-
lationship table to the partitioned shared libraries to make the application program use
only the partitioned shared libraries (step S170).

Fig. 4 illustrates an example of a dependency relationship between application
programs and partitioned shared libraries in a download server in acordance with the
present invention. In Fig. 4, a dependency relationship table of the application
programs of Fig. 1 is illustrated.

Referring to Fig. 4, the dependency relationship table, which records information on
shared libraries on which two application programs Appl and App2 depend and object
codes on which the application programs actually depend, includes an application
program name field, a version field, a depending shared library name field, a
depending object code name field, and a partitioned shared library name field.

The version field indicates a version of the application program for use in dis-
tinguishing the same named application programs having different program versions.
By using the version field, the latest version of the application program can be checked
when installing the application program and the difference in the dependency re-
lationship between a previous and the latest version can be analyzed when updating the
application program.

The partitioned shared library name field in each row indicates a name of a
partitioned shared library which is obtained by extracting an object code, indicated by
the depending object code name field in the same row, from a shared library indicated
by the depending shared library name field in the same row.

In this example, inclusion relationship between partitioned shared libraries and
existing shared libraries from which the partitioned shared libraries are generated is
indicated by means of the names in the partitioned shared library name field. However,
this is for convenience of explanation, and the method to indicate the inclusion re-
lationship is not limited thereto.

Fig. 5 illustrates application programs linked to partitioned shared libraries in
acordance with the present invention.

Referring to Fig. 5, each of application programs Appl and App2 has a dependency

WO 2008/069431 PCT/KR2007/005029

[68]

[69]

[70]

[71]

[72]

[73]

[74]

on a plurality of shared libraries libA_al.so, libB_a2.so, libB_b3.so and 1ibC_c1.so.

The application program Appl has a dependency on object codes al.o, a2.0, and b3.0
in the shared libraries libA_al.so, libB_a2.so and libB_b3.s0, respectively. The ap-
plication program App2 has a dependency on the object code b3.0 in the shared library
libB_b3.s0 and an object code c1.0 in the shared library libC_cl1.so.

In Fig. 1, the application program Appl depends on the shared libraries libA.so and
libB.so. However, in the present invention shown in Fig. 5, the same application
program Appl depends on the partitioned shared libraries 1ibA_al.so, 1ibB_a2.so, and
libB_b3.s0. Also, the application program App2 in Fig. 1 depends on the shared
libraries libB.so and 1ibC.so, however, the application program App2 of the present
invention depends on the partitioned shared libraries libB_b3.so and libC_c1.so.

As described above, in acordance with the present invention, the application
program depends on the partitioned shared libraries rather than the existing shared
libraries, and thus, when installing or updating an application program via
downloading, instead of the existing shared libraries including object codes that are not
actually used, the partitioned shared libraries having only object codes actually used by
the application program are downloaded. Therefore, download traffic can be reduced,
and also, memory space of the client device in which the application program is
installed can be saved.

Fig. 6 illustrates a flowchart of a process in which a download server transmits an ap-
plication program to a client device to install the application program therein using
partitioned shared libraries in acordance with the present invention.

A method for transmitting the application program to be installed in the client device
from the download server using partitioning of the shared library acording to the
present invention will now be described with reference to Fig. 6.

First, the download server determines whether an application program requested to
be installed by the client device is linked to the partitioned shared libraries (step S200).

If it is determined in the step S200 that the application program requested to be
installed is not linked to the partitioned shared libraries, the download server performs
the process shown in Fig. 3 on the requested application program to generate the
partitioned shared libraries (S210). That is, if the current request for installing the ap-
plication program is the first request to the download server, the application program
linked to the partitioned shared libraries does not exist and awordingly, the process of
Fig. 3 for generating the partitioned shared libraries is carried out. On the other hand, if

the application program currently requested to be installed is an application program

WO 2008/069431 PCT/KR2007/005029

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

previously requested to be installed by another client device, the application program
linked to the partitioned shared libraries exists in the download server.

If it is determined in the step S200 that the application program requested to be
installed is linked to the partitioned shared libraries or the step S210 has been carried
out, the download server checks partitioned shared libraries required for running the
requested application program, by using the dependency relationship table shown in
Fig. 4 (step S220).

Since the partitioned shared libraries required for running the requested application
program may include the partitioned shared libraries which have been already installed
in the client device, the download server checks application programs already installed
in the client device which sends the installation request, and based thereon, also checks
partitioned shared libraries already installed in the client device (step S230). Here, in
order to check the application programs already installed in the client device, the
download server may hold, for each client device, a list of the application programs
which have been installed in the client device by the download server; the download
server may request, when needed, the client device to transmit a list of the application
programs already installed therein; or the client device may transmit, when it sends the
installation request the application programs, the list of application programs already
installed therein to the download server.

The download server obtains partitioned shared libraries to be installed §.e.,
partitioned shared libraries to be transmitted to the client device) by excluding the
partitioned shared libraries already installed from the partitioned shared libraries
required for running the application program (step S240).

The download server then transmits to the client device the partitioned shared
libraries to be installed obtained in the step S240 together with the application program
requested to be installed (step S250).

The client device installs the partitioned shared libraries and the application program
received from the download server according to an installation method of the device.

Fig. 7 illustrates a flowchart of a process in which a download server updates an ap-
plication program in a client device using partitioned shared libraries in acordance
with the present invention.

Referring to Fig. 7, the download server receives an update request of the application
program from the client device and performs an update process of the partitioned
shared libraries and the application program linked thereto.

First, the download server determines whether the application program requested to

10

WO 2008/069431 PCT/KR2007/005029

[83]

[84]

[85]

[86]

be updated by the client device is linked to the partitioned shared libraries (step S300).

If it is determined in the step S300 that the application program requested to be
installed is not linked to the partitioned shared libraries, the download server performs
the process shown in Fig. 3 on the requested application program to generate the
partitioned shared libraries (step S310). That is, if the current request for updating the
application program is the first installation or update request to the download server,
the application program linked to the partitioned shared libraries does not exist and ac-
oordingly, the process of Fig. 3 for generating the partitioned shared libraries is carried
out. On the other hand, if the currently requested application program to be installed is
an application program previously requested to be installed or updated by another
client device, the application program linked to the partitioned shared libraries exists in
the download server.

If it is determined in the step S300 that the application program requested to be
updated is linked to the partitioned shared libraries or the step S310 has been carried
out, the download server checks partitioned shared libraries required for running the
requested application program, by using the dependency relationship table shown in
Fig. 4 (step S320). To be specific, if the client device makes a request for a specific
version of the application program when sending the update request, the download
server checks the partitioned shared libraries required for running corresponding
version of the application program. If the client device does not make a request for a
specific version of the application program, the download server checks the partitioned
shared libraries required for running the latest version of the application program.

Since the partitioned shared libraries required for running the application program
may include the partitioned shared libraries which have been already installed in the
client device, the download server checks application programs already installed in the
client device which sends the update request, and based thereon, also checks
partitioned shared libraries already installed in the client device (step S330). Here, in
order to check the application programs already installed in the client device, the
download server may hold, for each client device, a list of the application programs
which have been installed in the client device by the download server; the download
server may request, when needed, the client device to transmit a list of the application
programs already installed therein; or the client device may transmit, when it sends the
update request the application programs, the list of application programs already
installed therein to the download server.

The download server then compares the partitioned shared libraries required for

11

WO 2008/069431 PCT/KR2007/005029

[87]

[88]

[89]

[90]

running the application program and the partitioned shared libraries already installed in
the client device, thus checking partitioned shared libraries to be added, replaced, or
deleted (step S340).

Here, the partitioned shared libraries to be added include partitioned shared libraries
which are needed to be newly installed in the client device in order to update the ap-
plication program. The partitioned shared libraries to be deleted include partitioned
shared libraries that can be safely deleted from the client device since the updated ap-
plication program and other application programs installed in the client device does not
depend on corresponding libraries while the application program of the previous
version has a dependency thereon. The partitioned shared libraries to be replaced
include partitioned shared libraries which are newly updated and used only by the
updated application program and the application program of the previous version.

That is, since other application programs installed in the client device do not depend

on the partitioned shared libraries to be replaced, the partitioned shared libraries to be
replaced includes a partitioned shared libraries capable of being immediately replaced
for the application program to be updated. If another application program installed in
the client device has a dependency on the partitioned shared libraries on which the
updated application program's previous version depends, the updated partitioned

shared libraries must be included in the partitioned shared libraries to be added, instead
of the partitioned shared libraries to be replaced, to assure operation of the existing ap-
plication programs installed in the client device.

The download server then transmits to the client device, based on the checking result,
the updated application program, the partitioned shared libraries to be added or
replaced, a list of the partitioned shared libraries to be replaced, and a list of the
partitioned shared libraries to be deleted (step S350).

Thereafter, the client device installs, with reference to the list of the partitioned
shared libraries to be replaced and the list of the partitioned shared libraries to be
deleted, the partitioned shared libraries and the updated application program received
from the download server acording to an application program update pracedure of the
device.

