
USOO830 1844B2 

(12) United States Patent (10) Patent No.: US 8,301,844 B2 
Steely, Jr. et al. (45) Date of Patent: Oct. 30, 2012 

(54) CONSISTENCY EVALUATION OF PROGRAM 35.46 A 8. 3. that et al. 
O 

EXECUTION ACROSSAT LEAST ONE 5,845,101 A 12/1998 Johnson et al. 
MEMORY BARRIER 5,875,467 A 2/1999 Merchant 

5,875.472 A 2f1999 Bauman et al. 
(75) Inventors: Simon C. Steely, Jr., Hudson, NH (US); 5.937,431 A * 8/1999 Kong et al. ................... T11 145 

Gregory Edward Tierney, Chelmsford, 5,958,019 A 9/1999 Hagersten et al. 
MA (US) 6,032,231 A 2/2000 Gujral 

6,055,605 A 4/2000 Sharma et al. 

(73) Assignee: Hewlett-Packard Development 88): A $398 SE" 
Company, L.P., Houston, TX (US) 6,108,737 A 8, 2000 Sharma et al. 

6,134,646 A 10/2000 Feiste et al. 

(*) Notice: Subject to any disclaimer, the term of this 3.68 f 1,399. RS al. 1 an DOren et al. 
past itled co listed under 35 6,275,905 B1* 8/2001 Keller et al. .................. 711 141 

.S.C. 154(b) by yS. 6.286,090 B1 9/2001 Steely, Jr. et al. 
6,301,654 B1 10/2001 Ronchetti et al. 

(21) Appl. No.: 10/756,534 6,317,811 B1 1 1/2001 Deshpande et al. 
6,345,342 B1 2/2002 Arimilli et al. 

(22) Filed: Jan. 13, 2004 6,349,382 B1 2/2002 Feiste et al. 
6,356,918 B1 3/2002 Chuang et al. 

(65) Prior Publication Data (Continued) 

US 2005/O154832A1 Jul. 14, 2005 OTHER PUBLICATIONS 

(51) Int. Cl. J. Handy, The Cache Memory Book. New York: Academic, 1998.* 
G06F I3/38 (2006.01) (Continued) 

(52) U.S. Cl. ........ 711/144; 711/141; 711/142; 711/143: 
711/145: 711/146 Primary Examiner — Sanjiv Shah 

(58) Field of Classification Search .................. 711/141, Assistant Examiner — Samuel Dillon 
711/142,143, 144, 145, 146 

See application file for complete search history. (57) ABSTRACT 

(56) References Cited Multi-processor systems and methods are disclosed. One 

U.S. PATENT DOCUMENTS 

5,197,132 A 3/1993 Steely, Jr. et al. 
5,222,224 A 6/1993 Flynn et al. 
5,404.483. A 4/1995 Stamm et al. 
5.420,991 A * 5/1995 Konigsfeld et al. ........... T11 150 
5,467.473 A * 1 1/1995 Kahleet al. .......... T12/23 
5,491,811 A * 2/1996 Arimilli et al. ............... 711/144 
5,519,841 A 5/1996 Sager et al. 
5,625,829 A 4/1997 Gephardt et al. 
5,651,125 A * 7/1997 Witt et al. .................... T12/218 
5,721.855 A 2f1998 Hinton et al. 

XCUTION 
NGINE 

XCUTION 
OG 

CORNT 
SIGNAL 

COHERENT 
SIGNAL 

rGISTER 
FILES 

-- - - - - - - - - - - - - - - - - - - - - 

CACHE REUES 
MISS ENGINE 
FILS 

embodiment may comprise a multi-processor system includ 
ing a processor that executes program instructions across at 
least one memory barrier. A request engine may provide an 
updated data fill corresponding to an invalid cache line. The 
invalid cache line may be associated with at least one 
executed load instruction. A load compare component may 
compare the invalid cache line to the updated data fill to 
evaluate the consistency of the at least one executed load 
instruction. 

36 Claims, 6 Drawing Sheets 

MAF ENTRY 
AddRSS OF LINING ACCESSED 

COPY OFCURRNT FILL 

COHERENTFLAG 

COHERENT 
SIGNAL 

CREAT 
WAF 1s2 

SURCE 
roUST ---------------------------- 

  

  

  

    

  

  

  

  

  

    

    

  

  



US 8,301.844 B2 
Page 2 

U.S. PATENT DOCUMENTS 

6,408,363 B1 6/2002 Lesartre et al. 
6,412,067 B1 6, 2002 Ramirez et al. 
6,457,101 B1 9/2002 Bauman et al. 
6,535,941 B1 3/2003 Kruse 
6,553,480 B1 4/2003 Cheong et al. 
6,574,712 B1 6, 2003 Kahle et al. 
6,574,725 B1* 6/2003 Kranich et al. ................. T12/31 
6,591.348 B1 7/2003 Deshpande et al. 
6,594,821 B1 7/2003 Banning et al. 
6,615,343 B1 9, 2003 Talcott et al. 
6,625,660 B1* 9/2003 Guthrie et al. ................ TO9,248 
6,633,960 B1 10/2003 Kessler et al. 
6,633,970 B1 * 10/2003 Clift et al. ..................... 71.2/217 
6,651,143 B2 11/2003 Mounes-Toussi 
6,775,749 B1* 8/2004 Mudgett et al. ............... 711.146 
7,093,078 B2 * 8/2006 Kondo .......................... 711 141 

2001/0055277 A1 
2002fOOO9095 A1 
2002.0099833 A1 
2002.00999 13 A1 
2002fO146022 A1 

12/2001 Steely, Jr. et al. 
1/2002 Van Doren et al. 
7/2002 Steely, Jr. et al. 
7/2002 Steely, Jr. 

10, 2002 Van Doren et al. 
2002/0194290 Al 12/2002 Steely, Jr. et al. 
2002/0194436 Al 12/2002 McKenney 
2002/0199067 A1* 12/2002 Patel et al. .................... T11 145 
2003, OO699.02 A1 4/2003 Narang et al. 
2003/0145136 A1 7/2003 Tierney et al. 
2003/0195939 A1 10/2003 Edirisooriya et al. 

OTHER PUBLICATIONS 

M. Lipasti, C. Wilkerson, and J. Shen. Value locality and load value 
prediction. In Proceedings of the 7th ASPLOS, Boston, MA, Oct. 
1996. 

Alexander, M.J., Bailey, M. W., Childers, B. R. Davidson, J. W., and 
Jinturkar, S., “Memory Bandwidth Optimizations for Wide-Bus 
Machines”. Proceedings of the 25th Hawaii International Conference 
on System Sciences, Maui, HA, Jan. 1993, pp. 466-475.* 
Heriot-Watt University, "Data representation and number systems: 
Boolean logic : masks”. Jun. 8, 2002, http://scholar.hw.ac.uk/site? 
computing/topic36.asp?outline=.* 
Sato, T.; Ohno, K.; Nakashima, H. A mechanism for speculative 
memory accesses following synchronizing operations. Parallel and 
Distributed Processing Symposium, 2000. IPDPS 2000. Proceed 
ings. 14th International.* 
Rajiv Gupta. The Fuzzy Barrier: a mechanism for high speed syn 
chronization of processors. Proceedings of the third international 
conference on Architectural Support for programming languages and 
operating systems. Apr. 3-6, 1989.* 
M. Cintra, J. F. Martnez, and J. Torrellas. Architectural support for 
Scalable speculative parallelization in shared-memory multiproces 
sors. In Proceedings of the 27th Annual International Symposium on 
Computer Architecture, Jun. 2000.* 
Kozyrakis, C.E. Vector IRAM: ISA and Micro-architecture. IEEE 
Computer Elements Workshop, Vail, CO, Jun. 21-24, 1998.* 
Handy, Jim. The Cache Memory Book. Academic Press Inc. 1998. 
pp. 159.* 
Vijaykumar et al. Speculative Versioning Cache. IEEE Transactions 
on parallel and distributed systems. vol. 12. No. 12. Dec. 2001.* 
Gharachorloo, et al., “Memory Consistency and Event Ordering in 
Scalable Shared-Memory Multiprocessors”. Computer Systems 
Laboratory, Stanford University, CA 943.05, pp. 1-14. 
Gharachorloo, et al., “Architecture and Design of AlphaServer 
GS320”, pp. 1-16. 

