ROYAUME DE BELGIQUE

BREVET D'INVENTION

MINISTERE DES AFFAIRES ECONOMIQUES

NUMERO DE PUBLICATION: 1002949A5

NUMERO DE DEPOT: 8701227

Classif. Internat.: C11D

Date de délivrance : 24 Septembre 1991

Le Ministre des Affaires Economiques,

Vu la Convention de Paris du 20 Mars 1883 pour la Protection de la propriété industrielle;

Vu la loi du 28 Mars 1984 sur les brevets d'invention, notamment l'article 22;

Vu l'arrêté royal du 2 Décembre 1986 relatif à la demande, à la délivrance et au maintien en vigueur des brevets d'invention, notamment l'article 28;

Vu le procès verbal dressé le 29 Octobre 1987 à 14h05 à 1' Office de la Propriété Industrielle

ARRETE:

ARTICLE 1.- Il est délivré à : COLGATE-PALMOLIVE COMPANY Park Avenue 300, NEW YORK N.Y. (ETATS-UNIS D'AMERIQUE)

représenté(e)(s) par : DE PALMENAER Roger, BUREAU VANDER HAEGHEN, Rue Colonel Bourg 108A, B-1040 BRUXELLES.

un brevet d'invention d'une durée de 20 ans, sous réserve du paiement des taxes annuelles, pour : COMPOSITIONS AQUEUSES D'ARGÎLE THIXOTROPES CONTENANT DES STABILISANTS POLYMERES OU COPOLYMERES DE TYPE POLY (ACIDE CARBOXYLIQUE) ET PROCEDE DE NETTOYAGE DE LA VAISSELLE LES UTILISANT.

INVENTEUR(S): Drapier Julien, rue de Tavier 192, 4100 Seraing, (BE); Gallant Chantal, allée de la Belle Fleur 19, 4602 Cheratte (BE); Van de Gaer Daniel, place E. Vinck 2/1, 4400 Flémalle (BE)

Priorité(s) 29.10.86 US USA 924385

ARTICLE 2.- Ce brevet est délivré sans examen préalable de la brevetabilité de l'invention, sans garantie du mérite de l'invention ou de l'exactitude de la description de celle-ci et aux risques et périls du(des) demandeur(s).

Bruxelles, le 24 Septembre 1991 PAR DELEGATION SPECIALE:

1

Compositions aqueuses d'argile thixotropes contenant des stabilisants polymères ou copolymères de type poly(acide carboxylique) et procédé de nettoyage de la vaisselle les utilisant.

5

10

15

20

25

La présente invention concerne des suspensions aqueuses d'argile thixotropes ayant une stabilité physique améliorée. Plus précisément, l'invention concerne l'utilisation de polymères ou copolymères de type poly(acide acrylique) et de leurs sels, et de sels métalliques d'acides gras à longues chaînes en tant que stabilisants physiques pour suspensions aqueuses d'argile thixotropes.

L'addition de faibles quantités efficaces de polymères et copolymères de type poly(acide acrylique) et de leurs sels, et de faibles quantités efficaces de sels de métaux polyvalents et d'acides gras à longues chaînes, améliore sensiblement stabilité physique et la stabilité vis-à-vis de variations des propriétés rhéologiques compositions de détergents contenant des suspensions aqueuses d'argile thixotropes. On peut conserver ou améliorer les propriétés thixotropes en utilisant de plus faibles proportions, telles que 0,25 à 0,4%, de l'épaississant thixotrope à base d'argile, l'absence đe l'agent de stabilisation polymère ou copolymère de type poly(acide acrylique).

La présente invention concerne en particulier des compositions de détergents pour lavage automatique de la vaisselle, ayant des propriétés thixotropes, une stabilité physique et chimique améliorée, une stabilité améliorée vis-à-vis de variations des propriétés rhéologiques avec le temps, et ayant une viscosité apparente accrue, et qui sont aisément dispersables dans le milieu de lavage pour fournir un nettoyage efficace de la vaisselle, de la verrerie, de la porcelaine et similaires.

5

10

15

20

25

30

35

Les détergents en poudre du commerce pour appareils ménagers à laver la vaisselle présentent plusieurs inconvénients, exemple composition par hétérogène, opérations coûteuses requises pour leur fabrication, tendance à l'agglutination lors d'un stockage en présence de hautes teneurs en humidité, conduisant à la formation de grumeaux qui difficiles à disperser, formation de poussière, d'irritation particulière pour utilisateurs souffrant d'allergies, et tendance au dépôt de concrétions dans le distributeur du lavevaisselle.

Les récents efforts de recherche développement se sont concentrés sur la forme gélifiée ou "thixotrope" de ces compositions, exemple des produits de nettoyage dégraissants et des produits pour lave-vaisselle automatique, sous forme pâtes thixotropes. Les produits pour vaisselle ainsi présentés ont l'inconvénient majeur de ne pas être suffisamment visqueux pour rester "fixés" dans la boîte distributrice du lavevaisselle. Idéalement, des compositions thixotropes de nettoyage doivent être hautement visqueuses au repos, être de nature corps plastique de Bingham, et avoir des seuils de déformabilité relativement

10

15

20

25

30

35

élevés. Cependant, soumises à des contraintes de cisaillement, comme par secouement dans un contenant ou par passage forcé à travers un orifice, elles doivent se fluidifier rapidement, et une fois cessée l'application de la contrainte de cisaillement, rapidement revenir à l'état de haute viscosité et de corps plastique de Bingham. De même, la stabilité est d'importance essentielle, c'est-à-dire qu'il ne doit pas y avoir de signes évidents de séparation de phase ou de fuite après de longues périodes de repos.

La demande de brevet FR-86.08 287, déposée le 9 juin 1986 par la Demanderesse de la présente demande, concerne des compositions de détergents pour lavage de la vaisselle, comprenant des suspensions aqueuses d'argile thixotropes, contenant du stéarate d'aluminium en tant qu'agent de stabilisation physique. Les compositions de la demande n° 86 08 287 montrent une amélioration de la stabilité physique de la composition de détergent et une amélioration de l'empêchement de la séparation des phases, rapport aux compositions comprenant de l'argile qui contiennent pas le stéarate d'aluminium. formulations de la demande n°86 08 287 ont cependant dans certains cas manifesté de la difficulté à atteindre une stabilité vis-à-vis de variations des propriétés rhéologiques en fonction du temps et en présence de grandes variations de température, et ont généralement requis une teneur en argile relativement élevée, telle que 0,25 à 2,0%.

La fourniture de compositions pour lavevaisselle automatique, sous forme de gels ayant les propriétés décrites plus haut, mis à part celles ayant trait aux améliorations décrites dans la demande n°86 08 287 précitée, s'est révélée jusqu'à présent problématique, en particulier eu égard à des

10

15

20

25

30

35

compositions à utiliser dans des appareils ménagers à laver la vaisselle. Pour une utilisation efficace, il est en général recommandé que le détergent pour lavevaisselle automatique, désigné ci-après l'abréviation "DLVA", contienne (1)du tripolyphosphate de sodium (NaTPP) pour adoucir ou fixer les minéraux responsables de la dureté de l'eau et pour émulsionner et/ou peptiser les salissures; (2) du silicate de sodium pour fournir l'alcalinité nécessaire à la détergence efficace et pour conférer une protection au décor et à la glaçure de porcelaine fine; (3) du carbonate de sodium, généralement considéré facultatif, pour accroître l'alcalinité; (4) un agent libérant du chlore, pour faciliter l'élimination de petits dépôts de salissures conduisant à des tâches de gouttes; et (5) un antimousse/surfactif pour réduire la formation de mousse, ce qui accroît l'efficacité de la machine et fournit la détergence requise. Voir par exemple SDA Detergents in Depth, "Formulation Aspects of Machine Dishwashing" (Aspects de formulations pour le lavage de la vaisselle à la machine), Thomas Oberle (1974). Les produits de nettoyage de composition voisine des compositions précitées sont pour la plupart des liquides ou des poudres. La combinaison de tels composants sous une forme de gel efficace pour l'utilisation dans des appareils ménagers s'est révélée difficile. En général, de telles compositions ne comprennent pas d'agent de blanchiment de type hypochlorite, car celui-ci a tendance à réagir avec d'autres composants chimiquement actifs, le surfactif en particulier. Ainsi, US-A 4 115 308 décrit des pâtes thixotropes pour lave-vaisselle automatique, qui contiennent un agent de mise en suspension, par exemple de la CMC (carboxyméthylcellulose),

l'argile synthétique ou similaires; des sels minéraux comprenant des silicates, des phosphates et des polyphosphates, une petite quantité d'un surfactif et un antimousse. Aucun agent de blanchiment n'est décrit. US-A 4 147 650 décrit un produit plus ou moins analogue, comprenant éventuellement un agent de blanchiment à base de Cl (hypochlorite), mais ne contenant ni surfactif organique ni antimousse. En outre, le produit est décrit comme une suspension de détergent n'ayant pas de propriétés thixotropes apparentes.

5

. 10

15

20

25

30

35

US-A 3 985 668 décrit des produits de nettoyage dégraissants abrasifs ayant une consistance de type gel, contenant (1) un agent de mise en suspension, de préférence les types 'd'argiles smectite attapulgite; (2) un abrasif, par exemple du sable siliceux ou de la perlite; et (3) une charge comprenant des polymères pulvérulents haute densité, de la perlite expansée et similaires, qui est dotée de flottabilité et exerce ainsi un effet stabilisant sur la composition, en plus de sa fonction d'agent donnant du volume, remplaçant par là l'eau, sinon disponible pour la formation d'une couche surnageant indésirable, due à des pertes et à la déstabilisation des phases. Les composants précités composants essentiels. les Les composants facultatifs comprennent un agent de blanchiment de type hypochlorite, un surfactif et un tampon, par exemple silicates, carbonates, stables vis-à-vis de l'agent de blanchiment, ainsi que des monophosphates. Des adjuvants de détergence, tels que NaTPP, peuvent incorporés en tant qu'autres composants facultatifs, pour remplir ou compléter une fonction d'adjuvant de détergence non assurée par le tampon, la quantité d'un tel adjuvant de détergence

n'excédant pas 5% de la composition totale, selon le brevet. Le maintien des pH supérieurs à 10 désirés est réalisé par les composants tampon/adjuvant de détergence. Un pH élevé est considéré réduire au minimum la décomposition de l'agent de blanchiment à base de chlore, et l'intéraction indésirable entre surfactif et agent de blanchiment. Lorsqu'il est présent, le NaTPP est, comme énoncé, limité à 5%. Aucun antimousse n'est décrit.