While the invention has been shown and described with respect to the embodiments,
it will be understood by those skilled in the art that various changes and modifications
may be made without departing from the scope of the invention as defined in the

following claims.

12

[1]

[2]

[3]

[4]

[5]

[6]

WO 2008/069431 PCT/KR2007/005029

Claims

A download server that transmits, when it receives a request of one or more ap-
plication programs from a client device, to the client device connected to the
download server via a wired or wireless network the application programs, the
download server comprising:

a dependency analyzer that analyzes a dependency of each of the application
programs on existing shared libraries to detect object codes, which are actually
used by corresponding application program, in the existing shared libraries;

a partitioned shared library generator that generates, based on the analyzing
result of the dependency analyzer, partitioned shared libraries having only the
actually-used object codes; and

a controller that transmits, by using a connection module, partitioned shared
libraries selected from the generated partitioned shared libraries, and the ap-
plication programs linked thereto to the client device via the network.

The download server of claim 1, further comprising a database for storing therein
dependency information of each of the application programs on the partitioned
shared libraries.

The download server of claim 1, wherein, when the request from the client
device is an installation request, the selected partitioned shared libraries are
partitioned shared libraries to be installed in the client device.

The download server of claim 3, wherein the partitioned shared libraries to be
installed are obtained by excluding partitioned shared libraries already installed
in the client device from partitioned shared libraries required for running the ap-
plication program.

The download server of claim 1, wherein, when the request from the client
device is an update request, the selected partitioned shared libraries are
partitioned shared libraries to be added or replaced in the client device, and the
controller further transmits to the client device a list of the partitioned shared
libraries to be replaced and a list of partitioned shared libraries to be deleted in
the client device.

The download server of claim 5, wherein the partitioned shared libraries to be
added, replaced or deleted are obtained by analyzing partitioned shared libraries
required for running the application program, application programs already

installed in the client device, and partitioned shared libraries already installed in

13

[7]

[8]

[9]

WO 2008/069431 PCT/KR2007/005029

the client device.

A method for installing an application program using partitioning of shared
libraries, wherein a download server transmits the application program to a client
device via a wired or wireless network when the client device sends an in-
stallation request of the application program, the method comprising:
determining whether the application program is linked to partitioned shared
libraries which only have object codes actually used by the application program;
generating, when the application program is not linked to the partitioned shared
libraries, the partitioned shared libraries having only the actually-used object
codes and linking the application program to the generated partitioned shared
libraries; and

transmitting, when the application program is linked to the partitioned shared
libraries, the partitioned shared libraries and the application program from the
download server to the client device.

The method of claim 7, wherein generating the partitioned shared libraries
includes:

checking object codes, on which the application program actually depends, in the
shared libraries on which the application program depends;

recording information on the shared libraries on which the application program
depends and the object codes on which the application program actually
depends, in a dependency relationship table in a database;

partitioning the shared libraries to generate the partitioned shared libraries
having only the object codes on which the application program actually depends;
and

linking, based on the dependency relationship table, the application program to
the partitioned shared libraries to use only the partitioned shared libraries.

The method of claim 7, wherein transmitting the partitioned shared libraries and
the application program includes:

checking partitioned shared libraries required for running the application
program;

checking application programs already installed in the client device, and based
thereon, partitioned shared libraries already installed in the client device;
obtaining partitioned shared libraries to be installed by excluding the partitioned
shared libraries already installed from the partitioned shared libraries required

for running the application program; and

14

WO 2008/069431 PCT/KR2007/005029

[10]

[11]

[12]

transmitting to the client device the partitioned shared libraries to be installed
and the application program.

A method for updating an application program using partitioning of shared
libraries, wherein a download server transmits the application program to a client
device via a wired or wireless network when the client device sends an update
request of the application program, the method comprising:

determining whether the application program is linked to partitioned shared
libraries which only have object codes actually used by the application program;
generating, when the application program is not linked to the partitioned shared
libraries, the partitioned shared libraries having only the actually-used object
codes and linking the application program to the generated partitioned shared
libraries; and

transmitting, when the application program is linked to the partitioned shared
libraries, the partitioned shared libraries and the application program from the
download server to the client device.

The method of claim 10, wherein generating the partitioned shared libraries
includes:

checking object codes, on which the application program actually depends, in the
shared libraries on which the application program depends;

recording information on the shared libraries on which the application program
depends and the object codes on which the application program actually
depends, in a dependency relationship table in a database;

partitioning the shared libraries to generate the partitioned shared libraries
having only the object codes on which the application program actually depends;
and

linking, based on the dependency relationship table, the application program to
the partitioned shared libraries to use only the partitioned shared libraries.

