
USOO830 1844B2

(12) United States Patent (10) Patent No.: US 8,301,844 B2
Steely, Jr. et al. (45) Date of Patent: Oct. 30, 2012

(54) CONSISTENCY EVALUATION OF PROGRAM 35.46 A 8. 3. that et al.
O

EXECUTION ACROSSAT LEAST ONE 5,845,101 A 12/1998 Johnson et al.
MEMORY BARRIER 5,875,467 A 2/1999 Merchant

5,875.472 A 2f1999 Bauman et al.
(75) Inventors: Simon C. Steely, Jr., Hudson, NH (US); 5.937,431 A * 8/1999 Kong et al. T11 145

Gregory Edward Tierney, Chelmsford, 5,958,019 A 9/1999 Hagersten et al.
MA (US) 6,032,231 A 2/2000 Gujral

6,055,605 A 4/2000 Sharma et al.

(73) Assignee: Hewlett-Packard Development 88): A $398 SE"
Company, L.P., Houston, TX (US) 6,108,737 A 8, 2000 Sharma et al.

6,134,646 A 10/2000 Feiste et al.

(*) Notice: Subject to any disclaimer, the term of this 3.68 f 1,399. RS al. 1 an DOren et al.
past itled co listed under 35 6,275,905 B1* 8/2001 Keller et al. 711 141

.S.C. 154(b) by yS. 6.286,090 B1 9/2001 Steely, Jr. et al.
6,301,654 B1 10/2001 Ronchetti et al.

(21) Appl. No.: 10/756,534 6,317,811 B1 1 1/2001 Deshpande et al.
6,345,342 B1 2/2002 Arimilli et al.

(22) Filed: Jan. 13, 2004 6,349,382 B1 2/2002 Feiste et al.
6,356,918 B1 3/2002 Chuang et al.

(65) Prior Publication Data (Continued)

US 2005/O154832A1 Jul. 14, 2005 OTHER PUBLICATIONS

(51) Int. Cl. J. Handy, The Cache Memory Book. New York: Academic, 1998.*
G06F I3/38 (2006.01) (Continued)

(52) U.S. Cl. 711/144; 711/141; 711/142; 711/143:
711/145: 711/146 Primary Examiner — Sanjiv Shah

(58) Field of Classification Search 711/141, Assistant Examiner — Samuel Dillon
711/142,143, 144, 145, 146

See application file for complete search history. (57) ABSTRACT

(56) References Cited Multi-processor systems and methods are disclosed. One

U.S. PATENT DOCUMENTS

5,197,132 A 3/1993 Steely, Jr. et al.
5,222,224 A 6/1993 Flynn et al.
5,404.483. A 4/1995 Stamm et al.
5.420,991 A * 5/1995 Konigsfeld et al. T11 150
5,467.473 A * 1 1/1995 Kahleet al. T12/23
5,491,811 A * 2/1996 Arimilli et al. 711/144
5,519,841 A 5/1996 Sager et al.
5,625,829 A 4/1997 Gephardt et al.
5,651,125 A * 7/1997 Witt et al. T12/218
5,721.855 A 2f1998 Hinton et al.

XCUTION
NGINE

XCUTION
OG

CORNT
SIGNAL

COHERENT
SIGNAL

rGISTER
FILES

--

CACHE REUES
MISS ENGINE
FILS

embodiment may comprise a multi-processor system includ
ing a processor that executes program instructions across at
least one memory barrier. A request engine may provide an
updated data fill corresponding to an invalid cache line. The
invalid cache line may be associated with at least one
executed load instruction. A load compare component may
compare the invalid cache line to the updated data fill to
evaluate the consistency of the at least one executed load
instruction.

36 Claims, 6 Drawing Sheets

MAF ENTRY
AddRSS OF LINING ACCESSED

COPY OFCURRNT FILL

COHERENTFLAG

COHERENT
SIGNAL

CREAT
WAF 1s2

SURCE
roUST ----------------------------

US 8,301.844 B2
Page 2

U.S. PATENT DOCUMENTS

6,408,363 B1 6/2002 Lesartre et al.
6,412,067 B1 6, 2002 Ramirez et al.
6,457,101 B1 9/2002 Bauman et al.
6,535,941 B1 3/2003 Kruse
6,553,480 B1 4/2003 Cheong et al.
6,574,712 B1 6, 2003 Kahle et al.
6,574,725 B1* 6/2003 Kranich et al. T12/31
6,591.348 B1 7/2003 Deshpande et al.
6,594,821 B1 7/2003 Banning et al.
6,615,343 B1 9, 2003 Talcott et al.
6,625,660 B1* 9/2003 Guthrie et al. TO9,248
6,633,960 B1 10/2003 Kessler et al.
6,633,970 B1 * 10/2003 Clift et al. 71.2/217
6,651,143 B2 11/2003 Mounes-Toussi
6,775,749 B1* 8/2004 Mudgett et al. 711.146
7,093,078 B2 * 8/2006 Kondo 711 141

2001/0055277 A1
2002fOOO9095 A1
2002.0099833 A1
2002.00999 13 A1
2002fO146022 A1

12/2001 Steely, Jr. et al.
1/2002 Van Doren et al.
7/2002 Steely, Jr. et al.
7/2002 Steely, Jr.

10, 2002 Van Doren et al.
2002/0194290 Al 12/2002 Steely, Jr. et al.
2002/0194436 Al 12/2002 McKenney
2002/0199067 A1* 12/2002 Patel et al. T11 145
2003, OO699.02 A1 4/2003 Narang et al.
2003/0145136 A1 7/2003 Tierney et al.
2003/0195939 A1 10/2003 Edirisooriya et al.

OTHER PUBLICATIONS

M. Lipasti, C. Wilkerson, and J. Shen. Value locality and load value
prediction. In Proceedings of the 7th ASPLOS, Boston, MA, Oct.
1996.

Alexander, M.J., Bailey, M. W., Childers, B. R. Davidson, J. W., and
Jinturkar, S., “Memory Bandwidth Optimizations for Wide-Bus
Machines”. Proceedings of the 25th Hawaii International Conference
on System Sciences, Maui, HA, Jan. 1993, pp. 466-475.*
Heriot-Watt University, "Data representation and number systems:
Boolean logic : masks”. Jun. 8, 2002, http://scholar.hw.ac.uk/site?
computing/topic36.asp?outline=.*
Sato, T.; Ohno, K.; Nakashima, H. A mechanism for speculative
memory accesses following synchronizing operations. Parallel and
Distributed Processing Symposium, 2000. IPDPS 2000. Proceed
ings. 14th International.*
Rajiv Gupta. The Fuzzy Barrier: a mechanism for high speed syn
chronization of processors. Proceedings of the third international
conference on Architectural Support for programming languages and
operating systems. Apr. 3-6, 1989.*
M. Cintra, J. F. Martnez, and J. Torrellas. Architectural support for
Scalable speculative parallelization in shared-memory multiproces
sors. In Proceedings of the 27th Annual International Symposium on
Computer Architecture, Jun. 2000.*
Kozyrakis, C.E. Vector IRAM: ISA and Micro-architecture. IEEE
Computer Elements Workshop, Vail, CO, Jun. 21-24, 1998.*
Handy, Jim. The Cache Memory Book. Academic Press Inc. 1998.
pp. 159.*
Vijaykumar et al. Speculative Versioning Cache. IEEE Transactions
on parallel and distributed systems. vol. 12. No. 12. Dec. 2001.*
Gharachorloo, et al., “Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors”. Computer Systems
Laboratory, Stanford University, CA 943.05, pp. 1-14.
Gharachorloo, et al., “Architecture and Design of AlphaServer
GS320”, pp. 1-16.

