

HU000035990T2

(19) **HU**

(11) Lajstromszám: **E 035 990**

(13) **T2**

MAGYARORSZÁG Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM

SZÖVEGÉNEK FORDÍTÁSA

(21)	Magyar ügyszám: E 08 720	0658	(51) Int. Cl.:	A61K 9/28	(2006.01)
(22)	A bejelentés napja: 2008. 03	3. 28.		A61K 31/444	(2006.01)
				A61K 47/26	(2006.01)
(96)	Az európai bejelentés bejele	entési száma:		A61P 9/10	(2006.01)
	EP 20080720658			A61K 47/36	(2006.01)
(97)	Az európai bejelentés közzé	tételi adatai:		A61K 47/38	(2006.01)
	EP 2140867 A1	2010. 01. 06.		A61P 7/02	(2006.01)
(97)	Az európai szabadalom meg	gadásának meghirdetési adatai:	:	A61K 9/20	(2006.01)
	EP 2140867 B1	2017. 08. 30.		A61K 47/32	(2006.01)

(86) A nemzetközi (PCT) bejelentési szám:

PCT/JP 08/000791

(87) A nemzetközi közzétételi szám:

WO 08129846

(30)	Elsőbbségi adatok:
	2007097327

2007087327 2007. 03. 29.

JР

(73) Jogosult(ak):

Daiichi Sankyo Company, Limited, Chuo-ku Tokyo 103-8426 (JP)

(72) Feltaláló(k):

KOJIMA, Masazumi, Tokyo 140-8710 (JP) KUNO, Yoshio, Tokyo 140-8710 (JP) NAKAGAMI, Hiroaki, Tokyo 140-8710 (JP) SAGASAKI, Shinji, Shimada-shi Shizuoka 428-0021 (JP) ISHIDOH, Koichi, Hiratsuka-shi Kanagawa 254-0014 (JP)

SEKIGUCHI, Gaku, Hiratsuka-shi Kanagawa 254-0014 (JP)

(74) Képviselő:

SBGK Szabadalmi Ügyvivői Iroda, Budapest

(54)

Gyógyászati készítmény

(11) EP 2 140 867 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:30.08.2017 Bulletin 2017/35

(21) Application number: 08720658.7

(22) Date of filing: 28.03.2008

(51) Int CI.:

A61K 9/28 (2006.01) A61K 47/26 (2006.01) A61K 47/36 (2006.01) A61P 7/02 (2006.01) A61P 9/10 (2006.01) A61K 31/444 (2006.01) A61K 47/32 (2006.01) A61K 47/38 (2006.01) A61K 9/20 (2006.01)

(86) International application number: PCT/JP2008/000791

(87) International publication number: WO 2008/129846 (30.10.2008 Gazette 2008/44)

(54) PHARMACEUTICAL COMPOSITION

PHARMAZEUTISCHE ZUSAMMENSETZUNG COMPOSITION PHARMACEUTIQUE

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

- (30) Priority: 29.03.2007 JP 2007087327
- (43) Date of publication of application: 06.01.2010 Bulletin 2010/01
- (73) Proprietor: Daiichi Sankyo Company, Limited Chuo-ku Tokyo 103-8426 (JP)
- (72) Inventors:
 - KOJIMA, Masazumi Tokyo 140-8710 (JP)
 - KUNO, Yoshio Tokyo 140-8710 (JP)
 - NAKAGAMI, Hiroaki Tokyo 140-8710 (JP)
 - SAGASAKI, Shinji Shimada-shi Shizuoka 428-0021 (JP)
 - ISHIDOH, Koichi Hiratsuka-shi Kanagawa 254-0014 (JP)

 SEKIGUCHI, Gaku Hiratsuka-shi Kanagawa 254-0014 (JP)

(74) Representative: Hoffmann Eitle
Patent- und Rechtsanwälte PartmbB
Arabellastraße 30
81925 München (DE)

(56) References cited:

EP-A2- 1 103 253 EP-A2- 1 270 006

WO-A1-03/000657 WO-A1-2004/110448

WO-A2-02/064124 JP-A- 2001 151 672

JP-A- 2003 073 274 JP-A- 2004 518 710

JP-A- 2005 263 816 US-A1- 2005 119 486

TURPIE ALEXANDER G G: "Oral, direct Factor Xa inhibitors in development for the prevention and treatment of thromboembolic diseases",
 ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, LIPPINCOTT WILLIAMS & WILKINS, US, vol. 27, no. 6, 22 March 2007 (2007-03-22), pages 1238-1247, XP002672841, ISSN: 1079-5642, DOI: 10.1161/ATVBAHA.107.139402 [retrieved on 2007-03-22]

EP 2 140 867 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention

[0001] The present invention relates to a pharmaceutical composition useful as an anticoagulant, which comprises a component that is improved in dissolution property.

Background of the Invention

10 [0002] N¹-(5-chloropyridin-2-yl)-N²-(4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide, represented by formula (1), its pharmacologically acceptable salt, and their hydrates (hereinafter referred to as "compound (1)") are known to have a potent inhibitory action on activated blood coagulation factor X. Compound (1) also is known to be useful as a pharmaceutical, particularly such as an activated blood coagulation factor X inhibitor; a blood coagulation suppressor; an agent for preventing and/or treating 15 thrombosis or embolism; an agent for preventing and/or treating thrombotic diseases; or an agent for preventing and/or treating cerebral infarction, cerebral embolism, heart infarction, angina pectoris, pulmonary embolism, Buerger's disease, deep vein thrombosis, universal intravascular coagulation syndrome, thrombus formation after artificial valve/joint replacement, thrombus formation and reocclusion after revascularization, multiple organ dysfunction syndrome (MODS), or thrombus formation during extracorporeal circulation or blood coagulation upon blood sample collection (Patent Documents 1 to 5).

$$CH_3$$

$$O \longrightarrow CH_3$$

$$O$$

[0003]

20

25

30

35

40

45

50

Patent Document 1: WO 03/000657 Patent Document 2: WO 03/000680 Patent Document 3: WO 03/016302 Patent Document 4: WO 2004/058715 Patent Document 5: US2005/0119486.

Disclosure of the Invention

Problems to be Solved by the Invention

[0004] In a pharmaceutical composition for oral administration (e.g., tablet), the dissolution property of a pharmaceutically active ingredient thereof has an influential role in the efficacy and safety of the composition. Therefore, each country has established a standard rule pertaining to dissolution test method and its specification. Take Japan, the United States and Europe, for example. These countries are each publishing their Pharmacopoeias in which a method for carrying out a dissolution test is explained for guidance. Under such pharmacopeia, there are a variety of medium that are allowed to use for dissolution test (hereinafter referred to as "dissolution test medium"). These dissolution test medium have a pH that is adjusted to 1 to 8. Examples of the dissolution test medium described in the Pharmacopoeias of many countries include strongly acidic dissolution test medium (e.g., the first fluid for dissolution testing described in the Japanese Pharmacopoeia (hereinafter referred to as "JP 1st fluid") and 0.1N hydrochloric acid), dissolution test medium having a pH of 3 to 5 (e.g., acetic acid-sodium acetate buffer solution and McIlvaine buffer solution), dissolution test medium having a pH of 6.8 (e.g., the second fluid for dissolution testing described in the Japanese Pharmacopoeia (hereinafter referred to as "JP 2nd fluid") and phosphate buffer solution having a pH of 6.8), and water. A pharmaceutical drug product for oral administration is required to exhibit sufficient dissolution property when its dissolution test is carried out using such a medium.

[0005] Meanwhile, compound (1) is a basic compound and exhibits high solubility in a strong acidic aqueous solution, but its solubility decreases in a neutral pH aqueous solution (e.g., neutral buffer solution). Compound (1) itself exhibits excellent absorbability, if orally administered to a subject. On the other hand, an orally-administered pharmaceutical composition containing compound (1) that can be produced by use of a commonly used pharmaceutical excipient (e.g., lactose or cornstarch) turned out to have no good dissolution property.

[0006] Thus, an object of the present invention is to provide a pharmaceutical composition containing compound (1) as an active ingredient and exhibiting excellent dissolution property.