The method of claim 10, wherein transmitting the partitioned shared libraries and
the application program includes:

checking partitioned shared libraries required for running the application
program;

checking application programs already installed in the client device, and based
thereon, partitioned shared libraries already installed in the client device;
checking partitioned shared libraries to be added, replaced, or deleted by

analyzing the partitioned shared libraries required for running the application

15

WO 2008/069431 PCT/KR2007/005029

program, the application programs already installed in the client device, and the
partitioned shared libraries already installed in the client device; and
transmitting to the client device the partitioned shared libraries to be added or
replaced, a list of the partitioned shared libraries to be replaced, a list of the

partitioned shared libraries to be deleted, and the application program.

16

WO 2008/069431

[Fig. 1]

PCT/KR2007/005029

oga Y 070 "10 @@@@C CCC
o os'gqy 7 bsvan
,,_—_ \\\ /z/ \\ \ \
_./ \\\ ///z \\\ \\\
[} \ tt \\
— \\\ z/z \\ \\
———— \\\\ ’// \
,/ \\\

1/6

PCT/KR2007/005029

WO 2008/069431

[Fig. 2]

08~ [xoman | aoiaza INarD
Z
;
78
MHOMLAN
0L SSHTIIIM/ATIIM
69— FTNAONW NOLLOANNOD
29—~ YA TIOUINOD
VO LVIANID LINN EDVIOLS
ASVEVLVA AIVIErT QEIVES wwmwwwmmma NVIDOYd
TANOLLLLIVd NOLLYOI'TddV
e e I e
g9 79 £9 19

2/6

WO 2008/069431

[Fig. 3]

START

CHECK APPLICATION PROGRAMS
TO BE INSTALLED

~—S100

-

CHECK SHARED LIBRARIES ON WHICH
APPLICATION PROGRAM DEPENDS

~—S110

1

CHECK OBJECT CODES, ON WHICH
APPLICATION PROGRAM ACTUALLY
DEPENDS, IN SHARED LIBRARY

~—S120

l

RECORD INFORMATION ON SHARED
LIBRARY ON WHICH APPLICATION
PROGRAM DEPENDS AND OBJECT CODES
ON WHICH APPLICATION PROGRAM
ACTUALLY DEPENDS, IN DEPENDENCY

~—S130

RELATIONSHIP TABLE

5140

IS THERE
ANOTHER SHARED
LIBRARY ON WHICH APPLICATION
PROGRAM DEPENDS?

S150

IS THERE ANOTHER
APPLICATION PROGRAM
TO BE INSTALLED?

GENERATE PARTITIONED SHARED
LIBRARIES BEING IN ONE-TO-ONE
CORRESPONDENCE WITH OBIJECT
CODES RECORDED IN DEPENDENCY
RELATIONSHIP TABLE

~S160

t

LINK APPLICATION PROGRAMS RECORDED
IN DEPENDENCY RELATIONSHIP TABLE
TO PARTITIONED SHARED LIBRARIES

~—S170

END

3/6

PCT/KR2007/005029

PCT/KR2007/005029

WO 2008/069431

[Fig. 4]

0" 197041 0'[o 0s°OqY 01 gddy
0s ¢q dqI o'gq os"gqi| 01 gddy
os'eq gqn o'gq os'gqi 01 1ddy
0s'zeTvYqI o'ze os yq1| 01 1ddy
os'TETYqN o'Te os'yqy 01 1ddv
HNVN ATVAET] HAVN 9A0O0 | gy xavadrt TNYN NVIDONd
AEIVHS LOArd0 | qmyvhs oNianadaa | NOSEEA | U NoLLvorTddv
QANOLLLLYVA HNIANZJIA

[Fig. 5]

\

\

\
1ibC_c1.s0

AV
libB_b3.s0

yd
libA_aZ2.s0

libA_al.so

cl.o

b3.0

az.o

al.o

4/6

WO 2008/069431

[Fig. 6]

S200

IS APPLICATION

PROGRAM REQUESTED TO BE
INSTALLED LINKED TO PARTITIONED
SHARED LIBRARIES?