10

15

5

Dans les demandes de brevets GB 2 116 199A et GB 2 140 450A, les deux au nom de Colgate Palmolive, sont décrites des compositions liquides de DLVA qui ont des propriétés caractérisant de façon souhaitable structure thixotrope de une type gel, comprennent chacun des divers composants requis pour une détergence efficace dans l'utilisation dans un lave-vaisselle automatique. La composition aqueuse, normalement de type gel, de détergent pour lavevaisselle automatique, ayant des propriétés thixotropes, comprend les composants suivants, pourcentages en poids:

- 20
- (a) 5 à 35% de tripolyphosphate de métal alcalin,
- 25
- (b) 2,5 à 20% de silicate de sodium,
- (c) 0 à 9% de carbonate de métal alcalin,
- (d) 0,1 à 5% d'un produit organique actif détergent, dispersable dans l'eau, stable en présence d'un agent de blanchiment à base de chlore,

(e) 0 à 5% d'un antimousse stable en présence

- 30
- d'un agent de blanchiment à base de chlore,

 (f) un composé de blanchiment à base de chlore,
 en une quantité suffisante pour fournir environ 0,2 à

4% de chlore disponible,

- (g) un épaississant thixotrope en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2,5 à 10,
- (h) de l'hydroxyde de sodium en quantité requise pour l'ajustement du pH, et
 - (i) le reste en eau.

- 10

15

20

25

30

.:

Les compositions de DLVA ainsi formulées sont peu moussantes, sont aisément solubles dans le milieu de lavage, et ont la plus grande efficacité aux pH les plus favorables à un comportement de nettoyage amélioré, à savoir pH 10,5-14,0. Les compositions ont normalement une consistance de gel, c'est-à-dire se présentent sous forme d'un produit de type gelée, hautement visqueux, opaque, ayant une nature de corps plastique de Bingham, et donc des seuils déformabilité relativement élevés. Dans ces conditions, la composition est rapidement fluidisée et aisément dispersée. Lorsqu'on cesse d'appliquer la force de cisaillement, la composition fluide retrouve rapidement une viscosité élevée, et revient à un état de corps plastique de Bingham, très voisin de sa consistance première.

US-A 4 511 487, en date du 16 avril 1985, décrit une pâte détergente peu moussante pour lavevaisselle. L'agent de nettoyage thixotrope breveté a une viscosité d'au moins 30 Pa.s à 20°C, telle que déterminée au moyen d'un viscosimètre rotatif à une vitesse de broche égale à 5 tours/min. La composition est à base d'un mélange composé de métasilicate de sodium hydraté finement divisé, d'un composé chloré actif et d'un épaississant qui est un silicate lamellaire du type hectorite. On peut utiliser une faible quantité de surfactifs non ioniques et de carbonates et/ou hydroxydes de métaux alcalins.

La formation de composés organo-argileux par l'intéraction d'argiles (telles que la bentonite et l'hectorite) avec des composés organiques tels que des sels d'ammonium quaternaire, a également été décrite [W.S. Mardis, <u>JAOCS</u>, vol. <u>61</u>, n°2, p. 382 (1984)].

5

10

15

20

25

30

35

Bien que ces formulations liquides de DLVA précédemment décrites ne soient pas sujettes, ou soient sujettes à un moindre degré, à un ou plusieurs des inconvénients décrits plus haut, il s'est révélé que de nouvelles améliorations de la stabilité physique et de la stabilité vis-à-vis de variations des propriétés rhéologiques avec le temps, sont souhaitables pour accroître la durée de conservation du produit et augmenter ainsi l'acceptation du consommateur.

En même temps, il serait vivement souhaitable d'accroître la stabilité physique et la stabilité vis-à-vis de variations des propriétés rhéologiques, avec le temps, d'autres formulations liquides thixotropes à base d'argile, tels que produits de nettoyage dégraissants, pâtes dentifrices, savons liquides et similaires.

En conséquence, un objet de l'invention est de fournir des additifs anti-dépôt pour suspensions aqueuses thixotropes d'argile.

Un autre objet de l'invention est de fournir des compositions de DLVA liquides à propriétés thixotropes, ayant une stabilité physique améliorée et une stabilité améliorée vis-à-vis de variations des propriétés rhéologiques avec le temps.

Un autre objet de l'invention est de fournir des compositions de DLVA liquides thixotropes comportant des teneurs réduites en épaississant thixotrope, sans affecter défavorablement les viscosités généralement

10

15

20

25

30

35

élevées à de faibles vitesses de cisaillement, et les viscosités généralement plus basses à des vitesses de cisaillement élevées, qui sont caractéristiques des propriétés thixotropes désirées.

Encore un autre objet de la présente invention est d'améliorer la stabilité de compositions aqueuses thixotropes à base d'argile, en particulier de pâtes ou gels liquides de détergents pour lave-vaisselle automatique, par incorporation dans la suspension aqueuse d'argile d'une faible quantité d'un polymère ou copolymère de type poly(acide acrylique) ou d'un de ses sels et d'une faible quantité d'un sel métallique d'un acide gras, efficaces pour empêcher le dépôt des particules en suspension et éviter une séparation de phases.

Un autre objet de la présente invention est d'améliorer la stabilité vis-à-vis de variations des propriétés rhéologiques, avec le temps, đe compositions aqueuses thixotropes à base d'argile, en particulier de pâtes ou gels liquides de détergents pour lave-vaisselle automatique, par incorporation dans la suspension aqueuse d'argile d'une faible quantité efficace d'un polymère ou copolymère de type poly(acide acrylique) ou d'un de ses sels, et d'une faible quantité efficace d'un sel métallique d'un acide gras, en tant qu'agents stabilisants.

Ces objets et d'autres de l'invention, qui seront plus aisément compris d'après la description détaillée ci-après de l'invention et les modes de réalisation préférés de celle-ci, sont atteints par incorporation dans une composition liquide aqueuse, normalement de type gel, d'une quantité faible mais efficace d'agents de stabilisation physique qui sont des polymères et des copolymères de type poly(acide acrylique) et leurs sels, et un sel métallique d'un

acide gras à longue chaîne. Plus particulièrement, selon un mode de réalisation particulier et préféré l'invention, on fournit une composition détergent, normalement de type gel, pour vaisselle automatique, dans laquelle est incorporée une quantité d'un polymère ou copolymère de type poly(acide acrylique) ou d'un sel de celui-ci, et une quantité d'un sel métallique d'un acide gras à longue chaîne, qui sont efficaces pour empêcher variations des propriétés rhéologiques avec le temps, et efficaces pour éviter le dépôt des particules en suspension, telles que des particules thixotrope et de sel adjuvant de détergence de type tripolyphosphate de sodium.

Selon ces aspects particuliers, la présente invention fournit une composition aqueuse, normalement de type gel, de détergent pour lavevaisselle automatique, ayant des propriétés thixotropes, qui comprend, en poids:

20

25

35

5

10

15

- (a) 5 à 35% de tripolyphosphate de métal alcalin,
 - (b) 2,5 à 20% de silicate de sodium,
 - (c) 0 à 9% de carbonate de métal alcalin,
- (d) 0,1 à 5% d'un produit organique actif détergent, dispersable dans l'eau, stable en présence d'un agent de blanchiment à base de chlore,
 - (e) 0 à 5% d'un antimousse stable en présence d'un agent de blanchiment à base de chlore,
- (f) un composé de blanchiment à base de chlore, en une quantité suffisante pour fournir environ 0,2 à 4% de chlore disponible,
 - (g) un épaississant thixotrope en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2,5 à 10,
 - (h) 0 à 8% d'hydroxyde de sodium,

(i) un polymère ou copolymère de type poly(acide acrylique) ou un de ses sels, et un sel d'un métal polyvalent et d'un acide gras à longue chaîne, en quantités efficaces pour accroître la stabilité physique de la composition et sa stabilité vis-à-vis de variations des propriétés rhéologiques avec le temps, et

(j) le reste en eau.

5

10

15

20

25

30

35

Egalement en relation avec cet aspect particulier, l'invention fournit un procédé pour le nettoyage de la vaisselle dans un lave-vaisselle automatique, avec un bain de lavage aqueux contenant une quantité efficace de la composition de détergent liquide pour lave-vaisselle automatique telle que décrite plus haut. Selon cet aspect de l'invention, la composition de DLLVA peut être aisément versée dans la boîte distributrice de la machine automatique à laver la vaisselle, l'espace đe seulement quelques secondes, rapidement s'épaissir pour retrouver son état pâteux ou de type de gel normal.

En : général, l'efficacité đu **DLLVA** est directement liée (a) aux teneurs en chlore disponibles, (b) à l'alcalinité, (c) à la solubilité dans le milieu de lavage, et (d) à l'empêchement de la formation de mousse. On préfère ici que le pH de la composition de DLLVA s'élève au moins à 9,5 environ, encore mieux aux environs de 10,5 à 14,0 et au mieux à au moins 11,5 environ. En outre, présence de carbonate est fréquemment nécessaire ici, car celui-ci agit comme un tampon facilitant maintien du pH désiré. Il faut toutefois éviter un excès de carbonate, car un tel excès peut provoquer la formation de cristaux aciculaires de carbonate, diminuant ainsi la stabilité, la thixotropie et/ou la

10

15

20

25

30

35

détergence du produit DLLVA, et compromettant l'aptitude du produit à être extrait, par exemple, de bouteilles tubulaires à pression. La soude caustique remplit la fonction supplémentaire de neutralisation de l'antimousse de type ester phosphorique ou phosphonique, lorsque celui-ci est présent. Environ 0,5 à 6% en poids de NaOH et environ 2 à 9% en poids de carbonate de sodium sont des concentrations normales dans la composition de DLLVA, bien qu'il faille noter qu'une alcalinité suffisante puisse être fournie par le NaTPP et le silicate de sodium.

Le NaTPP utilisé dans la composition de DLLVA, dans une plage d'environ 8 à 35% en poids, de préférence d'environ 20 à 30% en poids, doit de préférence être exempt de métaux lourds qui ont tendance à décomposer ou inactiver l'hypochlorite de sodium préféré et autres composés de blanchiment à base de chlore. Le NaTPP peut être anhydre ou hydraté, et comprend l'hexahydrate stable, dont le degré d'hydratation égal à 6 correspond à environ 18% en poids d'eau ou plus. On obtient des compositions de DLLVA particulièrement préférées, par exemple, en utilisant un rapport pondéral du NaTPP anhydre au NaTPP hexahydraté allant de 0,5:1 à 2:1, les valeurs d'environ 1:1 étant particulièrement préférées.

La réduction de la mousse est importante pour accroître l'efficacité de la machine à laver la vaisselle et réduire au minimum les effets déstabilisants qui peuvent se produire en raison de la présence d'un excès de mousse dans le lavevaisselle au cours de l'utilisation. On peut réduire suffisamment la mousse par un choix approprié du type et/ou de la quantité du produit actif détergent, qui est le principal composant générateur de mousse. Le

degré de formation de la mousse dépend également dans une certaine mesure de la dureté de l'eau de lavage présente dans la machine, et par conséquent un ajustement approprié des proportions du NaTPP, qui a un effet d'adoucissement de l'eau, peut faciliter l'obtention du degré désiré de suppression de la mousse. Toutefois, on préfère en général incorporer un agent supprimant ou réduisant la formation de mousse (antimousse); stable en présence d'un agent de blanchiment à base de chlore. Des composés particulièrement efficaces sont les esters d'acides alkylphosphoniques de formule

HO-P-R

disponibles par exemple auprès de BASF-Wyandotte (PCUK-PAE), et en particulier les phosphates d'alkyle

O I HO-P-OR

de formule

5

10

15

20

25

30

35

disponibles par exemple auprès de Hooker (SAP) et de Knapsack (LPKn-158), dans lesquelles formules radical R ou les deux dans chaque type d'ester peut représenter indépendamment un groupe alkyle C_{12,20}. On peut utiliser des mélanges des deux types, ou d'autres types quelconques de composés stables en présence d'un agent de blanchiment à base de chlore. ou des mélanges de mono- et de diesters du même type. On préfère en particulier un mélange de phosphates de mono- et dialkyle en C_{16-18} , tel qu'un mélange de phosphates de monostéaryle et de distéaryle proportions 1,2:1 (Knapsack ou Ugine-Kuhlman). Lorsqu'on l'utilise, des proportions de 0,1 à 5% en poids, de préférence d'environ 0,1 à 0,5% en poids,

de l'antimousse dans la composition sont caractéristiques, le rapport pondéral du composant détergent (d) à l'antimousse (e) généralement d'environ 10:1 à 1:1, et de préférence d'environ 5:1 à 1:1. D'autres antimousses qui peuvent être utilisés comprennent par exemple les silicones connus. En outre, une caractéristique avantageuse de la présente invention réside dans le fait qu'un grand nombre des sels stabilisants, tels que les stéarates, le stéarate d'aluminium par exemple, sont également efficaces en tant qu'agents antimousse.

5

10

15

20

25

30

35

Bien qu'il soit possible d'utiliser dans compositions de la présente invention un composé de blanchiment chloré quelconque, tel le dichloroisocyanurate, la dichloro-diméthylhydantoïne ou le TSP (phosphate trisodique) chloré, on préfère un hypochlorite de métal alcalin, par exemple de potassium, de lithium, de magnésium et en particulier de sodium. La composition doit contenir une quantité suffisante du composé de blanchiment à base de chlore pour fournir environ 0,2 à 4,0% en poids de chlore disponible, tel que dosé par exemple acidification de 100 parties de la composition avec excès d'acide chlorhydrique. Une solution contenant environ 0,2 à 4,0% en poids d'hypochlorite de sodium contient ou fournit à peu près le même pourcentage de chlore disponible. On préfère en particulier 0,8 à 1,6% en poids de chlore disponible. Par exemple, on peut utiliser avantageusement en quantités d'environ 3 à 20%, de préférence d'environ à 12%, une solution d'hypochlorite de (NaOC1) contenant d'environ 11 à environ 13% de chlore disponible.

On utilise le silicate de sodium, qui confère une alcalinité et une protection des surfaces dures,

comme par exemple du décor et de la glaçure de la porcelaine fine, en une quantité allant d'environ 2,5 à 20% en poids, de préférence d'environ 5 à 15% en poids dans la composition. On ajoute généralement le silicate de sodium sous la forme d'une solution aqueuse, ayant de préférence un rapport Na₂O:SiO₂ d'environ 1:2 à 1:2,8.

5

10

15

20

25

30

35

Le produit actif détergent utilisé ici doit être stable en la présence d'un agent de blanchiment à chlore. en particulier un agent blanchiment de type hypochlorite, et on préfère ceux appartenant aux surfactifs organiques đe anioniques, oxyde d'amine. oxyde de phosphine, sulfoxyde ou bétaïne, dispersables dans l'eau, composés anioniques mentionnés en premier particulièrement préférés. On les utilise quantités allant d'environ 0,1 à 5%, de préférence d'environ 0,3 à 2,0%. Les surfactifs particulièrement préférés ici sont les mono- et/ou disulfates ou disulfonates de monoet/ou dialkyl(C_{8-14})diphényloxyde et de métal alcalin, linéaires ramifiés, disponibles dans le commerce par exemple sous le nom de DOWFAX (marque déposée) 3B-2 et de 2A-1. Le surfactif doit en outre compatible avec les autres constituants composition. D'autres surfactifs appropriés comprennent les sulfates d'alkyle primaire, sulfonates d'alkyle primaire, sulfonates d'alkylaryle et sulfonates d'alkyle secondaire. Comme exemples, on peut citer les sulfates d'alkyle en C_{10-18} et de sodium, tels que le sulfate de dodécyle et de sodium, et le sulfate d'alcool de suif et de sodium; alcane-(C₁₀₋₁₈)-sulfonates de sodium, tels que l'hexadécyl-1-sulfonate de sodium; et des alkyl(C_{12} -18) -benzènesulfonates de sodium, tels

10

15

20

25

30

35

dodécylbenzènesulfonate de sodium. On peut également utiliser les sels de potassium correspondants.

Comme autres surfactifs ou détergents appropriés, les surfactifs de type oxyde d'amine ont typiquement la structure R₂R¹N-O, dans laquelle chaque radical représente un groupe R alkyle inférieur, par exemple le groupe méthyle, représente un groupe alkyle à longue chaîne ayant de 8 à 22 atomes de carbone, par exemple le groupe lauryle, myristyle, palmityle ou cétyle. Au lieu d'un oxyde d'amine, on peut utiliser un surfactif correspondant de type oxyde de phosphine R2R1PO ou sulfoxyde RR¹SO. Les surfactifs de type bétaïne ont caractéristiquement la structure R2R1NR'COO, dans laquelle chaque radical R représente un groupe alkylène inférieur ayant de 1 à 5 atomes de carbone. Comme exemples spécifiques de ces surfactifs, on peut citer l'oxyde de lauryldiméthylamine, l'oxyde de myristyldiméthylamine, les oxydes de phosphine et sulfoxydes correspondants, et les bétaïnes correspondantes, comprenant l'acétate de dodécyldiméthylammonium, le pentanoate de tétradécyldiéthylammonium, l'hexanoate d'hexadécyldiméthylammonium laires. Eu égard à la biodégradabilité, les groupes alkyle présents dans ces surfactifs doivent être linéaires, et on préfère les composés comportant de tels groupes.

Les surfactifs des types mentionnés plus haut, tous bien connus dans la technique, sont décrits par exemple dans US-A 3 985 668 et 4 271 030.

Les épaississants thixotropes, c'est-à-dire les épaississants ou agents de mise en suspension qui confèrent des propriétés thixotropes à un milieu aqueux, sont connus dans la technique et peuvent être organiques ou inorganiques, solubles dans l'eau,

10

15

20

25

30

35

dispersables dans l'eau ou former des suspensions colloïdales, et peuvent être monomères ou polymères, doivent naturellement être stables dans compositions, par exemple stables vis-à-vis d'une forte alcalinité et de composés de blanchiment à base de chlore, tels que l'hypochlorite de sodium. Ceux l'on préfère en particulier comprennent minérales, formant des les argiles général smectite et/ou suspensions colloïdales, de type attapulgite. On utilise ces matériaux en général en quantités d'environ 1,5 à 10% en poids, de préférence en poids, pour conférer les d'environ 2 à 5% propriétés thixotropes désirées et la nature de corps plastique de Bingham aux formulations de DLLVA du présent cessionnaire, antérieurement décrites dans 2 116 199A 2 140 450A GB et GB demandes précitées. Un des avantages des formulations de DLLVA de la présente invention réside dans le fait que l'on peut obtenir les propriétés thixotropes et la nature corps plastique de Bingham désirées, polymères et copolymères de présence des poly(acide acrylique) et de leurs sels, et stabilisants de type sel métallique d'acide gras de invention, des quantités avec présente faibles des épaississants thixotropes. Par exemple, des quantités des argiles minérales, formant des suspensions colloïdales, de type smectite et/ou allant d'environ 0,1 à 0,5%, attapulgite, préférence 0,2 à 0,4%, en particulier de 0,25 à 0,30%, sont en général suffisantes pour l'obtention des propriétés thixotropes et de la nature de corps plastique de Bingham désirées, lorsqu'on les utilise combinaison avec les agents de stabilisation physique polymères et copolymères de type poly(acide acrylique) et sels métalliques d'acides gras.

10

15

20

25

30

35

Les argiles de type smectite comprennent montmorillonite (bentonite), l'hectorite, smectite, la saponite, et similaires. Les argiles de type montmorillonite sont préférées et disponibles sous des noms commerciaux tels que Thixogel (marque déposée) n°l et Gelwhite (marque déposée) GP, H, etc., auprès de Georgia Kaolin Company, et ECCAGUM (marque déposée) GP, H, etc., auprès de Luthern Clay Products. Les argiles de type attapulgite comprennent les produits disponibles dans le commerce sous le nom commercial Attagel (marque déposée), à savoir Attagel 40, Attagel 50 et Attagel auprès de Engelhard Minerals and Chemical 150, Corporation. On peut également utiliser ici des mélanges des types smectite et attapulgite, rapports pondéraux de 4:1 à 1:5. Les d'épaississement ou de mise en suspension des types précédents sont bien connus dans la technique, et décrits par exemple dans US-A 3 985 668, mentionné plus haut. Les abrasifs ou agents polissages doivent être évités dans les compositions de DLLVA, car ils peuvent abîmer la surface de la vaisselle fine, de cristaux et similaires.

