发明名称 包含质子泵抑制剂和抗酸剂的药物制剂

摘要

本发明涉及一种多颗粒片剂，该片剂在口中崩解而且包含：i) 一种质子泵抑制剂，特别是苯并咪唑型质子泵抑制剂，该质子泵抑制剂为包肠衣微颗粒的形式，并且所述包肠衣颗粒的表面再包裹上至少一层缓释包衣，例如基于甲基丙酸烯共聚物的保护膜；ii) 至少一种颗粒形式的抗酸剂，例如基于碳酸钙的/或氨氧化镁的/或氢氧化铝的抗酸剂颗粒；和 iii) 一种赋形剂混合物，该赋形剂混合物包含至少一种崩解剂、一种稀释剂、一种润滑剂和任选一种溶胀剂、一种渗透剂、矫味剂和着色剂。此外，本发明涉及所述片剂的制备方法及其在治疗胃肠道疾病中的应用。
1. 一种多颗粒片剂，该片剂在口中崩解而且包含：
 i) 一种质子泵抑制剂，特别是苯并咪唑型质子泵抑制剂，该质子泵抑制剂为肠溶包衣分层微颗粒形式并且在其表面再包裹上至少一层屏障包衣，所述屏障包衣保护所述肠溶包衣在将所述微颗粒运送到小肠期间不被溶解和/或崩解；
 ii) 至少一种颗粒形式的抗酸剂；和
 iii) 一种赋形剂混合物，该赋形剂混合物包含至少一种崩解剂、一种稀释剂和一种润滑剂。
2. 权利要求 1 中任一项的片剂，其特征在于所述质子泵抑制剂是奥美拉唑或其碱性盐。
3. 权利要求 2 的片剂，其特征在于所述质子泵抑制剂是奥美拉唑的(S)-异构体或其碱性盐。
4. 权利要求 2 和 3 中任一项的片剂，其特征在于所述质子泵抑制剂或者是奥美拉唑的镁盐，或者是奥美拉唑的 S-异构体的镁盐。
5. 权利要求 1-2 中任一项的片剂，其特征在于所述质子泵抑制剂是兰索拉唑、泮托拉唑、雷贝拉唑或来明拉唑或这些化合物之一的碱性盐或它们的单一对映体。
6. 权利要求 1-5 中任一项的片剂，其特征在于所述质子泵抑制剂为肠溶包衣分层微颗粒形式，该微颗粒由一个含有任选地与碱性反应化合物混合的所述质子泵抑制剂和其碱性盐的核心组成，该核心用隔离层和肠溶衣层包裹，并且所述包肠衣微颗粒的表面再包裹上所述屏障层。
7. 权利要求 1-6 中任一项的片剂，其特征在于所述包肠衣微颗粒的粒度范围在 100-800 μm 之间，最好在 200-500 μm 之间。
8. 权利要求 1-7 中任一项的片剂，其特征在于所述屏障包衣是基于甲基丙烯酸共聚物的薄膜。
9. 权利要求 8 的片剂，其特征在于所述屏蔽层由具有至少 90% 的共聚物粒度小于 315 μm 的甲基丙烯酸共聚物制备。

10. 权利要求 8-9 中任一项的片剂，其特征在于所述屏蔽层由甲基丙烯酸共聚物在基于水的分散体中制备。

11. 权利要求 8-10 中任一项的片剂，其特征在于所述基于甲基丙烯酸共聚物类的保护膜的屏蔽包衣层包含甲基丙烯酸丁酯/(2-二甲氨基乙基)甲基丙烯酸酯/甲基丙烯酸甲酯(1:2:1)的共聚物。

12. 权利要求 8-11 中任一项的片剂，其特征在于屏蔽包衣的量为所述包肠衣微颗粒重量的 5-60%。

13. 权利要求 8-12 中任一项的片剂，其特征在于所述基于甲基丙烯酸共聚物的屏蔽层得自包含下列组分的组合物：
 - Eudragit® E PO (甲基丙烯酸共聚物)，
 - 乙二酸二丁酯，
 - 十二烷基硫酸钠，
 - 硬脂酸镁，
 - 二氧化钛，
 - 纯净水。

14. 权利要求 1-13 中任一项的片剂，其特征在于所述抗酸剂基于碳酸钙和/或氢氧化镁和/或氢氧化铝。

15. 权利要求 1-14 中任一项的片剂，其特征在于所述抗酸剂颗粒包含崩解剂和/或渗透剂。

16. 权利要求 1-15 中任一项的片剂，其特征在于至少 50%、优选至少 70% 的抗酸剂颗粒的粒度范围在 150-710μm 之间，并且小于 20% 的所述颗粒的粒度小于 150μm。

17. 权利要求 1-16 中任一项的片剂，其特征在于所述稀释剂是少于 13 个碳原子的多元醇或纤维素衍生物。

18. 权利要求 17 的片剂，其特征在于所述少于 13 个碳原子的多元醇是甘露醇、木糖醇、山梨醇和/或麦芽糖醇。
19. 权利要求17的片剂，其特征在于所述纤维素衍生物是微晶纤维素。

20. 权利要求1-19中任一项的片剂，其特征在于崩解剂选自交联羧甲基纤维素钠、交联聚维酮和它们的混合物。

21. 权利要求1-20中任一项的片剂，其特征在于该片剂包含作为润滑剂的硬脂酸镁。

22. 权利要求1-21中任一项的片剂，其特征在于该片剂还包含一种或多种赋形剂，该赋形剂选自溶胀剂、渗透剂、甜味剂、矫味剂、冷凝剂和着色剂。

23. 权利要求1-22中任一项的片剂，其特征在于该片剂包含10-80mg奥美拉唑或其碱性盐及200-1500mg抗酸剂。

24. 权利要求1-23中任一项的片剂，其特征在于该片剂包含其含量相当于20mg奥美拉唑的奥美拉唑镁、450mg的抗酸剂、优选350mg碳酸钙和100mg氢氧化镁。

25. 权利要求1-23中任一项的片剂，其特征在于该片剂包含其含量相当于20mg奥美拉唑的奥美拉唑镁、990mg的抗酸剂、优选770mg碳酸钙和220mg氢氧化镁。

26. 权利要求1-23中任一项的片剂，其特征在于该片剂包含其含量相当于10mg奥美拉唑的奥美拉唑镁、495mg的抗酸剂、优选385mg碳酸钙和110mg氢氧化镁。