* cited by examiner

U.S. Patent Oct. 30, 2012 Sheet 1 of 6 US 8,301.844 B2

FIG. 1

LOAD CACHE LINE ADDRESS INSTRUCTION ADDRESS

FIG. 3

-100

FIG. 4

102

104
106

108

110

U.S. Patent Oct. 30, 2012 Sheet 3 of 6 US 8,301.844 B2

120 1

CACHE TAG

CACHE LINE ADDRESS

COHERENCY STATE

PENDING LOAD COUNTER

LOAD ACCESS MASK

LAST FILL TICKET

122

124

126

128

130

FIG. 5

1. 3OO

EXECUTE PROGRAM INSTRUCTIONS ACROSS
AT LEAST ONE MEMORY BARRIER

COMPARE AN INVALIDATED CACHE LINE WITH
AN ASSOCATED UPDATED FILL OF THE
CACHE LINE TO GENERATE LOAD ACCESS

MASK

EVALUATE THE CONSISTENCY OF THE LOAD
INSTRUCTION

FIG 9

U.S. Patent Oct. 30, 2012 Sheet 5 of 6 US 8,301.844 B2

START

1 200
CHECK STATE OF NEXT

LOAD IN LOG

22

WAIT FOR SYSTEM
AUTHENTICATED7 RESPONSE

208 218

N

O

RETIRE
LOAD

INVALIDATED2

GET UPDATED DATA FILL FROM SYSTEM

READ LOAD ACCESS MASK TO
DETERMINE OUANTA OF THE CACHE LINE

READ BY THE LOAD

DOES THE UPDATED FILL
MATCH THE INVALID LINE AT THE

DETERMINED OUANTA2

CLEAR LOG ENTRIES

RESTORE PROCESSOR TO STATE PROR
TO INCONSISTENT LOAD INSTRUCTION

AND REEXECUTE

FIG. 7

U.S. Patent Oct. 30, 2012 Sheet 6 of 6 US 8,301.844 B2

250
252 p

RECEIVE INVALIDATE SIGNAL

254

RECEIVE UPDATED FILL OF INVALIDATED
CACHE LINE

256

COMPARE UPDATED FILL TO INVALIDATED
CACHE LINE ACROSS QUANTA TO WRITE

LOAD ACCESS MASK

258

READ LOAD INSTRUCTION ENTRY FROM
TOP OF EXECUTION LOG

260

EXAMPLE PORTIONS OF THE LOAD ACCESS
MASK ASSOCIATED WITH LOAD INSTRUCTION

262

Y<gERED"
264 RETIRELOAD

CLEAR LOG ENTRES NSTRUCTION

268

266 27O

272

RESTORE PROCESSOR TO STATE READ FILLENTRY
PRIOR TO INCONSISTENT LOAD FROM LOG
INSTRUCTION AND REEXECUTE

274

CLEAR LOAD Y TICKET VALUE = LAST
ACCESS MASK FILL TICKET VALUEP

N
FIG. 8

END

US 8,301,844 B2
1.

CONSISTENCY EVALUATION OF PROGRAM
EXECUTION ACROSS AT LEAST ONE

MEMORY BARRIER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to the following commonly
assigned co-pending patent applications entitled: "COHER
ENT SIGNAL IN A MULTI-PROCESSOR SYSTEM
application Ser. No. 10/756,636; “MULTI-PROCESSOR
SYSTEMS AND METHODS FOR BACKUP FOR NON
COHERENT SPECULATIVE FILLS. application Ser. No.
10/756,637; “CACHE SYSTEMS AND METHODS FOR
EMPLOYING SPECULATIVE FILLS. application Ser. No.
10/756,638; “REGISTER FILE SYSTEMS AND METH
ODS FOR EMPLOYING SPECULATIVE FILLS. applica
tion Ser. No. 10/756,644: “SYSTEMS AND METHODS
FOR EXECUTING ACROSS AT LEAST ONE MEMORY
BARRIEREMPLOYING SPECULATIVE FILLS. applica
tion Ser. No. 10/756,639: “MULTI-PROCESSOR SYSTEM
UTILIZING SPECULATIVE SOURCE REQUESTS
application Ser. No. 10/756,640; “MULTI-PROCESSOR
SYSTEM RECEIVING INPUT FROM A PRE-FETCH
BUFFER,” application Ser. No. 10/756,535; “SOURCE
REQUEST ARBITRATION,” application Ser. No. 10/755,
919; “SYSTEMS AND METHODS FOR EMPLOYING
SPECULATIVE FILLS. application Ser. No. 10/755,938,
all of which are filed contemporaneously herewith and are
incorporated herein by reference.

BACKGROUND

Multiprocessor systems employ two or more computer
processors that can communicate with each other, Such as
over a bus or a general interconnect network. In Such systems,
each processor may have its own memory cache (or cache
store) that is separate from the main system memory that the
individual processors can access. Cache memory connected
to each processor of the computer system can often enable
faster access to data than if accessed from the main system
memory. Caches are useful because they tend to reduce
latency associated with accessing data on cache hits, and they
work to reduce the number of requests to system memory. In
particular, a write-back cache enables a processor to write
changes to data in the cache without simultaneously updating
the contents of memory. Modified data can be written back to
memory at a later time.

Coherency protocols have been developed to ensure that
whenever a processor reads or writes to a memory location it
receives the corrector true data. Additionally, coherency pro
tocols help ensure that the system state remains deterministic
by providing rules to enable only one processor to modify any
part of the data at any one time. If proper coherency protocols
are not implemented, however, inconsistent copies of data can
be generated.

Multi-processor Systems are also designed to assure
memory consistency associated with memory reference
operation ordering. Sequential memory consistency models
require the memory reference operations of a process to
appear to the rest of the system to execute in program order,
even though much of the execution of the program can occur
in parallel. The sequential consistency model imposes severe
restrictions on the outstanding accesses that a process may
have and effectively prohibits many hardware optimizations
that could increase performance. A relaxed consistency
model attempts to relax the constraints on the allowable event

10

15

25

30

35

40

45

50

55

60

65

2
orderings, while still providing a reasonable programming
model for the programmer. In a relaxed constancy model, an
order is imposed between selected sets of memory reference
operations, while other operations are considered unordered.
One or more memory barrier or fences instructions are used to
indicate the required order. However, no order is required
between reference instructions that are not separated by a
memory barrier or fence.

SUMMARY

One embodiment of the present invention may comprise a
multi-processor System. The multi-processor System may
comprise a processor that executes program instructions
across at least one memory barrier. A request engine may
provide an updated data fill corresponding to an invalid cache
line. The invalid cacheline may be associated with at least one
executed load instruction. A load compare component may
compare the invalid cache line to the updated data fill to
evaluate the consistency of the at least one executed load
instruction.