La quantité d'eau contenue dans ces compositions doit naturellement être ni trop élevée pour donner une viscosité trop faible et une trop fluidité, ni trop faible pour donner une viscosité trop élevée et une coulabilité trop faible, propriétés thixotropes étant dans l'autre diminuées ou supprimées. Cette quantité est aisément déterminée par une expérimentation courante dans tout cas particulier, et va généralement d'environ 45 à 75% en poids, de préférence d'environ 55 à 65% en L'eau doit également être de préférence poids. désionisée ou adoucie.

10

15

20

25

30

35

Jusqu'ici, la description du produit DLLVA, à moins d'indication contraire, est conforme aux compositions décrites dans les demandes de brevets GB 2 116 199A et GB 2 140 450A précitées, au nom de la Demanderesse.

Les produits DLLVA des demandes de brevets GB et GB 2 140 450A manifestent des propriétés rhéologiques améliorées, telles qu'évaluées par contrôle de la viscosité du produit en tant que fonction de la vitesse de cisaillement. Les compositions ont manifesté une viscosité plus élevée à une faible vitesse de cisaillement et une viscosité plus faible à une vitesse de cisaillement élevée, les données indiquant une fluidisation et une gélification efficaces, largement dans les limites des vitesses de cisaillement rencontrées dans le lave-vaisselle courant. Dans la pratique, signifie des caractéristiques améliorées du versement de la composition et d'opération, ainsi qu'une fuite moindre dans la boîte distributrice de la machine, par rapport aux produits DLLVA liquides ou de type gel antérieurs. En conséquence, pour des vitesses de cisaillement appliquées correspondant 3-30 tours/minute, on a relevé des viscosités (Brookfield) allant d'environ 1 à 3 KPa.s (10 000-30 000 cP) à environ 0,2 à 0,6 KPa.s (2 000-6 000 cP), telles que mesurées à la température ambiante au moyen d'un viscosimètre de Brookfield LVT au bout de 3 minutes utilisant une broche n°4. Une vitesse cisaillement de 7.4 s^{-1} correspond à une rotation de la broche d'environ 3 tours/min. Une augmentation de la vitesse de cisaillement d'environ 10 fois produit une diminution de la viscosité d'environ 3 à 9 fois. Avec les gels de DLVA précédents, la diminution correspondante de la viscosité n'était que de deux

10

15

20

25

30

fois environ. En outre, avec de telles compositions, viscosité initiale, mesurée à environ tours/min., n'était que d'environ 0,25 à 0,27 KPa.s (2 500-2 700 cP). Les compositions de la précédente invention du présent cessionnaire manifestent par conséquent des seuils de fluidisation à des vitesses de cisaillement plus faibles, et d'un degré nettement plus élevé, exprimé en accroissements incrémentiels de la vitesse de cisaillement en fonction de la diminution incrémentielle de la viscosité. propriété des produits de DLLVA 1'invention antérieure est résumée par l'indice de thixotropie (IT), qui est le rapport de la viscosité apparente à 3 tours/min. à la viscosité apparente à 30 tours/min. Les compositions précédentes ont un IT allant de 2 à 10. Les compositions de DLLVA testées ont manifesté retour rapide et pratiquement total consistance première de l'état de repos, lorsqu'on a fait cesser la force de cisaillement.

La présente invention est basée sur la découverte qu'il est possible d'améliorer sensiblement ou de ne pas affecter défavorablement la stabilité physique, c'est-à-dire la résistance à la séparation de phases, au dépôt, compositions liquides aqueuses de DLVA des demandes de brevets GB 2 116 199A et GB 2 140 450A et de la demande de brevet FR n° 86.08 287, tout en améliorant sensiblement la stabilité vis-à-vis de variations des propriétés rhéologiques en fonction du temps et de la température, par addition à la composition d'une quantité, faible mais efficace, de polymères copolymères de type poly(acide acrylique) ou de leurs sels, et de faibles quantités efficaces d'un sel métallique d'un acide gras à longue chaîne.

10

15

20

25

30

35

Comme exemple de l'amélioration des propriétés rhéologiques, il s'est révélé qu'il est fréquemment possible d'accroître par un facteur de 2 à 3 les viscosités apparentes à des vitesses de cisaillement faibles, par exemple à une vitesse de d'environ 3 tours/minute, par l'incorporation d'une quantité aussi faible que 1% ou moins du polymère ou copolymère de type poly(acide acrylique) ou d'un sel de celui-ci, et d'une quantité aussi faible que 0,25% du stabilisant de type sel métallique d'acide gras. même temps, on peut améliorer la stabilité physique à un degré tel que même au bout de 12 semaines ou plus, dans des gammes de température allant d'une température voisine du point congélation 40°C à et plus, les compositions contenant les stabilisants polymère ou copolymère de type poly(acide acrylique) ou un de ses sels, et sel métallique, sont stables vis-à-vis des variations des propriétés rhéologiques en fonction du temps et de la température, et subissent ne aucune séparation visible de phase.

Les polymères et copolymères d'acide acrylique et leurs sels, qui peuvent être utilisés, sont en général disponibles dans le commerce, et sont brièvement décrits comme suit.

Les polymères de type poly(acide acrylique) et leurs sels, qui peuvent être utilisés, comprennent des polymères à faibles poids moléculaires, solubles dans l'eau, de formule

$$\begin{bmatrix}
R_1 & R_2 \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_3 & COOM
\end{bmatrix}$$

dans laquelle les radicaux R_1 , R_2 et R_3 peuvent être identiques ou différents et peuvent être des atomes d'hydrogène, des groupes alkyle inférieures en C_1 - C_4 , ou des combinaisons de ceux-ci. La valeur de n est 5 à 2 000, de préférence 10 à 1 500, et encore mieux 20 à 1 000. M représente un atome d'hydrogène ou un métal alçalin tel que le sodium ou le potassium. Le substituant préféré pour M est le sodium.

5

10

15

20

25

30

35

Les groupes R_1 , R_2 et R_3 préférés sont des atomes d'hydrogène ou les groupes méthyle, éthyle et propyle. Le monomère de type acide acrylique préféré est un monomère dans lequel R_1 à R_3 sont des atomes d'hydrogène, par exemple l'acide acrylique, ou dans lequel R_1 et R_3 sont des atomes d'hydrogène et R_2 est le groupe méthyle, par exemple le monomère acide méthacrylique.

Le degré de polymérisation, c'est-à-dire la valeur de n, est en général déterminé par la limite compatible avec la solubilité du polymère ou du copolymère dans l'eau. Les groupes terminaux du polymère ou du copolymère ne sont pas critiques, et peuvent être H, OH, CH₃ ou un hydrocarbure à faible poids moléculaire.

Caractéristiquement, les copolymères type poly(acide acrylique) peuvent comprendre copolymères, par exemple d'acide acrylique ou d'acide méthacrylique, et d'un anhydride polycarboxylique ou d'un acide polycarboxylique, tel l'anhydride que succinique, l'acide succinique, l'acide maléique, l'anhydride maléique, l'acide citrique et similaires.

Le monomère de type acide acrylique ou acide méthacrylique constitue de 40 à 60% en poids, par exemple environ 50% en poids du copolymère avec un acide ou anhydride d'acide polycarboxylique.

10

15

20

25

30

35

Le polymère ou copolymère de type poly(acide acrylique) peut avoir un poids moléculaire de 500 ou 1 000 à 200 000, de préférence de 1 500 à 150 000, et en particulier de 2 000 à 100 000.

Des polymères de type poly(acide acrylique) spécifiques qui peuvent être utilisés comprennent les polymères d'acide acrylique Acrysol LMW de Rohm and Haas, tels que l'Acrysol LMW-45NX, un sel de sodium neutralisé, qui a un poids moléculaire d'environ et Acrysol LMW-20NX, un sel de neutralisé, qui a un poids moléculaire d'environ Les polymères d'acide acrylique à faibles 2 000. poids moléculaires peuvent par exemple avoir un poids moléculaire d'environ 1 000 à 10 000. Un polymère de type poly(acide acrylique) qui peut être utilisé est Alcosperse 110 (fourni par Alco), qui est un sel de sodium d'un polycarboxylate organique et qui a un poids moléculaire d'environ 100 000.

Un copolymère de type poly(acide acrylique) qui peut être utilisé est Sokalan CP5 (de BASF) qui a un poids moléculaire d'environ 70 000 et qui est le produit de réaction de quantités environ équimolaires d'acide méthacrylique et d'anhydride maléique, qui a été totalement neutralisé sous forme de son sel de sodium.

On peut préparer les polymères et copolymères ci-dessus en utilisant des procédés connus dans la technique, voir par exemple US-A 4 203 858.

quantité du stabilisant polymère copolymère de type poly(acide acrylique) nécessaire à l'obtention l'accroissement de recherché stabilité physique, dépendra de facteurs tels que la nature du sel d'acide gras, la nature et la quantité de l'agent thixotrope, du composé actif détergent, de sels minéraux, le TPP en particulier,

composants du DLLVA, ainsi que des conditions prévues de stockage et de transport.

Cependant, les quantités des agents stabilisants polymère ou copolymère de type poly(acide acrylique) qui peuvent être en général utilisées, sont dans la plage allant d'environ 0,5 à 1,5%, de préférence d'environ 0,80 à 1,2%, encore mieux d'environ 1,0%.

5

10

15

20

25

30

35

Les acides gras à longues chaînes préférés sont les acides gras aliphatiques supérieurs d'environ 8 à environ 22 atomes de carbone, encore mieux d'environ 10 à 20 atomes de carbone, et en particulier d'environ 12 à 18 atomes de carbone, y compris l'atome de carbone du groupe carboxy de l'acide gras. Le radical aliphatique peut être saturé ou non saturé, et peut être à chaîne droite ou ramifiée. On préfère les acides gras saturés chaînes droites. On peut utiliser des mélanges d'acides gras, tels que ceux provenant de sources naturelles, comme par exemple les acides gras de suif, de coco, de soja, etc., ou ceux produits par synthèse dans des processus de fabrication industrielle.