27. 权利要求1-26中任一项的片剂，其特征在于该片剂的硬度不小于15N，最好在20-70N之间。

28. 权利要求1-27中任一项的片剂，其特征在于该片剂是一种口内分散片剂并且在与唾液接触时不用咀嚼在60秒内崩解。

29. 权利要求28的口内分散片剂，其特征在于该片剂具有下列组成:

i) 包屏蔽衣奥美拉唑微颗粒
- 肠溶包衣分层奥美拉唑镁微颗粒
- Eudragit® E PO (甲基丙烯酸共聚物)
- 乙二酸二丁酯
- 十二烷基硫酸钠
- 硬脂酸镁

5
- 纯净水

并且任选
- 二氧化钛
- 羟丙基甲基纤维素
- 滑石粉

10
ii) 抗酸剂颗粒
- 碳酸钙
- 氢氧化镁
- 甘露醇
- 山梨醇

15
- 纯净水

并且任选
- 交联聚维酮
- 二氧化硅

iii) 用于配制所述片剂的赋形剂

20
- 维晶纤维素
- 交联聚维酮
- 阿司帕坦
- 味精
- 二氧化硅

25
- 硬脂酸镁

并且任选
- 冷凝剂。

30. 权利要求 28-29 中任一项的口内分散多颗粒片剂，其特征
在于该片剂在 40 秒内崩解。

31. 权利要求 1-27 中任一项的片剂，其特征在于该片剂是咀嚼片剂。

32. 权利要求 31 的咀嚼片剂，其特征在于该片剂具有下列组成:

i) 包覆缓释药奥美拉唑微颗粒
 - 肠溶包衣分层奥美拉唑镁微颗粒
 - Eudragit® E PO (甲基丙烯酸共聚物)
 - 吡二酸二丁酯
 - 十二烷基硫酸钠
 - 硬脂酸镁
 - 纯净水
 并且任选
 - 二氧化钛
 - 羟丙基甲基纤维素
 - 滑石粉

ii) 抗酸剂颗粒
 - 碳酸钙
 - 氢氧化镁
 - 甘露醇
 - 山梨醇
 - 纯净水
 并且任选
 - 交联聚维酮
 - 二氧化硅

iii) 用于配制所述片剂的赋形剂
 - 微晶纤维素
 - 交联聚维酮
 - 阿司帕坦
● 矫味剂
● 二氧化硅
● 硬脂酸镁

并且任选

● 冷凝剂。

33. 一种用于制备权利要求 1-32 中任一项的片剂的方法，其特征在于所述质子泵抑制剂制备成包肠衣微颗粒的形式，该微颗粒的表面用喷雾法包裹上一层屏蔽层并且与所述抗酸剂颗粒以及崩解剂、稀释剂和润滑剂的混合物混合。

34. 权利要求 33 的方法，其特征在于将润滑剂喷洒在所述片剂的外表面。

35. 权利要求 33-34 的方法，其特征在于所述抗酸剂通过碳酸钙和/或氢氧化镁或氢氧化铝与甘露醇的干法制粒，接着用木糖醇和/或山梨醇的溶液通过湿法制粒而制得。

36. 权利要求 1-32 中任一项的片剂在制备一种用于治疗胃肠道疾病的药物中的应用。

37. 一种治疗胃肠道疾病的方法，该方法包括将权利要求 1-32 中任一项限定的片剂给予患有胃肠道疾病的患者。
说明书

包含质子泵抑制剂和抗酸剂的药物制剂

5 发明领域

本发明涉及尤其适用于预防和治疗胃肠道疾病的新型口服药物制剂。本发明制剂包含质子泵抑制剂和抗酸剂的组合、在口中崩解的片剂剂型。

此外，本发明还涉及这种片剂的制备方法及其在治疗胃肠道疾病中的应用。

发明背景和现有技术

已用各种方法和药物治疗和/或根治胃肠道疾病，这些方法包括特殊的饮食、控制某些食物的摄入、运动、冥想以及给予各种药物如抗酸药、H₂拮抗药和抗微生物药。当前主要的治疗方法之一包括称为质子泵抑制剂、开发用来治疗胃肠道疾病的药物类。质子泵抑制剂是通过不可逆地抑制壁细胞内的 H⁺/K⁺-ATP 酶系统来抑制胃酸分泌的药物。

然而，已知胃肠道疾病之流行和高发病率、治疗许多患有这类疾病的患者之困难以及抵抗包含抗生素的方案的潜力，不断需要有安全有效的疗法，该疗法需方便、具有良好患者顺应性并且提供给患者以减轻他们的不适。

同时但单独给予质子泵抑制剂和抗酸药混合物描述于专利申请 WO 98/23272。所述抗酸药混合物是一种抗酸剂和一种藻酸盐化合物的组合。更准确的描述是每天给予 40 mg 奥美拉唑大约 28 天并且每天给予四次每次一片 Gaviscon®大约 28 天，即每天共给予 1280 mg 氢氧化铝和 320 mg 硅酸镁。由于每日剂量大，这种疗法提供了一种显示患者顺应性差的疗法。此外，当质子泵抑制剂和抗酸药混合物以不同的时期给予并且由不同盖仑制剂(galenic formulation)构成时，
出现了其它顺应性问题，给予患者两种或者更多种不同的片剂不方便且难以达到最佳效果。

WO 97/25066 公开了一种口服多单位片剂剂型。该剂型包含酸敏感性质子泵抑制剂和一种或多种抗酸剂或碱性盐的固定联合剂，其中所述质子泵抑制剂为独立肠溶衣层单位形式。所述单位还可以在质子泵抑制剂和肠溶包衣层之间包含任选的隔离层。所述抗酸剂例如是氢氧化镁和碳酸钙的混合物或者是氢氧化铝和碳酸钙的混合物。

遮盖所述敏感性质子泵抑制剂独立单位的肠溶包衣层具有这样的特性：将各单位压制成片剂时，并不显著影响独立肠溶包衣分层单位的抗酸性。

WO 97/25030 也描述了一种片剂化多单位泡腾剂型。将含活性物质的肠溶包衣分层单位与泡腾片剂组分混合。压片不会显著影响所述肠溶包衣分层微型药片的抗酸性，并且所述肠溶包衣分层微型药片可进一步用一种或多种防护层包裹。所述防护层在成片期间增强可压性。

口服崩解多颗粒片剂已描述于 EP548356、EP1003484、WO00/27357 和 WO00/51568，其内容通过引用结合到本文中。所述有效成分为包衣微晶或包衣微颗粒的形式。