* cited by examiner 



U.S. Patent Oct. 30, 2012 Sheet 1 of 6 US 8,301.844 B2 

FIG. 1 

LOAD CACHE LINE ADDRESS INSTRUCTION ADDRESS 

FIG. 3 

-100 

FIG. 4 

102 

104 
106 

108 

110 

  

  

  

    

    

    

  

  





U.S. Patent Oct. 30, 2012 Sheet 3 of 6 US 8,301.844 B2 

120 1 

CACHE TAG 

CACHE LINE ADDRESS 

COHERENCY STATE 

PENDING LOAD COUNTER 

LOAD ACCESS MASK 

LAST FILL TICKET 

122 

124 

126 

128 

130 

FIG. 5 

1. 3OO 

EXECUTE PROGRAM INSTRUCTIONS ACROSS 
AT LEAST ONE MEMORY BARRIER 

COMPARE AN INVALIDATED CACHE LINE WITH 
AN ASSOCATED UPDATED FILL OF THE 
CACHE LINE TO GENERATE LOAD ACCESS 

MASK 

EVALUATE THE CONSISTENCY OF THE LOAD 
INSTRUCTION 

FIG 9 

    

  

  

    

  

  





U.S. Patent Oct. 30, 2012 Sheet 5 of 6 US 8,301.844 B2 

START 

1 200 
CHECK STATE OF NEXT 

LOAD IN LOG 

22 

WAIT FOR SYSTEM 
AUTHENTICATED7 RESPONSE 

208 218 

N 

O 

RETIRE 
LOAD 

INVALIDATED2 

GET UPDATED DATA FILL FROM SYSTEM 

READ LOAD ACCESS MASK TO 
DETERMINE OUANTA OF THE CACHE LINE 

READ BY THE LOAD 

DOES THE UPDATED FILL 
MATCH THE INVALID LINE AT THE 

DETERMINED OUANTA2 

CLEAR LOG ENTRIES 

RESTORE PROCESSOR TO STATE PROR 
TO INCONSISTENT LOAD INSTRUCTION 

AND REEXECUTE 

FIG. 7 

  

  

    

  

  

  

    

    

  

  

  

    

  

  



U.S. Patent Oct. 30, 2012 Sheet 6 of 6 US 8,301.844 B2 

250 
252 p 

RECEIVE INVALIDATE SIGNAL 

254 

RECEIVE UPDATED FILL OF INVALIDATED 
CACHE LINE 

256 

COMPARE UPDATED FILL TO INVALIDATED 
CACHE LINE ACROSS QUANTA TO WRITE 

LOAD ACCESS MASK 

258 

READ LOAD INSTRUCTION ENTRY FROM 
TOP OF EXECUTION LOG 

260 

EXAMPLE PORTIONS OF THE LOAD ACCESS 
MASK ASSOCIATED WITH LOAD INSTRUCTION 

262 

Y<gERED" 
264 RETIRELOAD 

CLEAR LOG ENTRES NSTRUCTION 

268 

266 27O 

272 

RESTORE PROCESSOR TO STATE READ FILLENTRY 
PRIOR TO INCONSISTENT LOAD FROM LOG 
INSTRUCTION AND REEXECUTE 

274 

CLEAR LOAD Y TICKET VALUE = LAST 
ACCESS MASK FILL TICKET VALUEP 

N 
FIG. 8 

END 

  

    

  



US 8,301,844 B2 
1. 

CONSISTENCY EVALUATION OF PROGRAM 
EXECUTION ACROSS AT LEAST ONE 

MEMORY BARRIER 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is related to the following commonly 
assigned co-pending patent applications entitled: "COHER 
ENT SIGNAL IN A MULTI-PROCESSOR SYSTEM 
application Ser. No. 10/756,636; “MULTI-PROCESSOR 
SYSTEMS AND METHODS FOR BACKUP FOR NON 
COHERENT SPECULATIVE FILLS. application Ser. No. 
10/756,637; “CACHE SYSTEMS AND METHODS FOR 
EMPLOYING SPECULATIVE FILLS. application Ser. No. 
10/756,638; “REGISTER FILE SYSTEMS AND METH 
ODS FOR EMPLOYING SPECULATIVE FILLS. applica 
tion Ser. No. 10/756,644: “SYSTEMS AND METHODS 
FOR EXECUTING ACROSS AT LEAST ONE MEMORY 
BARRIEREMPLOYING SPECULATIVE FILLS. applica 
tion Ser. No. 10/756,639: “MULTI-PROCESSOR SYSTEM 
UTILIZING SPECULATIVE SOURCE REQUESTS 
application Ser. No. 10/756,640; “MULTI-PROCESSOR 
SYSTEM RECEIVING INPUT FROM A PRE-FETCH 
BUFFER,” application Ser. No. 10/756,535; “SOURCE 
REQUEST ARBITRATION,” application Ser. No. 10/755, 
919; “SYSTEMS AND METHODS FOR EMPLOYING 
SPECULATIVE FILLS. application Ser. No. 10/755,938, 
all of which are filed contemporaneously herewith and are 
incorporated herein by reference. 

BACKGROUND 

Multiprocessor systems employ two or more computer 
processors that can communicate with each other, Such as 
over a bus or a general interconnect network. In Such systems, 
each processor may have its own memory cache (or cache 
store) that is separate from the main system memory that the 
individual processors can access. Cache memory connected 
to each processor of the computer system can often enable 
faster access to data than if accessed from the main system 
memory. Caches are useful because they tend to reduce 
latency associated with accessing data on cache hits, and they 
work to reduce the number of requests to system memory. In 
particular, a write-back cache enables a processor to write 
changes to data in the cache without simultaneously updating 
the contents of memory. Modified data can be written back to 
memory at a later time. 

Coherency protocols have been developed to ensure that 
whenever a processor reads or writes to a memory location it 
receives the corrector true data. Additionally, coherency pro 
tocols help ensure that the system state remains deterministic 
by providing rules to enable only one processor to modify any 
part of the data at any one time. If proper coherency protocols 
are not implemented, however, inconsistent copies of data can 
be generated. 

Multi-processor Systems are also designed to assure 
memory consistency associated with memory reference 
operation ordering. Sequential memory consistency models 
require the memory reference operations of a process to 
appear to the rest of the system to execute in program order, 
even though much of the execution of the program can occur 
in parallel. The sequential consistency model imposes severe 
restrictions on the outstanding accesses that a process may 
have and effectively prohibits many hardware optimizations 
that could increase performance. A relaxed consistency 
model attempts to relax the constraints on the allowable event 
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2 
orderings, while still providing a reasonable programming 
model for the programmer. In a relaxed constancy model, an 
order is imposed between selected sets of memory reference 
operations, while other operations are considered unordered. 
One or more memory barrier or fences instructions are used to 
indicate the required order. However, no order is required 
between reference instructions that are not separated by a 
memory barrier or fence. 