Ainsi, des exemples des acides gras à partir desquels peuvent être formés les stabilisants de type sel de métal polyvalent comprennent décanoïque, l'acide dodécanoïque, l'acide palmitique, l'acide myristique, l'acide stéarique, l'acide éicosanique, oléique, les acides gras suif, de coco, de soja, des mélanges de ces acides, etc. On préfère l'acide stéarique et des mélanges d'acides gras.

Les métaux préférés sont les métaux polyvalents des groupes IIA, IIB et IIIB, tels que le magnésium, le calcium, l'aluminium et le zinc, bien qu'il soit également possible d'utiliser d'autres métaux

10

15

20

25

30

35

polyvalents, y compris ceux des groupes IIIA, IVA, VA, VIA, VIIA, IB, IVB, VB, VIB, VIIB et VIII du tableau périodique des éléments. Comme exemples spécifiques de ces autres métaux polyvalents, on peut citer Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cd, Sn, Sb, Bi, etc. En général, les métaux peuvent être présents en un état bivalent à pentavalent. De préférence, les métalliques sont utilisés sous d'oxydation le plus élevé. Il va sans dire que pour des compositions de DLLVA, comme pour toutes les autres applications dans lesquelles la composition de l'invention doit ou peut entrer en contact avec des articles utilisés pour la manipulation, le stockage ou la présentation de produits alimentaires, ou qui peuvent de toute autre façon entrer en contact avec ou être consommés par des personnes ou des animaux, on doit choisir le sel métallique en prenant en considération la toxicité du métal. A cet effet, les sels de calcium et de magnésium sont particulièrement préférés en tant qu'additifs alimentaires généralement sans danger.

Un grand nombre de ces sels métalliques sont disponibles dans le commerce. Par exemple, les sels d'aluminium sont disponibles sous la triacides, par exemple le stéarate d'aluminium sous forme de tristéarate d'aluminium $Al(C_{17}H_{35}COO)_3$. Les sels de monoacides, par exemple le monostéarate d'aluminium $A1(OH)_2(C_{17}H_{35}COO)$ et les sels exemple le diacides, par distéarate d'aluminium $Al(OH)(C_{17}H_{35}COO)_2$ et des mélanges de deux ou trois des sels de mono-, di- et triacides, peuvent être utilisés pour les métaux trivalents, Al par exemple, et des mélanges des sels de mono- et diacides peuvent être utilisés pour les métaux bivalents, par exemple Zn. On préfère en particulier utiliser en quantités

10

15

20

25

30

35

prédominantes les sels de diacides et de métaux bivalents, les sels de triacides et de trivalents, les sels de tétraacides et de métaux tétravalents, et les sels de pentaacides et de métaux pentavalents. Par exemple, au moins 30%, préférence au moins 50%, encore mieux de 80 à 100% du métallique total doit être dans l'état d'oxydation le plus élevé possible, c'est-à-dire que chacun des sites de valence possibles est occupé par un reste acide gras.

Les sels métalliques, comme mentionné plus haut, sont en général disponibles dans le commerce, mais peuvent être aisément préparés, par exemple par saponification d'un acide gras, par exemple graisse animale acide stéarique, etc., ou de l'ester d'acide gras correspondant, suivie d'un traitement par un hydroxyde ou un oxyde du métal polyvalent, par exemple dans le cas du sel d'aluminium, avec l'alun, l'alumine, etc.

Le stéarate de calcium, à savoir le distéarate de calcium, le stéarate de magnésium, à savoir le distéarate de magnésium, le stéarate d'aluminium, à savoir le tristéarate d'aluminium, et le stéarate de zinc, à savoir le distéarate de zinc, sont les stabilisants de type sel de métal polyvalent et d'acide gras préférés. Des sels métalliques d'acides gras mélangés, tels que les sels d'acides existant dans la nature, par exemple l'acide de coco, ainsi que des acides gras mélangés provenant de processus industriels de fabrication, sont également utilisés avantageusement comme sources peu coûteuses mais efficaces de l'acide gras à longue chaîne.

La quantité des stabilisants de type sel d'acide gras, utilisée pour parvenir à l'amélioration recherchée de la stabilité physique, dépend également

10

15

20

25

30

35

de facteurs tels que la nature du sel d'acide gras, la nature et la quantité de l'agent thixotrope, du composé actif détergent, des sels minéraux, en particulier du TPP, d'autres composants du DLLVA, ainsi que des conditions prévues de stockage et de transport.

Cependant, les quantités des agents stabilisants de type sel d'acide gras et d'un métal polyvalent sont en général dans la plage d'environ 0,10 à 0,5%, de préférence d'environ 0,2 à 0,3%, encore mieux d'environ 0,25 à 0,30%. L'utilisation des agents stabilisants, polymère ou copolymère poly(acide acrylique) conjointement avec le sel d'acide gras et de métal polyvalent, fournit la stabilité physique à long terme, la stabilité vis-àvis de variations des propriétés rhéologiques en fonction du temps et de la température, et l'absence de séparation de phase au repos ou au cours du transport, à la fois aux basses températures et aux températures élevées, comme il est requis pour un produit commercialement acceptable.

D'après les exemples donnés plus loin, on peut voir qu'en fonction des quantités, des proportions et de la nature des agents de stabilisation physique et agents thixotropes, l'addition des polymères ou copolymères de type poly(acide acrylique) et du sel d'acide gras, non seulement accroît la stabilité physique, mais également dans certains cas conduit en même temps à un accroissement de la viscosité apparente, et fournit une stabilité vis-à-vis de variations des propriétés rhéologiques en fonction du temps et/ou de la température.

On ajoute les agents de stabilisation physique juste avant l'addition de l'épaississant à base d'argile. Mis à part le composé de blanchiment à base

10

15

20

25

30

35

de chlore, la teneur totale en sel (NaTPP, silicate de sodium et carbonate) va généralement d'environ 20 à 50% en poids, de préférence d'environ 30 à 40% en poids, dans la composition.

Une autre méthode nettement préférée pour le mélangeage des composants des formulations de DLLVA comprend en premier lieu la formation d'un mélange composé d'eau, agent antimousse, détergent, agents de stabilisation physique [polymère ou copolymère de type poly(acide acrylique) et sel d'acide gras] et agent thixotrope, argile par exemple. On mélange ces composants dans des conditions đe forces cisaillement élevées, de préférence en commençant à la température ambiante, pour former une dispersion homogène. fois cette partie prémélangée, Une introduit les composants restants dans des conditions de mélangeage à faible cisaillement. Par exemple, on introduit la quantité requise du prémélange dans un mélangeur à faible cisaillement, et après cela, on ajoute en mélangeant, soit successivement, soit simultanément, les composants restants. De préférence, on ajoute les composants successivement, bien qu'il ne soit pas nécessaire d'achever l'addition de la totalité d'un composant avant de commencer l'addition du composant suivant. En outre, on peut diviser un ou plusieurs des composants en portions, et ajouter celles-ci à différents moments. On peut obtenir de bons résultats en ajoutant les composants restants dans l'ordre suivant: hydroxyde de sodium, carbonate de métal alcalin, silicate de sodium, tripolyphosphate de métal alcalin (hydraté), tripolyphosphate de métal alcalin (anhydre contenant jusqu'à 5% d'eau), agent de blanchiment (de préférence hypochlorite de sodium) et hydroxyde de sodium.

10

15

20

25

30

35

ces compositions, on peut incorporer d'autres composants classiques en petites quantités, en général inférieures à environ 3% en poids, tels que parfum, hydrotropes tels que benzène-, toluène-, xylène- et cumène-sulfonates de sodium, agents de conservation, colorants et pigments, et similaires, tous étant naturellement stables en présence composé de blanchiment à base de chlore et d'une alcalinité (caractéristique de tous les composants). Pour la coloration, on préfère en particulier les phtalocyanines chlorées et polysulfures d'aluminosilicate qui donnent de plaisantes teintes, respectivement, vertes et bleues. On peut utiliser du TiO2 pour donner une coloration blanche ou supprimer des nuances indésirables.

Les compositions liquides de DLVA de la présente invention sont aisées à utiliser de façon connue pour le lavage de la vaisselle, d'autres ustensiles de cuisine et similaires, dans un lave-vaisselle automatique muni d'un distributeur de détergent approprié, dans un bain de lavage aqueux contenant une quantité efficace de la composition.

que 1'invention ait été décrite particulier en relation avec son application à des détergents liquides pour · le lave-vaisselle automatique, il doit être entendu que tous avantages qui sont obtenus par l'addition du sel métallique d'acide gras à longue chaîne, à savoir la stabilité physique accrue de la suspension thixotrope à base d'argile, et la stabilité accrue vis-à-vis de variations des propriétés rhéologiques avec le temps, s'appliquent également à d'autres suspensions thixotropes base d'argile, à telles que formulations de pâtes dégraissantes décrites dans US-A 3 985 668 précité.

On illustre l'invention plus en détail à l'aide des exemples descriptifs et non limitatifs ci-après.

Toutes les quantités et proportions mentionnées ici sont données en poids, par rapport à la composition, à moins d'indication contraire.