奥美拉唑、更一般地说苯并咪唑型质子泵抑制剂必须用抗胃液聚合物(肠溶包衣层)保护。肠溶性薄膜衣没有表现出高柔性，所以压塑应力能使所述薄膜衣破裂。因此，使用一种在压片后保证压缩应变并且维持制剂抗酸性的成片技术是必要的。这种制药技术描述于 WO 96/01623，其通过引用结合到本文中。就口服崩解多颗粒片剂而论，已经发现防止由于唾液透入薄膜衣中致使肠溶性薄膜衣降解也是必要的。这就引出高稳定性问题。还发现所述片剂在口中崩解并吞咽后，抗酸剂能使胃内容物的 pH 值升高至足够引起所述肠溶性薄膜包衣的增溶。为解决上述问题，本发明提供一种屏蔽层，以覆盖
所述肠溶性薄膜衣。

发明概要

本发明的第一个目的是提供一种在口中崩解并提供良好口感的多颗粒片剂，该片剂包含质子泵抑制剂和抗酸剂。

本发明的另一个目的是确保所述肠溶性薄膜衣在包含抗酸剂和包肠衣质子泵抑制剂微颗粒的口服崩解片剂中在储藏期间的稳定性。

本发明的再一个目的是确保所述质子泵抑制剂微颗粒的肠溶性薄膜衣在使用期间的完整性。该片剂抗酸剂部分的局部 pH 大约是 9。应用屏障包衣保护所述肠溶包衣在将所述微颗粒运送至小肠之前在口中和/或胃中不被溶解和/或崩解。根据本发明的片剂还必须显示出令人满意的肠溶性微颗粒的肠溶特性，并提供所述质子泵抑制剂在小肠中的快速溶解。

本发明尤其涉及一种多颗粒片剂，该片剂在口中崩解而且包含：

i) 一种质子泵抑制剂，特别是苯并咪唑型质子泵抑制剂，其为肠溶包衣分层微颗粒形式并且在其表面再包裹上至少一层屏障包衣，所述屏障包衣保护所述肠溶包衣在将所述微颗粒运送至小肠期间不被溶解和/或崩解；

ii) 至少一种颗粒形式的抗酸剂；和

iii) 一种赋形剂混合物，该混合物包含至少一种崩解剂、一种稀释剂和一种润滑剂，所述多个颗粒片剂任选包含膨胀剂、渗透剂、甜味剂、矫味剂、冷凝剂和着色剂。

本文所用的术语“质子泵抑制剂”是指抑制分泌化合物类中的任何制剂，该制剂通过不可逆地抑制胃壁细胞分泌表面的 H⁺/K⁺ATP 酶系统而抑制胃酸分泌。

这些制剂阻断与刺激物无关而与基础分泌和受刺激的酸分泌有
关于酸化最后步骤，苯并咪唑型质子泵抑制剂在 Remington: The
Science and Practice of Pharmacy, 第 II 卷, 第 19 版, 892-3 (1995)中有更详细的描述，该文献通过引用结合到本文中。质子泵抑制剂在
酸性反应和中性介质中对降解和/或转化敏感，因此必须用肠溶包衣
层进行保护以避免与酸性胃液接触。

奥美拉唑、兰索拉唑、泮托拉唑、雷贝拉唑、来明拉唑及它们
的混合物是本发明中优选使用的质子泵抑制剂。所述质子泵抑制剂
可以以其外消旋体或单一对映体的非盐形式，或以其外消旋体或其
一种单一对映体的碱性盐形式使用。最优选奥美拉唑，特别是其镁
盐或奥美拉唑的(S)-异构体的镁盐形式。

根据一个优选的实施方案，所述质子泵抑制剂制备成肠溶包衣
分层微颗粒形式，该微颗粒由一个含有任选地与碱性反应化合物混
合的所述制剂的核心组成。该核心用隔离层和肠溶衣层包裹，并且
所述包肠衣微颗粒的表面再包裹上屏蔽包衣，例如包裹上基于甲基
丙烯酸共聚物的薄膜衣。

肠溶包衣分层微颗粒的粒度分布为 100-800 μm，优选 200-500
μm，最优选约 500 μm。此外，所述屏蔽包衣最好是基于甲基丙烯酸
共聚物的薄膜。这个屏蔽薄膜最好从所述共聚物颗粒的包衣液中获
得，该共聚物颗粒中至少 90%的颗粒的粒度小于 315 μm。所制备的
包衣液或者是以水为稀释剂或用有机溶剂制得，由于环境关系优选
基于水的分散体。这种包衣液也应该能用常规喷雾分层设备喷雾。

所述基于甲基丙烯酸共聚物的屏蔽包衣最好包含甲基丙烯酸丁
酯/(2-二甲氨基乙基)甲基丙烯酸酯/甲基丙烯酸甲酯(1:2:1)的共聚物。

一种依赖 pH 的聚合物 Eudragit® E-PO 优选用作屏蔽包衣。包含
Eudragit® E-PO 的屏蔽包衣可以制成具机械柔韧性，并在应用于增加
了数量的肠溶包衣分层质子泵抑制剂微颗粒中时，提供相应的增强
屏蔽包衣的延迟释放(溶解)。因此，可以获得所述屏蔽包衣在碱性 pH
介质中不同时间的延迟溶解，同时保持所述奥美拉唑微颗粒的肠溶
包衣特性，即 USP 专论中在 pH 6.8 的缓冲级测试中的良好抗酸性以及快速溶解。Eudragit® E-PO 是从 Eudragit® E 100 经碳磨制得的具有细粉外形的甲基丙烯酸酯共聚物。所述屏蔽包衣也可包含甲基丙烯酸共聚物的组合，例如 Eudragit® L 30 与 Eudragit® FS 30 D 等的共聚物。

例如 Eudragit®NE30D、Eudragit® RL30D、Eudragit® RS30D 等不溶性丙烯酸聚合物也可单独使用、联合使用或者与依赖 pH 的聚合物混合使用，以形成一种有效的屏蔽包衣。

屏蔽包衣的量最好在肠溶包衣分层质子泵抑制剂微颗粒重量的 5% 至 60% 之间。

优选的基于 Eudragit® E-PO 的定性配方包含相当于 20 mg 奥美拉唑/片的包肠衣微型药片，作为屏蔽包衣聚合物的 Eudragit® E-PO、作为所述屏蔽包衣的增塑剂的癸二酸二丁酯、作为添加剂用于 E-PO 在水性溶剂中分散的十二烷基硫酸钠以及作为润滑剂和包衣薄膜的无机电荷的硬脂酸镁。