Means for Solving the Problems

[0007] In view of the foregoing, the present inventors have produced compositions containing compound (1) with a variety of pharmaceutical excipients, and have investigated the dissolution characteristics of the produced compositions. At last, surprisingly it has been found that the compound (1) dissolution property of such a composition can be enhanced by incorporating a sugar alcohol and/or a water-swelling additive into the composition, or by coating a composition containing compound (1) with one or more coating agents selected from among a cellulose derivative, a polyvinyl compound. The present invention has been accomplished on the basis of this finding. The present invention is defined by the claims.

[0008] The present invention is thus directed to (1) a pharmaceutical composition, wherein the composition is a coated tablet, wherein the coated tablet is a tablet coated with at least one coating agent selected from the group consisting of hypromellose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and polyvinyl alcohol, wherein the tablet comprises: (A) N¹-(5-chloropyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothia-zolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide, represented by the following formula (1), a pharma-cologically acceptable salt thereof, or a hydrate of any of these, and (B) a sugar alcohol and (C) a water-swelling additive.

[F2]

10

15

25

30

35

40

45

55

[0009]

 CH_3 CH_3

[0010] The present invention is also directed to pharmaceutical compositions as listed below:

- (2) a pharmaceutical composition as described in (1) above, wherein the sugar alcohol is mannitol, xylitol, or erythritol;
- (3) a pharmaceutical composition as described in (1) above, wherein the sugar alcohol is mannitol;
- (4) a pharmaceutical composition as described in any of (1) to (3) above, wherein the water-swelling additive is pregelatinized starch or crystalline cellulose;
- (5) a pharmaceutical composition as described in any of (1) to (3) above, wherein the water-swelling additive is pregelatinized starch;
- 50 (6) a pharmaceutical composition as described in (1) above,
 - wherein the coating agent is one or more species selected from among hypromellose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol,
 - (7) a pharmaceutical composition as described in (1) above,
 - wherein the coating agent is one or more species selected from among hypromellose, ethyl cellulose, and polyvinyl alcohol;
 - (8) a pharmaceutical composition as described in (1) above,
 - wherein the coating agent is hypromellose;
 - (9) a pharmaceutical composition as described in any one of (1) to (5) above, which is coated with at least one

coating agent

5

10

15

25

wherein the coating agent is one or more species selected from among hypromellose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol,

- (10) a pharmaceutical composition as described in (9) above,
- wherein the coating agent is one or more species selected from among hypromellose, ethyl cellulose, and polyvinyl alcohol;
 - (11) a pharmaceutical composition as described in (9) above,
 - wherein the coating agent is hypromellose;
 - (12) a pharmaceutical composition as described in any one of (1) to (12) above, wherein the coating agent is contained in an amount of 0.5 to 20 wt.% with respect to the total weight. of the pharmaceutical composition;
 - (13) a pharmaceutical composition as described in any one of (1) to (12) above, wherein the compound represented by formula (1) is N^1 -(5-chloropyridin-2-yl)- N^2 -((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide hydrochloride;
 - (14) a pharmaceutical composition as described in any one of (1) to (12) above, wherein the compound represented by formula (1) is N¹-(5-chloropyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tet-rahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide p-toluenesulfonate monohydrate;

Advantageous Effect of the Invention

[0011] The present invention has made it possible to obtain a pharmaceutical composition for oral administration, which contains compound (1) and exhibits consistent dissolution characteristics while falling within the pH range of the aforementioned dissolution test medium. Thus the present invention provides an oral anticoagulant containing compound (1) as a pharmaceutically active ingredient and exhibiting favorable dissolution characteristics can be provided.

Brief Description of the Drawings

[0012]

- [Fig. 1] A graph showing dissolution properties of tablets having formulations A to E (dissolution test medium: acetate buffer solution (pH 4.0)).
 - [Fig. 2] A graph showing dissolution properties of tablets having formulations F to I (dissolution test medium: acetate buffer solution (pH 4.0)).
 - [Fig. 3] A graph showing dissolution properties of tablets having formulations J to N (dissolution test medium: 0.1N hydrochloric acid).
- [Fig. 4] A graph showing dissolution properties of tablets having formulations J to N (dissolution test medium: water). [Fig. 5] A graph showing dissolution properties of tablets having formulations J to N (dissolution test medium: phosphate buffer solution (pH 6.8)).
 - [Fig. 6] A graph showing dissolution properties of tablets coated with hypromellose (dissolution test medium: phosphate buffer solution (pH 6.8)).
- [Fig. 7] A graph showing dissolution properties of tablets coated with various coating agents (dissolution test medium: phosphate buffer solution (pH 6.8)).
 - [Fig. 8] A graph showing dissolution properties of tablets coated with hypromellose (dissolution test medium: acetate buffer solutions (pH 4.0) and (pH 4.5)).

45 Best Modes for Carrying Out the Invention

- **[0013]** The compound represented by formula (1) may be a hydrate of the compound, a pharmacologically acceptable salt of the compound, or a hydrate of the salt.
- **[0014]** Examples of the salt of the compound represented by formula (1) include hydrochloride, sulfate, hydrobromide, hydroiodide, phosphate, nitrate, benzoate, methanesulfonate, 2-hydroxyethanesulfonate, p-toluenesulfonate, acetate, propanoate, oxalate, malonate, succinate, glutarate, adipate, tartrate, maleate, fumarate, malate, and mandelate.
- **[0015]** Examples of preferred salts of the compound represented by formula (1) include hydrochloride, methanesulfonate, and p-toluenesulfonate. Of these, p-toluenesulfonate is particularly preferred.
- [0016] Examples of the preferred compounds represented by formula (1) include the following ones:

 N^1 -(5-chloropyridin-2-yl)- N^2 -((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide;

 N^1 -(5-chloropyridin-2-yl)- N^2 -((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-methyl-4,5,7-tetrahydrothiazolo[5,4-methyl-4,5,5,7-tetrahydroth

c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide hydrochloride;

 N^1 -(5-chloropyridin-2-yl)- N^2 -((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide p-toluenesulfonate; and

 N^1 -(5-chloropyridin-2-yl)- N^2 -((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide p-toluenesulfonate monohydrate (compound (1a), which is represented by the following formula (1a).

[F3]

10 [0017]

5

25

30

35

40

45

50

CH₃

$$O \longrightarrow N \longrightarrow CH_3$$

$$O \longrightarrow N \longrightarrow CI$$

$$H_3C \longrightarrow N \longrightarrow H$$

$$O \longrightarrow N \longrightarrow CI$$

$$H_3C \longrightarrow SO_3H \cdot H_2O$$

$$O \longrightarrow N \longrightarrow CI$$

$$O \longrightarrow N \longrightarrow N$$

$$O \longrightarrow N$$

[0018] These compounds (1) may be produced by the methods disclosed in Patent Documents 1 to 4 or their analogic methods.

[0019] As one of the characteristics of the present invention, it can be said that when incorporated into a solid preparation, a coating agent serves to accelerate the dissolution of compound (1), which is a pharmaceutically active ingredient, from a solid preparation containing compound (1). In other words, the present invention provides a pharmaceutical composition for oral administration containing compound (1) and a coating agent, and exhibiting excellent dissolution property. No particular limitation is imposed on the form of the pharmaceutical composition for oral administration of the present invention containing compound (1) and a coating agent. The pharmaceutical composition of the invention encompasses not only coated solid preparations such as tablets but also various solid preparations containing a coating agent. As an example of such solid preparations containing compound (1), a coating agent forms a matrix in the solid preparation.

[0020] In the pharmaceutical composition for oral administration, examples of the coating agent employed for enhancing dissolution rate of compound (1) include coating agents generally employed in pharmaceutical manufacturing for coating tablets and granules therewith. Preferably, the coating agent has low solubility within a pH range in the intestine. Specifically, a coating agent which is difficult to dissolve within the pH range in the intestine is generally preferred, as compared with an enteric coating agent.