Exemple 1

5

10

15

Afin démontrer l'effet de des stabilisants polymères ou copolymères de type poly(acide et sels métalliques, on prépare des acrylique) formulations liquides de DLVA en utilisant diverses quantités des stabilisants polymères ou copolymères de type poly(acide acrylique) et sels d'acides gras, et de l'épaississant thixotrope à base d'argile, comme suit:

Formulations thixotropes à base d'argile

		
		<u>Pourcentage</u>
	Eau désionisée	41,10 à 42,55
	Solution de soude caustique (NaOH à 50%) 2,20
20	Carbonate de sodium anhydre	5,00
	Silicate de sodium, solution à 47,5% de	
	Na ₂ O:SiO ₂ , (1:2,4)	15,74
	TPP de sodium (pratiquement anhydre, à	
	savoir 0-5%, en particulier 3% d'humi-	
25	dité) (Thermphos NW)	12,00
	TPP de sodium hexahydraté (Thermphos N	
	hexa)	12,00
	On refroidit le mélange à 25-	-30°C, et on
	maintient l'agitation en permanence, pu	is on y ajoute
30	les composants suivants, à la températu	re ambiante:
30		Pourcentage
	Solution d'hypochlorite de sodium (11%	_
	de chlore disponible)	9,00
	Phosphate de monostéaryle	0,16
35	DOWFAX 3B-2 (solution aqueuse de disul-	

fonate de monodécyle/didécyle et de di-

phényloxyde de Na à 45%) 0,80

Polymère ou copolymère de type poly(acide acrylique) 0-1,0

Tristéarate d'aluminium 0-0,4

Pharmagel H 0,25-2,0

5

10

15

25

30

35

L'antimousse phosphate de monostéaryle et le composé actif détergent Dowfax 3B-2, le polymère ou copolymère de type poly(acide acry ique) et le stabilisant tristéarate d'aluminium ou distéarate de zinc sont ajoutés au mélange immédiatement avant l'épaississant à base d'argile Pharmagel H.

On mesure la densité, la viscosité apparente à 3 et 30 tours/min. et la stabilité physique (séparation de phases), au repos et dans un essai de transport, de chacune des formulations liquides de DLVA résultantes, comme indiqué dans le tableau I ciaprès. Les résultats sont également indiqués dans le tableau I.

D'après les données figurant dans le tableau I, on aboutit aux conclusions suivantes:

L'incorporation de 0,10% de tristéarate d'aluminium dans une formule contenant 1,25% Pharmagel Η (essai 2, témoin) conduit un accroissement de la stabilité physique et de la viscosité apparente, par rapport à l'essai 1 (témoin).

L'incorporation de 0,4% de tristéarate d'aluminium ou de 0,3% de tristéarate d'aluminium dans une formule contenant 0,25% de Pharmagel H [essai 3 (témoin) et essai 4 (témoin)], par rapport à l'essai 1 (témoin), conduit à l'accroissement de la stabilité physique, sans augmentation importante de la viscosité. L'utilisation des proportions plus élevées de tristéarate d'aluminium, 0,4 et 0,3%, [essai 3 (témoin) et essai 4 (témoin)] permet en

outre la réduction de la teneur en argile, de 1,25% [essai 2 (témoin)] à 0,25% [essai 3 (témoin) et essai 4 (témoin)], tout en maintenant la stabilité physique de la formulation.

Les données du tableau I montrent également que l'addition d'environ 1,0% d'Acrysol LMW-45NX (essais 5 et 6), d'environ 1,0% d'Alcosperse 110 (essais 7 et 8) et d'environ 1,0% de Sokalan CP5 (essais 9 et 10) n'affecte pas défavorablement la stabilité physique des formulations, tout en permettant la réduction de la teneur en argile à 0,3-0,5%.

TABLEAU 1

Viscosité ou viscosimètre de Brookfield LVT (KCP) (1)

SEPARATION DE LIQUIDE AU REPOS (%) (APRES 12 SEMAINES)

	3				
TEST DE TRANS- PORT (%)	1-5	0	0	3	0
TA dans de la matière plas-tique (3)	1-5	1	0	1	0
43°C dans 1 du verre (2)	0	0	0	. 0	0
35°C dans du verre (2)	0	0	0	0	0
TA dans du verre (2)	1-2	0	0	0	0
4°C dans du verre (2)	1-3	0	0	0	е
10 tours/ min	4	8,8	2,9	2,7	2,1
3 tours/ min	13	28	10	6	7
DENSITE (g/cm³)	1,25	1,32	1,35	1,33	1,31
	=41.10% Lque)= 0% nium = 0% = 2.0%	=41.75% crylique = 0.8 d'alumin.= 0.10% = 1.25%	=42.45% crylique)= 0% d'alumin.= 0.4% = 0.25%	=42.55% ique = 0% lmin.= 0.3% = 0.25%	=41.55% = 1.0% umin.= 0.25% = 0.3%
FORMULATION	H ₂ O Poly(acide acrylique Stéarate d'aluminium Pharmagel H	H ₂ O Poly(acide acrylique Tristéarate d'alumin Pharmagel H	H ₂ O Poly(acide acrylique)= Tristéarate d'alumin.= Pharmagel H	H ₂ O Poly(acide acrylique Tristéarate d'alumin Pharmagel H	H ₂ O Acrysol LMW-45NX = Tristéarate d'alumin.= Pharmagel H
ESSAI	1 (té- moin)	2 (té- moin)	3 (té- moin)	4 (té- moin)	വ

0.1127

TABLEAU 1 (suite)

Viscosité ou viscosimètre de	(KCP) (1)
------------------------------	-----------

SEPARATION DE LIQUIDE AU REPOS (%) (APRES 12 SEMAINES)

ESSAI	FORMULATION		DENSITE	3 tours/ min	10 tours/ min	4°C dans du verre	TA dans du	35°C dans du	43° dar du	TA dans C de la ns matière plas-	H. H.
						(2)	(2)	(2)	(2)	(3)	(4)
		=41.20%									34
9	-45NX	= 1.0%	1,30	16	3,6	0	0	0	0	0	0
	ate d'alumin.	•									
		= 0.5%									
		=41.55%									
7	110	= 1.0%	1,31	14	2,5	n	0	0	0	0,5	0
	Tristéarate d'alumin.=	0									
		= 0.3%									
		=41.20%									
∞	Aîcosperse 110	= 1.0%	1,30	0	3,2	0	0	0	0	0	0
	e d'alumin.	= 0.4%									
	Pharmagel H	= 0.5%									
		=41.20%									*
0		1.0%	1,33	30	5,6	0	0	0	0	1,4	0
	Tristéarate d'alumin.=										
		= 0.5%							:		
		=41.55%									:
10		= 1.0%	1,33	σ	2,4	0	0	0	0	1,5	0
	Tristéarate d'alumin.	= 0.25%									
		= 0.38						•			

Notes du tableau I

- (1) Mesurée avec la broche 4 après 3 minutes sur des échantillons âgés de 24 heures.
- (2) En hauteur (TA= température ambiante= 20±2°C).
 - (3) En poids (TA= température ambiante= 20±2°C).
 - (4) Séparation du liquide mesurée au bout de 6 semaines et de 2 000 km dans une voiture particulière (en poids dans une bouteille en matière plastique), sauf pour l'essai 1 (témoin) dans lequel la mesure a été effectuée à 3 000 km.

Exemple 2

5

10

15

20

25

30

35

Afin de déterminer les variations des propriétés rhéologiques avec le temps, on a mesuré les viscosités apparentes des échantillons des essais 2 à 10 de l'exemple 1, à 3 tours/min. et 30 tours/min., après 1 jour, 2 semaines, 4 semaines, 6 semaines et 12 semaines, et les résultats obtenus sont indiqués dans le tableau II ci-après.

Les données du tableau II montrent l'addition de 1,0% d'Acrysol LMW-45NX (essai 5), de 1,0% d'Alcosperse 110 (essai 7) ou de 1,0% de Sokalan CP5 (essai 10) conduit à une stabilisation marquée des variations des propriétés rhéologiques avec le altérer sans la stabilité physique formulations, pour une teneur en argile Pharmagel H de 0,3%, par rapport aux essais 3 et 4 (témoins) qui fortes variations montrent de de la viscosité apparente avec le temps.

Exemple 3

Afin de déterminer les variations des propriétés rhéologiques en fonction du temps et de la température, on a mesuré les viscosités apparentes à 3 tours/min., à 4°C, à la température ambiante (TA), à 35°C et à 43°C, chaque fois au bout de 2, 4, 6 et

10

12 semaines, et les résultats obtenus sont indiqués dans le tableau III ci-après.

Les données đu tableau III montrent que l'addition de 1,0% d'Acrysol LMW-45 (essai 5), de 1,0% d'Alcosperse 110 (essai 7) ou de 1,0% de Sokalan CP5 (essai 10) conduit à une stabilisation marquée des variations des propriétés rhéologiques avec le temps, à toutes les températures, dans des formulations contenant 0,25% de tristéarate d'aluminium et 0,3% de Pharmagel H, par rapport à la formulation contenant 0,1% de tristéarate d'aluminium et 1,25% d'argile Pharmagel H [essai 2 (témoin)].

: UTILISATION SIMULTANEE DE POLY(ACIDE ACRYLIQUE) ET DE TRISTEARATE D'ALUMINIUM VISCOSITE OU VISCOSIMETRE DE BROOKFIELD LVT A 3 ET 30 TOURS/MIN. APRES X JOURS A LA TA (KCPS) (1) TABLEAU II

ESSAI	X=1 JOUR	X=2 SEMAINES	X=4 SEMAINES	X=6 SEMAINES	X=12 SEMAINES
2 (témoin)	28/6,8	24/3,4	34/6,9	53/7	41/6,7
3 (témoin)	10/2,9	51/6,4	(2)	48/7,6	200/20
(témoin)	9/2,7	38/6,2	86/5	78/11	64/8,2
5	7/2,1	14/3,4	17/3,4	38/4,6	29/5,6
9	16/3,6	40/5,9	56/6,4	78/9,2	80/10,8
7	14/2,5	13/2,6	17/2,9	64/8	34/6,8
1 1 1 1 1 1 1 8 1 1	9/3,2	38/6,6	56/8,6	73/9,6	149/13
6	30/5,6	82/12	100/11	113/15,4	180/16,2
10	9/2,4	18/3,8	52/7,5	34/4,2	58/5,3

(1) Mesurée avec la broche 4 après 3 minutes dans une bouteille en verre laissée sur une étagère (KCP = 10^{-1} KPa.s). (2) Pas de mesure.

TABLEAU III : UTILISATION SIMULTANEE DE POLY(ACIDE ACRYLIQUE) ET DE TRISTEARATE D'ALUMINIUM VARIATION DES PROPRIETES RHEOLOGIOUES EN FONCTION DU TEMPS A TOUTES LES TEMPERATURES.