计算这种化合物的单位含量，以便获得 Eudragit® E-PO 在包屏蔽衣的和包肠衣的奥美拉唑微型药片中的不同相对量：
- 10%，作为最低量以提供约 10 分钟的最小延迟释放时间，
- 30%，以提供约 30 分钟的中等延迟释放时间，
- 60%，作为用于 60 分钟延迟释放时间的最大值。

所述屏蔽包衣还可选用包含一种遮光剂，优选二氧化钛。

一种优选的在酸性条件下可溶的最后聚合物包衣，例如基于羟丙基甲基纤维素的薄膜衣，供所述基于甲基丙烯酸共聚物的屏蔽包衣用。

根据一个优选的实施方式，所述基于甲基丙烯酸共聚物的屏蔽包衣从包含下列组分的组合物中获得：
- Eudragit® E PO (甲基丙烯酸共聚物)
- 癸二酸二丁酯
- 十二烷基硫酸钠
- 硬脂酸镁
- 二氧化钛
- 纯净水。

本发明包含至少一种颗粒形式的抗酸剂。

本文有用的抗酸剂包括但不限于：碳酸铝、氢氧化铝、磷酸铝、羟基硅酸铝、二羟基磷酸铝钠、甘氨酸铝镁、二羟基磷酸铝、二羟基磷酸乙酸铝、磷酸钙、磷酸钙、水合磷酸铝镁、铝酸镁、铝硅酸镁、磷酸镁、甘氨酸镁、氢氧化镁、氧化镁、硅酸镁、硫糖铝、碳酸氢钠和它们的混合物。

典型的粉末状的抗酸剂显示了较差的成片特性以及较差的感官特性，尤其是关于口感和味觉。因此，优选使用颗粒形式的抗酸剂。所述抗酸剂可方便地经磷酸钙和/或氢氧化铝和/或氢氧化铝与甘露醇干法制粒，接着用木糖醇和/或山梨醇的溶液通过湿法制粒而获得。抗酸剂颗粒可任选地包括崩解剂和/或渗透剂。

根据本发明的抗酸剂颗粒的粒度分布优选在 150 μm-710 μm 之间，最好在 355 μm-710 μm 之间，以致所述颗粒的至少 50%、优选至少 70% 的粒度范围在 150μm-710μm 之间，而小于 20% 的颗粒的粒度小于 150 μm。按照常规方法，优选使用筛分法，来测定粒度。

本发明的片剂还包含一种赋形剂混合物。

所述稀释剂可以选自水溶性和/或水不溶性压片填充剂。所述水溶性稀释剂由少于 13 个碳原子的多元醇组成，以直接可压缩的材料
(平均粒度在 100-500μm 之间)，粉末(平均粒度小于 100μm)或它们的
混合物形式存在。所述多元醇优选自甘露醇、木糖醇、山梨醇和麦
芽糖醇。所述水不溶性稀释剂是纤维素衍生物，优选微晶纤维素。
所述崩解剂选自交联羧甲基纤维素钠、交联聚维酮和它们的混
合物。该崩解剂的一部分最好用来制备抗酸剂颗粒。
所述润滑剂选自硬脂酸镁、硬脂酰富马酸钠、硬脂酸、聚乙二
醇6000和它们的混合物。该润滑剂的一部分用作体内的固体润滑剂，
另一部分最好喷洒在片剂的外表面。
所述溶胀剂选自淀粉、改性淀粉或微晶纤维素。
所述渗透剂选自具有与水性溶剂有高亲和力的二氧化硅如
Sylloid®、麦芽糖糊精、β-环糊精和它们的混合物。该渗透剂能创造一
个亲水网络来加强唾液的穿透力和所述片剂的崩解。渗透剂的一部分
最好用来制备抗酸剂颗粒。
所述甜味剂可以选自阿司帕坦、乙酰舒泛钾、糖精钠、二氢查
耳酮新橙皮苷和它们的混合物。
最好选择所述矫味剂以给出快速起效和长效甜味的组合，并且
由于不同的结构或添加剂在口中获得“球形感觉”。
乙酰舒泛钾和阿司帕坦的组合尤其优选作为甜味剂。
还可以加入冷凝剂来提高口感并提供一种与矫味剂及甜味剂的
协同作用。
根据一个优选的实施方案，所述片剂具有下列组成:

i) 包屏蔽衣奥美拉唑微颗粒
 • 肠溶包衣分层奥美拉唑镁微颗粒
 • Eudragit® E PO (甲基丙烯酸共聚物)
 • 盐酸二丁酯
 • 十二烷基硫酸钠
 • 硬脂酸镁
 • 纯净水
并且任选
- 二氧化钛
- 羟丙基甲基纤维素
- 滑石粉

5 ii) 抗酸剂颗粒
- 碳酸钙
- 氢氧化镁
- 甘露醇
- 山梨醇
- 纯净水
并且任选
- 交联聚维酮
- 二氧化硅

iii) 用于配制所述片剂的赋形剂
15 - 甘露醇或微晶纤维素
- 交联聚维酮或交联羧甲基纤维素
- 阿司帕坦
- 硼酸
- 二氧化硅
- 硬脂酸镁

水用作溶剂并在包衣和制粒过程中除去。

在本发明的一个方面，本发明的片剂是一种口内分散多颗粒片剂，该片剂与唾液接触时不用咀嚼在 60 秒内崩解，最好在 40 秒内崩解。

根据一个优选的实施方案，所述口内分散片剂具有下列组成：
1) 包屏蔽衣奥美拉唑微颗粒
 - 肠溶包衣分层奥美拉唑镁微颗粒
- Eudragit® E PO (甲基丙烯酸共聚物)
- 反二酸二丁酯
- 十二烷基硫酸钠
- 硬脂酸镁
- 纯净水

并且任选
- 二氧化钛
- 羟丙基甲基纤维素
- 滑石粉

10 ii) 抗酸剂颗粒
- 碳酸钙
- 氢氧化镁
- 甘露醇
- 山梨醇
- 纯净水

并且任选
- 交联聚维酮
- 二氧化硅

iii) 用于配制所述片剂的赋形剂

20 - 甘露醇
- 交联聚维酮
- 阿司帕坦
- 喷雾剂
- 二氧化硅
- 硬脂酸镁

并且任选
- 冷凝剂
根据另一个优选的实施方案，所述口内分散片剂具有下列组成:

i) 包蔽性衣奥美拉唑微颗粒
 - 肠溶衣片分层奥美拉唑微颗粒
 - Eudragit® E PO (甲基丙烯酸共聚物)
 - 癸二酸二丁酯
 - 十二烷基硫酸钠
 - 硬脂酸镁
 - 纯净水
 并且任选

ii) 抗酸剂颗粒
 - 二氧化钛
 - 羟丙基甲基纤维素
 - 滑石粉

iii) 用于配制所述片剂的赋形剂
 - 微晶纤维素
 - 交联聚维酮
 - 阿司帕坦
 - 矫味剂
 - 二氧化硅
 - 硬脂酸镁
并且任选
- 冷凝剂

在本发明的另一方面，本发明是一种咀嚼多颗粒片剂。根据一个优选的实施方案，所述咀嚼片剂具有下列组成：

i) 包蔽遮衣奥美拉唑微颗粒
- 肠溶包衣分层奥美拉唑镁微颗粒
- Eudragit® E PO (甲基丙烯酸共聚物)
- 乙二酸二丁酯
- 十二烷基硫酸钠
- 硬脂酸镁
- 纯净水