SUMMARY 

One embodiment of the present invention may comprise a 
multi-processor System. The multi-processor System may 
comprise a processor that executes program instructions 
across at least one memory barrier. A request engine may 
provide an updated data fill corresponding to an invalid cache 
line. The invalid cacheline may be associated with at least one 
executed load instruction. A load compare component may 
compare the invalid cache line to the updated data fill to 
evaluate the consistency of the at least one executed load 
instruction. 

Another embodiment of the present invention may com 
prise a processor that evaluates the consistency of a load 
instruction in a program executed across at least one memory 
barrier. A request engine may provide an updated data fill 
corresponding to an invalid cache line. The invalid cache line 
may be associated with a load instruction. A load compare 
component may compare the invalid cache line to the updated 
data fill. A load access mask may operate in conjunction with 
the load compare component to evaluate the consistency of 
the load instruction. 

Yet another embodiment of the present invention may com 
prise a processor System that evaluates the consistency of 
program execution across at least one memory barrier. The 
system may comprise means for executing program instruc 
tions across at least one memory barrier. The system may also 
comprise means for retrieving an updated data fill associated 
with an invalidated cache line corresponding to an executed 
load instruction. The system may further comprise means for 
comparing the invalidated cache line to the updated data fill to 
evaluate the consistency of the executed load instruction. 

Still another embodiment of the invention may comprise a 
method of program execution in a multi-processor System. 
The method may comprise executing program instructions 
across at least one memory barrier. An invalidated cache line 
may be compared with an updated fill of the cache line cor 
responding to a load instruction to generate a load access 
mask. The consistency of a load instruction associated with 
the invalidated cache line may be evaluated based on the 
portion of the cache line retrieved by the load instruction and 
the load access mask. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 depicts an example of a multiprocessor system. 
FIG.2 depicts a processor associated with a multiprocessor 

system. 
FIG. 3 illustrates an example of an execution log entry. 
FIG. 4 illustrates one example of a cache tag entry. 
FIG. 5 illustrates another example of a cache tag entry. 
FIG. 6 depicts an example of a processor system. 
FIG. 7 illustrates a methodology for maintaining system 

consistency in a multiprocessor System. 
FIG. 8 illustrates a methodology for authenticating an 

invalidated load instruction. 



US 8,301,844 B2 
3 

FIG. 9 illustrates a methodology for authenticating a load 
instruction associated with an invalidated cache line. 

DETAILED DESCRIPTION 

This disclosure relates generally to systems and methods 
for processor speculation and backup in a multi-processor 
system. A source processor, in one embodiment, employs 
speculative execution of load instructions beyond an associ 
ated memory barrier to retrieve respective cache lines for the 
processor. One or more of the cache lines can be invalidated 
prior to the proper retirement of their associated load instruc 
tions. Updated data fills of the invalidated lines are retrieved 
by the processor. The invalidated cache lines are compared to 
their respective updated data fills. The portions of the cache 
lines retrieved by the load instructions are examined to deter 
mine if the load instruction has violated the memory consis 
tency of the system. 

FIG. 1 depicts an example of a system 10 that can employ 
speculative execution and instruction stream backup to miti 
gate processor latency. The system 10 illustrates a multi 
processor environment that includes a plurality of processors 
12 and 14 (indicated at PROCESSOR 1 through PROCES 
SORN, where N is a positive integer (N>1)). The system 10 
also includes memory 16, which can be implemented as a 
globally accessible aggregate memory. For example, the 
memory 16 can include one or more memory storage devices 
(e.g., dynamic random access memory (DRAM)). 
The processors 12-14 and memory 16 define nodes in the 

system that can communicate with each other via requests 
and corresponding responses through a system interconnect 
18. For example, the system interconnect 18 can be imple 
mented as a Switch fabric or a hierarchical Switch. Also asso 
ciated with the system 10 can be one or more other nodes, 
indicated schematically at 20. The other nodes 20 can corre 
spond to one or more other multi-processor Systems con 
nected to the system interconnect 18, Such as through an 
appropriate interconnect interface (not shown). 

Each of the processors 12-14 includes at least one corre 
sponding cache 22-24. For purposes of brevity, each of the 
respective caches 22-24 are depicted as unitary memory 
devices, although they may include a plurality of memory 
devices or different cache levels. Each of the caches 22-24 
contains a plurality of cache lines. Each cache line has an 
associated address that identifies corresponding data stored in 
the line. The cache lines can also include information identi 
fying the state of the data for the respective lines. 
The system thus employs the caches 22-24 and the memory 

16 to store blocks of data, referred to herein as “memory 
blocks” or “data fills'. A memory block or data fill can occupy 
part of a memory line, an entire memory line or span across 
multiple lines. For purposes of simplicity of explanation, 
however, it will be assumed that a “memory block’ occupies 
a single “memory line' in memory or a “cache line' in a 
cache. Additionally, a given memory block can be stored in a 
cache line of one or more caches as well as in a memory line 
of the memory 16. 
A given processor 12 does not necessarily execute all of the 

instructions provided to it in a given order. For example, the 
order of execution of the instructions can be changed to 
reduce memory latency. A consistency model is used within 
the multiprocessor System to ensure that any deviations from 
the expected order at a given processor are not visible to other 
processors. Specifically, the consistency model ensures that 
out-of-order instructions at a processor are not observable to 
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4 
the operations of other processors and do not confuse the 
processor's observance of the order of operations at other 
processors. 
One method of synchronizing multiple processors is the 

use of memory barriers. A memory barrier within a program 
prevents a processor from retiring program instructions 
beyond the barrier until all program instructions within the 
memory barrier have been executed. A set of instructions 
between two memory bathers is referred to as an epoch. For 
example, a memory barrier can be placed between instruc 
tions that set a series of values and a flag indicating the values 
have been set. Another processor reading the flag can accept 
the values with confidence, as the flag could not have been set 
without crossing the memory barrier, and this could not be 
accomplished without setting all of the values. 
When a system includes processors executing instructions 

beyond a memory barrier prior to executing all instructions 
within the preceding epoch, it is a form of speculative execu 
tion. The speculative execution of instructions beyond 
memory barriers at a processor risks the possibility that the 
data received from other processors will become outdated, 
causing inconsistencies in the multiprocessor System. For 
example, another processor may have a write instruction to a 
particular cache line that is intended to be synchronized with 
a particular epoch at one processor. If the process executes 
beyond that epoch before this write is completed, load 
instructions in the next epoch may provide an incorrect value 
to the processor. 