AU REPOS APRES X SEMAINES (KCP) (1) A 4°C A RT T.A. A 35°C A 4. X=2 X=4 X=6 X=12 X=2 X=4 X=6 X=12 X=2 X=4 \ X=6 X=12 \ X=2 X=4 \ X=6 \ X=1 \ Z \ Z=4 \

(1) Mesurée avec la broche $_14$ après 3 minutes dans une bouteille de verre laissée sur une étagère (KCP = 10^{-1} KPa.s) (2) Pas de mesure.

Exemple 4

5

On prépare le DLVA liquide thixotrope de type gel ci-dessous, en suivant le même mode opératoire général que dans l'exemple 1:

	Composant	Quantité, %
	Silicate de sodium (solution à 47,5%)	
	de Na ₂ 0:SiO ₂ (1:2,4)	7,48
	Phosphate de monostéaryle	0,16
10	Dowfax 3B-2	0,36
	Thermphos NW	12,0
	Thermphos N hexa	12,0
	Acrysol LMW-45NX	1,0
	Tristéarate d'aluminium	0,25
15	Carbonate de sodium anhydre	4,9
	Solution de soude caustique (NaOH à 50%) 3,1
	Pharmagel H	1,25
	Solution d'hypochlorite de sodium (11%)	1,0
	Eau	le complément
	pH = 13 à 13.4	_

pH = 13 à 13,4

On peut également ajouter à la formulation de faibles quantités de parfum, colorant, etc.

REVENDICATIONS

1. Composition liquide aqueuse thixotrope comprenant

un agent thixotrope à base d'argile,

un polymère de type poly(acide acrylique) ou copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à 200 000, et

un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps,

de l'eau, et

5

au moins un composant supplémentaire choisi parmi des détergents organiques, des agents de modification du pH, un adjuvant de détergence de type agent de blanchiment à base de chlore, un agent séquestrant, des antimousses, des particules abrasives, et des mélanges de ceux-ci.

 Composition suivant la revendication 1,
 caractérisée en ce qu'elle comprend un agent thixotrope à base d'argile en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2 à 10. Composition suivant la revendication 1 ou 2, caractérisée en ce qu'elle comprend : environ 0,5 à 1,5% d'un polymère de type poly(acide acrylique) ou copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à

environ 0,1 à 0,5% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps.

15

200 000, et

4. Composition suivant la revendication 3, caractérisée en ce qu'elle comprend environ 0,8 à 1,2% d'un polymère de type poly(acide acrylique) ou copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à 200 000, et

environ 0,2 à 0,3% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps,

30

35

5. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un polymère de type poly(acide acrylique) ou un sel de celui-ci, ayant un poids moléculaire de 1 500 à 150.000.

- 6. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un copolymère d'un acide acrylique et d'un acide polycarboxylique ou d'un anhydride d'acide polycarboxylique ou un sel de celui-ci, ayant un poids moléculaire de 1 500 à 150 000.
- 7. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le 10 sel métallique comprend un sel d'un métal polyvalent du groupe II, III ou IV du tableau périodique des éléments, et d'un acide gras à longue chaîne ayant d'environ 8 à 22 atomes de carbone, ou d'un mélange de deux de ces acides gras ou plus.

- 8. Composition selon la revendication 7, caractérisée en ce que le métal polyvalent est l'aluminium, le zinc, le calcium ou le magnésium.
- 9. Composition selon la revendication 8, caractérisée en ce que le sel métallique d'acide gras est le tristéarate d'aluminium, le stéarate de calcium ou le stéarate de magnésium.
- 25 10. Composition aqueuse thixotrope pour lavevaisselle automatique, comprenant approximativement en poids:
 - (a) 5 à 35% de tripolyphosphate de métal alcalin,
 - (b) 2,5 à 20% de silicate de sodium,
- 30 (c) 0 à 9% de carbonate de métal alcalin,
 - (d) 0,1 à 5% d'un produit organique actif détergent, dispersable dans l'eau, stable en présence d'un agent de blanchiment à base de chlore,
- (e) 0 à 5% d'un antimousse stable en présence d'un 35 agent de blanchiment à base de chlore,

- (f) un composé de blanchiment à base de chlore, en une quantité suffisante pour fournir environ 0,2 à 4% de chlore disponible,
- (g) un épaississant thixotrope en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2 à 10,
 - (h) 0 à 8% d'hydroxyde de sodium,
- (i) agent de stabilisation physique stabilisation des propriétés rhéologiques, 10 comprenant un polymère de type poly(acide acrylique) ou copolymère d'un acide acrylique avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, polymère ou copolymère de type poly(acide 15 acrylique) contenant des motifs de type acide acrylique, de formule :

dans laquelle R₁, R₂ et R₃ peuvent être identiques ou différents, et peuvent être un atome d'hydrogène, un groupe alkyle inférieur en C₁-C₄, M représente un atome d'hydrogène ou un métal alcalin, n = 5 à 2 000, et le polymère ou copolymère a un poids moléculaire de 1 000 à 200 000, et un sel d'un métal polyvalent et d'un acide gras à longue chaîne, et

(j) le reste en eau.

- 11. Composition suivant la revendication 10, caractérisée en ce qu'elle comprend un agent thixotrope à base d'argile en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2 à 10.
- 12. Composition suivant la revendication 10 ou 11, caractérisée en ce qu'elle comprend: environ
- 0,5 à 1,5% d'un polymère de type poly(acide acrylique)

 10 ou copolymère de type poly(acide acrylique) avec un
 acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou
 copolymère ayant un poids moléculaire de 500 à 200
 000, et

- environ 0,1 à 0,5% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps.
- Composition suivant la revendication 12, 13. caractérisée en ce qu'elle comprend environ 0,8 à 1,2% un polymère de type poly(acide acrylique) ou copolymère 25 de poly(acide acrylique) avec acide type un polycarboxylique un anhydride d'acide ou ou un sel de celui-ci, ledit polymère polycarboxylique, ou copolymère ayant un poids moléculaire de 500 200 000, et
- environ 0,2 à 0,3% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps.

- 14. Composition selon une quelconque des revendications 10 à 13, caractérisée en ce que le stabilisant polymère comprend un sel alcalin neutralisé d'un polymère de type poly(acide acrylique) et a un poids moléculaire de 1 500 à 150 000.
- 15. Composition selon l'une quelconque des revendications 10 à 13, caractérisée en ce que le stabilisant polymère comprend un polymère de type poly(acide méthacrylique) et a un poids moléculaire de 2 000 à 100.000.

25

- 16. Composition selon l'une quelconque des revendications 10 à 14, caractérisée en ce que le stabilisant copolymère comprend un monomère de type 15 acrylique et un monomère de type polycarboxylique ou anhydride d'acide polycarboxylique, choisi parmi l'acide succinique, l'anhydride succinique, l'acide maléîque, l'anhydride maléîque et l'acide citrique, et a un poids moléculaire de 2 000 à 100 000. 20
 - 17. Composition selon la revendication 16, caractérisée en ce que le monomère de type acide acrylique constitue de 40 à 60% du copolymère.
 - Composition selon l'une quelconque des revendications 10 à 17, caractérisée en ce que le stabilisant de type sel métallique est un sel d'un métal polyvalent et d'un acide gras aliphatique ayant d'environ 8 à 22 atomes de carbone.
 - 19. Composition selon la revendication 18, caractérisée en ce que l'acide a d'environ 12 à 18 atomes de carbone.

20. Composition selon la revendication 18 ou 19, caractérisée en ce que le stabilisant de type sel métallique est le sel d'aluminium ou le sel de zinc dudit acide gras.

5

- 21. Composition selon la revendication 10, caractérisée en ce que le stabilisant de type sel métallique est le tristéarate d'aluminium.
- 10 22. Composition selon la revendication 10, caractérisée en ce que le stabilisant de type sel métallique est le distéarate de zinc.
- 23. Composition selon l'une quelconque des 15 revendications précédentes, caractérisée en ce que l'épaississant thixotrope (g) est une argile minérale formant une suspension colloidale.
- 24. Composition aqueuse thixotrope pour lave-20 vaisselle automatique, comprenant approximativement en poids:
 - (a) 5 à 35% de tripolyphosphate de métal alcalin,
 - (b) 2,5 à 20% de silicate de sodium,
- 25 (c) 0 à 9% de carbonate de métal alcalin,
 - (d) 0,1 à 5% d'un produit organique actif détergent, dispersable dans l'eau; stable en présence d'un agent de blanchiment à base de chlore,
 - (e) 0 à 5% d'un antimousse stable en présence d'un agent de blanchiment à base de chlore,
 - (f) un composé de blanchiment à base de chlore, en une quantité suffisante pour fournir environ 0,2 à 4% de chlore disponible,
- (g) un épaississant thixotrope en une quantité 35 suffisante pour conférer à la composition un indice

de thixotropie d'environ 2 à 10,

0 à 8% d'hydroxyde de sodium, (h)

5

(i)

10.

25

de stabilisation physique de agent (i) propriétés rhéologiques, comprenant un polymère de type poly(acide acrylique) ou un sel de celui-ci, ledit polymère de type poly(acide acrylique) contenant des motifs de type acide acrylique de formule

$$\begin{bmatrix}
R_1 & R_2 \\
 & C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
 & C & C
\end{bmatrix}$$

$$\begin{bmatrix}
R_3 & COOM
\end{bmatrix}$$

dans laquelle R₁ et R₃ sont des atomes d'hydrogène, et R₂ est un atome d'hydrogène ou le groupe 15 méthyle, M représente un atome d'hydrogène, sodium ou de potassium, n = 5 à 2 000 et polymère a un poids moléculaire de 2 000 à 100 000, et un sel d'un métal polyvalent et d'un aliphatique ayant de 12 à 18 atomes de carbone, et 20 le reste en eau.

- Composition suivant la revendication 24, 25. caractérisée en ce qu'elle comprend un agent thixotrope à base d'argile en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2 à
- Composition suivant la revendication 24 26. 25, caractérisée en ce qu'elle comprend environ 0,5 à 30 1,5% d'un polymère de type poly(acide acrylique) ou copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à 200 000, et 35

environ 0,1 à 0,5% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps.