并且任选
- 二氧化钛
- 羟丙基甲基纤维素
- 滑石粉

ii) 抗酸剂颗粒
- 碳酸钙
- 氢氧化镁
- 甘露醇
- 山梨醇
- 纯净水

并且任选
- 交联聚维酮
- 二氧化硅

iii) 用于配制所述片剂的赋形剂
- 微晶纤维素
- 交联羧甲基纤维素
• 阿司帕坦
• 矫味剂
• 二氧化硅
• 硬脂酸镁

并且任选
• 冷凝剂

根据一个最优选的实施方案，本发明的片剂即口腔内分散片剂或
咀嚼片剂具有下列组成:

10 i) 包蔽缓释奥美拉唑微颗粒
 • 肠溶包衣分层奥美拉唑微颗粒
 约 100 mg/相当于 20 mg 奥美拉唑
 • Eudragit® E PO 10-60 mg
 • 赖二酸二丁酯 1-10 mg
 15 • 十二烷基硫酸钠 0.5-5 mg
 • 硬脂酸镁 2.5-15 mg
 • 纯净水 -

ii) 抗酸剂颗粒
 • 碳酸钙 350-900 mg
 20 • 氢氧化镁 100-250 mg
 • 甘露醇 70-330 mg
 • 山梨醇 30-90 mg
 • 交联聚维酮 0-50 mg
 • 二氧化硅 0-10 mg
 25 • 纯净水 -

iii) 用于配制所述片剂的赋形剂
 • 稀释剂 200-600 mg
 • 崩解剂 50-300 mg
 • 阿司帕坦 10-40 mg
- 像味剂 10-30 mg
- 二氧化硅 5-15 mg
- 硬脂酸镁 5-30 mg

水用作溶剂并在包衣和制粒过程中除去。

根据本发明的片剂最好显示其酸结合能力大于 10 mEq/片，并且在给与患者后胃内 pH 值快速开始升高。优选酸结合能力在 10-25 mEq/片之间。所述质子泵抑制剂微颗粒的肠溶包衣符合《美国药典》(USP)对包衣颗粒的要求。所述质子泵抑制剂在缓冲级试验(pH 6.8)中的释放显示在 30 分钟内释放不少于 80%。此外，所述片剂优选直径小于 20 mm 的圆片。或者，所述片剂可以是椭圆形的。

当用欧洲药典(2.9.8)的测试方法测量时，根据本发明的片剂的硬度不小于 15 N，最好在 20-70 N 之间。

本发明还涉及上述片剂在制备一种用于治疗胃肠道疾病的药物中的应用。

本文所用的术语“胃肠道疾病”包括上消化道的任何感染、疾病或其它障碍。这类疾病包括例如胃灼热、胸口作呕、酸摄取、肚子痛和/或与胃灼热、胸口作呕及酸摄取有关的疼痛、胃气胀、发胀、消化不良、食管裂孔病、食管炎、夜间胃灼热、侵蚀性食管炎，不能由胃黏膜上存在的溃疡来证明的疾病包括慢性活动性或萎缩性胃炎、佐林格-埃利森综合症(Zollinger-Ellison syndrome)、非溃疡性消化不良，食管反流疾病和胃动力障碍、消化性溃疡性疾病即幽门前部、边缘、和/或胃内、十二指肠的溃疡、以及它们的组合。本发明优选治疗的疾病包括有和没有胃痛的胃灼热、消化不良、食管炎、慢性活动性或萎缩性胃炎以及食管反流疾病。

所述片剂每日给予一次至数次，优选每日给予一次或两次。所述活性物质的典型日剂量是可变的并取决于多种因素，例如患者的个体需要和疾病。一般而言，每片包含 10-80 mg 质子泵抑制剂和
200-1500 mg 抗酸剂。优选每片包含 10-40 mg 质子泵抑制剂和 300-
1000 mg 抗酸剂。

下面的实施例更详细地说明本发明。

5 实施例 1

有和没有屏蔽包衣层的配方试验

已经对下列样品进行了稳定性试验:

- 没有任何屏蔽包衣的包含奥美拉唑镁的包肠衣微型药片的多单
位片剂，

- 用 Eudragit® E-PO (甲基丙烯酸共聚物)屏蔽包衣保护的包含奥
美拉唑镁的包肠衣微型药片的多单位片剂，

- 用 Eudragit® L30D 和 FS 30D 屏蔽包衣的包含奥美拉唑镁的包
肠衣微型药片的多单位片剂。

这些稳定性试验在铝/铝冷型泡罩中于经典 I.C.H.条件(25℃
/60% RH-30℃/60% RH-40℃/75% RH)下进行。

结果

没有任何屏蔽包衣的包肠衣奥美拉唑微型药片显示出不能令人
满意的肠溶抗性，证明了屏蔽包衣的必要性。

奥美拉唑在这些初步片剂中的稳定性是令人满意的。

20

实施例 2

为促进酸结合能力≥10 mEq/片并考虑到片剂良好物理特性(成片
行为、感官特性和短崩解时间)，已研究了抗酸剂的不同配方。优选
所述抗酸剂化合物颗粒。可以进行简单制粒或者在制粒后薄包衣，
以便获得所述颗料的更好的味觉和物理特性。

此外，加入填充剂为在抗酸剂的干混合物中的良好味觉和物理
特性创造条件。用不同的粘合剂水溶液湿法制粒可进一步加强这些
特性。在干混合物中混合 12%甘露醇，接着用木糖醇或山梨醇溶液
制粒，可以获得最佳结果。