Processor latency can be lessened with speculative execu 
tion by allowing the processor to operate thousands of 
instructions ahead of the memory barrier in a period in which 
it would otherwise be latent. The validity of the instructions 
can later be verified by the system, and if no violation of the 
system consistency model is detected, the instruction can be 
retired. An instruction can be retired when all instructions 
from prior epochs have been executed and no significant 
change in the data used in the instruction has been detected. 
One way in which a load instruction that violates the con 

sistency of the system can be detected is the invalidation of 
the cache line retrieved by the instruction before the instruc 
tion can be retired. When a cache line is invalidated, it indi 
cates that another process has altered the data within system 
memory (e.g., main memory 16 or another cache). Such that 
the data within the cache line is no longer current. If this 
occurs prior to the retirement of a speculatively executed load 
instruction, it is possible that the change was a product of the 
prior epoch, and the value retrieved during the load instruc 
tion is now outdated. Any instructions executed after the 
outdated load instruction are also suspect, as they can be 
influenced by the faulty load. The processor 12 can include 
back-up registers, caches, and logs (not shown) that allow it to 
restore the system to an execution state associated with a 
given load instruction in the event that the instruction is found 
to have violated the consistency model of the system 10. 
The invalidation of a cache line associated with a load 

instruction does not necessarily indicate an inconsistent 
instruction. For example, the portion of the cache line that 
was retrieved may not have been the same portion that was 
changed in the newer version of the cache line. It is also 
possible that the cache line was changed in Succession to a 
new value and then back to the previous value. In either case, 
it would be unnecessary to back-up the system (e.g., restore 
the system to its state associated with the instruction) and lose 
the benefit of the processor activity after the invalidated load 
instruction. 
The processors 12-14 contain respective request engines 

26-28 that can retrieve an updated data fill of an invalidated 
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cache line through the system interconnect 18. This updated 
data fill can be compared to the invalidated line at a load 
compare 30-32. The portions of the cache line involved in the 
load instruction can be examined to determine if the load 
instruction had retrieved inconsistent data. 

This allows the consistency model of the system to be 
protected without unnecessarily disrupting otherwise valid 
speculative fills. 

FIG. 2 illustrates a processor 50 associated with a multi 
processor System that speculatively executes load instruc 
tions beyond memory barriers associated with the system. For 
example, the processor 50 can comprise an out-of-order 
Super-scalar processor that re-orders instructions within an 
epoch, or a long distance backup processor with Support for 
speculative fill responses and a coherent signal. By bypassing 
memory barriers within the instruction stream, the processor 
50 can speculatively execute several thousands of instructions 
ahead of a memory barrier prior to retiring all instructions 
within its associated epoch. 

The system 50 includes an execution engine 52 that 
executes instructions associated with a processor pipeline 53. 
During a load instruction, the execution engine 52 searches a 
local cache 54 to determine if the cache line associated with 
the load instruction resides in the local cache 54. If the cache 
line resides in the local cache 54, the cacheline is provided to 
the execution engine 52 for processing. The load is recorded 
at an execution log 56 as a log entry. A log entry comprises a 
field noting the entry as a load instruction (e.g., a read 
request), the address field accessed by the load instruction, 
and the address of the load instruction. Tag information for 
the requested cache line is also updated within cache tags 58 
associated with the cache to reflect the load. For example, a 
pending load counter field associated with the cache line tag 
can be incremented. 
The cache tags 58 can contain a number of fields. For 

example, a cache tag can include a field identifying the 
memory address of its associated cache line and a field giving 
the coherency state of the system. The contents of the coher 
ency field are defined by the cache architecture and the cache 
coherency protocol of the system. A pending load counter 
field can also be included to monitor outstanding load entries 
in the log. The pending load counter can be incremented when 
a load entry corresponding to the cache line is added to the log 
and decremented when a load entry corresponding to the 
cache line is retired. The cache tags 58 can include additional 
fields according to the specific implementation of the system 
SO. 

In the illustrated example, any cache line that has loads 
pending (e.g., loads that are recorded in the log) will not be 
displaced within the local cache 54 by a conflicting request 
with a different address. This is true even if the line has been 
invalidated by another processor within the system. A line 
that has been invalidated, but whose data remains in the 
cache, is referred to hereinafter as a resident invalid line. A 
resident invalid line can be identified using a dedicated State 
bit at the cache tags 58, or by a tag match with an invalid 
coherency state. In the later case, the address tags will be 
initialized to an unused value at System reset, and the address 
tags will be written during a fill response. 

If the cache line does not reside in the local cache 54, the 
execution engine 52 initiates a cache miss to a request engine 
60. The request engine 60 creates a missed address file (MAF) 
62 entry and issues a source request to the system via a system 
interconnect 64. Each MAF entry is associated with a source 
request for a cache line. A MAF 62 can be implemented as a 
table, an array, a linked list or other data structure pro 
grammed to manage and track requests for each cache line. 
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6 
The MAF entry includes fields that identify, for example, the 
address of the data being requested, the type of request, and 
response information received from other nodes in response 
to the request. The request engine 60 thus employs a MAF 62 
having one or more MAF entries to manage requests issued 
by the request engine 60 as well as responses to such requests. 
A data fill for the cache line is provided to the request engine 
60 in response to the source request in accordance with a 
system cache coherency protocol. The data fill is provided to 
the execution engine 52 for processing, and the load is 
recorded at the execution log 56. 

In a first implementation, each cache tag 58 includes a load 
access mask field that is written as each load is executed in 
addition to the fields described above. The load access mask 
identifies one or more portions, or quanta, of the data within 
the cache line that are read in executing the load instruction. 
Each bit of the load access mask represents one quantum of 
the cache line data, indicating whether that quantum of data 
was part of the load instruction. For example, in a sixty-four 
byte cacheline, a quantum size of eight bytes can be used. The 
load access mask can then be implemented as an eight-bit 
vector, with each bit representing an associated quantum. The 
cache tag can also include an inconsistent flag that can be set 
to indicate that the load instruction was executed in violation 
of the memory consistency model of the system. 
The execution log 56 acts as a first-in-first-out (FIFO) 

queue, with each queue entry recording a load instruction. As 
each entry reaches the top of the queue, its associated load 
instruction becomes a candidate for retirement. It will be 
appreciated that a load instruction can be executed prior to the 
retirement of instructions in at least one previous epoch and 
may not itself become a candidate for retirement some time 
after is it executed. Accordingly, the cache line retrieved by 
the load instruction can be invalidated by another processor 
prior to its retirement. The execution log 56 allows the 
memory consistency of each load instruction to be evaluated 
before it is retired. 
The load instruction can be in one of a plurality of associ 

ated states when it is considered for retirement. The state of 
the load instruction is determined by checking associated 
entries within the MAF 62 and the cache tags 58. Three of 
these states are pertinent to a discussion of a system employ 
ing speculative execution of load instructions, an authenti 
cated State, an invalidate state, and an inconsistent state. In the 
authenticated state, the data that was retrieved by the load 
during execution has been authenticated by the processor. An 
entry in the authenticated State can be cleared from the log 
when it reaches the top of the queue. For example, a load 
instruction to a cache line whose associated cache tag indi 
cates a valid state can be in an authenticated State. 
An invalidate State indicates that the cache line associated 

with the load instruction has been invalidated by the system 
before it could be retired, but was retained as a resident invalid 
line. A load instruction in an invalidate state cannot be retired 
by the system. The resident invalid line is provided to a load 
compare component 66. A load miss is issued to the request 
engine 60 to obtain a valid fill of the cache line. When the fill 
is returned, it is provided to the load compare component 66, 
and to the cache 54 to replace the invalid cache line. The two 
fills of the cacheline are compared, but only within the quanta 
utilized in the load instruction, as indicated by the load access 
mask associated with the cache line. If the fills are the same 
within these quanta, the load instruction has been authenti 
cated and can be retired. 