[0021] Specific examples of preferred coating agents include the following:

- (1) cellulose derivatives such as hypromellose (hydroxypropyl methylcellulose), hydroxypropyl cellulose, ethyl cellulose, and methyl cellulose;
- (2) polyvinyl compounds such as polyvinyl alcohol, povidone (polyvinylpyrrolidone), polyvinyl acetal diethylaminoacetate, and Polyvinyl acetate;
- (3) acrylate derivatives such as aminoalkyl methacrylate copolymer RS and ethyl acrylate-methyl methacrylate copolymer dispersion; and
- (4) saccharides (including sugar alcohols) such as sucrose and mannitol, which are used as sugar-coating agents. These coating agents may be used singly or in combination or two or more species. Hypromellose or a hypromellose-based coating agent includes species such as hypromellose 2208, hypromellose 2906, and hypromellose 2910 having different viscosities (mPa·s). These species having different viscosities may be used singly or in combination of two or more species.

[0022] Among these, preferred are one or more species selected from the group consisting of cellulose derivatives (hypromellose, methyl cellulose, ethyl cellulose and hydroxypropyl cellulose); polyvinyl compounds (polyvinyl alcohol, povidone, Polyvinyl acetate and polyvinyl acetal diethylaminoacetate); acrylate derivatives (amino alkyl methacrylate copolymer RS and ethyl acrylate-methyl methacrylate copolymer dispersion); and saccharides (including sugar alcohols) (sucrose and mannitol).

[0023] Of these, one or more species selected from among cellulose derivatives and polyvinyl compounds are more preferred. Still more preferred are one or more species selected from among hypromellose, ethyl cellulose, and polyvinyl alcohol. Among them, hypromellose is particularly preferred.

[0024] In the present invention, the aforementioned coating agent and other additives required for preparing coating suspension (e.g., a plasticizer) may be incorporated in combination into the composition. Examples of the additives required for preparing coating suspension (e.g., a plasticizer) include Macrogols (polyethylene glycols having an av. weight molecular weight of 1,000 to 35,000) such as Macrogol 1000, Macrogol 1500, Macrogol 1540, Macrogol 4000, Macrogol 6000, Macrogol 8000, Macrogol 20000, and Macrogol 35000; glycerin fatty acid esters; sucrose fatty acid esters; castor oil; triethyl citrate; triacetin; and talc. The aforementioned coating agents may further contain the belowmentioned coloring agent, and the mixture may be incorporated into the pharmaceutical composition of the present invention.

[0025] From the viewpoint of enhancing dissolution rate of compound (1), the pharmaceutical composition of the present invention preferably contains a coating agent in an amount of 0.5 to 20 wt.%, more preferably 1 to 15 wt.%, particularly preferably 1.5 to 10 wt.%.

[0026] Next will be described coating of a solid preparation, which is a typical embodiment of the present invention. [0027] In the present invention, a solid preparation containing compound (1) may be coated with the aforementioned coating agent through a widely known coating process for solid preparation coating. No particular limitation is imposed on the coating process, and for example, there may be employed a spray coating process in which a solution/dispersion of the coating agent is sprayed onto a solid preparation containing compound (1) by means of a fluidized bed coater or a pan coater; an dip coating process in which a solid preparation containing compound (1) is dipped in a coating suspension; and a dry coating process employing impact in a gas flow. The solid preparation containing compound (1) which has not been subjected to the coating process may be produced through a conventionally known process.

[0028] Thus, the pharmaceutical composition of the present invention may be produced by preparing a solid preparation containing compound (1) as a pharmaceutically active ingredient through a known method and then coating the thus-prepared solid preparation with a coating agent.

[0029] No particular limitation is imposed on the solid preparation containing compound (1) which has not been subjected to the coating process. However, preferred embodiments will next be described.

[0030] When a solid preparation containing compound (1) was produced by use of a combination of lactose and cornstarch, which is a combination of diluents generally employed in the production of solid preparations such as tablets, the produced solid preparation exhibited unsatisfactory dissolution characteristics in the dissolution tests using a strong acidic test medium, a test medium having a pH of 3 to 5, and water. In contrast, a solid preparation (1) containing compound (1) with sugar alcohol, and a solid preparation (2) containing compound (1) and a water-swelling additive have exhibited improved dissolution properties, as compared with those of a solid preparation containing compound (1) with lactose and cornstarch. Furthermore, a solid preparation (3) containing compound (1) and produced by use of sugar alcohol and a water-swelling additive in combination have exhibited satisfactory dissolution characteristics in the dissolution tests using a strong acidic test medium, a test mediumd having a pH of 3 to 5, and water.

30

35

50

[0031] Therefore, other preferred embodiments of the solid preparation containing compound (1) which has not been subjected to the coating process and which is employed in the present invention include the following: a solid preparation (1) containing compound (1) and sugar alcohol; a solid preparation (2) containing compound (1) and a water-swelling additive; and a solid preparation (3) containing compound (1) with sugar alcohol and a water-swelling additive is more preferred.

[0032] The water-swelling additive employed in the present invention refers to an additive for pharmaceuticals which swells with water added thereto. Examples of the water-swelling additive in the present invention include diluents and bases which are water-swellability. Specific examples of the water-swelling additive include pregelatinized starch, α -starch, crystalline cellulose, sodium starch glycolate, carmellose (carboxymethyl cellulose), carmellose calcium, croscarmellose sodium (croscarboxymethyl cellulose sodium), soybean lecithin, low-substituted hydroxypropyl cellulose, Powdered tragacanth, and bentonite. These additives may be used singly or in combination of two or more species.

[0033] Among these water-swelling additives, pregelatinized starch and crystalline cellulose are preferred, with pregelatinized starch being more preferred. As crystalline cellulose, Ceolus (product of Asahi Chemical Industry Co., Ltd.) is particularly preferred. As pregelatinized starch, PCS (product of Asahi Chemical Industry Co., Ltd.) and Starch 1500 (product of Colorcon Japan Limited) are particularly preferred.

[0034] Examples of preferred sugar alcohols which can improve dissolution of compound (1) include mannitol, erythritol, and xylitol. Of these, mannitol is particularly preferred.

[0035] To the composition of the present invention, a water-soluble diluent other than sugar alcohol may be added. Examples of the water-soluble diluent include fructose, purified sucrose, sucrose, purified sucrose spherical granules, lactose, anhydrous lactose, sucrose-starch spherical granules, semi-digested starch, glucose, glucose hydrate, powdered sugar, pullulan, and β -cyclodextrin. Other than saccharides, examples further include aminoethylsulfonic acid, maltose syrup powder, sodium chloride, citric acid, sodium citrate, glycine, calcium gluconate, L-glutamine, tartaric acid,

potassium hydrogentartrate, ammonium carbonate, dextran 40, dextrin, calcium lactate, povidone, Macrogol (polyethylene glycol) 1500, Macrogol 1540, Macrogol 4000, Macrogol 6000, anhydrous citric, DL-malic acid, sodium hydrogenphosphate, potassium dihydrogenphosphate, and sodium dihydrogenphosphate.

[0036] The water-soluble diluent is preferably selected from saccharides. Specific examples include purified sucrose, sucrose, lactose, lactose granules, glucose, glucose hydrate, powdered sugar, and pullulan. Of these, lactose is more preferred.

[0037] From the viewpoint of improvement of dissolution of compound (1), the solid preparation containing compound (1) preferably contains a sugar alcohol in an amount of 0.01 to 99.0 wt.%, more preferably 20 to 80 wt.%, particularly preferably 40 to 60 wt.%. Also, the solid preparation containing compound (1) preferably contains a water-swelling additive in an amount of 0.01 to 90 wt.%, more preferably 0.1 to 80 wt.%, particularly preferably 5 to 50 wt.%.

[0038] In the case where the solid preparation contains the aforementioned water-swelling additive and sugar alcohol, the ratio of water-swelling additive to sugar alcohol in the preparation is preferably 0.05 to 50 parts by weight (sugar alcohol) to 1 part by weight (water-swelling additive), more preferably 1 to 10 parts by weight (sugar alcohol), particularly preferably 1.5 to 4 parts by weight (sugar alcohol).