Another embodiment of the present invention may com
prise a processor that evaluates the consistency of a load
instruction in a program executed across at least one memory
barrier. A request engine may provide an updated data fill
corresponding to an invalid cache line. The invalid cache line
may be associated with a load instruction. A load compare
component may compare the invalid cache line to the updated
data fill. A load access mask may operate in conjunction with
the load compare component to evaluate the consistency of
the load instruction.

Yet another embodiment of the present invention may com
prise a processor System that evaluates the consistency of
program execution across at least one memory barrier. The
system may comprise means for executing program instruc
tions across at least one memory barrier. The system may also
comprise means for retrieving an updated data fill associated
with an invalidated cache line corresponding to an executed
load instruction. The system may further comprise means for
comparing the invalidated cache line to the updated data fill to
evaluate the consistency of the executed load instruction.

Still another embodiment of the invention may comprise a
method of program execution in a multi-processor System.
The method may comprise executing program instructions
across at least one memory barrier. An invalidated cache line
may be compared with an updated fill of the cache line cor
responding to a load instruction to generate a load access
mask. The consistency of a load instruction associated with
the invalidated cache line may be evaluated based on the
portion of the cache line retrieved by the load instruction and
the load access mask.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example of a multiprocessor system.
FIG.2 depicts a processor associated with a multiprocessor

system.
FIG. 3 illustrates an example of an execution log entry.
FIG. 4 illustrates one example of a cache tag entry.
FIG. 5 illustrates another example of a cache tag entry.
FIG. 6 depicts an example of a processor system.
FIG. 7 illustrates a methodology for maintaining system

consistency in a multiprocessor System.
FIG. 8 illustrates a methodology for authenticating an

invalidated load instruction.

US 8,301,844 B2
3

FIG. 9 illustrates a methodology for authenticating a load
instruction associated with an invalidated cache line.

DETAILED DESCRIPTION

This disclosure relates generally to systems and methods
for processor speculation and backup in a multi-processor
system. A source processor, in one embodiment, employs
speculative execution of load instructions beyond an associ
ated memory barrier to retrieve respective cache lines for the
processor. One or more of the cache lines can be invalidated
prior to the proper retirement of their associated load instruc
tions. Updated data fills of the invalidated lines are retrieved
by the processor. The invalidated cache lines are compared to
their respective updated data fills. The portions of the cache
lines retrieved by the load instructions are examined to deter
mine if the load instruction has violated the memory consis
tency of the system.

FIG. 1 depicts an example of a system 10 that can employ
speculative execution and instruction stream backup to miti
gate processor latency. The system 10 illustrates a multi
processor environment that includes a plurality of processors
12 and 14 (indicated at PROCESSOR 1 through PROCES
SORN, where N is a positive integer (N>1)). The system 10
also includes memory 16, which can be implemented as a
globally accessible aggregate memory. For example, the
memory 16 can include one or more memory storage devices
(e.g., dynamic random access memory (DRAM)).
The processors 12-14 and memory 16 define nodes in the

system that can communicate with each other via requests
and corresponding responses through a system interconnect
18. For example, the system interconnect 18 can be imple
mented as a Switch fabric or a hierarchical Switch. Also asso
ciated with the system 10 can be one or more other nodes,
indicated schematically at 20. The other nodes 20 can corre
spond to one or more other multi-processor Systems con
nected to the system interconnect 18, Such as through an
appropriate interconnect interface (not shown).

Each of the processors 12-14 includes at least one corre
sponding cache 22-24. For purposes of brevity, each of the
respective caches 22-24 are depicted as unitary memory
devices, although they may include a plurality of memory
devices or different cache levels. Each of the caches 22-24
contains a plurality of cache lines. Each cache line has an
associated address that identifies corresponding data stored in
the line. The cache lines can also include information identi
fying the state of the data for the respective lines.
The system thus employs the caches 22-24 and the memory

16 to store blocks of data, referred to herein as “memory
blocks” or “data fills'. A memory block or data fill can occupy
part of a memory line, an entire memory line or span across
multiple lines. For purposes of simplicity of explanation,
however, it will be assumed that a “memory block’ occupies
a single “memory line' in memory or a “cache line' in a
cache. Additionally, a given memory block can be stored in a
cache line of one or more caches as well as in a memory line
of the memory 16.
A given processor 12 does not necessarily execute all of the

instructions provided to it in a given order. For example, the
order of execution of the instructions can be changed to
reduce memory latency. A consistency model is used within
the multiprocessor System to ensure that any deviations from
the expected order at a given processor are not visible to other
processors. Specifically, the consistency model ensures that
out-of-order instructions at a processor are not observable to

10

15

25

30

35

40

45

50

55

60

65

4
the operations of other processors and do not confuse the
processor's observance of the order of operations at other
processors.
One method of synchronizing multiple processors is the

use of memory barriers. A memory barrier within a program
prevents a processor from retiring program instructions
beyond the barrier until all program instructions within the
memory barrier have been executed. A set of instructions
between two memory bathers is referred to as an epoch. For
example, a memory barrier can be placed between instruc
tions that set a series of values and a flag indicating the values
have been set. Another processor reading the flag can accept
the values with confidence, as the flag could not have been set
without crossing the memory barrier, and this could not be
accomplished without setting all of the values.
When a system includes processors executing instructions

beyond a memory barrier prior to executing all instructions
within the preceding epoch, it is a form of speculative execu
tion. The speculative execution of instructions beyond
memory barriers at a processor risks the possibility that the
data received from other processors will become outdated,
causing inconsistencies in the multiprocessor System. For
example, another processor may have a write instruction to a
particular cache line that is intended to be synchronized with
a particular epoch at one processor. If the process executes
beyond that epoch before this write is completed, load
instructions in the next epoch may provide an incorrect value
to the processor.

Processor latency can be lessened with speculative execu
tion by allowing the processor to operate thousands of
instructions ahead of the memory barrier in a period in which
it would otherwise be latent. The validity of the instructions
can later be verified by the system, and if no violation of the
system consistency model is detected, the instruction can be
retired. An instruction can be retired when all instructions
from prior epochs have been executed and no significant
change in the data used in the instruction has been detected.
One way in which a load instruction that violates the con

sistency of the system can be detected is the invalidation of
the cache line retrieved by the instruction before the instruc
tion can be retired. When a cache line is invalidated, it indi
cates that another process has altered the data within system
memory (e.g., main memory 16 or another cache). Such that
the data within the cache line is no longer current. If this
occurs prior to the retirement of a speculatively executed load
instruction, it is possible that the change was a product of the
prior epoch, and the value retrieved during the load instruc
tion is now outdated. Any instructions executed after the
outdated load instruction are also suspect, as they can be
influenced by the faulty load. The processor 12 can include
back-up registers, caches, and logs (not shown) that allow it to
restore the system to an execution state associated with a
given load instruction in the event that the instruction is found
to have violated the consistency model of the system 10.
The invalidation of a cache line associated with a load

instruction does not necessarily indicate an inconsistent
instruction. For example, the portion of the cache line that
was retrieved may not have been the same portion that was
changed in the newer version of the cache line. It is also
possible that the cache line was changed in Succession to a
new value and then back to the previous value. In either case,
it would be unnecessary to back-up the system (e.g., restore
the system to its state associated with the instruction) and lose
the benefit of the processor activity after the invalidated load
instruction.
The processors 12-14 contain respective request engines

26-28 that can retrieve an updated data fill of an invalidated

US 8,301,844 B2
5

cache line through the system interconnect 18. This updated
data fill can be compared to the invalidated line at a load
compare 30-32. The portions of the cache line involved in the
load instruction can be examined to determine if the load
instruction had retrieved inconsistent data.