If the two fills differ within the quanta indicated by the load 
access mask, the load compare component 66 sets the incon 
sistent flag within the cache tag associated with the cache line 
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to indicate that the load instruction is in an inconsistent state. 
If a load instruction is in an inconsistent state, the data 
retrieved in the load instruction has been overwritten by 
another processor in the system before it could be retired. This 
raises the possibility that the memory consistency of the 
system has been violated. To maintain memory consistency, 
the execution log 56 can be cleared and the instruction stream 
of the processor 50 can be backed up to the point of the 
inconsistent load. This can be accomplished, for example, 
through the use of cache and register backup structures (not 
shown) that provide back-up information relating to specula 
tive executions within the processor. 

In a second implementation, retiring loads are processed 
differently. Specifically, the load access mask is not written as 
new loads are entered into the log. Instead, the load access 
mask is written only for resident invalid cache lines as they 
are replaced by a valid fill from the request engine 60. When 
a cache line is invalidated by another processor within the 
system, a pending load counterfield associated with the cache 
tag can be checked by the system. If the field contains a 
non-Zero value, the cache line is maintained as a resident 
invalid cache line. Since it will be necessary to compare the 
invalidated line to a valid copy of the line when the pending 
load instructions to the line are considered for retirement, a 
miss request is provided to the request engine 60 to obtain a 
valid copy of the fill. 

In the second implementation, the cache tags 58 also con 
tain a last fill ticket number. When the fill is returned from the 
request engine, it is provided to the cache 54 to replace the 
invalid fill. A record of each fill, including a ticket value equal 
to the last fill ticket number field at the time of the fill, is stored 
in the execution log56. The last fill ticket number increments 
with each fill retrieved from the system to the cache line to 
provide a unique ticket number for each fill entry. The valid 
fill is compared to the resident invalid cache line at the load 
compare 66, and a load access mask is written to indicate any 
changed values. The load access mask can be implemented as 
a vector of bits, with each bit representing a quantum of the 
cache line fill data. If any values within a given quantum have 
changed, then the corresponding bit in the load access mask is 
Set. 

When one of the pending load instructions to the cache line 
are ready for retirement (e.g., when its corresponding entry 
reaches the top of the execution log), it is determined from the 
execution log 56 which quanta were used during the load 
instruction. If a bit corresponding to one of these quanta is set 
in the load access mask, the load instruction is determined to 
be inconsistent. To maintain memory consistency, the execu 
tion log 56 can be cleared and the instruction stream of the 
processor 50 can be backed up to the point of the inconsistent 
load. This can be accomplished, for example, through the use 
of cache and register backup structures (not shown) that pro 
vide back-up information relating to speculative executions 
within the processor. 

If none of the quanta used in the load instruction were 
changed, the load instruction can be retired. Once the fill has 
updated the data in the cache, a Subsequent load instruction 
can use the new data value when it executes to mitigate 
consistency problems. To distinguish Subsequent load 
instructions that use the new data from earlier instructions 
using the inconsistent data, log entries representing the fill 
responses are kept in order with the load instructions. When 
an entry representing a fill arrives at the end of the log 56, it is 
immediately retired. If the retired fill entry has a ticket value 
that matches the last fill ticket, then there are no additional 
fills to the cache line stored in the execution log 56. Accord 
ingly, any Subsequent load instructions would have used the 
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8 
current copy of the fill. The load access mask within the cache 
tag is cleared to reflect this upon the retirement of a fill having 
a ticket number matching the last fill ticket field. 

It will be appreciated that the second implementation of the 
processor 50 allows multiple fills to be present in the log for 
the same cache line. However, the load access mask collects 
changes from each fill, so that each changed quantum across 
the fills is indicated. The final fill can clear the mask. Alter 
natively, a set of load access masks could be used, corre 
sponding to different fill ticket values. In this system, to retire 
a load instruction, it would only be necessary to check 
changes from fills subsequent to the last retired fill. Load 
access masks corresponding to a particular fill can be cleared 
as its record is retired from the execution log 56, as all sub 
sequent load instructions would have retrieved a fill at least as 
Current. 

FIG. 3 illustrates an example of an execution log entry 80 
representing a load instruction executed by an associated 
processor. An instruction type field 82 indicates the type of 
the recorded instruction (e.g., store, load, fill record, etc.). In 
Some implementations of the invention, the log can be used to 
record store instructions as well as load instructions, such that 
the instruction type field is useful in distinguishing between 
them. An address field 84 gives the memory address of the 
cacheline accessed by the load instruction. An instruction PC 
field 86 gives the memory address of the load instruction 
itself. Other fields can be implemented in addition to those 
listed, and it will be appreciated that entries of other types 
(e.g., store instructions, fill records) can include other entries 
not illustrated herein. 

FIG. 4 illustrates one implementation of a cache line tag 
100 that can be used to support the speculative execution of 
load instructions. The cache line tag 100 includes an address 
field 102 that identifies the memory address of its associated 
cache line. A coherency state field 104 indicates the coher 
ency state of the cache line. The contents of the coherency 
field are defined by the cache architecture and the cache 
coherency protocol of the system. A pending load counter 
field 106 tracks the number of outstanding load entries in the 
log. The pending load counterfield 106 is incremented when 
a load entry corresponding to the cache line is added to the log 
and decremented when a load entry corresponding to the 
cache line is retired. The cache tag can also include an incon 
sistent flag 108 that can be set to indicate that the load instruc 
tion was executed in violation of the memory consistency 
model of the system. The inconsistent flag 108 can indicate 
that data retrieved as part of the execution of the load instruc 
tion has been changed prior to the retirement of the load 
instruction. 
A load access mask field 110 indicates one or more por 

tions, or quanta, of the data within the cache line that are read 
in executing the load instruction. Each bit of the load access 
mask field 110 represents one quantum of the cache line data, 
indicating whether that quantum of data was part of the load 
instruction. For example, in a sixty-four byte cache line, a 
quantum size of eight bytes can be used. The load access mask 
field 110 can comprise an eight-bit vector, with each bit 
representing one of the quanta. The load access mask field 
110 can be used to determine if a cache line that is invalidated 
prior to the retirement of an associated load instruction is a 
Source of inconsistency in the system. The cache line is com 
pared to an updated fill to determine inconsistency, but only 
along portions indicated as significant to the load instruction 
by the load access mask field 110. 

FIG. 5 illustrates another implementation of a cache line 
tag 120 that can be used to support the speculative execution 
of load instructions. The cache line tag 120 includes an 
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address field 122 that identifies the memory address of its 
associated cache line. A coherency state field 124 indicates 
the coherency state of the cache line. The contents of the 
coherency field are defined by the cache architecture and the 
cache coherency protocol of the system. A pending load 
counter field 126 tracks the number of outstanding load 
entries in the log. The pending load counter field 126 is 
incremented when a load entry corresponding to the cache 
line is added to the log and decremented when a load entry 
corresponding to the cache line is retired. 
The cache tag 120 also includes a load access mask field 

128that records updates to the cacheline data after it has been 
retrieved by a load instruction. Each bit of the load access 
mask field 128 represents one quantum of the cache line data, 
indicating whether that quantum of data has been altered 
since the execution of the load instruction. For example, in a 
sixty-four byte cache line, a quantum size of eight bytes can 
be used. The load access mask field 128 can comprise an 
eight-bit vector, with each bit representing one of the quanta. 
When the load instruction is a candidate for retirement, the 
load access mask field can be evaluated to determine if any of 
the cache line data retrieved by the instruction has been 
altered. 
The load access mask field 128 can be updated each time 

the cache line is invalidated by another processor within the 
system. Each time an updated fill is received, the load access 
mask field is updated with any new changes and a last fill 
ticket field 130 is incremented. The last field ticket 130 can be 
used to label and record fills within an execution log associ 
ated with the system. Fills and load instructions within the 
execution log can be ordered such that all load instructions 
executed with one copy of the fill will be retired before the 
entry corresponding to the subsequent fill is retired. When a 
fill having a label matching the last fill ticket field is retired, it 
indicates that no further fill entries associated with the cache 
line are recorded in the log. Accordingly, all Subsequent load 
instructions to the cache line have used the most recent ver 
sion of the cache line. Since there is no longer any difference 
between the updated cache line and the cache line used in 
executing the various load instructions, the load access mask 
is cleared upon the retirement of a fill entry with a ticket 
number matching the last fill ticket field. 