[0039] In addition to the combination of the aforementioned sugar alcohol and water-swelling additive, the pharmaceutical composition containing compound (1) may further contain a water-insoluble diluent, a disintegrant, a binder, a fluidizing agent, a lubricant, a coloring agent, a polishing agent, etc., so long as the effect of the present invention is not impaired.

[0040] Examples of the water-insoluble diluent include L-aspartic acid, alginic acid, carmellose sodium, hydrous silicon dioxide, crospovidone, calcium glycerophosphate, magnesium silicate aluminate, calcium silicate, magnesium silicate, light anhydrous silicic acid, crystalline cellulose, cellulose powder, synthetic aluminum silicate, synthetic aluminum silicate hydroxypropyl starch-crystalline cellulose, flour, wheat starch, wheat germ powder, wheat germ oil, rice powder, rice starch, cellulose acetate phthalate, titanium oxide, magnesium oxide, dihydroxyaluminum aminoacetate, calcium tertiary phosphate, talc, calcium carbonate, magnesium carbonate, precipitated calcium carbonate, natural aluminum silicate, cornstarch, granulated cornstarch, potato starch, hydroxypropyl cellulose, hydroxypropyl starch, calcium hydrogenphosphate anhydrous, granulated calcium hydrogenphosphate anhydrous, and calcium dihydrogenphosphate. Of these, crystalline cellulose and cellulose powder are preferred as a water-insoluble diluent.

[0041] Examples of the disintegrant include adipic acid, alginic acid, α-starch, sodium starch glycolate, carmellose, carmellose calcium, carmellose sodium, hydrous silicon dioxide, calcium citrate, croscarmellose sodium, crospovidone, light anhydrous silicic acid, crystalline cellulose, synthetic aluminum silicate, wheat starch, rice starch, cellulose acetate phthalate, calcium stearate, low-substituted hydroxypropyl cellulose, cornstarch, powdered tragacanth, potato starch, hydroxyethylmethyl cellulose, hydroxypropyl starch, pregelatinized starch, monosodium fumarate, povidone, anhydrous citric, methyl cellulose, and calcium dihydrogenphosphate. Of these, crospovidone and sodium starch glycolate are preferred as a disintegrant.

30

35

50

55

[0042] Examples of the binder include maltose syrup powder, gum arabic, gum arabic powder, sodium alginate, propylene glycol alginate ester, hydrolyzed gelatin powder, hydrolyzed starch-light anhydrous silicic acid, fructose, carboxylvinyl polymer, carboxymethylethyl cellulose, hydrous silicon dioxide, agar powder, light anhydrous silicic acid, light anhydrous silicic acid-containing hydroxypropyl cellulose, crystalline cellulose, synthetic aluminum silicate, high-molecule polyvinylpyrrolidone, copolydone, flour, wheat starch, rice powder, rice starch, Polyvinyl acetate, cellulose acetate phthalate, dioctyl sodium sulfosuccinate, dihydroxyaluminum aminoacetate, sodium potassium tartrate, water, sucrose fatty acid ester, purified gelatin, purified sucrose, gelatin, D-sorbitol, dextrin, starch, cornstarch, tragacanth, powdered tragacanth, lactose, concentrate glycerin, sucrose, potato starch, hydroxyethyl cellulose, hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose, hydroxypropylmethyl cellulose 2208, hydroxypropylmethyl cellulose 2906, hydroxypropylmethyl cellulose 2910, hydroxypropylmethyl cellulose phthalate, vinylpyrrolidone-vinyl acetate copolymer, piperonyl butoxide, glucose, pregelatinized starch, fumaric acid, fumaric acid-stearic acid-polyvinyl acetal diethylaminoacetate-hydroxypropylmethyl cellulose 2910 mixture, pullulan, povidone, polyvinyl alcohol (completely saponified product), polyvinyl alcohol (partially saponified product), sodium polyphosphate, Macrogol 4000, Macrogol 6000, Macrogol 20000, D-mannitol, and methyl cellulose.

[0043] Examples of the fluidizing agent include hydrous silicon dioxide, light anhydrous silicic acid, crystalline cellulose, synthetic aluminum silicate, titanium oxide, stearic acid, calcium stearate, magnesium stearate, calcium tertiary phosphate, talc, cornstarch, and magnesium metasilicate aluminate.

[0044] Examples of the lubricant include cacao fat, carnauba wax, hydrous silicon dioxide, dry aluminum hydroxide gel, glycerin fatty acid ester, magnesium silicate, light anhydrous silicic acid, crystalline cellulose, hardened oil, synthetic aluminum silicate, white beeswax, magnesium oxide, sodium potassium tartrate, sucrose fatty acid ester, stearic acid, calcium stearate, magnesium stearate, stearyl alcohol, polyoxyl 40 stearate, cetanol, soybean hardened oil, gelatin, talc, magnesium carbonate, precipitated calcium carbonate, cornstarch, potato starch, fumaric acid, stearyl sodium fumarate, Macrogol 600, Macrogol 4000, Macrogol 6000, beeswax, magnesium metasilicate aluminate, sodium laurate, and magnesium sulfate.

[0045] Examples of the coloring agent include yellow iron sesquioxide, iron sesquioxide, titanium oxide, orange essence, brown iron oxide, β -carotene, black iron oxide, Food Blue No. 1, Food Blue No. 2, Food Red No. 2, Food Red No. 3, Food Red No. 102, Food yellow No. 4, and Food yellow No. 5.

[0046] Examples of the polishing agent include carnauba wax, hardened oil, Polyvinyl acetate, white beeswax, titanium oxide, stearic acid, calcium stearate, polyoxyl 40 stearate, magnesium stearate, purified shellac, purified paraffin carnauba wax mixture, cetanol, talc, colored silver foil, white shellac, paraffin, povidone, Macrogol 1500, Macrogol 4000, Macrogol 6000, beeswax, glycerin monostearate, and rosin. Of these, carnauba wax, titanium oxide, and talc are preferred as a polishing agent.

[0047] No particular limitation is imposed on the dosage form of the pharmaceutical composition of the present invention, so long as the drug preparation thereof can be orally administered to a subject. However, the dosage form is preferably a solid preparation, specifically in the form of tablet, granules, powder (including fine granules), or capsule. The solid preparation may be produced through a widely known production method therefor. In one exemplified procedure, the pharmaceutical composition of the present invention is prepared through mixing the aforementioned compound (1), a sugar alcohol and/or a water-swelling additive, and optional additives such as a disintegrant, a binder, a fluidizing agent, a lubricant, a coloring agent, and a polishing agent, and the mixture is processed through, for example, the method of producing solid preparations described in the general rules for preparations in the Japanese Pharmacopoeia.

10

30

35

50

55

[0048] When the pharmaceutical composition of the present invention is in the dosage form of granules, the granules may be produced through blending compound (1) with a sugar alcohol and/or a water-swelling additive and optional additives such as a diluent, a binder, a disintegrant, and other appropriate members, and granulating the thus-obtained uniform mixture through an appropriate technique. Additionally, the thus-produced granules may be coated with a coating agent by means of a fluidized bed coater through spraying a suspension/solution of the coating agent onto the granules. [0049] When the pharmaceutical composition of the present invention is in the dosage form of powder, the powder (or microgranules) may be produced through blending compound (1) with a sugar alcohol and/or a water-swelling additive and optional additives such as a diluent, a binder, a disintegrant, and other appropriate members, to thereby form a uniform admixture, and pulverizing or micro-granulating the thus-obtained admixture through an appropriate technique. Additionally, the thus-produced powder (or microgranules) granules may be coated with a coating agent by means of a fluidized bed coater through spraying a suspension/solution of the coating agent onto the powder (or microgranules).

[0050] When the pharmaceutical composition of the present invention is in the dosage form of capsule, the aforementioned granules or powder may be encapsulated with coating capsules.