- 27. Composition suivant la revendication 26, caractérisée en ce qu'elle comprend environ 0,8 à 1,2% 10 d'un polymère de type poly(acide acrylique) ou copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à 200 000, et
- environ 0,2 à 0,3% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère et ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique et la stabilité de la composition vis-à-vis de variations des propriétés rhéologiques avec le temps.
- 28. Composition selon l'une quelconque des revendications 24 à 27, caractérisée en ce que le polymère est un polymère de type poly(acide acrylique)
 25 ou un sel de celui-ci, ayant un poids moléculaire d'environ 2 000.
- 29. Composition selon l'une quelconque des revendications 24 à 27, caractérisée en ce que le 30 polymère est un polymère de type poly(acide acrylique) ou un sel de celui-ci, ayant un poids moléculaire d'environ 4 500.

- 30. Composition selon l'une quelconque des revendications 24 à 27, caractérisée en ce que le polymère est un polymère de type poly(acide acrylique) ou un sel de celui-ci, ayant un poids moléculaire d'environ 100 000.
- 31. Composition selon l'une quelconque des revendications 24 à 30, caractérisée en ce que le stabilisant de type sel métallique est le tristéarate 10 d'aluminium.

- 32. Composition selon l'une quelconque des revendications 24 à 30, caractérisée en ce que le stabilisant de type sel métallique est le distéarate de 15 zinc.
- 33. Composition selon l'une quelconque des revendications 27 à 32, laquelle contient de 0,2 à 0,5% en poids d'argile, 0,8 à 1,2 % en poids d'un polymère de type poly(acide acrylique) ou un sel de celui-ci et 0,21 à 0,4% en poids d'un sel métallique d'acide gras.
- 34. Composition selon l'une quelconque des revendications 24 à 33, caractérisée en ce que
 25 l'épaississant thixotrope (g) est une argile minérale formant une suspension colloïdale.
- 35. Composition aqueuse thixotrope pour lavavaisselle automatique, comprenant approximativement en 30 poids:
 - (a) 5 à 35% de tripolyphosphate de métal alcalin,
 - (b) 2,5 à 20% de silicate de sodium,
 - (c) 0 à 9% de carbonate de métal alcalin,
- 35 (d) 0,1 à 5% d'un produit organique actif détergent,

dispersable dans l'eau, stable en présence d'un agent de blanchiment à base de chlore,

(e) 0 à 5% d'un antimousse stable en présence d'un agent de blanchiment à base de chlore,

5

- (f) un composé de blanchiment à base de chlore, en une quantité suffisante pour fournir environ 0,2 à 4% de chlore disponible,
- (g) un épaississant thixotrope en une quantité 10 suffisante pour conférer à la composition un indice de thixotropie d'environ 2 à 10,
 - (h) 0 à 8% d'hydroxyde de sodium,
- (i) un agent de stabilisation physique et de propriétés rhéologiques, comprenant un copolymère d'acide polycarboxylique ou un sel de celui-ci, ledit copolymère contenant des motifs de type acide acrylique, de formule

20

$$\begin{bmatrix}
R_1 & R_2 \\
I & I^2 \\
C & C \\
I & I \\
R_3 & COOM
\end{bmatrix}$$

25

30

dans laquelle R_1 et R_3 sont des atomes d'hydrogène, et R_2 est un atome d'hydrogène ou le groupe méthyle, M représente un atome d'hydrogène, de sodium ou de potassium, n = 10 à 1 500 et le copolymère a un poids moléculaire de 2 000 à 100 000, et un sel d'un métal polyvalent et d'un acide gras aliphatique ayant de 12 à 18 atomes de carbone, et

35 (j) le reste en eau.

36. Composition suivant la revendication 35, caractérisée en ce qu'elle comprend un agent thixotrope à base d'argile en une quantité suffisante pour conférer à la composition un indice de thixotropie d'environ 2 à 10.

Composition suivant la revendication 35 37. caractérisée en ce qu'elle comprend environ 0,5 à 1,5% d'un polymère de type poly(acide acrylique) ou copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à 200 000, et environ 0,1 à 0,5% d'un sel métallique d'au moins acide gras à longue chaîne, ledit polymère ou copolymère ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique la stabilité de la composition vis-à-vis de et variations des propriétés rhéologiques avec le temps.

20

25

30

5

10

15

Composition suivant la revendication 37, 38. caractérisée en ce qu'elle comprend environ 0,8 à 1,2% type poly(acide acrylique) ou polymère de copolymère de type poly(acide acrylique) avec un acide polycarboxylique ou un anhydride d'acide polycarboxylique, ou un sel de celui-ci, ledit polymère ou copolymère ayant un poids moléculaire de 500 à 200 000, et environ 0,2 à 0,3% d'un sel métallique d'au moins un acide gras à longue chaîne, ledit polymère ou copolymère ledit sel métallique d'acide gras étant présents en quantités efficaces pour accroître la stabilité physique la stabilité de la composition vis-à-vis variations des propriétés rhéologiques avec le temps.

39. Composition selon l'une quelconque des 35 à 38, caractérisée en ce que revendications comprend un monomère de type acide acrylique un monomère de type acide polycarboxylique anhydride d'acide polycarboxylique, choisi parmi l'acide succinique, l'anhydride succinique, l'acide l'anhydride maléique et l'acide citrique, et maléique, moléculaire d'environ 70 000. a un poids

5

- 10 40. Composition selon la revendication 39, caractérisée en ce que le monomère de type acide acrylique constitue de 40 à 60% en poids du copolymère.
- 41. Composition selon l'une quelconque des revendications 35 à 38, caractérisée en ce que le copolymère est constitué du produit de réaction de quantités approximativement équimolaires d'acide méthacrylique et d'anhydride maléique, ayant été totalement neutralisé pour former le sel de sodium de 20 celui-ci.
- 42. Composition selon l'une quelconque des revendications 35 à 41, caractérisée en ce que le stabilisant de type sel métallique est le sel d'aluminium ou le sel de zinc dudit acide gras.
- 43. Composition selon l'une quelconque des revendications 35 à 41, caractérisée en ce que le stabilisant de type sel métallique est le tristéarate 30 d'aluminium.
 - 44. Composition selon l'une quelconque des revendications 35 à 41, caractérisée en ce que le stabilisant de type sel métallique est le distéarate de zinc.

and the second s

- 45. Composition selon l'une quelconque des revendications 38 à 41, laquelle contient de 0,2 à 0,5% en poids d'argile, 0,8 à 1,2% en poids d'un copolymère de type poly(acide acrylique) et 0,2 à 0,4% en poids d'un sel métallique d'acide gras.
- 46. Composition selon l'une quelconque des revendications 35 à 45, caractérisée en ce que l'épaississant thixotrope (g) est une argile minérale formant une suspension colloidale.
- 47. Procédé pour le nettoyage de vaisselle salie dans une machine automatique à laver la vaisselle, lequel comprend la mise en contact de la vaisselle salie dans une machine automatique à laver la vaisselle, dans un bain aqueux de lavage dans lequel est dispersée une quantité efficace d'une composition selon l'une quelconque des revendications 24 à 34.
- 20 48. Procédé pour le nettoyage de vaisselle salie dans une machine automatique à laver la vaisselle, lequel comprend la mise en contact de la vaisselle salie dans une machine automatique à laver la vaisselle, dans un bain aqueux de lavage dans lequel est dispersée une quantité efficace d'une composition selon l'une quelconque des revendications 35 à 46.

RAPPORT DE RECHERCHE

établi en vertu de l'article 21 § 1 et 2 de la loi belge sur les brevets d'invention du 28 mars 1984

BE 8701227 BO 877

DOCUMENTS CONSIDERES COMME PERTINENTS Citation du document avec indication, en cas de besoin, Catégorie Revendication CLASSEMENT DE LA DEMANDE (Int. Cl.4) des parties pertinentes concernée Υ FR-A-2568888 (COLGATE-PALMOLIVE) 1-3 C11D3/37 * revendications 1-10 * C11D3/12 * exemple 3 * C11D3/20 C11D17/00 Y GB-A-2163448 (COLGATE-PALMOLIVE) 1-3 * revendications 9-11 * * exemple 6 * US-A-4351754 (J. DUPRE) 1-3 * colonne 7, lignes 15 - 21 * * exemple 7 * D,P, GB-A-2176495 (COLGATE-PALMOLIVE) 1 * revendications 1-25 * DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4) C11D Date d'achèvement de la recherche Examinateur LA HAYE 22 JANVIER 1991 PFANNENSTEIN H. 03.82 (

- X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique O : divulgation non-écrite
- P: document intercalaire

- T: théorie ou principe à la base de l'invention E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date D: cité dans la demande

- L: cité pour d'autres raisons
- & : membre de la même famille, document correspondant

ANNEXE AU RAPPORT DE RECHERCHE RELATIF A LA DEMANDE DE BREVET BELGE NO.

BE 8701227 BO 877

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

The second secon

22/01/91

Document brevet cité au rapport de recherche	Date de publication	Memhre(s) de la famille de brevet(s)	Date de publication
FR-A-2568888	14-02-86	AU-B- 585879 AU-A- 4580185 BE-A- 903048 CH-A- 669210 DE-A- 3528167 GB-A,B 2164350 JP-A- 61155498 LU-A- 86042 NL-A- 8502243 SE-A- 8503772	29-06-89 20-02-86 12-02-86 28-02-89 30-04-86 19-03-86 15-07-86 18-02-86 03-03-86 14-02-86
GB-A-2163448	26-02-86	AU-B- 584108 AU-A- 4580285 BE-A- 903047 CH-A- 667283 DE-A- 3528164 FR-A,B 2568887 JP-A- 61155497 LU-A- 86041 NL-A- 8502242 SE-A- 8503774	18-05-89 20-02-86 12-02-86 30-09-88 20-02-86 14-02-86 15-07-86 18-02-86 03-03-86 14-02-86
US-A-4351754	28-09-82	CA-A- 1155992 JP-A,B,C56047477	25-10-83 30-04-81
GB-A-2176495	31-12-86	AU-B- 588881 AU-A- 5831486 BE-A- 904923 CA-A- 1270172 CH-A- 670253 DE-A- 3619460 FR-A,B 2583428 JP-A- 61291698 LU-A- 86473 NL-A- 8601532 SE-A- 8602606 US-A- 4752409	28-09-89 18-12-86 15-12-86 12-06-90 31-05-89 18-12-86 19-12-86 22-12-86 13-01-87 02-01-87 15-12-86 21-06-88