FIG. 6 depicts an example of a system 150 that can employ 
speculative execution of load instructions to reduce processor 
latency. The system 150 implements a cache coherency pro 
tocol to manage the sharing of memory blocks so as to guar 
antee coherence of data. The cache coherency protocol of the 
system 150 utilizes a plurality of states to identify the state of 
each memory block stored in one or more memory structures 
(e.g., main memory, processor caches) associated with the 
system 150. The coherency protocol establishes rules for 
transitioning between states. 
As used herein, a processor 152 that issues a source 

request, Such as a read or write request, defines a source 
processor. Other nodes (not shown) within the system 150 are 
potential targets of the request. For example, when a source 
processor 152 requires a copy of a given memory block to 
execute a load instruction, it typically first requests the 
memory block from its local private cache 154 by identifying 
the address associated with the memory block. If the data is 
found locally, the memory access is resolved without com 
munication via the system interconnect 156. The data is pro 
vided to an execution engine 158 from the cache and an entry 
is written to an execution log 160 associated with the proces 
Sor 152. 
Where the requested memory block is not found locally, a 

request engine 162 associated with the processor 152 can 
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10 
request the memory block from other nodes within the system 
150. In addition to the request identifying an address associ 
ated with the requested memory block, the request usually 
identifies the type of request or command being issued by the 
requester. The system 152 responds to the request with one or 
more data fills associated with the memory block in accor 
dance with the cache coherency protocol of the system 150. A 
data fill is a copy of the memory block associated with a 
requested cache line. The data fill can be a speculative fill. A 
speculative fill is a data fill that may or may not be the latest 
version of the memory block. Speculative fills can be pro 
vided by a local cache, a local processor (e.g., within a multi 
processor group), a remote processor, a home node or a 
speculative guess structure. The speculative guess structure 
can be implemented by employing a speculative table, specu 
lative engine or separate cachestructure that maintains specu 
lative copies of memory blocks. 
A speculative fill allows the requesting processor to 

execute several thousands of program instructions ahead 
prior to receiving a coherent copy (e.g., a copy of the cache 
line known to be current under the cache coherency protocol 
of the system) of the requested cache line. To maximize the 
benefit of the speculative fill, the processor can execute 
instructions beyond a memory barrier associated with the 
original load instruction. When the speculative fill is provided 
to the execution engine 158, the fill is recorded in a missed 
address file (MAF) entry 164 associated with the cache line. 
The speculative fill is written into the local cache 154 with a 
tag indicating its address, its coherency state, and the out 
standing load instruction to the cache. 
The execution engine 158 continues to execute load 

instructions, and may execute beyond one or more memory 
barriers prior to retiring the speculatively fill load instruction. 
Eventually, a coherent fill of the cache line is provided to the 
processor 152 along with a coherent signal that indicated that 
the coherent fill is the most recent version of the cache line. 
Once the coherent signal is received, the Source processor can 
compare the coherent data fill to the speculative data fill at a 
load compare component 166. 

If the coherent data fill is identical to the speculative fill, the 
processor can continue execution, thus mitigating latency 
caused by the processor remaining in an idle state until a 
coherent version of the requested memory block is received. 
If it is determined that coherent data fill is different from the 
speculative data fill, the execution engine 158 can backup and 
re-execute program instructions with the coherent fill of the 
cache line. The source processor then backs up and begins 
executing again with the new data, but loses little or no time 
from the execution of the speculative fill as the source would 
have remained latent during the retrieval of the coherent copy 
regardless. The cache coherency protocol can continue 
executing after the coherent copy is retrieved to change states 
of one or more copies of the memory block in the system if 
necessitated by the source request. 

It will be appreciated that the cache line can still be invali 
dated by another processor between the time the coherent fill 
is received and the time at which the load instruction is 
retired. In this case, another coherent fill of the data is 
obtained from the system to update the cache line. The load 
compare component 166 compares the two data fills, and a 
load access mask is written within the tag portion of the cache 
line to indicate any changed values. The load access mask can 
be implemented as a vector of bits, with each bit representing 
a quantum of the cache line fill data. If any values within a 
given quantum have changed, then the corresponding bit in 
the load access mask is set. 
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After the load access mask is written to the cache line tag, 
a last fill ticket field within the cache tag is incremented to 
indicate that an updated fill has been provided to the cache 
line. An entry representing the fill is added to the execution 
log 160, labeled with the value of the incremented last fill 
ticket. Fill entries are maintained in order with load instruc 
tions, such that a given fill will not be retired until all load 
instructions using the previous fill have been retired. Addi 
tional fills can be received if the cache line is invalidated 
before retirement. As they are received, the load access mask 
is updated, the last fill ticket field in the cache line is incre 
mented to reflect the new fill, and the new fill is also recorded 
in the execution log, with a ticket number reflecting the new 
last fill ticket field number. 

Instructions recorded within the execution log 160 are 
retired in an appropriate order. In the illustrated system 150, 
the execution log 160 acts as a first-in-first-out queue, with 
each queue entry representing a load instruction. As each 
entry reaches the top of the queue, its associated load instruc 
tion becomes a candidate for retirement. When a load instruc 
tion to an invalidated cache line reaches the top of the queue, 
the system determines which quanta of the cache line data 
were retrieved by the load instruction. The load access mask 
is examined to determine if any of retrieved quanta were 
modified by an updated fill. If it is determined that the perti 
nent portion of the cache line has been modified, the execu 
tion engine 158 can back up and re-execute program instruc 
tions from the invalidated fill on with the most recent fill of the 
cache line. Otherwise, the processor can continue execution, 
thus mitigating latency resulting from stopping execution at 
the memory barrier. 

Information associated with each instruction is retained in 
the event of a processor backup. For example, the processor 
152 can include a cache system 154 that can be set to a cache 
state and a register file system 168 that can be set to a register 
file state associated with a processorbackup state in the event 
of a violation of the system coherency protocols or consis 
tency model caused by the speculative fill. A pointer or index 
can be retained that points to a location in the cache system or 
a log that retains information associated with the cache State 
corresponding to the state of the cache at a processor backup 
state. Additionally, a pointer or index can be retained that 
points to a location in the register file system that retains 
information associated with the register file corresponding 
with the state of the register file at a processor backup state. If 
the processor employs an out-of-order pipeline, the register 
rename map that points to the backed up locations of the 
register file is operative to be reset during a processorbackup. 
As entries reflecting the updated fills arrive at the end of the 

execution log 160, they are retired. If a retired fill associated 
with a cache line has a ticket value that matches the last fill 
ticket in the cache tag, then there are no additional fills to the 
cache line stored in the execution log 160. Accordingly, any 
Subsequent load instructions would have used the current 
copy of the fill. The load access mask within the cache tag is 
cleared to reflect the retirement of a fill having a ticket number 
matching the last fill ticket field. 