[0051] When the pharmaceutical composition of the present invention is in the dosage form of tablet, tablets may be produced directly through compression molding of a powder mixture containing the aforementioned compound (1) and acceptable additives for pharmaceuticals, preferably a powder mixture containing the aforementioned compound (1), a sugar alcohol and/or a water-swelling additive, and acceptable additives for pharmaceuticals. Alternatively, the tablets may be produced through granulating a powder mixture containing the aforementioned compound (1) and acceptable additives for pharmaceuticals, preferably a powder mixture containing the aforementioned compound (1), a sugar alcohol and/or a water-swelling additive, and acceptable additives for pharmaceuticals, through a technique such as fluidized bed granulation or agitation granulation, followed by compression molding of the formed granules. The pressure of compression molding may be determined within an appropriate range, so long as the effect of the present invention is not impaired. The compression molding is preferably performed at 6 to 15 kN. No particular limitation is imposed on the shape of the tablets, and lens-shape, disk-shape, round, oval, triangle, and polygon shapes such as lozenges are preferred. Additionally, the thus-produced tablets may be further coated with a coating agent by means of a pan coater through spraying a suspension/solution of the coating agent onto the tablets.

[0052] The pharmaceutical composition of the present invention generally has a compound (1) content of 10 to 30 wt.% (as free form), preferably 12 to 25 wt.%. Particularly when the pharmaceutical composition of the present invention is in the table form, the compound (1) content (as free form) is generally 1 to 100 mg/tablet, preferably 5 to 75 mg/tablet, more preferably 15 to 60 mg/tablet.

[0053] The compound (1) dissolution property of the pharmaceutical composition of the present invention can be evaluated by, for example, dissolution tests disclosed in the Japanese Pharmacopoeia, the United States Pharmacopoeia (USP), and the European Pharmacopoeia. Examples of the test medium employed in the dissolution tests will next be described.

[0054] Non-limitative examples of the aforementioned strongly acidic dissolution test medium include the JP 1st fluid described in the Japanese Pharmacopoeia, and "USP 0.1N HCI, Simulated Gastric Fluid without Enzyme" described in the United States Pharmacopoeia.

[0055] Non-limitative examples of the dissolution test medium (pH: 6.8) include the JP 2nd fluid and phosphate buffer (pH: 6.8) described in the Japanese Pharmacopoeia; "USP Phosphate Buffer (pH: 6.8), Simulated Intestinal Fluid without Enzyme" described in the United States Pharmacopoeia; and Phosphate Buffer Solution (pH: 6.8) described in the European Pharmacopoeia.

[0056] The dissolution test medium (pH: 3 to 5) may be a test medium having a pH of 4.0 or 4.5. Specific examples

include acetic acid-sodium acetate buffer described in the Japanese Pharmacopoeia; "USP Acetate Buffer" described in the United States Pharmacopoeia; and Acetate Buffer Solution (pH: 4.5) described in the European Pharmacopoeia. Alternatively, a diluted McIlvaine buffer (pH: 4.0) may also be employed.

[0057] However, the dissolution test medium (pH: 3 to 5) is not limited to the above examples.

[0058] These dissolution test medium are prepared through methods described in the corresponding Pharmacopoeia. When the employed dissolution test medium is a buffer solution, variation of the pH of the test medium specified in the corresponding Pharmacopoeia is preferably controlled to fall within a range of ±0.05.

[0059] When the composition is subjected to the dissolution test disclosed in the Japanese Pharmacopoeia (paddle method; at a rotation rate of 50 rpm), the composition preferably exhibit an average percent dissolution of compound (1), in a dissolution test medium having a pH of 6.8, of 60% or higher in 30 minutes after the start of the dissolution test and 70% or higher in 60 minutes after the start, more preferably 70% or higher in 30 minutes after the start and 80% or higher in 60 minutes after the start.

[0060] When the composition is subjected to the dissolution test disclosed in the Japanese Pharmacopoeia (paddle method; at a rotation rate of 50 rpm), the composition preferably exhibit an average percent dissolution of compound (1), in a dissolution test medium having a pH of 4.5, of 85% or higher in 30 minutes after the start of the dissolution test.

[0061] As used herein, the "average percent dissolution" refers to an average of percent dissolution values obtained from at least 3, preferably 6, more preferably 12 solid preparation samples of a single type.

Examples

20

30

35

[0062] The present invention will next be described in detail by way of examples.

Example 1 (Effect of diluent)

[0063] Tablets containing compound 1a were produced according to the formulations shown in Table 1 (all values in the table are on "mg" basis). The tablets were analyzed in terms of dissolution of compound 1a in accordance with the method 2 (paddle method) at a rotation rate of 50 rpm described in the Japanese Pharmacopoeia. Percent dissolution was calculated by averaging percent dissolution values of three tablets of the same formulation. An acetate buffer (pH: 4.0) was employed as a dissolution test medium. The acetate buffer (pH: 4.0) was prepared through the following procedure.

[0064] Method for preparing the acetate buffer (pH: 4.0): Sodium acetate trihydrate (2.45 g) and glacial acetic acid (4.9 g) were weighed, and purified water was added thereto, so that the total volume of the buffer came to 1,000 mL.

(Preparation of tablets)

[0065] In each case, ingredients shown in Table 1 excepting hydroxypropyl cellulose and magnesium stearate were mixed by means of a mortar, and the mixture was granulated by use of aqueous hydroxypropyl cellulose solution. The thus-produced granules were mixed with magnesium stearate, to thereby yield granules were compressed into tablets using 8.0 mmφ round shaped dies and punches at 7.8 kN of compression force, to thereby yield tablets of interest. In Example 1, the following materials were employed as the ingredients listed in Table 1.

[0066] Lactose [Pharmatose 200M (trade name)], mannitol [Mannit (trade name)], cornstarch [Cornstarch (trade name)], crystalline cellulose [Ceolus (trade name)], pregelatinized starch [PCS (trade name)], sodium starch glycolate [Primojel (trade name)], hydroxypropyl cellulose [HPC-L (trade name)], and magnesium stearate [HyQual (trade name)].

[Table 1]

Formulation (mg)	Α	В	С	D	E
Compound 1a	40.41	40.41	40.41	40.41	40.41
Lactose	99.79		99.79		
Mannitol		99.79		99.79	99.79
Cornstarch	42.8	42.8			
Crystalline cellulose					42.8
Pregelatinized starch			42.8	42.8	
Sodium starch glycolate	10.0	10.0	10.0	10.0	10.0

9

50

45

(continued)

Formulation (mg)	Α	В	O	D	E
Hydroxypropyl cellulose	6.0	6.0	6.0	6.0	6.0
Mq stearate	1.0	1.0	1.0	1.0	1.0
Weight/tablet	200.0 mg				

[0067] Fig. 1 shows the results of the dissolution test (in acetate buffer solution (pH: 4.0)) of the tablets of formulations A to E in Table 1. As is clear from Fig. 1, tablets containing mannitol as a diluent (formulation B), those containing pregelatinized starch as a diluent (formulations C and D), and those containing crystalline cellulose as a diluent (formulation E) exhibited excellent compound 1a dissolution characteristics. Tablets containing mannitol and pregelatinized starch as a diluent (formulation D) and those containing mannitol and crystalline cellulose as a diluent (formulation E) exhibited more excellent compound 1a dissolution characteristics. In contrast, when lactose and cornstarch, which are generally employed as diluent, were employed (formulation A), the compound 1a dissolution property was unsatisfactory.

Example 2 (Studies on disintegrant)

5

10

15

25

30

35

40

45

50

[0068] Ingredients shown in Table 2 (all values in the table are on "mg" basis) excepting hydroxypropyl cellulose and magnesium stearate were mixed by means of a mortar, and the mixture was granulated by use of aqueous hydroxypropyl cellulose solution. The thus-produced granules were mixed with magnesium stearate, to thereby yield granules were compressed into tablets using 8.0 mmφ round shaped dies and punches at 7.8 kN of compression force, to thereby yield tablets of interest.

[0069] In a manner similar to that of Example 1, the produced tables were analyzed in terms of dissolution property. The percent dissolution was calculated by averaging percent dissolution values of three tablet samples.

[0070] In Example 2, the following disintegrants were employed and compared with one another.

[0071] Sodium starch glycolate [Primojel (trade name)], crospovidone [Polyplasdone (trade name)], carmellose calcium [ECG-505 (trade name)], and low-substituted hydroxypropyl cellulose [L-HPC (trade name)].