- 最优选的抗酸剂配方或其倍数如下：

<table>
<thead>
<tr>
<th>成分</th>
<th>单位配方(mg)</th>
<th>百分比配方(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>碳酸钙</td>
<td>350</td>
<td>63.6</td>
</tr>
<tr>
<td>氢氧化镁</td>
<td>100</td>
<td>18.2</td>
</tr>
<tr>
<td>甘露醇</td>
<td>66.7</td>
<td>12.1</td>
</tr>
<tr>
<td>山梨醇</td>
<td>33.3</td>
<td>6.1</td>
</tr>
<tr>
<td>总重</td>
<td>550</td>
<td>100</td>
</tr>
</tbody>
</table>

另一优选的组合物包含其含量相当于 20 mg 奥美拉唑的奥美拉唑镁、770 mg 碳酸钙和 220 mg 氢氧化镁。

<table>
<thead>
<tr>
<th>成分</th>
<th>单位配方(mg)</th>
<th>百分比配方(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>碳酸钙</td>
<td>770</td>
<td>57.0</td>
</tr>
<tr>
<td>氢氧化镁</td>
<td>220</td>
<td>16.3</td>
</tr>
<tr>
<td>甘露醇</td>
<td>293</td>
<td>21.8</td>
</tr>
<tr>
<td>山梨醇</td>
<td>64</td>
<td>4.9</td>
</tr>
<tr>
<td>总重</td>
<td>1347</td>
<td>100</td>
</tr>
</tbody>
</table>

实施例 3

制备以下制剂

<table>
<thead>
<tr>
<th>成分</th>
<th>单位配方(mg)</th>
<th>百分比配方(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏蔽包衣的 E.C.O.P.</td>
<td>提供 20 mg 奥美拉唑</td>
<td>取决于包衣量</td>
</tr>
<tr>
<td>抗酸剂颗粒</td>
<td>550 mg</td>
<td>39.3</td>
</tr>
<tr>
<td>甘露醇</td>
<td>适量用于片剂</td>
<td>取决于屏蔽包衣的</td>
</tr>
<tr>
<td>成分</td>
<td>10% EPO (mg)</td>
<td>30% EPO (mg)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E.C.O.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.P.O. (4)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>相当于奥美拉唑(1)</td>
<td>(20)</td>
<td>(20)</td>
</tr>
<tr>
<td>Eudragit E-PO</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>二酸二丁酯</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>十二烷基硫酸钠</td>
<td>0.75</td>
<td>2.25</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>纯净水(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>总的包屏蔽衣 E.C.O.P.</td>
<td>114.75</td>
<td>144.25</td>
</tr>
</tbody>
</table>

E.C.O.P. = 包含奥美拉唑镁的包肠衣微颗粒。

所得的具有特殊双凸外形、17 mm 图片及其在口中快速分散特性而论是令人满意的：
在口中的崩解时间为 25-35 秒，
口中没有白垩味道也没有颗粒感觉，
良好的矫味剂在口中给出愉快的清凉作用。

实施例 4

根据所述配方制备下列批次：

抗酸剂颗粒
<table>
<thead>
<tr>
<th>成分</th>
<th>剂量1</th>
<th>剂量2</th>
<th>剂量3</th>
</tr>
</thead>
<tbody>
<tr>
<td>碳酸钙</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>氢氧化镁</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>甘露醇</td>
<td>66.67</td>
<td>66.67</td>
<td>66.67</td>
</tr>
<tr>
<td>山梨醇</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
</tr>
<tr>
<td>纯净水(2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>总的抗酸剂颗粒</td>
<td>550</td>
<td>550</td>
<td>550</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>成分</th>
<th>剂量1</th>
<th>剂量2</th>
<th>剂量3</th>
</tr>
</thead>
<tbody>
<tr>
<td>甘露醇(3)</td>
<td>464.75</td>
<td>435.25</td>
<td>391</td>
</tr>
<tr>
<td>交联聚维酮</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>阿司帕坦</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>矫味剂</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>二氧化硅</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>总的片剂单位重量</td>
<td>1400</td>
<td>1400</td>
<td>1400</td>
</tr>
</tbody>
</table>

(1): 20% E.C.O.P.奥美拉唑的理论含量
(2): 水用作溶剂，在包衣和制粒过程中除去
(3): 调节甘露醇的量使片剂单位重量至 1400 mg
(4): E.C.O.P.: 包含奥美拉唑镁的包肠衣微型药片

制备上述配方的过程:
- 包肠衣奥美拉唑微型药片(E.C.O.P.)。根据 WO 96/01623 制备包含奥美拉唑镁的微型药片，该文献通过引用结合到本文中。按照 WO 96/01623 的实施例 2 制备所述微型药片。
- 包肠衣奥美拉唑微型药片的屏蔽包衣。
 2000 g 包肠衣奥美拉唑微型药片在流化床中进行包衣，包衣后的产品在该流化床中干燥。
- 抗酸剂的制粒
 批量投入 1.650 kg，相当于 3000 单位 350 + 100 mg.
在旋转式混合制粒机中干法预混合抗酸剂+甘露醇。
用山梨醇水溶液润湿所述干混合物。
润湿结束后进行制粒。
将所述湿混合物转移至流化床中并进行干燥。

- 压片

包屏蔽衣奥美拉唑微型药片、抗酸剂颗粒和片剂赋形剂在一个立方型混合机中混合。
在配有特殊形状、直径 17 mm (适合 1400 mg 单位重量) 的 3 冲头实验室规模旋转机上压片。
转速 25 rpm。

- 包装操作

在铝/铝冷成型泡罩上进行批号的压花。

结果

<table>
<thead>
<tr>
<th></th>
<th>10% EPO</th>
<th>30% EPO</th>
<th>60% EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均重量</td>
<td>1407 mg</td>
<td>1400 mg</td>
<td>1405 mg</td>
</tr>
<tr>
<td>平均厚度</td>
<td>5.7 mm</td>
<td>5.7 mm</td>
<td>5.7 mm</td>
</tr>
<tr>
<td>平均抗碎性</td>
<td>31 N</td>
<td>26 N</td>
<td>26 N</td>
</tr>
<tr>
<td>易碎性</td>
<td>2.9%</td>
<td>5.4% (2)</td>
<td>3.3%</td>
</tr>
<tr>
<td>崩解时间 (在口中)</td>
<td>31 秒</td>
<td>29 秒</td>
<td>27 秒</td>
</tr>
<tr>
<td>抗酸性 (pH 6.8 中 5 分钟后)</td>
<td>5.6%溶解</td>
<td>2.3%溶解</td>
<td>8.8%溶解</td>
</tr>
<tr>
<td>pH 6.8 中的溶出度 (耐酸阶段后)</td>
<td>30 分钟内 92.3%</td>
<td>30 分钟内 90.8%</td>
<td>30 分钟内 89.8%</td>
</tr>
<tr>
<td>屏蔽包衣评价 (pH 6.8 时)</td>
<td>10 分钟内 2.1%</td>
<td>30 分钟内 4.5%</td>
<td>60 分钟内 4.9%</td>
</tr>
<tr>
<td>酸中和能力</td>
<td>10.0 mEq/片</td>
<td>10.3 mEq/片</td>
<td>10.8 mEq/片</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>奥美拉唑分析</td>
<td>20.3 mg</td>
<td>19.8 mg</td>
<td>19.7 mg</td>
</tr>
<tr>
<td>(理论值 101.5%)</td>
<td>(理论值 99.9%)</td>
<td>(理论值 98.5%)</td>
<td></td>
</tr>
</tbody>
</table>