In view of the foregoing structural and functional features 
described above, certain methods will be better appreciated 
with reference to FIGS. 7-9. It is to be understood and appre 
ciated that the illustrated actions, in other embodiments, may 
occur in different orders and/or concurrently with other 
actions. Moreover, not all illustrated features may be required 
to implement a method. It is to be further understood that the 
following methodologies can be implemented in hardware 
(e.g., as one or more integrated circuits or circuit boards 
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12 
containing a plurality of microprocessors), Software (e.g., as 
executable instructions running on one or more processors), 
or any combination thereof. 

FIG. 7 illustrates a methodology for maintaining system 
consistency in a multiprocessor System. At 202, a next entry 
within an execution log is checked to determine if a load 
instruction associated with the entry can be retired. For 
example, a missed address file (MAF) and the tag portion of 
a cache line associated with the load instruction can be read to 
determine the status of the file. At 204, it is determined if the 
load instruction is in an authenticated State. For example, a 
load instruction can be in an authenticated State if the cache 
line data retrieved by the load instruction has not been invali 
dated by the system. If the load instruction is in an authenti 
cated state (Y), the methodology proceeds to 206, where the 
load instruction is retired. When the load instruction is retired, 
its associated entry is removed from the log and information 
relating to the load instruction can be cleared from a tag 
portion of the cache line associated with the load instruction. 
The methodology then returns to 202 to review the next entry 
within the log. 

If the load instruction is not in an authenticated state (N), 
the methodology proceeds to 208. At 208, it is determined if 
the load instruction is in an invalidated State. For example, a 
load instruction can be in an invalidated State if another pro 
cessor within the system invalidates the cache line retrieved 
by the load instruction before the load instruction can be 
retired. If the load instruction is in an invalidated state (Y), the 
methodology continues to 210, where an updated fill of the 
cache line is retrieved from the system. A read access mask 
associated with the cacheline is then read at 212 to determine 
which portions, or quanta, of the cache line data were 
retrieved by the load instruction. The read access mask is 
written at the time of the load and can be stored in the cache 
line tag. 
The updated data fill is compared to the invalidated cache 

line at the quanta of the cache line retrieved by the load 
instruction at 214. If the updated data fill matches the invali 
dated cache line at the retrieved quanta (Y), the data retrieved 
by the cache line has not been changed. The load instruction 
is then considered to be authenticated, and the methodology 
proceeds to 206 where the load instruction is retired. If the 
updated data fill and the invalidated cacheline do not match at 
the retrieved quanta (N), the load instruction is inconsistent 
and it is necessary to backup the system to the instruction that 
retrieved the inconsistent data. The methodology then pro 
ceeds to 216. 

Returning to the decision at 208, if the load instruction is 
determined not to be invalid (N), the methodology continues 
to 218. At 218, it is determined if the load instruction is 
inconsistent. This can be determined by reading an inconsis 
tent flag located in the cache tag of a cache line retrieved by 
the load instruction. If the load instruction is not in an incon 
sistent state (N), then it is likely in a pending state, where one 
or more responses from the system are required to evaluate 
the consistency of the load instruction. The methodology then 
advances to 220 to wait for the necessary system response. 
The methodology then returns to 204 to reevaluate the load 
instruction. 

If the load instruction is in an inconsistent state (Y), the 
methodology advances to 216, where the entries within the 
log are cleared. The methodology then continues to 222, 
where the processor is restored to its state prior to the incon 
sistent load instruction and the load instruction and all Sub 
sequent instructions are re-executed. Once the load instruc 
tion has been properly executed, the load instruction is once 
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again added to the log. When the load instruction returns to 
the top of the log, the load instruction can be retired at 206. 

FIG. 8 illustrates a methodology 250 for authenticating an 
invalidated load instruction. An invalidate signal is received at 
a cache line having one or more associated outstanding load 
instructions at 252. The invalidate signal indicates that a more 
recent version of the cache line has been written by another 
processor within the system. At 254, an updated fill of the 
cache line is retrieved from the system. This can be accom 
plished via the system cache coherency protocol. A record of 
the updated fill is added to an execution log associated with 
the system with a ticket value. A last fill ticket value associ 
ated with the cache line tag is incremented to reflect the new 
fill. 
At 256, the updated fill of the cache line is compared to the 

invalidated cache line. Any differences between the two ver 
sions of the cache line can be reflected in a load access mask. 
The comparison can be performed across portions of the data, 
with each portion being represented as one bit in a load access 
mask. The load access mask, for example, can record a logic 
high for any bit whose associated portion of the cache line has 
been altered and a logic low for any unaltered portions of the 
cache line. The load access mask is written to the cache tag. 

At 258, an entry corresponding to the load instruction 
reaches the top of an execution log used to record instructions 
executed by the processor. The entry includes a record of 
which portions of the cache line were retrieved by the load 
instruction. At 260, the portions of the cache line retrieved by 
the load instruction are examined within the load access mask 
to determine if the retrieved portions have been altered. At 
262, it is determined if the retrieved portions are indicated to 
have changed according to the load access mask. If one or 
more of the retrieved portions have been altered (Y), the 
methodology advances to 264, where the entries within the 
log are cleared. The methodology then continues to 266, 
where the processor is restored to its state prior to the incon 
sistent load instruction and the load instruction and all Sub 
sequent instructions are re-executed. Once the load instruc 
tion has been properly executed, the load instruction is once 
again logged, and can be retired when it returns to the top of 
the log. 

If none of the retrieved portions of the cache line have been 
altered (N), the methodology advances to 268, where the load 
instruction is retired. At 270, an entry corresponding to the fill 
reaches the top of the instruction log. At 272, the ticket value 
for the fill is compared to the last fill ticket number in the 
cache line tag. If the values match (Y), the load access mask 
is cleared at 274 and the methodology terminates. If the 
values do not match (N), the process terminates. 

FIG. 9 illustrates a methodology 300 for authenticating a 
load instruction associated with an invalidated cache line. At 
302, program instructions are executed across at least one 
memory barrier. At 304, an invalidated cacheline is compared 
with an updated fill of the cache line corresponding to a load 
instruction to generate a load access mask. At 306, the con 
sistency of a load instruction associated with the invalidated 
cache line is evaluated based on the portion of the cache line 
retrieved by the load instruction and the load access mask. 
What have been described above are examples of the 

present invention. It is, of course, not possible to describe 
every conceivable combination of components or methodolo 
gies for purposes of describing the present invention, but one 
of ordinary skill in the art will recognize that many further 
combinations and permutations of the present invention are 
possible. Accordingly, the present invention is intended to 
embrace all Such alterations, modifications and variations that 
fall within the spirit and scope of the appended claims. 
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What is claimed is: 
1. A multi-processor System that conforms to a cache 

coherency protocol, the system comprising: 
a processor that executes program instructions beyond at 

least one memory barrier of at least one executed load 
instruction; 

a request engine that retrieves an updated data fill with an 
undetermined coherency state from one or more other 
processors of the multi-processor System via a pros 
essor-to-processor data fill, the updated data fill corre 
sponding to an invalid cache line from which data had 
been retrieved by the at least one executed load instruc 
tion; and 

a load compare component that compares the invalid cache 
line to the updated data fill to evaluate the consistency of 
the at least one executed load instruction prior to retiring 
the at least one executed load instruction. 

2. The system of claim 1, wherein the system further com 
prises an execution log that records a plurality of entries 
corresponding to non-retired executed load instructions. 