This allows the consistency model of the system to be
protected without unnecessarily disrupting otherwise valid
speculative fills.

FIG. 2 illustrates a processor 50 associated with a multi
processor System that speculatively executes load instruc
tions beyond memory barriers associated with the system. For
example, the processor 50 can comprise an out-of-order
Super-scalar processor that re-orders instructions within an
epoch, or a long distance backup processor with Support for
speculative fill responses and a coherent signal. By bypassing
memory barriers within the instruction stream, the processor
50 can speculatively execute several thousands of instructions
ahead of a memory barrier prior to retiring all instructions
within its associated epoch.

The system 50 includes an execution engine 52 that
executes instructions associated with a processor pipeline 53.
During a load instruction, the execution engine 52 searches a
local cache 54 to determine if the cache line associated with
the load instruction resides in the local cache 54. If the cache
line resides in the local cache 54, the cacheline is provided to
the execution engine 52 for processing. The load is recorded
at an execution log 56 as a log entry. A log entry comprises a
field noting the entry as a load instruction (e.g., a read
request), the address field accessed by the load instruction,
and the address of the load instruction. Tag information for
the requested cache line is also updated within cache tags 58
associated with the cache to reflect the load. For example, a
pending load counter field associated with the cache line tag
can be incremented.
The cache tags 58 can contain a number of fields. For

example, a cache tag can include a field identifying the
memory address of its associated cache line and a field giving
the coherency state of the system. The contents of the coher
ency field are defined by the cache architecture and the cache
coherency protocol of the system. A pending load counter
field can also be included to monitor outstanding load entries
in the log. The pending load counter can be incremented when
a load entry corresponding to the cache line is added to the log
and decremented when a load entry corresponding to the
cache line is retired. The cache tags 58 can include additional
fields according to the specific implementation of the system
SO.

In the illustrated example, any cache line that has loads
pending (e.g., loads that are recorded in the log) will not be
displaced within the local cache 54 by a conflicting request
with a different address. This is true even if the line has been
invalidated by another processor within the system. A line
that has been invalidated, but whose data remains in the
cache, is referred to hereinafter as a resident invalid line. A
resident invalid line can be identified using a dedicated State
bit at the cache tags 58, or by a tag match with an invalid
coherency state. In the later case, the address tags will be
initialized to an unused value at System reset, and the address
tags will be written during a fill response.

If the cache line does not reside in the local cache 54, the
execution engine 52 initiates a cache miss to a request engine
60. The request engine 60 creates a missed address file (MAF)
62 entry and issues a source request to the system via a system
interconnect 64. Each MAF entry is associated with a source
request for a cache line. A MAF 62 can be implemented as a
table, an array, a linked list or other data structure pro
grammed to manage and track requests for each cache line.

10

15

25

30

35

40

45

50

55

60

65

6
The MAF entry includes fields that identify, for example, the
address of the data being requested, the type of request, and
response information received from other nodes in response
to the request. The request engine 60 thus employs a MAF 62
having one or more MAF entries to manage requests issued
by the request engine 60 as well as responses to such requests.
A data fill for the cache line is provided to the request engine
60 in response to the source request in accordance with a
system cache coherency protocol. The data fill is provided to
the execution engine 52 for processing, and the load is
recorded at the execution log 56.

In a first implementation, each cache tag 58 includes a load
access mask field that is written as each load is executed in
addition to the fields described above. The load access mask
identifies one or more portions, or quanta, of the data within
the cache line that are read in executing the load instruction.
Each bit of the load access mask represents one quantum of
the cache line data, indicating whether that quantum of data
was part of the load instruction. For example, in a sixty-four
byte cacheline, a quantum size of eight bytes can be used. The
load access mask can then be implemented as an eight-bit
vector, with each bit representing an associated quantum. The
cache tag can also include an inconsistent flag that can be set
to indicate that the load instruction was executed in violation
of the memory consistency model of the system.
The execution log 56 acts as a first-in-first-out (FIFO)

queue, with each queue entry recording a load instruction. As
each entry reaches the top of the queue, its associated load
instruction becomes a candidate for retirement. It will be
appreciated that a load instruction can be executed prior to the
retirement of instructions in at least one previous epoch and
may not itself become a candidate for retirement some time
after is it executed. Accordingly, the cache line retrieved by
the load instruction can be invalidated by another processor
prior to its retirement. The execution log 56 allows the
memory consistency of each load instruction to be evaluated
before it is retired.
The load instruction can be in one of a plurality of associ

ated states when it is considered for retirement. The state of
the load instruction is determined by checking associated
entries within the MAF 62 and the cache tags 58. Three of
these states are pertinent to a discussion of a system employ
ing speculative execution of load instructions, an authenti
cated State, an invalidate state, and an inconsistent state. In the
authenticated state, the data that was retrieved by the load
during execution has been authenticated by the processor. An
entry in the authenticated State can be cleared from the log
when it reaches the top of the queue. For example, a load
instruction to a cache line whose associated cache tag indi
cates a valid state can be in an authenticated State.
An invalidate State indicates that the cache line associated

with the load instruction has been invalidated by the system
before it could be retired, but was retained as a resident invalid
line. A load instruction in an invalidate state cannot be retired
by the system. The resident invalid line is provided to a load
compare component 66. A load miss is issued to the request
engine 60 to obtain a valid fill of the cache line. When the fill
is returned, it is provided to the load compare component 66,
and to the cache 54 to replace the invalid cache line. The two
fills of the cacheline are compared, but only within the quanta
utilized in the load instruction, as indicated by the load access
mask associated with the cache line. If the fills are the same
within these quanta, the load instruction has been authenti
cated and can be retired.

If the two fills differ within the quanta indicated by the load
access mask, the load compare component 66 sets the incon
sistent flag within the cache tag associated with the cache line

US 8,301,844 B2
7

to indicate that the load instruction is in an inconsistent state.
If a load instruction is in an inconsistent state, the data
retrieved in the load instruction has been overwritten by
another processor in the system before it could be retired. This
raises the possibility that the memory consistency of the
system has been violated. To maintain memory consistency,
the execution log 56 can be cleared and the instruction stream
of the processor 50 can be backed up to the point of the
inconsistent load. This can be accomplished, for example,
through the use of cache and register backup structures (not
shown) that provide back-up information relating to specula
tive executions within the processor.