根据《美国药典》(USP) 24 方法测定总的酸结合能力(酸中和能力)。所有结果都符合预期标准，即数值≥ 10 mEq/片。

实施例 5

制备具有以下单位配方的下列制剂

<table>
<thead>
<tr>
<th>成分</th>
<th>口中分散片剂(mg)</th>
<th>咀嚼片剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>包屏蔽衣 E.C.O.P.</td>
<td>提供 20 mg 奥美拉唑 (数量取决于包衣材料)</td>
<td></td>
</tr>
<tr>
<td>抗酸剂颗粒</td>
<td>1347 mg</td>
<td></td>
</tr>
<tr>
<td>微晶纤维素</td>
<td>适量用于片剂</td>
<td>取决于包屏蔽衣 E.C.O.P.的数量</td>
</tr>
<tr>
<td>交联聚维酮</td>
<td>160</td>
<td>0/</td>
</tr>
<tr>
<td>交联羧甲基纤维素</td>
<td>0/</td>
<td>60</td>
</tr>
<tr>
<td>阿司帕坦</td>
<td>16,8</td>
<td></td>
</tr>
<tr>
<td>乙酰舒泛钾</td>
<td>11,2</td>
<td></td>
</tr>
<tr>
<td>咀味剂</td>
<td>16,4</td>
<td></td>
</tr>
<tr>
<td>冷凝剂</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>二氧化硅</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>总重</td>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>

制备下列制剂

E.C.O.P. = 包含奥美拉唑镁的包肠衣微颗粒
所得的分别为可以和不可以咀嚼的、具平面形状的 18 mm 圆片
就其在口中的快速分散特性而论是令人满意的:
 可接受的颗粒口感,
 片剂单位重量和大小适于在口中崩解。

实施例 6

根据下列配方制备以下批次

<table>
<thead>
<tr>
<th>成分</th>
<th>10% EPO (mg)</th>
<th>30% EPO (mg)</th>
<th>60% EPO (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>包屏蔽衣 E.C.O.P.</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>E.C.O.P. (4)</td>
<td>(20)</td>
<td>(20)</td>
<td>(20)</td>
</tr>
<tr>
<td>相当于奥美拉唑(1)</td>
<td>10</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Eudragit E-PO</td>
<td>1.5</td>
<td>4.5</td>
<td>9.0</td>
</tr>
<tr>
<td>硬脂酸二丁酯</td>
<td>0.75</td>
<td>2.25</td>
<td>4.5</td>
</tr>
<tr>
<td>十二烷基硫酸钠</td>
<td>2.5</td>
<td>7.5</td>
<td>15.0</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>氧化肽</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>羟丙基甲基纤维素</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>滑石粉</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>纯净水(2)</td>
<td>123</td>
<td>154</td>
<td>200</td>
</tr>
<tr>
<td>总的包屏蔽衣 E.C.O.P.</td>
<td>770</td>
<td>770</td>
<td>770</td>
</tr>
<tr>
<td>抗酸剂颗粒</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>碳酸钙</td>
<td>293</td>
<td>293</td>
<td>293</td>
</tr>
<tr>
<td>氢氧化镁</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>甘露醇</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>山梨醇</td>
<td>1347</td>
<td>1347</td>
<td>1347</td>
</tr>
<tr>
<td>压片处方</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>成分</td>
<td>配方1</td>
<td>配方2</td>
<td>配方3</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>微晶纤维素(3)</td>
<td>294</td>
<td>435</td>
<td>391</td>
</tr>
<tr>
<td>交联羧甲基纤维素</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>阿司帕坦</td>
<td>16.8</td>
<td>16.8</td>
<td>16.8</td>
</tr>
<tr>
<td>乙酰水杨酸钾</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>混合剂</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>冷凝剂</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>二氧化硅</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

（1）20% E.C.O.P.奥美拉唑的理论含量
（2）水用作溶剂，在包衣和制粒过程中除去
（3）使微晶纤维素的量适应 E.C.O.P.奥美拉唑的实际含量变化，以调节片剂单位重量为 2000 mg
（4）E.C.O.P.: 包含奥美拉唑镁的包肠衣微型药片

制备上述配方的过程:
- 第一步：包肠衣奥美拉唑微型药片(E.C.O.P.)的制备。
 根据 WO 96/01623 制备包含奥美拉唑镁的微型药片，该文献通过引用结合到本文中。按照 WO 96/01623 的实施例2制备所述微型药片。
- 第二步：包肠衣奥美拉唑微型药片的屏蔽包衣。
 1000g 包肠衣奥美拉唑微型药片在流化床中进行包衣，包衣后的产品在该流化床中干燥。
- 第三步：抗酸剂的制粒。
 批量投入 2,450 kg，相当于 1800 单位 770 + 220 mg。在旋转式混合制粒机中干法预混合抗酸剂+甘露醇。用山梨醇水溶液润湿所述干混合物。润湿结束后进行制粒。将所述湿混合物转移至流化床中并进行干燥。
- 第四步：压片
 包屏蔽衣奥美拉唑微型药片、抗酸剂颗粒和片剂赋形剂在一个立方型混合机中混合。
 在配有特殊形状、直径 18 mm (适合 2000 mg 单位重量)的 3 冲头实验室规格旋转机器上压片。
 转速 25 rpm。

- 包装操作
 在铝/铝冷成型泡罩上进行批号的压花。

结果

<table>
<thead>
<tr>
<th></th>
<th>10% EPO</th>
<th>30% EPO</th>
<th>60% EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均重量</td>
<td>1999 mg</td>
<td>2016 mg</td>
<td>1984 mg</td>
</tr>
<tr>
<td>平均厚度</td>
<td>5.5 mm</td>
<td>5.6 mm</td>
<td>5.6 mm</td>
</tr>
<tr>
<td>平均抗碎性</td>
<td>64 N</td>
<td>54 N</td>
<td>54 N</td>
</tr>
<tr>
<td>易碎性</td>
<td>0.7%</td>
<td>1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>崩解时间 (在口中)</td>
<td>55 秒</td>
<td>50 秒</td>
<td>50 秒</td>
</tr>
<tr>
<td>抗酸性 (pH 6.8 中 5 分钟后)</td>
<td>11%溶解</td>
<td>17%溶解</td>
<td>8%溶解</td>
</tr>
<tr>
<td>pH 6.8 中的溶出度 (耐酸阶段后)</td>
<td>30 分钟内 81%</td>
<td>30 分钟内 79%</td>
<td>30 分钟内 90%</td>
</tr>
<tr>
<td>屏蔽包衣测定 (pH 6.8 时)</td>
<td>10 分钟内 3%</td>
<td>30 分钟内 1%</td>
<td>30 分钟内 4%</td>
</tr>
<tr>
<td>酸中和能力</td>
<td>22.0 mEq/片</td>
<td>23 mEq/片</td>
<td>22 mEq/片</td>
</tr>
<tr>
<td>奥美拉唑分析</td>
<td>20.3 mg (理论值 101.3%)</td>
<td>19.9 mg (理论值 99.4%)</td>
<td>19.6 mg (理论值 97.8%)</td>
</tr>
</tbody>
</table>

根据《美国药典》(USP) 24 的方法测定总的酸结合能力(酸中和
实施例 7:

在实施例 6 描述的过程中的步骤 1-3 之后，制备包含包屏蔽衣 E.C.O.P. (相当于 10 mg 奥美拉唑) 和抗酸剂颗粒 (相当于 495 mg 抗酸剂) 以及占总量一半的全部其它成分的片剂。

- 第四步：压片

包屏蔽衣奥美拉唑微型药片、抗酸剂颗粒和片剂赋形剂在一个立方型混合机中混合。

在配有特殊形状、直径 14 mm (适合 1000 mg 单位重量) 的 3 冲头实验室规模旋转机器上压片。

转速 25 rpm。

在本发明实施例中所使用的分析方法

1. 奥美拉唑的释放

进行几个测试以跟踪奥美拉唑从制剂 ECOP、受保护的 ECOP 和 Flashtab® 中的释放。

1.1. 在 pH 6.8 中分散 5 分钟后的抗酸性

<table>
<thead>
<tr>
<th>仪器</th>
<th>2 (搅拌器)</th>
</tr>
</thead>
<tbody>
<tr>
<td>转速</td>
<td>100±4 rpm</td>
</tr>
<tr>
<td>介质</td>
<td>10 mL pH 6.8 缓冲液中放 5 分钟，然后加入 740 mL 0.1N 盐酸</td>
</tr>
<tr>
<td></td>
<td>pH 6.8 缓冲液：75 mL 0.1N 盐酸，25 mL 0.2M 磷酸三钠，用 2N 盐酸调 pH 至 6.8;</td>
</tr>
<tr>
<td></td>
<td>5 分钟：模拟入口时和刚在入口之后的转换时间</td>
</tr>
<tr>
<td>温度</td>
<td>37±0.5°C</td>
</tr>
<tr>
<td>样品</td>
<td>1 粒片剂或过程中数量相当于 20 mg 奥美</td>
</tr>
</tbody>
</table>
1.2. 耐酸阶段后在 pH 6.8 缓冲液中的溶出度

<table>
<thead>
<tr>
<th>部分</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>仪器</td>
<td>2 (搅拌器)</td>
</tr>
<tr>
<td>转速</td>
<td>100±4 rpm</td>
</tr>
<tr>
<td>介质</td>
<td>在 10 mL pH 6.8 缓冲液(如上)中放 5 分钟，加入 740 mL 0.1N 盐酸，搅拌 2 小时并加入 250 mL 0.2M 磷酸三钠</td>
</tr>
<tr>
<td>温度</td>
<td>37±0.5℃</td>
</tr>
<tr>
<td>样品</td>
<td>1 粒片剂或过程中数量相当于 20 mg 奥美拉唑的材料</td>
</tr>
<tr>
<td>时间</td>
<td>加入磷酸三钠后 30 分钟(总计：2 小时 35 分钟)</td>
</tr>
<tr>
<td>分析</td>
<td>用 HPLC 描述的方法测定 1 等份介质</td>
</tr>
</tbody>
</table>

1.3. 在 pH 6.8 中屏蔽-包衣评价

<table>
<thead>
<tr>
<th>部分</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>仪器</td>
<td>2 (搅拌器)</td>
</tr>
<tr>
<td>转速</td>
<td>100±4 rpm</td>
</tr>
<tr>
<td>介质</td>
<td>500 mL pH 6.8 缓冲液(如上)</td>
</tr>
<tr>
<td>温度</td>
<td>37±0.5℃</td>
</tr>
<tr>
<td>样品</td>
<td>1 粒片剂或过程中数量相当于 20 mg 奥美拉唑的材料</td>
</tr>
<tr>
<td>时间</td>
<td>10 分钟、30 分钟和 60 分钟</td>
</tr>
<tr>
<td>分析</td>
<td>300 nm 紫外分光光度在线检测</td>
</tr>
</tbody>
</table>

2.1. 酸中和能力 (实施例 4)
有关不添加乙醇的不可咀嚼片剂的方法描述于《美国药典》(USP) 24，第 1863 页<301>。

2.2. 酸中和能力 (实施例 6)

用 Karl Fischer 滴定仪在恒定 pH 下进行测定。
在 10 分钟和 30 分钟后测定消耗的酸。
一粒片剂的等价物放于含 5 ml 酸化水 (pH 3.0) 的烧杯中，置于 37℃恒温水浴中 15 分钟。
37℃下加入 30 ml 酸化水。

用 1M 盐酸滴定，并且滴定仪置于 pH-状态为 3.0。

3. 奥美拉唑分析

HPLC 方法：
条件描述如下

柱 C18-250 x 4.6 mm-5μ，有一个 3 mm 预装柱
柱温 40℃
流动相 乙腈、2%v/v 三乙醇胺溶液 (50:50) 混合物，用磷酸调 pH 8.50±0.05
流速 0.7 mL/分钟
注射 20 μL
检测 300 nm
萃取溶剂 乙腈、2%v/v 三乙醇胺溶液 (50:50) 混合物
浓度水平 0.01 mg/mL