N

PERFORM PROCESS OF Fig. 3
ON REQUESTED APPLICATION PROGRAM

~—S210

CHECK PARTITIONED SHARED
LIBRARIES REQUIRED FOR RUNNING
REQUESTED APPLICATION PROGRAM

~— 5220

CHECK APPLICATION PROGRAMS AND
PARTITIONED SHARED LIBRARIES
ALREADY INSTALLED IN CLIENT DEVICE

~ 5230

OBTAIN PARTITIONED SHARED LIBRARIES
TO BE INSTALLED BY EXCLUDING
PARTITIONED SHARED LIBRARIES
ALREADY INSTALLED FROM PARTITIONED
SHARED LIBRARIES REQUIRED
FOR RUNNING APPLICATION PROGRAM

~— 5240

TRANSMIT FOLLOWING TO CLIENT DEVICE
» PARTITIONED SHARED LIBRARIES
TO BE INSTALLED
* APPLICATION PROGRAM

~—S250

END

5/6

PCT/KR2007/005029

WO 2008/069431

[Fig. 7]

S300

IS APPLICATION

PROGRAM REQUESTED TO BE
UPDATED LINKED TO PARTITIONED
SHARED LIBRARIES?

PERFORM PROCESS OF Fig. 3
ON REQUESTED APPLICATION PROGRAM

CHECK PARTITIONED SHARED LIBRARIES
REQUIRED FOR RUNNING REQUESTED
APPLICATION PROGRAM

CHECK APPLICATION PROGRAMS AND
PARTITIONED SHARED LIBRARIES
ALREADY INSTALLED IN CLIENT DEVICE

CHECK PARTITIONED SHARED LIBRARIES
TO BE ADDED, REPLACED, OR DELETED
BY ANALYZING PARTITIONED SHARED
LIBRARIES REQUIRED FOR RUNNING
APPLICATION PROGRAM, APPLICATION
PROGRAMS ALREADY INSTALLED, AND
PARTITIONED SHARED LIBRARIES ALREADY

TRANSMIT FOLLOWING TO CLIENT DEVICE
* APPLICATION PROGRAM
«PARTITIONED SHARED LIBRARIES
TO BE ADDED OR REPLACED
«LIST OF PARTITIONED SHARED
LIBRARIES TO BE REPLACED
*LIST OF PARTITIONED SHARED

LIBRARIES TO BE DELETED

END

6/6

PCT/KR2007/005029

INTERNATIONAL SEARCH REPORT International application No.
PCT/KR2007/005029

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8: GO6F, G11B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility Models and applications for Utility Models since 1975
Japanese Utility Models and applications for Utility Models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) : 'library'.'link’, 'share', 'devide', 'memory’, 'applicatipn'

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A KR 1020060062240 A (ELECTRONICS AND TELECOMMUNICATIONS RESEARCH 1-12
INSTITUTE) 12 June 2006
See the abstract, figures 1-5, detailed description of the invention and claims 1-6.

A JP 2004-206221 A (HEWLETT PACKARD COMPANY) 22 July 2004 1-12
See the abstract, figures 1-2, embodiment of the invention [0011]-[0029] and claim 1.

A US 2002/0194399 A1 (YOSHIHARU ASAKURA) 19 December 2002 1-12
See the abstract, figures 1-5, description of the embodiments and claims 1-7.

A WO 2004/059425 A2 (MOTOROLA, INC.) 15 July 2004 1-12
See the abstract, figures 2-4, description [page 4 - 8] and claims 1-10.

A JP 2003-216344 A (HEWLETT PACKARD COMPANY) 31 July 2003 1-12
See the abstract, figures 1-6, embodiment of the invention [0010]-[0040] and claim 1.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
22 JANUARY 2008 (22.01.2008) 22 JANUARY 2008 (22.01.2008)
Name and mailing address of the ISA/KR Authorized officer .
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, LEE, Jung Ho
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5704

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/KR2007/005029

Patent document Publication Patent family Publication

cited in search report date member(s) date

KR 1020060062240 A 12.06.2006 None

JP 2004-206221 A 22.07.2004 None

US 2002/0194399 A1 19.12.2002 EP 01284453 A2 19.02.2003
JP 2002373077 A 26.12.2002

WO 2004/059425 A2 15.07.2004 AU 2003300988 A1 22.07.2004
CN 1732458 A 08.02.2006
EP 01579341 A2 28.09.2005
JP 18511868 A 06.04.2006
JP 2006511868 T2 06.04.2006
KR 1020050089072 A 07.09.2005
US 20040123270 A1l 24.06.2004
WO 2004059425 A3 23.12.2004

JP 2003-216344 A 31.07.2003 EP 01324181 A2 02.07.2003
EP 01324181 A3 09.11.2005
US 07062614 B2 13.06.2006
US 20030126309 A1l 03.07.2003

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