In a second implementation, retiring loads are processed
differently. Specifically, the load access mask is not written as
new loads are entered into the log. Instead, the load access
mask is written only for resident invalid cache lines as they
are replaced by a valid fill from the request engine 60. When
a cache line is invalidated by another processor within the
system, a pending load counterfield associated with the cache
tag can be checked by the system. If the field contains a
non-Zero value, the cache line is maintained as a resident
invalid cache line. Since it will be necessary to compare the
invalidated line to a valid copy of the line when the pending
load instructions to the line are considered for retirement, a
miss request is provided to the request engine 60 to obtain a
valid copy of the fill.

In the second implementation, the cache tags 58 also con
tain a last fill ticket number. When the fill is returned from the
request engine, it is provided to the cache 54 to replace the
invalid fill. A record of each fill, including a ticket value equal
to the last fill ticket number field at the time of the fill, is stored
in the execution log56. The last fill ticket number increments
with each fill retrieved from the system to the cache line to
provide a unique ticket number for each fill entry. The valid
fill is compared to the resident invalid cache line at the load
compare 66, and a load access mask is written to indicate any
changed values. The load access mask can be implemented as
a vector of bits, with each bit representing a quantum of the
cache line fill data. If any values within a given quantum have
changed, then the corresponding bit in the load access mask is
Set.

When one of the pending load instructions to the cache line
are ready for retirement (e.g., when its corresponding entry
reaches the top of the execution log), it is determined from the
execution log 56 which quanta were used during the load
instruction. If a bit corresponding to one of these quanta is set
in the load access mask, the load instruction is determined to
be inconsistent. To maintain memory consistency, the execu
tion log 56 can be cleared and the instruction stream of the
processor 50 can be backed up to the point of the inconsistent
load. This can be accomplished, for example, through the use
of cache and register backup structures (not shown) that pro
vide back-up information relating to speculative executions
within the processor.

If none of the quanta used in the load instruction were
changed, the load instruction can be retired. Once the fill has
updated the data in the cache, a Subsequent load instruction
can use the new data value when it executes to mitigate
consistency problems. To distinguish Subsequent load
instructions that use the new data from earlier instructions
using the inconsistent data, log entries representing the fill
responses are kept in order with the load instructions. When
an entry representing a fill arrives at the end of the log 56, it is
immediately retired. If the retired fill entry has a ticket value
that matches the last fill ticket, then there are no additional
fills to the cache line stored in the execution log 56. Accord
ingly, any Subsequent load instructions would have used the

10

15

25

30

35

40

45

50

55

60

65

8
current copy of the fill. The load access mask within the cache
tag is cleared to reflect this upon the retirement of a fill having
a ticket number matching the last fill ticket field.

It will be appreciated that the second implementation of the
processor 50 allows multiple fills to be present in the log for
the same cache line. However, the load access mask collects
changes from each fill, so that each changed quantum across
the fills is indicated. The final fill can clear the mask. Alter
natively, a set of load access masks could be used, corre
sponding to different fill ticket values. In this system, to retire
a load instruction, it would only be necessary to check
changes from fills subsequent to the last retired fill. Load
access masks corresponding to a particular fill can be cleared
as its record is retired from the execution log 56, as all sub
sequent load instructions would have retrieved a fill at least as
Current.

FIG. 3 illustrates an example of an execution log entry 80
representing a load instruction executed by an associated
processor. An instruction type field 82 indicates the type of
the recorded instruction (e.g., store, load, fill record, etc.). In
Some implementations of the invention, the log can be used to
record store instructions as well as load instructions, such that
the instruction type field is useful in distinguishing between
them. An address field 84 gives the memory address of the
cacheline accessed by the load instruction. An instruction PC
field 86 gives the memory address of the load instruction
itself. Other fields can be implemented in addition to those
listed, and it will be appreciated that entries of other types
(e.g., store instructions, fill records) can include other entries
not illustrated herein.

FIG. 4 illustrates one implementation of a cache line tag
100 that can be used to support the speculative execution of
load instructions. The cache line tag 100 includes an address
field 102 that identifies the memory address of its associated
cache line. A coherency state field 104 indicates the coher
ency state of the cache line. The contents of the coherency
field are defined by the cache architecture and the cache
coherency protocol of the system. A pending load counter
field 106 tracks the number of outstanding load entries in the
log. The pending load counterfield 106 is incremented when
a load entry corresponding to the cache line is added to the log
and decremented when a load entry corresponding to the
cache line is retired. The cache tag can also include an incon
sistent flag 108 that can be set to indicate that the load instruc
tion was executed in violation of the memory consistency
model of the system. The inconsistent flag 108 can indicate
that data retrieved as part of the execution of the load instruc
tion has been changed prior to the retirement of the load
instruction.
A load access mask field 110 indicates one or more por

tions, or quanta, of the data within the cache line that are read
in executing the load instruction. Each bit of the load access
mask field 110 represents one quantum of the cache line data,
indicating whether that quantum of data was part of the load
instruction. For example, in a sixty-four byte cache line, a
quantum size of eight bytes can be used. The load access mask
field 110 can comprise an eight-bit vector, with each bit
representing one of the quanta. The load access mask field
110 can be used to determine if a cache line that is invalidated
prior to the retirement of an associated load instruction is a
Source of inconsistency in the system. The cache line is com
pared to an updated fill to determine inconsistency, but only
along portions indicated as significant to the load instruction
by the load access mask field 110.

FIG. 5 illustrates another implementation of a cache line
tag 120 that can be used to support the speculative execution
of load instructions. The cache line tag 120 includes an

US 8,301,844 B2

address field 122 that identifies the memory address of its
associated cache line. A coherency state field 124 indicates
the coherency state of the cache line. The contents of the
coherency field are defined by the cache architecture and the
cache coherency protocol of the system. A pending load
counter field 126 tracks the number of outstanding load
entries in the log. The pending load counter field 126 is
incremented when a load entry corresponding to the cache
line is added to the log and decremented when a load entry
corresponding to the cache line is retired.
The cache tag 120 also includes a load access mask field

128that records updates to the cacheline data after it has been
retrieved by a load instruction. Each bit of the load access
mask field 128 represents one quantum of the cache line data,
indicating whether that quantum of data has been altered
since the execution of the load instruction. For example, in a
sixty-four byte cache line, a quantum size of eight bytes can
be used. The load access mask field 128 can comprise an
eight-bit vector, with each bit representing one of the quanta.
When the load instruction is a candidate for retirement, the
load access mask field can be evaluated to determine if any of
the cache line data retrieved by the instruction has been
altered.
The load access mask field 128 can be updated each time

the cache line is invalidated by another processor within the
system. Each time an updated fill is received, the load access
mask field is updated with any new changes and a last fill
ticket field 130 is incremented. The last field ticket 130 can be
used to label and record fills within an execution log associ
ated with the system. Fills and load instructions within the
execution log can be ordered such that all load instructions
executed with one copy of the fill will be retired before the
entry corresponding to the subsequent fill is retired. When a
fill having a label matching the last fill ticket field is retired, it
indicates that no further fill entries associated with the cache
line are recorded in the log. Accordingly, all Subsequent load
instructions to the cache line have used the most recent ver
sion of the cache line. Since there is no longer any difference
between the updated cache line and the cache line used in
executing the various load instructions, the load access mask
is cleared upon the retirement of a fill entry with a ticket
number matching the last fill ticket field.

FIG. 6 depicts an example of a system 150 that can employ
speculative execution of load instructions to reduce processor
latency. The system 150 implements a cache coherency pro
tocol to manage the sharing of memory blocks so as to guar
antee coherence of data. The cache coherency protocol of the
system 150 utilizes a plurality of states to identify the state of
each memory block stored in one or more memory structures
(e.g., main memory, processor caches) associated with the
system 150. The coherency protocol establishes rules for
transitioning between states.
As used herein, a processor 152 that issues a source

request, Such as a read or write request, defines a source
processor. Other nodes (not shown) within the system 150 are
potential targets of the request. For example, when a source
processor 152 requires a copy of a given memory block to
execute a load instruction, it typically first requests the
memory block from its local private cache 154 by identifying
the address associated with the memory block. If the data is
found locally, the memory access is resolved without com
munication via the system interconnect 156. The data is pro
vided to an execution engine 158 from the cache and an entry
is written to an execution log 160 associated with the proces
Sor 152.
Where the requested memory block is not found locally, a

request engine 162 associated with the processor 152 can

10

15

25

30

35

40

45

50

55

60

65

10
request the memory block from other nodes within the system
150. In addition to the request identifying an address associ
ated with the requested memory block, the request usually
identifies the type of request or command being issued by the
requester. The system 152 responds to the request with one or
more data fills associated with the memory block in accor
dance with the cache coherency protocol of the system 150. A
data fill is a copy of the memory block associated with a
requested cache line. The data fill can be a speculative fill. A
speculative fill is a data fill that may or may not be the latest
version of the memory block. Speculative fills can be pro
vided by a local cache, a local processor (e.g., within a multi
processor group), a remote processor, a home node or a
speculative guess structure. The speculative guess structure
can be implemented by employing a speculative table, specu
lative engine or separate cachestructure that maintains specu
lative copies of memory blocks.
A speculative fill allows the requesting processor to

execute several thousands of program instructions ahead
prior to receiving a coherent copy (e.g., a copy of the cache
line known to be current under the cache coherency protocol
of the system) of the requested cache line. To maximize the
benefit of the speculative fill, the processor can execute
instructions beyond a memory barrier associated with the
original load instruction. When the speculative fill is provided
to the execution engine 158, the fill is recorded in a missed
address file (MAF) entry 164 associated with the cache line.
The speculative fill is written into the local cache 154 with a
tag indicating its address, its coherency state, and the out
standing load instruction to the cache.
The execution engine 158 continues to execute load

instructions, and may execute beyond one or more memory
barriers prior to retiring the speculatively fill load instruction.
Eventually, a coherent fill of the cache line is provided to the
processor 152 along with a coherent signal that indicated that
the coherent fill is the most recent version of the cache line.
Once the coherent signal is received, the Source processor can
compare the coherent data fill to the speculative data fill at a
load compare component 166.

If the coherent data fill is identical to the speculative fill, the
processor can continue execution, thus mitigating latency
caused by the processor remaining in an idle state until a
coherent version of the requested memory block is received.
If it is determined that coherent data fill is different from the
speculative data fill, the execution engine 158 can backup and
re-execute program instructions with the coherent fill of the
cache line. The source processor then backs up and begins
executing again with the new data, but loses little or no time
from the execution of the speculative fill as the source would
have remained latent during the retrieval of the coherent copy
regardless. The cache coherency protocol can continue
executing after the coherent copy is retrieved to change states
of one or more copies of the memory block in the system if
necessitated by the source request.

It will be appreciated that the cache line can still be invali
dated by another processor between the time the coherent fill
is received and the time at which the load instruction is
retired. In this case, another coherent fill of the data is
obtained from the system to update the cache line. The load
compare component 166 compares the two data fills, and a
load access mask is written within the tag portion of the cache
line to indicate any changed values. The load access mask can
be implemented as a vector of bits, with each bit representing
a quantum of the cache line fill data. If any values within a
given quantum have changed, then the corresponding bit in
the load access mask is set.

US 8,301,844 B2
11

After the load access mask is written to the cache line tag,
a last fill ticket field within the cache tag is incremented to
indicate that an updated fill has been provided to the cache
line. An entry representing the fill is added to the execution
log 160, labeled with the value of the incremented last fill
ticket. Fill entries are maintained in order with load instruc
tions, such that a given fill will not be retired until all load
instructions using the previous fill have been retired. Addi
tional fills can be received if the cache line is invalidated
before retirement. As they are received, the load access mask
is updated, the last fill ticket field in the cache line is incre
mented to reflect the new fill, and the new fill is also recorded
in the execution log, with a ticket number reflecting the new
last fill ticket field number.

Instructions recorded within the execution log 160 are
retired in an appropriate order. In the illustrated system 150,
the execution log 160 acts as a first-in-first-out queue, with
each queue entry representing a load instruction. As each
entry reaches the top of the queue, its associated load instruc
tion becomes a candidate for retirement. When a load instruc
tion to an invalidated cache line reaches the top of the queue,
the system determines which quanta of the cache line data
were retrieved by the load instruction. The load access mask
is examined to determine if any of retrieved quanta were
modified by an updated fill. If it is determined that the perti
nent portion of the cache line has been modified, the execu
tion engine 158 can back up and re-execute program instruc
tions from the invalidated fill on with the most recent fill of the
cache line. Otherwise, the processor can continue execution,
thus mitigating latency resulting from stopping execution at
the memory barrier.

Information associated with each instruction is retained in
the event of a processor backup. For example, the processor
152 can include a cache system 154 that can be set to a cache
state and a register file system 168 that can be set to a register
file state associated with a processorbackup state in the event
of a violation of the system coherency protocols or consis
tency model caused by the speculative fill. A pointer or index
can be retained that points to a location in the cache system or
a log that retains information associated with the cache State
corresponding to the state of the cache at a processor backup
state. Additionally, a pointer or index can be retained that
points to a location in the register file system that retains
information associated with the register file corresponding
with the state of the register file at a processor backup state. If
the processor employs an out-of-order pipeline, the register
rename map that points to the backed up locations of the
register file is operative to be reset during a processorbackup.
As entries reflecting the updated fills arrive at the end of the

execution log 160, they are retired. If a retired fill associated
with a cache line has a ticket value that matches the last fill
ticket in the cache tag, then there are no additional fills to the
cache line stored in the execution log 160. Accordingly, any
Subsequent load instructions would have used the current
copy of the fill. The load access mask within the cache tag is
cleared to reflect the retirement of a fill having a ticket number
matching the last fill ticket field.

In view of the foregoing structural and functional features
described above, certain methods will be better appreciated
with reference to FIGS. 7-9. It is to be understood and appre
ciated that the illustrated actions, in other embodiments, may
occur in different orders and/or concurrently with other
actions. Moreover, not all illustrated features may be required
to implement a method. It is to be further understood that the
following methodologies can be implemented in hardware
(e.g., as one or more integrated circuits or circuit boards

5

10

15

25

30

35

40

45

50

55

60

65

12
containing a plurality of microprocessors), Software (e.g., as
executable instructions running on one or more processors),
or any combination thereof.

FIG. 7 illustrates a methodology for maintaining system
consistency in a multiprocessor System. At 202, a next entry
within an execution log is checked to determine if a load
instruction associated with the entry can be retired. For
example, a missed address file (MAF) and the tag portion of
a cache line associated with the load instruction can be read to
determine the status of the file. At 204, it is determined if the
load instruction is in an authenticated State. For example, a
load instruction can be in an authenticated State if the cache
line data retrieved by the load instruction has not been invali
dated by the system. If the load instruction is in an authenti
cated state (Y), the methodology proceeds to 206, where the
load instruction is retired. When the load instruction is retired,
its associated entry is removed from the log and information
relating to the load instruction can be cleared from a tag
portion of the cache line associated with the load instruction.
The methodology then returns to 202 to review the next entry
within the log.

If the load instruction is not in an authenticated state (N),
the methodology proceeds to 208. At 208, it is determined if
the load instruction is in an invalidated State. For example, a
load instruction can be in an invalidated State if another pro
cessor within the system invalidates the cache line retrieved
by the load instruction before the load instruction can be
retired. If the load instruction is in an invalidated state (Y), the
methodology continues to 210, where an updated fill of the
cache line is retrieved from the system. A read access mask
associated with the cacheline is then read at 212 to determine
which portions, or quanta, of the cache line data were
retrieved by the load instruction. The read access mask is
written at the time of the load and can be stored in the cache
line tag.
The updated data fill is compared to the invalidated cache

line at the quanta of the cache line retrieved by the load
instruction at 214. If the updated data fill matches the invali
dated cache line at the retrieved quanta (Y), the data retrieved
by the cache line has not been changed. The load instruction
is then considered to be authenticated, and the methodology
proceeds to 206 where the load instruction is retired. If the
updated data fill and the invalidated cacheline do not match at
the retrieved quanta (N), the load instruction is inconsistent
and it is necessary to backup the system to the instruction that
retrieved the inconsistent data. The methodology then pro
ceeds to 216.

Returning to the decision at 208, if the load instruction is
determined not to be invalid (N), the methodology continues
to 218. At 218, it is determined if the load instruction is
inconsistent. This can be determined by reading an inconsis
tent flag located in the cache tag of a cache line retrieved by
the load instruction. If the load instruction is not in an incon
sistent state (N), then it is likely in a pending state, where one
or more responses from the system are required to evaluate
the consistency of the load instruction. The methodology then
advances to 220 to wait for the necessary system response.
The methodology then returns to 204 to reevaluate the load
instruction.

If the load instruction is in an inconsistent state (Y), the
methodology advances to 216, where the entries within the
log are cleared. The methodology then continues to 222,
where the processor is restored to its state prior to the incon
sistent load instruction and the load instruction and all Sub
sequent instructions are re-executed. Once the load instruc
tion has been properly executed, the load instruction is once

US 8,301,844 B2
13

again added to the log. When the load instruction returns to
the top of the log, the load instruction can be retired at 206.

FIG. 8 illustrates a methodology 250 for authenticating an
invalidated load instruction. An invalidate signal is received at
a cache line having one or more associated outstanding load
instructions at 252. The invalidate signal indicates that a more
recent version of the cache line has been written by another
processor within the system. At 254, an updated fill of the
cache line is retrieved from the system. This can be accom
plished via the system cache coherency protocol. A record of
the updated fill is added to an execution log associated with
the system with a ticket value. A last fill ticket value associ
ated with the cache line tag is incremented to reflect the new
fill.
At 256, the updated fill of the cache line is compared to the

invalidated cache line. Any differences between the two ver
sions of the cache line can be reflected in a load access mask.
The comparison can be performed across portions of the data,
with each portion being represented as one bit in a load access
mask. The load access mask, for example, can record a logic
high for any bit whose associated portion of the cache line has
been altered and a logic low for any unaltered portions of the
cache line. The load access mask is written to the cache tag.

At 258, an entry corresponding to the load instruction
reaches the top of an execution log used to record instructions
executed by the processor. The entry includes a record of
which portions of the cache line were retrieved by the load
instruction. At 260, the portions of the cache line retrieved by
the load instruction are examined within the load access mask
to determine if the retrieved portions have been altered. At
262, it is determined if the retrieved portions are indicated to
have changed according to the load access mask. If one or
more of the retrieved portions have been altered (Y), the
methodology advances to 264, where the entries within the
log are cleared. The methodology then continues to 266,
where the processor is restored to its state prior to the incon
sistent load instruction and the load instruction and all Sub
sequent instructions are re-executed. Once the load instruc
tion has been properly executed, the load instruction is once
again logged, and can be retired when it returns to the top of
the log.

If none of the retrieved portions of the cache line have been
altered (N), the methodology advances to 268, where the load
instruction is retired. At 270, an entry corresponding to the fill
reaches the top of the instruction log. At 272, the ticket value
for the fill is compared to the last fill ticket number in the
cache line tag. If the values match (Y), the load access mask
is cleared at 274 and the methodology terminates. If the
values do not match (N), the process terminates.

FIG. 9 illustrates a methodology 300 for authenticating a
load instruction associated with an invalidated cache line. At
302, program instructions are executed across at least one
memory barrier. At 304, an invalidated cacheline is compared
with an updated fill of the cache line corresponding to a load
instruction to generate a load access mask. At 306, the con
sistency of a load instruction associated with the invalidated
cache line is evaluated based on the portion of the cache line
retrieved by the load instruction and the load access mask.
What have been described above are examples of the

present invention. It is, of course, not possible to describe
every conceivable combination of components or methodolo
gies for purposes of describing the present invention, but one
of ordinary skill in the art will recognize that many further
combinations and permutations of the present invention are
possible. Accordingly, the present invention is intended to
embrace all Such alterations, modifications and variations that
fall within the spirit and scope of the appended claims.

10

15

25

30

35

40

45

50

55

60

65

14
What is claimed is:
1. A multi-processor System that conforms to a cache

coherency protocol, the system comprising:
a processor that executes program instructions beyond at

least one memory barrier of at least one executed load
instruction;

a request engine that retrieves an updated data fill with an
undetermined coherency state from one or more other
processors of the multi-processor System via a pros
essor-to-processor data fill, the updated data fill corre
sponding to an invalid cache line from which data had
been retrieved by the at least one executed load instruc
tion; and

a load compare component that compares the invalid cache
line to the updated data fill to evaluate the consistency of
the at least one executed load instruction prior to retiring
the at least one executed load instruction.

2. The system of claim 1, wherein the system further com
prises an execution log that records a plurality of entries
corresponding to non-retired executed load instructions.

3. The system of claim 2, wherein the execution log acts as
a first-in-first-out (FIFO) queue, and a load instruction is
evaluated as a candidate for retirement when it is moved to the
top of the queue.

4. The system of claim 1, wherein the load compare com
ponent writes a load access mask that indicates which of a
plurality of quanta comprising the invalid cache line are dif
ferent from the updated data fill.

5. The system of claim 4, wherein the system further com
prises an execution log that employs the load access mask to
determine the consistency state of a load instruction associ
ated with a cache line.

6. The system of claim 5, wherein the system further com
prises a last fill ticket number that increments each time an
updated fill is provided associated with the invalid cache line.

7. The system of claim 6, wherein the execution log stores
entries corresponding to updated fills of the invalid cache line
received by the system, and a given entry contains a ticket
number equal to the last fill ticket number at the time the entry
is recorded.

8. The system of claim 7, wherein the load access mask is
cleared when an entry having a ticket number equal to a
current value of the last fill ticket number is retired from the
execution log.

9. The system of claim 1, wherein the system further com
prises a pending load counter that increments when a load
instruction associated with the cache line executes and dec
rements when a load instruction associated with the cache
line is retired.

10. The system of claim 9, wherein the invalid cacheline is
retained within a cache as a resident invalid cache line when
the pending load counter is equal to a non-Zero value.

11. The system of claim 10, wherein the invalid cache line
is released to be overwritten when the pending load counter is
equal to Zero.

12. The system of claim 1, wherein the system further
comprises a load access mask that indicates which of a plu
rality of quanta comprising the invalid cache line were
retrieved when a given load instruction was executed.

13. The system of claim 12, wherein the load compare
component compares the invalid cache line to the updated
data fill only for the quanta indicated by the load access mask.

14. The system of claim 1, wherein the request engine
generates a miss address file (MAF) entry associated with a
request for a data fill, the MAF entry having a plurality of
fields that retain information relating to the request.

US 8,301,844 B2
15

15. The system of claim 1, wherein the system requests a
data fill from the system through the request engine in
response to a cache miss, and the system responds with a
plurality of data fills.

16. The system of claim 15, wherein at least one of the data
fills is a speculative data fill, and the system processes the
speculative data fill until a coherent data fill is received from
the system.

17. The system of claim 15, wherein the processor receives
a coherent signal generated by the multi-processor System
that provides an indication of which of the plurality of data
fills received by the processor is the coherent data fill.

18. A processor in a multi-processor System that conforms
to a cache coherency protocol, the processor evaluating the
consistency of a load instruction in a program executed
beyond at least one memory barrier of the load instruction, the
processor comprising:

a request engine that retrieves an updated data fill with an
undetermined coherency state from one or more of the
other processors of the multi-processor system via a
processor-to-processor data fill, the update data fill cor
responding to an invalid cache line from which data had
been retrieved by the load instruction;

a load compare component that compares the invalid cache
line to the updated data fill; and

a load access mask that operates in conjunction with the
load compare component to evaluate the consistency of
the load instruction.

19. The system of claim 18, wherein the load access mask
indicates which of a plurality of quanta comprising the invalid
cache line are different from the updated data fill.

20. The system of claim 19, wherein the load access mask
comprises the output of the load compare component.

21. The system of claim 18, wherein the load access mask
indicates which of a plurality of quanta comprising the invalid
cache line were retrieved when a given load instruction was
executed.

22. The system of claim 21, wherein the load compare
component compares the invalid cache line to the updated
data fill at quanta indicated by the load access mask.

23. A multi-processor System that conforms to a chache
coherency protocol, the system evaluating the consistency of
program execution beyond at least one memory barrier, the
system comprising:
means for executing program instructions beyond at least

one memory barrier of an executed load instruction;
means for retrieving an updated data fill with an undeter
mined coherency state directly from one or more other
means for executing program instructions of the multi
processor system, the updated data fill being associated
with an invalidated cache line from which data had been
retrieved by the executed load instruction; and

means for comparing the invalidated cache line to the
updated data fill to evaluate the consistency of the
executed load instruction prior to retiring the executed
load instruction.

24. The system of claim 23, the system further comprising
means for restoring the processor System to a previous state if
the means for comparing indicates a difference between the
invalidated cache line and the updated data fill.

25. The system of claim 23, the system further comprising
means for logging a plurality of load instructions, such that
the load instructions can be evaluated in a desired order.

26. The system of claim 23, the system further comprising
means for limiting the means for comparing Such that only
portions of the invalidated cache line relevant to the load
instruction are compared to the updated data fill.

27. The system of claim 23, the system further comprising
means for recording the output of the means for comparing.

10

15

25

30

35

40

45

50

55

60

16
28. A method of program execution in a multi-processor

system that conforms to a cache coherency protocol, the
method comprising:

executing program instructions beyond at least one
memory barrier of a load instruction;

comparing an invalidated cache line with an associated
updated fill of the cache line from which data had been
retrieved by the load instruction to generate a load access
mask, the updated data fill having an undetermined
coherency state and being received from one or more
other processors of the multi-processor system via a
processor-to-processor data fill; and

determining the consistency of the load instruction associ
ated with the invalidated cache line based on a portion of
the cache line associated with the load instruction and
the load access mask prior to retiring the load instruc
tion.

29. The method of claim 28, wherein determining the con
sistency of a load instruction comprises dividing the invali
dated cache line into a plurality of portions and determining
which of the plurality of portions are associated with the load
instruction.

30. The method of claim 29, wherein comparing the cache
line to the updated fill includes comparing the cache line to
the updated fill only for the portions of the cache line associ
ated with the load instruction.

31. The method of claim 28, wherein the method further
comprises dividing the invalidated cache line into a plurality
of portions and recording which of the plurality of portions
are different between the invalidated cache line and the
updated data fill.

32. The method of claim 28, wherein the method further
comprises backing up the processor and re-executing a plu
rality of instructions if the load instruction is determined to be
inconsistent.

33. The method of claim 28, further comprising recording
the load instruction in a queue as to control the timing of the
determination of the consistency of the load instruction.

34. The system of claim 17, wherein:
the invalid cache line comprises a plurality of quanta;
the load compare component is configured to write a load

access mask that indicates members of a proper Subset of
the plurality of quanta that is retrieved when a given load
instruction was executed, the load compare component
is configured to compare the invalid cache line to the
coherent data fill only for members of the proper subset
indicated by the load access mask; and

the processor is configured to retire the given load instruc
tion if each of the members of the proper subset of the
plurality of quanta are determined to be coherent.

35. The system of claim 1, wherein the processor returns to
a previous state and re-executes a plurality of load instruc
tions, including at least one load instruction associated with
the cache line, if the updated data fill is different from the
invalid cache line.

36. The method of claim 28, wherein:
determining the consistency of a load instruction com

prises dividing the invalidated cache line into a plurality
of portions and determining members of a proper Subset
of the plurality of portions of the invalid cache line that
are associated with the load instruction; and comparing
the invalidated cache line to the associated updated fill
includes comparing only the members of the proper
subset of the plurality of portions of the invalid cache
line.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,301,844 B2 Page 1 of 1
APPLICATIONNO. : 10/756534
DATED : October 30, 2012
INVENTOR(S) : Simon C. Steely, Jr. et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specifications:

In column 4, line 9, delete “bathers and insert -- barriers --, therefor.

In column 9, line 45, delete “The system 150 and insert -- The system 150 --, therefor.

In the Claims:

In column 14, lines 9-10, in Claim 1, delete “prosessor and insert -- processor -, therefor.

In column 15, line 20, in Claim 18, delete “update and insert -- updated --, therefor.

In column 15, line 39, in Claim 23, delete “chache and insert -- cache --, therefor.

Signed and Sealed this
Fourteenth Day of May, 2013

Teresa Stanek Rea

Acting Director of the United States Patent and Trademark Office