[Table 2]

Formulation (mg)	F	G	Н	I
Compound 1a	40.41	40.41	40.41	40.41
Mannitol	102.59	102.59	102.59	102.59
Pregelatinized starch	40.0	40.0	40.0	40.0
Sodiuml starch glycolate	10.0			
Crospovidone		10.0		
Carmellose Ca			10.0	
Low-substituted hydroxypropyl cellulose				10.0
Hydroxypropyl cellulose	6.0	6.0	6.0	6.0
Mq stearate	1.0	1.0	1.0	1.0
Weight/tablet	200.0 mg	200.0 mg	200.0 mg	200.0 mg

[0072] Fig. 2 shows the results of the dissolution test (in acetate buffer solution (pH: 4.0)) of the tablets of formulations F to I in Table 2. As is clear from Fig. 2, tablets containing sodium starch glycolate or crospovidone as a disintegrant exhibited an excellent compound 1a dissolution property.

Example 3

[0073] Tablets containing compound 1a were produced according to the formulations shown in Table 3 (all values in the table are on "mg" basis), and were analyzed in terms of dissolution of compound 1a in a manner similar to that of Example 1, except that 0.1N hydrochloric acid (USP 0.1N HCl), water, and phosphate buffer solution (pH: 6.8) [USP Phosphate buffer solution (pH: 6.8)] were employed as dissolution test medium. In each tablet production, ingredients

shown in Table 3 excepting hydroxypropyl cellulose and magnesium stearate were mixed together, and the mixture was granulated by means of a fluidized bed granulator through spraying aqueous hydroxypropyl cellulose solution onto the mixture. The thus-produced granules were mixed with magnesium stearate, to thereby yield granules were compressed into tablets using 8.5 mmφ round shaped dies and punches at 7.5 kN of compression force, to thereby yield tablets of interest. The percent dissolution was calculated by averaging percent dissolution values of six tablet samples.

П	ā	h	le	3

Formulation	J	К	L	М	N
Compound 1a	40.4	40.4	40.4	40.4	40.4
Lactose	99.2		99.2		
Mannitol		99.2		99.2	99.2
Cornstarch	42.0	42.0			
Crystalline cellulose					42.0
Pregelatinized starch			42.0	42.0	
Crospovidone	10.7	10.7	10.7	10.7	10.7
Hydroxypropyl cellulose	6.1	6.1	6.1	6.1	6.1
Mg stearate	1.6	1.6	1.6	1.6	1.6
Weight/tablet	200.0 mg				

[0074] Figs. 3 to 5 show the results of the dissolution test (in 0.1N hydrochloric acid, in water, and in phosphate buffer solution (pH: 6.8)) of the tablets of formulations J to N in Table 3. As is clear from Figs. 3 to 5, tablets containing mannitol and pregelatinized starch exhibited an excellent compound 1a dissolution property in 0.1N hydrochloric acid and in water.

Example 4 (Studies on coating agent)

10

15

20

25

30

35

40

[0075] Ingredients shown in Table 4 (all values in the table are on "mg" basis) excepting hydroxypropyl cellulose and magnesium stearate were mixed together, and the mixture was granulated by means of a fluidized bed granulator through spraying aqueous hydroxypropyl cellulose solution onto the mixture. The thus-produced granules were mixed with magnesium stearate, to thereby yield granules were compressed into tablets using 8.5 mmφ round shaped dies and punches at about 10 kN of compression force, to thereby yield tablets of interest. The tables were coated with a commercial coating agent by means of a pan coater (Hicoater Multi, product of Freund Corporation), to thereby prepare film-coated tablets. As the coating agent, a pre-mixed product [OPADRY 03F42132 (trade name)], predominantly containing hypromellose, was used. In a manner similar to that of Example 1, tablets coated with OPADRY 03F42132 (3 mg), those coated with OPADRY 03F42132 (10 mg), and those not coated (non-coated tablets) were subjected to dissolution tests in phosphate buffer solution (pH: 6.8) [USP Phosphate buffer solution (pH: 6.8)]. The results are shown in Fig. 6. The percent dissolution was calculated by averaging percent dissolution values of six tablet samples.

[0076] Separately, by means of a pan coater (Hicoater Mini, product of Freund Corporation), film-coated tablets were produced through coating non-coated tablets with a coating agent [OPADRY 03F42132 (trade name)] predominantly containing hypromellose, generally employed as a rapidly soluble coating agent; a coating agent [OPADRY AMB (trade name)], predominantly containing polyvinyl alcohol, generally employed as a rapidly soluble coating agent; a coating agent [Aquacoat-ECD (trade name)], predominantly containing ethyl cellulose, serving as a pH-independent sustained-release-type coating agent; or a coating agent [Eudragit L30-D55 (trade name)], predominantly containing methacrylate copolymer LD, serving as a pH-dependent enteric coating agent, the amount coating agent in each case being 10 mg. In a manner similar to that of Example 1, these film-coated tablets were subjected to dissolution tests in phosphate buffer solution (pH: 6.8) [USP Phosphate buffer solution (pH: 6.8)]. The results are shown in Fig. 7. The percent dissolution was calculated by averaging percent dissolution values of six tablet samples.

[0077] Further, by means of a pan coater (Hicoater Multi, product of Freund Corporation), film-coated tablets were produced through coating non-coated tablets with a coating suspension (10 mg) containing about 60% of hypromellose [TC-5 (trade name)]. In a manner similar to that of Example 1, these film-coated tablets were subjected to dissolution tests in acetate buffer solutions (pH: 4.0) and (pH: 4.5). The results are shown in Fig. 8. The percent dissolution was calculated by averaging percent dissolution values of six tablet samples.

[Table 4]

Ingredients (mg)	Formulation		
Compound 1a	40.4		
Mannitol	99.2		
Pregelatinized starch	42.0		
Crospovidone	10.7		
Hydroxypropyl cellulose	6.1		
Mg stearate	1.6		
Weight/tablet	200.0 mg		

15

20

5

10

[0078] As is clear from Fig. 6, quite surprisingly, tablets coated with a hypromellose-based agent exhibited an improved compound 1a dissolution property at a pH of 6.8, as compared with non-coated tablets. Furthermore, the amount of coating agent did not affect the dissolution behavior.

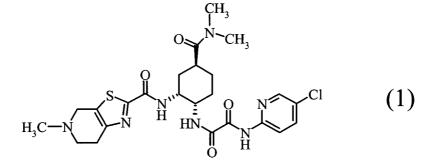
[0079] As is clear from Fig. 7, tablets coated with a coating agent other than an enteric coating agent exhibited a considerably excellent dissolution property.

[0080] As is clear from Fig. 8, tablets coated with a hypromellose-based agent exhibited an equivalently excellent dissolution property in acetate buffer solution (pH: 4.0) and in acetate buffer solution (pH: 4.5).

25 Claims

1. A pharmaceutical composition,

wherein the composition is a coated tablet,


wherein the coated tablet is a tablet coated with at least one coating agent selected from the group consisting of hypromellose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and polyvinyl alcohol, wherein the tablet comprises:

35

30

(A) N¹-(5-chloropyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide, represented by formula (1):

40

45

, a pharmacologically acceptable salt thereof, or a hydrate of any of these;

- (B) a sugar alcohol; and
- (C) a water-swelling additive.

50

2. A pharmaceutical composition according to claim 1, wherein the sugar alcohol is mannitol, xylitol, or erythritol.

55

3. A pharmaceutical composition according to claim 1, wherein the sugar alcohol is mannitol.

4. A pharmaceutical composition according to any one of claims 1 to 3, wherein the water-swelling additive is prege-

latinized starch or crystalline cellulose.

- 5. A pharmaceutical composition according to any one of claims 1 to 3, wherein the water-swelling additive is pregelatinized starch.
- **6.** A pharmaceutical composition according to claim 1, wherein the coating agent is one or more species selected from the group consisting of hypromellose, ethyl cellulose, and polyvinyl alcohol.
- **7.** A pharmaceutical composition according to claim 1, wherein the coating agent is hypromellose.
 - **8.** A pharmaceutical composition according to any one of claims 1 to 7, wherein the coating agent is contained in an amount of 0.5 to 20 wt.% with respect to the total weight of the pharmaceutical composition.
 - 9. A pharmaceutical composition according to any one of claims 1 to 8, wherein the compound represented by formula (1) is N¹-(5-chloropyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazo-lo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide hydrochloride.
- 20 **10.** A pharmaceutical composition according to any one of claims 1 to 8, wherein the compound represented by formula (1) is N¹-(5-chloropyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazo-lo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)ethanediamide p-toluenesulfonate monohydrate.

25 Patentansprüche

5

15

35

50

- Pharmazeutische Zusammensetzung,
 wobei die Zusammensetzung eine beschichtete Tablette ist,
 wobei die beschichtete Tablette eine Tablette ist, die mit zumindest einem Beschichtungsmittel, ausgewählt aus
 der Cruppe bestehend aus Hyrremelless Methyleelluless Ethyleelluless Hydroxypropyleelluless und Behvinylel.
- der Gruppe bestehend aus Hypromellose, Methylcellulose, Ethylcellulose, Hydroxypropylcellulose und Polyvinylalkohol, beschichtet ist,
 - wobei die Tablette umfasst:
 - (A) N¹-(5-Chlorpyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothia-zolo[5,4-c]pyridin-2-yl)carbonyl]amino}-cyclohexyl)ethandiamid der Formel (1):

ein pharmakologisch annehmbares Salz davon oder ein Hydrat von irgendeinem hiervon;

- (B) einen Zuckeralkohol; und
- (C) ein wasserquellendes Additiv.
- 2. Pharmazeutische Zusammensetzung gemäss Anspruch 1, wobei der Zuckeralkohol, Mannit, Xylit oder Erythrit ist.
- 55 3. Pharmazeutische Zusammensetzung gemäss Anspruch 1, wobei der Zuckeralkohol Mannit ist.
 - 4. Pharmazeutische Zusammensetzung gemäss irgendeinem der Ansprüche 1 bis 3, wobei das wasserquellende Additiv Quellstärke oder kristalline Cellulose ist.

- 5. Pharmazeutische Zusammensetzung gemäss irgendeinem der Ansprüche 1 bis 3, wobei das wasserquellende Additiv Quellstärke ist.
- **6.** Pharmazeutische Zusammensetzung gemäss Anspruch 1, wobei das Beschichtungsmittel eine oder mehrere Art(en), ausgewählt aus der Gruppe bestehend aus Hypromellose, Ethylcellulose und Polyvinylalkohol, ist.
 - 7. Pharmazeutische Zusammensetzung gemäss Anspruch 1, wobei das Beschichtungsmittel Hypromellose ist.
- 8. Pharmazeutische Zusammensetzung gemäss irgendeinem der Ansprüche 1 bis 7, wobei das Beschichtungsmittel in einer Menge von 0,5 bis 20 Gew.%, bezogen auf das Gesamtgewicht der pharmazeutischen Zusammensetzung, enthalten ist.
 - 9. Pharmazeutische Zusammensetzung gemäss irgendeinem der Ansprüche 1 bis 8, wobei die Verbindung der Formel (1) N¹-(5-Chlorpyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}-cyclohexyl)ethandiamid-Hydrochlorid ist.
 - 10. Pharmazeutische Zusammensetzung gemäss irgendeinem der Ansprüche 1 bis 8, wobei die Verbindung der Formel
 (1) N¹-(5-Chlorpyridin-2-yl)-N²-((1S,2R,4S)-4-[(dimethylamino)carbonyl]-2-{[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}-cyclohexyl)ethandiamid-p-toluolsulfonatmonohydrat ist.

Revendications

5

15

20

25

35

40

45

- 1. Composition pharmaceutique,
 - dans laquelle la composition est un comprimé enrobé, dans laquelle le comprimé enrobé est un comprimé revêtu d'au moins un agent de revêtement choisi dans le groupe constitué par l'hypromellose, la méthylcellulose, l'éthylcellulose, l'hydroxypropylcellulose et l'alcool polyvinylique,
- dans laquelle le comprimé comprend :
 - (A) le N^1 -(5-chloropyridin-2-yl)- N^2 -((1S,2R,4S)-4-[(diméthylamino)carbonyl]-2-{[(5-méthyl-4,5,6,7-tétrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]amino}cyclohexyl)éthanediamide, représenté par la formule (1) :

- un sel pharmacologiquement acceptable de celui-ci, ou un hydrate de l'un quelconque de ceux-ci;
- (B) un alcool de sucre; et
- (C) un additif de gonflement à l'eau.
- 2. Composition pharmaceutique selon la revendication 1, dans laquelle l'alcool de sucre est le mannitol, le xylitol ou l'érythritol.
- 55 3. Composition pharmaceutique selon la revendication 1, dans laquelle l'alcool de sucre est le mannitol.
 - 4. Composition pharmaceutique selon l'une quelconque des revendications 1 à 3, dans laquelle l'additif de gonflement à l'eau est de l'amidon pré-gélatinisé ou de la cellulose cristalline.

- **5.** Composition pharmaceutique selon l'une quelconque des revendications 1 à 3, dans laquelle l'additif de gonflement à l'eau est de l'amidon pré-gélatinisé.
- **6.** Composition pharmaceutique selon la revendication 1, dans laquelle l'agent de revêtement est une ou plusieurs espèces choisies dans le groupe constitué par l'hypromellose, l'éthylcellulose et l'alcool polyvinylique.

- 7. Composition pharmaceutique selon la revendication 1, dans laquelle l'agent de revêtement est l'hypromellose.
- **8.** Composition pharmaceutique selon l'une quelconque des revendications 1 à 7, dans laquelle l'agent de revêtement est contenu en une quantité de 0,5 à 20 % en poids par rapport au poids total de la composition pharmaceutique.
- 9. Composition pharmaceutique selon l'une quelconque des revendications 1 à 8, dans laquelle le composé représenté par la formule (1) est le chlorhydrate de N¹-(5-chloropyridin-2-yl)-N²-((1S, 2R, 4S)-4-[(diméthylamino)carbonyl]-2-{[(5-méthyl-4,5,6,7-tétrahydrothiazolo[5,4-c] pyridin-2-yl)carbonyl]amino}cyclohexyl)éthanediamide.
- 10. Composition pharmaceutique selon l'une quelconque des revendications 1 à 8, dans laquelle le composé représenté par la formule (1) est le p-toluènesulfonate monohydraté de N¹-(5-chloropyridin-2-yl)-N²-((1S, 2R, 4S)-4-[(diméthylamino)carbonyl]-2-{[(5-méthyl-4,5,6,7-tétrahydrothiazolo[5,4-c] pyridin-2-yl)carbonyl]amino}cyclohexyl)éthanediamide.

Fig. 1

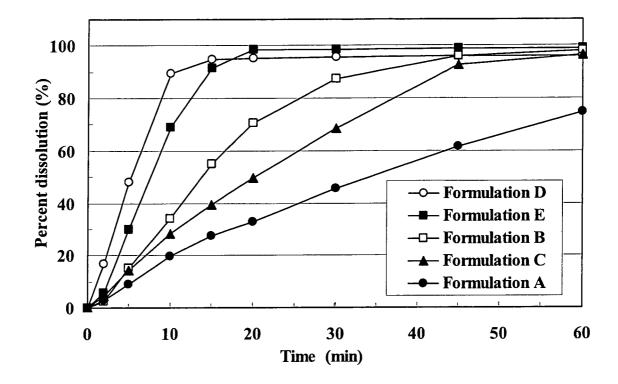


Fig. 2

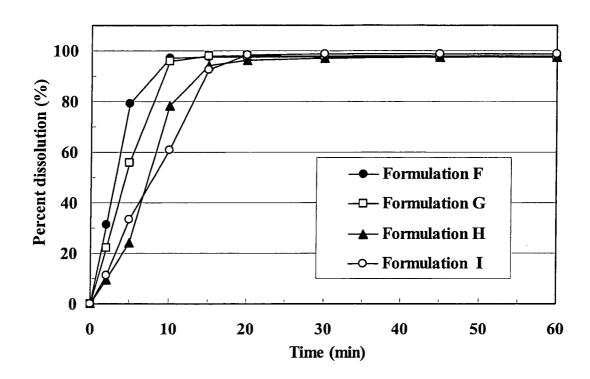


Fig. 3

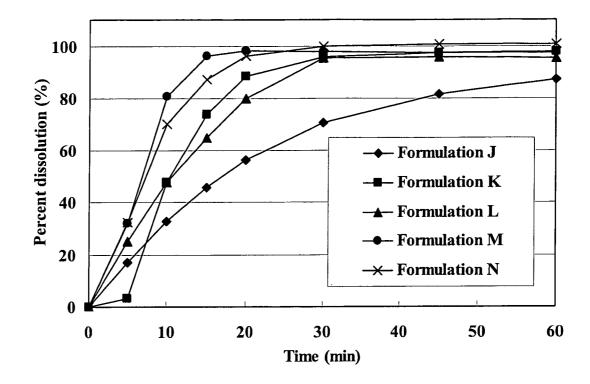


Fig. 4

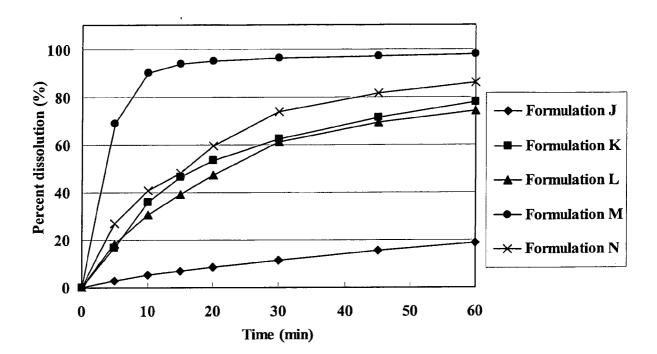


Fig. 5

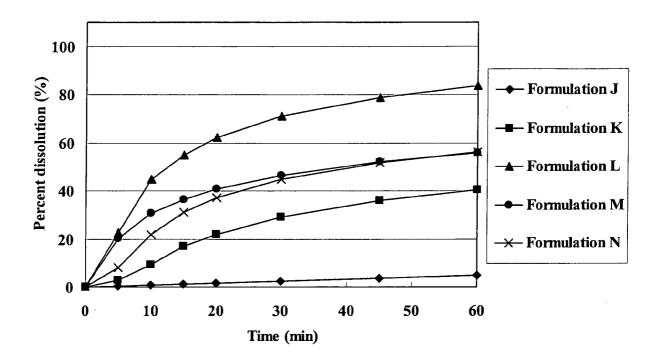


Fig. 6

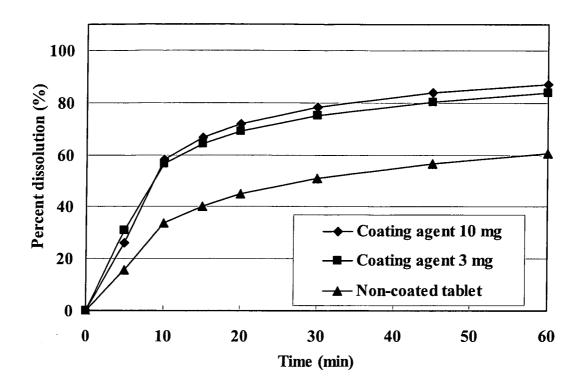


Fig. 7

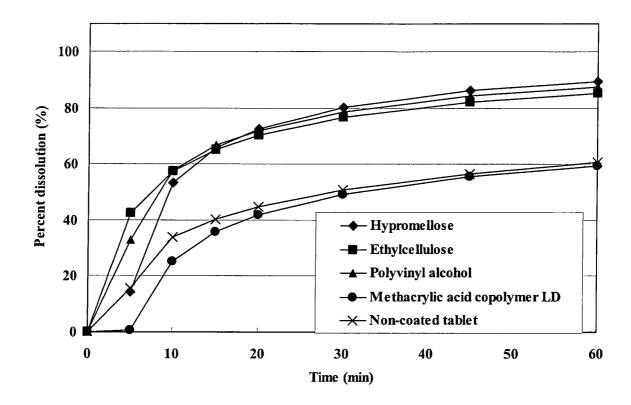
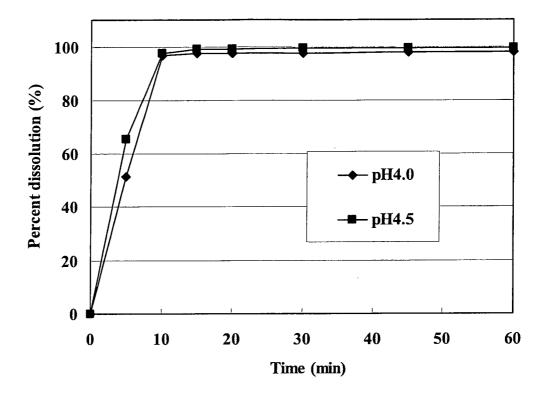



Fig. 8

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 03000657 A [0003]
- WO 03000680 A [0003]
- WO 03016302 A [0003]

- WO 2004058715 A [0003]
- US 20050119486 A [0003]

Gyógyászati készítmény

Szabadalmi igénypontok

1. Gyógyászati készítmény,

ahol a készítmény egy bevont tabletta,

ahol a bevont tabletta legalább egy, hipromellóz, metilcellulóz, etilcellulóz, hidroxipropilcellulóz, és polivinilalkohol közül választott legalább egy bevonószerrel ellátott, ahol a tabletta:

(A)(1):

$$CH$$
, CH ,

képletű N¹-(5-klórpiridin-2-il)-N²-((1S,2R,4S)-4-[(dimetilamino)karbonil]-2-{[[(5-metil-4,5,6,7-tetrahídrotiazolo[5,4-c]piridin-2-il)karbonil]amino}-ciklohexil)-etándiamidot, egy gyógyászatilag elfogadható sóját, vagy ezek bármelyikének hídrátját;

- (B) egy cukoralkoholt; és
- (C) egy vízben duzzadó adalékanyagot tartalmaz.
- Az 1. igénypont szerinti gyógyászati készítmény, ahol a cukoralkohol mannitol, xilitol, vagy eritritol.
- 3. Az 1. igénypont szerinti gyógyászati készítmény, ahol a cukoralkohol mannítol.
- Az 1-3. igénypontok bármelyike szerinti gyógyászati készítmény, ahol a vízben duzzadó adalékanyag előzselatinizált keményítő vagy kristályos cellulóz.

- Az 1-3. igénypontok bármelyike szerinti gyógyászati készítmény, ahol a vízben duzzadó adalékanyag előzselatinizált keményítő.
- 6. Az 1. igénypont szerinti gyógyászati készitmény, ahol a bevonószer hipromellóz, etilcellulóz, és polivinilalkohol közül választott egy vagy több anyag.
- 7. Az 1. igénypont szerinti gyógyászati készítmény, ahol a bevonószer hipromellóz.
- 8. Az 1-7. igénypontok bármelyike szerinti gyógyászati készítmény, ahol a bevonószer a gyógyászati készítmény össztömegére számított 0.5 20 tömeg% mennyiségben van jelen.
- 9. Az 1-8. igénypontok bármelyike szerinti gyógyászati készítmény, ahol az (1) képletű vegyület N¹-(5-klórpiridin-2-il)-N²-((1S,2R,4S)-4-[(dimetilamino)-karbonil]-2-{[(5-metil-4,5,6,7-tetrahidrotiazolo[5,4-c]piridin-2-il)karbonil]-amino}ciklohexil)etándiamid hidroklorid.
- 10. Az 1-8. igénypontok bármelyike szerinti gyógyászati készítmény, ahol az (1) képletű vegyület N³-(5-klórpiridin-2-il)-N²-((1S,2R,4S)-4-[(dimetilamino)-karbonil]-2-{[(5-metil-4,5,6,7-tetrahidrotiazolo[5,4-c]piridin-2-il)karbonil]-amino}ciklohexil)etándiamid p-toluolszulfonát monohidrát.