3. The system of claim 2, wherein the execution log acts as 
a first-in-first-out (FIFO) queue, and a load instruction is 
evaluated as a candidate for retirement when it is moved to the 
top of the queue. 

4. The system of claim 1, wherein the load compare com 
ponent writes a load access mask that indicates which of a 
plurality of quanta comprising the invalid cache line are dif 
ferent from the updated data fill. 

5. The system of claim 4, wherein the system further com 
prises an execution log that employs the load access mask to 
determine the consistency state of a load instruction associ 
ated with a cache line. 

6. The system of claim 5, wherein the system further com 
prises a last fill ticket number that increments each time an 
updated fill is provided associated with the invalid cache line. 

7. The system of claim 6, wherein the execution log stores 
entries corresponding to updated fills of the invalid cache line 
received by the system, and a given entry contains a ticket 
number equal to the last fill ticket number at the time the entry 
is recorded. 

8. The system of claim 7, wherein the load access mask is 
cleared when an entry having a ticket number equal to a 
current value of the last fill ticket number is retired from the 
execution log. 

9. The system of claim 1, wherein the system further com 
prises a pending load counter that increments when a load 
instruction associated with the cache line executes and dec 
rements when a load instruction associated with the cache 
line is retired. 

10. The system of claim 9, wherein the invalid cacheline is 
retained within a cache as a resident invalid cache line when 
the pending load counter is equal to a non-Zero value. 

11. The system of claim 10, wherein the invalid cache line 
is released to be overwritten when the pending load counter is 
equal to Zero. 

12. The system of claim 1, wherein the system further 
comprises a load access mask that indicates which of a plu 
rality of quanta comprising the invalid cache line were 
retrieved when a given load instruction was executed. 

13. The system of claim 12, wherein the load compare 
component compares the invalid cache line to the updated 
data fill only for the quanta indicated by the load access mask. 

14. The system of claim 1, wherein the request engine 
generates a miss address file (MAF) entry associated with a 
request for a data fill, the MAF entry having a plurality of 
fields that retain information relating to the request. 
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15. The system of claim 1, wherein the system requests a 
data fill from the system through the request engine in 
response to a cache miss, and the system responds with a 
plurality of data fills. 

16. The system of claim 15, wherein at least one of the data 
fills is a speculative data fill, and the system processes the 
speculative data fill until a coherent data fill is received from 
the system. 

17. The system of claim 15, wherein the processor receives 
a coherent signal generated by the multi-processor System 
that provides an indication of which of the plurality of data 
fills received by the processor is the coherent data fill. 

18. A processor in a multi-processor System that conforms 
to a cache coherency protocol, the processor evaluating the 
consistency of a load instruction in a program executed 
beyond at least one memory barrier of the load instruction, the 
processor comprising: 

a request engine that retrieves an updated data fill with an 
undetermined coherency state from one or more of the 
other processors of the multi-processor system via a 
processor-to-processor data fill, the update data fill cor 
responding to an invalid cache line from which data had 
been retrieved by the load instruction; 

a load compare component that compares the invalid cache 
line to the updated data fill; and 

a load access mask that operates in conjunction with the 
load compare component to evaluate the consistency of 
the load instruction. 

19. The system of claim 18, wherein the load access mask 
indicates which of a plurality of quanta comprising the invalid 
cache line are different from the updated data fill. 

20. The system of claim 19, wherein the load access mask 
comprises the output of the load compare component. 

21. The system of claim 18, wherein the load access mask 
indicates which of a plurality of quanta comprising the invalid 
cache line were retrieved when a given load instruction was 
executed. 

22. The system of claim 21, wherein the load compare 
component compares the invalid cache line to the updated 
data fill at quanta indicated by the load access mask. 

23. A multi-processor System that conforms to a chache 
coherency protocol, the system evaluating the consistency of 
program execution beyond at least one memory barrier, the 
system comprising: 
means for executing program instructions beyond at least 

one memory barrier of an executed load instruction; 
means for retrieving an updated data fill with an undeter 
mined coherency state directly from one or more other 
means for executing program instructions of the multi 
processor system, the updated data fill being associated 
with an invalidated cache line from which data had been 
retrieved by the executed load instruction; and 

means for comparing the invalidated cache line to the 
updated data fill to evaluate the consistency of the 
executed load instruction prior to retiring the executed 
load instruction. 

24. The system of claim 23, the system further comprising 
means for restoring the processor System to a previous state if 
the means for comparing indicates a difference between the 
invalidated cache line and the updated data fill. 

25. The system of claim 23, the system further comprising 
means for logging a plurality of load instructions, such that 
the load instructions can be evaluated in a desired order. 

26. The system of claim 23, the system further comprising 
means for limiting the means for comparing Such that only 
portions of the invalidated cache line relevant to the load 
instruction are compared to the updated data fill. 

27. The system of claim 23, the system further comprising 
means for recording the output of the means for comparing. 
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28. A method of program execution in a multi-processor 

system that conforms to a cache coherency protocol, the 
method comprising: 

executing program instructions beyond at least one 
memory barrier of a load instruction; 

comparing an invalidated cache line with an associated 
updated fill of the cache line from which data had been 
retrieved by the load instruction to generate a load access 
mask, the updated data fill having an undetermined 
coherency state and being received from one or more 
other processors of the multi-processor system via a 
processor-to-processor data fill; and 

determining the consistency of the load instruction associ 
ated with the invalidated cache line based on a portion of 
the cache line associated with the load instruction and 
the load access mask prior to retiring the load instruc 
tion. 

29. The method of claim 28, wherein determining the con 
sistency of a load instruction comprises dividing the invali 
dated cache line into a plurality of portions and determining 
which of the plurality of portions are associated with the load 
instruction. 

30. The method of claim 29, wherein comparing the cache 
line to the updated fill includes comparing the cache line to 
the updated fill only for the portions of the cache line associ 
ated with the load instruction. 

31. The method of claim 28, wherein the method further 
comprises dividing the invalidated cache line into a plurality 
of portions and recording which of the plurality of portions 
are different between the invalidated cache line and the 
updated data fill. 

32. The method of claim 28, wherein the method further 
comprises backing up the processor and re-executing a plu 
rality of instructions if the load instruction is determined to be 
inconsistent. 

33. The method of claim 28, further comprising recording 
the load instruction in a queue as to control the timing of the 
determination of the consistency of the load instruction. 

34. The system of claim 17, wherein: 
the invalid cache line comprises a plurality of quanta; 
the load compare component is configured to write a load 

access mask that indicates members of a proper Subset of 
the plurality of quanta that is retrieved when a given load 
instruction was executed, the load compare component 
is configured to compare the invalid cache line to the 
coherent data fill only for members of the proper subset 
indicated by the load access mask; and 

the processor is configured to retire the given load instruc 
tion if each of the members of the proper subset of the 
plurality of quanta are determined to be coherent. 

35. The system of claim 1, wherein the processor returns to 
a previous state and re-executes a plurality of load instruc 
tions, including at least one load instruction associated with 
the cache line, if the updated data fill is different from the 
invalid cache line. 

36. The method of claim 28, wherein: 
determining the consistency of a load instruction com 

prises dividing the invalidated cache line into a plurality 
of portions and determining members of a proper Subset 
of the plurality of portions of the invalid cache line that 
are associated with the load instruction; and comparing 
the invalidated cache line to the associated updated fill 
includes comparing only the members of the proper 
subset of the plurality of portions of the invalid cache 
line. 
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