S. D0BBS.

HEATING APPARATUS.

No. 314,320.
Patented Mar. 24, 1885.

Patented Mar. 24, 1885.

S. DOBBS.

HEATING APPARATUS.

No. 314,320.
Patented Mar. 24, 1885.

United States Patent Office.

SENECA DOBBS, OF ROCHESTER, NEW YORK.

HEATING APPARATUS.

GDEOEETCAYION forming part of Letters Patent No. 314,320, dated March 24, 1885.

Application fied February 19, 18:3. (No motel.)

To all whom it may concerse:
Be it known that I, Senech Dobbs, of Rochester, Monroe county, New York, have invented a certain new and useful Improvement
5 in Heating Apparatus; and I do hereby declare that the following is a full, clear, and exact description of the same, reference being had to the accompanying drawings, in which-

Figure 1 is a central vertical section through ahot-air furnace, showing my invention. Fig. 2 is a similar view at right angles to Fig. 1. Fig. 3 is a top view on an enlarged scale, and with the exterior casing in cross-section. Fig. enlarged. Fig. 5 is a cross-section in line $y y$ of Fig. 1. Fig. 6 is a front elevation of the double door opposite the fire-chamber. Fig. 7 is a side elevation of the fire-pot.' Fig. 8 is
above the fire-pot. They are hollow, open at the top, and have legs $f f$, which open down through the upper plate, c, aronad the firepot, thereby receiving the air from the space below, and allowing it to pass through the hollow trunks and escape at the top, where it unites with the volume of air which passes up the jacket-space between the farnace and casing. The legs $f f$, where they pass through the plate c, rest in bearings or enlargements cast on the plate, and are puttied or cemented in place to wake the joint gas-tight.

The air trunks or conduits may be made of the rectangular form shown or of any other 65 form desired. At the bottom they are arched between the legs, leaving fire-space above the fire-pot; but those of the air-trunks which come opposite the magazine are beveled off, asshown in Fig. 1, to give room for the magazine to enter. Spaces are left between the trunkssufficient for the passage of the heatand the products of combustion upward, and spaces are also left between the edges of the trunks and the sides of the furnace for the same purpose, so that the air-trunks on all sides are surrounded by intense heat, and the air which passes up through the trunks is in such thin layers that the maximum heating action is obtained from the great amount of radiating-surface exposed.

At the top of each air-trunk is a horizontal flange, g, projecting on opposite sides. In these flanges, near the ends, are made notches $h h$. When the flanges of two trunks are fitted edge to edge, as shown in Fig. 8, the cen- 8 tral portions are closed, cutting off the draft between the trunks; but the notches πh, fitted together form ports through which the draft can escape upward. The edges of the flanges which meet are halved out, as shown 90 at i, Figs. 8 and 9 , and are puttied or cemented together to make them gas-tight.

G G are two flues, fitted one on each side over all the ports $h h$, and receiving the draft therefrom. The two flues are connected by a central cross-flue, Q^{\prime}, and a single exit-pipe, H, extends from this cross-flue. In the plan view, Fig. 3, portions of the flues are broken away to show the ports for conveying the draft, and the openings in the top of the trunks for the passage of the hot air. By slight modifications, obvious to any person skilled in the
art, the action might be reversed, the hot air being made to pass up between the trunks and exterior to the same, and the draft being made to pass up through the interior of the hollow trunks. Steam or water may be heated in the same way and by the same means that the air is heated. The hot air is talsen off from the dome at the top by hot-air pipes $J J$, in the usual way.
I is a large door in the casing and in the furnace-wall in front of the fire-chamber, through which the fire-pot is inserted and removed.

The fire-pot C has a circular flange, k, pro-
I 5 jecting from its periphery at the top, and it also has an inclined plate or chute, l, in front, with two laterally-projecting lugs, $m m$, at the outer edge, Figs. 5 and 7. An opening is made in the plate c, in which the plate l fits 20 when in place, the lugs $m \cdot m$ in that case projecting over and resting on top of the plate c, and supporting the plate l. The circular flange k also projects over and rests upon the circnlar seat formed in the plate c to receive it. are fre-pot thas fitted is loose, and can be drawn ont or put in at pleasure. The door I is of such size and form as to allow this to be done. To remove the fire-pot, it is only necessary to open the door in the casing and furthe fire-pot can be taken out for repairs or to replace it by another, and by this means there is no necessity of taking the casing off and tearing the walls apart.

The air-trunks are also easily removed from the interior of the furnace. To do this the exterior casing is removed. A door or plate, n, covers a large opening in one side of the furnace-walls, opposite the broad side of the
40 air-trunks, as shown in Figs. 2 and 4. By slightly raising the air-trunks one at a time, and inclining them ontward through the opening when the door or plate is removed from place, the air-trunks can be readily removed. This opening and door in the side of the furnace are of importance, to enable the air-trunks to be removed in low cellars and other places where the air-trunks cannot be raised high enough to remove them from the furnace with: 50 out striking the ceiling. The loose connec-
tion and fitting of the air trunks enables them to be separated and removed one by one withont difficulty, and obviates the great trouble that oecurs in separaling the parts of ordinary furnaces.
p is another door or plate, covering a similar opening on another side of the furnace, but opposite the edges of the air-tubes. By removing this door or plate the edges of the air-tubes are exposed, and a broom, brush, or other instrument may be inserted between the air-trunks for the purpose of clearing them from ashes and soot.

Having thas described my invention I claim-

1. In a heating apparatus, the hollow air tronks or conduits F F , constracted with legs $f f$ at their bottom, which form an aich over the fire chamber, and with horizontally-projecting flanges $g g$ at the top, halved together, and provided with notches $h h$, the whole so arranged, as described, that the flanges form a continuous covering to the tops of the airtrunks, to prevent passage of the draft except throngh the notches $h h$, as herein shown and described.
2. In a heating apparatus, the combination, with a series of hollow air-trunks, FF , having flanges $g g$ at the top, which match together and form a continnous covering to the airtronks, of side flues, G G, covering ports $h h$ in the flanges, that allow the passage of the draft, a cross-flue, G^{\prime}, which connects the two side flues, and an exit-pipe, H, leading from the cross flue, as shown and described, and 85 for the pupose specified.
3. In a heating apparatus, the fire-pot C, constructed with the circular rim k, projecting plate l, and side lugs, $m m$, fitting removably in au opening in the fixed plate c, and capable s of being inserted and removed through a door in the casing of the furnace, as herein shown and described.

In witness whereof I have heremto sigued my name in the presence of two subscribing 95 wituesses.

SENECA DOBBS.
R. F. OsGOOD,
Z. L. Davis.

60

Witnesses:

