

HU000034549T2

(19) **HU**

(11) Lajstromszám: **E 034 549**

(13) **T2**

MAGYARORSZÁG
Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM **SZÖVEGÉNEK FORDÍTÁSA**

(21) Magyar ügyszám: **E 14 182086**

(51) Int. Cl.: **H04L 1/00**

(2006.01)

(22) A bejelentés napja: **2007. 09. 27.**

H04L 5/00

(2006.01)

(96) Az európai bejelentés bejelentési száma:
EP 20070182086

H04W 88/02

(2006.01)

(97) Az európai bejelentés közzétételi adatai:
EP 2835924 A1 2015. 02. 11.

H04W 48/08

(2006.01)

(97) Az európai szabadalom megadásának meghirdetési adatai:
EP 2835924 B1 2017. 03. 08.

H04W 72/14

(2006.01)

H04B 17/00

(2006.01)

H04W 24/00

(2006.01)

(30) Elsőbbségi adatai:

0700701

2007. 03. 19.

SE

(73) Jogosult(ak):

**Telefonaktiebolaget LM Ericsson (publ), 164
83 Stockholm (SE)**

(72) Feltaláló(k):

**FRENGER, Pál, SE-583 34 Linköping (SE)
Englund, Eva, SE-589 37 LINKÖPING (SE)
PARKVALL, Stefan, SE-167 57 Bromma (SE)**

(74) Képviselő:

SBGK Szabadalmi Ügyvivői Iroda, Budapest

(54)

Csatornaállapot-visszacsatolás eljuttatása távközlési rendszerben

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

(11)

EP 2 835 924 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

08.03.2017 Bulletin 2017/10

(21) Application number: 14182086.0

(51) Int Cl.:

H04L 1/00 (2006.01)

H04B 17/00 (2015.01)

H04W 48/08 (2009.01)

H04W 24/00 (2009.01)

H04W 88/02 (2009.01)

H04L 5/00 (2006.01)

H04W 72/14 (2009.01)

(22) Date of filing: 27.09.2007

(54) Channel state feedback delivery in a telecommunication system

Kanalstatus-Rückmeldungbereitstellung in einem Telekommunikationssystem

Administration de rétroaction d'état de canal dans un système de télécommunication

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
SI SK TR

(30) Priority: 19.03.2007 SE 0700701

(43) Date of publication of application:

11.02.2015 Bulletin 2015/07

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:

07835268.9 / 2 137 859

(73) Proprietor: Telefonaktiebolaget LM Ericsson
(publ)
164 83 Stockholm (SE)

(72) Inventors:

- Frenger, Pál
SE-583 34 Linköping (SE)
- Englund, Eva
SE-589 37 Linköping (SE)

- Parkvall, Stefan
SE-167 57 Bromma (SE)

(74) Representative: Ericsson
Patent Development
Torshamnsgatan 21-23
164 80 Stockholm (SE)

(56) References cited:
WO-A2-2005/072073

- MOTOROLA: "CQI Feedback for EUTRA", 3GPP
TSG-RAN WG1 MEETING #47BIS, SORRENTO,
ITALY, , vol. R1-070049 15 January 2007
(2007-01-15), pages 1-7, XP003023570, Retrieved
from the Internet:
URL:ftp://ftp.3gpp.org/tsg_ran/WG1_RL1/TSG
R1_47bis/Docs/R1-070049.zip [retrieved on
2007-01-15]
- ERICSSON: "On CQI Reporting", 3GPP TSG RAN
WG1 MEETING #50BIS, no. R1-073746, 20 August
2007 (2007-08-20) , pages 1-4, XP003023447,

EP 2 835 924 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

TECHNICAL FIELD

[0001] The present invention relates generally to a method and arrangement for providing channel state feedback from a user equipment to a base station, and especially for making more efficient use of available resources when delivering channel state feedback.

BACKGROUND

[0002] Recent increase of mobile data usage and emergence of new applications such as gaming, mobile TV and streaming content have motivated the 3G Generation Partnership Project (3GPP) to work on the Long-Term Evolution (LTE) in order to ensure 3GPP's competitive edge over other, competitive cellular technologies.

[0003] LTE has been set aggressive performance requirements which rely on physical layer technologies, such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO) systems to achieve these targets. Some main objectives of LTE are to minimize the system and User Equipment (UE) complexities, to allow flexible spectrum deployment in existing or new frequency spectrum, and to enable co-existence with other 3GPP Radio Access technologies (RATs).

[0004] In the LTE concept defined in the ongoing 3GPP work on standardization, the downlink will support fast channel dependent scheduling in both the time and frequency domains. A conventional downlink scheduling concept according to the prior art, may be described with **stages 1:1 - 1:4**, as illustrated in figure 1. A base station **100**, which is referred to as an enhanced NodeB, or eNodeB in LTE, communicating with a UE **101**, transmits reference signals to UE 101 in a first **stage 1:1**. The reference signals can be used by UE 101 to determine the present downlink channel quality. After having determined the downlink channel quality on the basis of the received reference signals, UE 101 sends one or more channel state feedback reports, which in this context typically are represented by Channel Quality Indication (CQI) reports, back to eNodeB 100 in a second **stage 1:2**. In eNodeB 100, the content of the one or more CQI reports can be retrieved and used by a scheduler (not shown), to perform resource allocation. UE 101 is informed of the resource allocation in a next **stage 1:3**, which is followed by transmission of downlink data over the allocated resource, as indicated with a final **stage 1:4**.

[0005] More on this issue can be found in "3G Evolution: HSPA and LTE for Mobile Broadband" E.Dahlman, S.Parkvall, J.Sköld, P.Beming, Academic Press, 2007. Document R1-070049, 3GPP TSG RAN1 #47bis, "CQI Feedback for EUTRA", discusses periodic and trigger based CQI reports.

[0006] In one embodiment proposed for the LTE, UEs

will be capable of transmitting different types of CQI reports, such as full CQI reports, partial CQI reports, and differential CQI reports. In this context, full CQI reports are defined to cover the whole downlink transmission bandwidth scheduled for a UE. Different full CQI reports may, however, have different frequency resolution and may also be filtered and processed in different ways. In addition, different full CQI reports may be encoded in a variety of alternative ways. Partial CQI reports on the other hand cover only a part of the downlink transmission bandwidth. The covered part of a partial CQI report may be a set of contiguous, or a set of distributed resource blocks. Differential CQI reports may contain an encoded version of the update vector relative to a previous CQI report.

[0007] Furthermore, for CQI reports used together with different antenna configurations, such as SISO (Single-In Single-Out), MISO (Multiple-In Single-Out), SIMO (Single-In Multiple-Out), or MIMO (Multiple-In Multiple-Out), transmission could also be different. For MIMO, a CQI report may include information, such as e.g. transmission rank and/or pre-coding weights and/or other feedback parameters to be used by the eNodeB multiple antenna transmission scheme.

[0008] In one proposal for LTE presented in 3GPP, the UE may have a set of rules that specifies the conditions for CQI reports to be transmitted. According to this proposal, each CQI transmission trigger is associated with a specific type of CQI report in such a way that when a triggering criteria is true, the UE transmits a CQI report of an associated type. This procedure is similar to how compressed mode is parameterized in WCDMA. For WCDMA compressed mode, each UE is provided with a transmission gap pattern set (TGPS) consisting of transmission gap patterns (TGP), each defining a transmission gap of a configurable length that is used for a specific measurement purpose. CQI reports may be specified in a similar way, wherein each UE has a CQI reporting trigger set (CRTS), consisting of one or more CQI reporting triggers (CRT) that specify when a specific type of CQI report shall be transmitted.

[0009] Figure 2 illustrates a table of a CQI trigger configuration for a UE, according to the prior art described above. The table comprises a plurality of CQI reporting triggers, CRT 1-n, configured for the UE. Each CRT is associated with one of the CQI report types, CQI A-X. When for example the trigger criteria specified by CRT 1 is true, a report type defined by CQI A will be transmitted from the UE to an eNodeB, as indicated in the table.

[0010] A CRT is typically expressed in terms of a logical expression which may involve one of, or a combination of, timers, events, and conditions, consisting of logical statements such as AND, OR, NOT, WHEN, and/or IF. A simple periodic CQI reporting trigger may consist of just a periodic timer and a rule that a certain CQI report shall be transmitted every time the timer expires. In another exemplified scenario, a simple event based CQI reporting trigger may be configured to state that a certain

type of CQI report shall be transmitted every time the triggering event, such as e.g. a handover event, occurs. A condition that could be included in the decision to transmit a certain CQI report or not, is e.g. if the downlink activity is above a specified threshold.

[0011] CQI reports may also be transmitted in different ways. A CQI report could be transmitted on a dedicated control channel resource, or on a scheduled resource provided on a shared channel. CQI reports may occur at known time instances and use a format known to the eNodeB, or the occurrence and format may be more dynamic. In the latter case the MAC header typically needs to include information about how the CQI report was transmitted, or else the eNodeB may have to perform blind detection on the CQI transmission format.

[0012] What types of CQI reports a UE shall use, and what criteria that will trigger them, are typically set-up by higher layer signaling, e.g. RRC signaling. In addition to configuring rules, defining when and how CQI reports are to be transmitted, the eNodeB also have the option to explicitly request for CQI reports on demand, typically by using RRC signaling.

[0013] The LTE uplink is based on single-carrier modulation and uses frequency, time and code division multiple access principles (FDMA, TDMA and CDMA). The LTE uplink consists of physical uplink control channels and data channels that are orthogonally frequency multiplexed. The single-carrier property of the LTE uplink makes it impossible for a UE to transmit on a physical control channel and a physical data channel in the same transmission-time-interval (TTI). Hence, if a UE is transmitting data on a physical data channel, the control information that must be sent in the same TTI must also be sent on the physical data channel. The UE will use the physical control channel to transmit control signaling only in the case when the UE has no data transmission, and, hence is not using the physical data channel.

[0014] There are at least three types of control signaling that may be sent in-band on the physical data channel in case the UE has uplink data to transmit, namely Hybrid ARQ (HARQ) ACK/NACK feedback for downlink data transmissions, scheduling requests and CQI reports.

[0015] The current assumption in 3GPP regarding the HARQ feedback and the scheduling request is that the HARQ will consist of one bit per MIMO stream, while the scheduling request might consist of just a single bit, indicating if a UE has data it wants to transmit or not.

[0016] The CQI reports on the other hand can be significantly larger. The amount of bits that can be spent on the CQI reporting may depend on a number of different criteria, such as: downlink transmission mode, e.g. SISO or MIMO; type of downlink traffic, e.g. VoIP or Web; downlink radio characteristics, e.g. coherence time and/or coherence bandwidth; current uplink load and/or current downlink activity. Furthermore, while the HARQ feedback and the scheduling request signaling are vital for the communication protocols to work at all, the CQI reports can be seen more as performance enhancing fea-

ture for the downlink.

[0017] The more uplink resources that are spent on CQI reports, the better link adaptation and scheduling decisions can be made, and the better the performance of the downlink may be achieved. As for signaling in general, there is, however, a trade-off between the amount of resources that are used for signaling and the amount of resources available for transmission of user plane data traffic. In current state-of-the-art it is known that it is beneficial to adapt the CQI reporting scheme to the conditions listed above.

[0018] A drawback with prior art CQI reporting mechanisms is, however, the lack of flexibility as to the use of available resources.

[0019] In order to fully support all possible CQI feedback schemes in all possible scenarios one would need to allocate an unreasonable amount of physical resources for uplink physical control signaling.

[0020] Even with a limited number of schemes applied, new feedback schemes are difficult to introduce, especially if they require that the uplink physical control channels need to be re-designed.

SUMMARY

[0021] The present invention aims to solve at least some of the problems mentioned above by providing a more efficient use of the uplink physical control channel.

[0022] The present invention relates to a method for triggering of a CQI reporting transmission from a UE.

[0023] According to yet another aspect, a method in a base station, comprising a scheduler is provided for obtaining channel state feedback from a UE. According to one aspect of the invention, it is the presence of downlink data in the base station that triggers the scheduler to provide an uplink grant to the UE in order to receive the downlink channel state feedback required for link adaptation and/or channel dependent scheduling of downlink data to that UE on the granted resource. Thus, in case the base station needs channel state feedback information although there is no ongoing uplink transmission, an uplink grant can be sent from the base station to obtain the information. If the scheduler has determined that channel state feedback is required, an uplink grant is generated, and the uplink grant is provided to the UE in order to receive the channel state feedback on the granted resource.

[0024] According to another embodiment, it is also determined whether downlink data is present in the base station or not, and if this is the case, an uplink grant is generated and provided to the UE, in order to receive downlink channel state feedback on the granted resource.

[0025] According to yet another embodiment, the load of the uplink is considered, determining at the base station whether the uplink load is below a threshold, th or not. If this is the case, an uplink grant is generated and provided to the UE. Otherwise, the signaling required for

providing channel state feedback information is avoided in favor of ongoing traffic.

[0026] An uplink grant may be provided to the UE for the purpose of receiving an uplink transmission on the granted resource, containing at least channel state feedback. The retrieved uplink transmission may then be used by the base station to estimate the uplink channel quality for link adaptation and/or channel dependent scheduling of uplink data from the UE. Hereby, the use of both uplink probing and non-scheduled CQI reports can be limited. The scheduler can thus place the channel state feedback reports on resources where it wants to probe the uplink channel. Alternatively, the uplink grant may be provided to the UE for the purpose of maintaining uplink synchronization.

[0027] According to yet another aspect, a base station, comprising a scheduler adapted to obtain channel state feedback from a UE is provided. The scheduler comprises a generating unit, adapted to determine whether channel state feedback is required or not, and, in case channel state feedback is required, the generating unit is further adapted to generate an uplink grant in order to receive channel state feedback from the UE on the granted resource. The uplink grant is then transmitted by a transmitting unit, and a receiving unit is adapted to receive channel state feedback in response to the transmitted uplink grant.

[0028] According to one alternative embodiment, the generating unit is adapted to provide an uplink grant to the UE in order to receive downlink channel state feedback required for link adaptation and/or channel dependent scheduling of downlink data to the UE on the granted resource if it is found that the base station has downlink data.

[0029] According to another embodiment, the generating unit is adapted to provide an uplink grant to the UE if it is found that the uplink load at the UE is below a specific threshold, th . The threshold is typically adapted such that uplink data from other UEs will not be negatively affected.

[0030] According to yet another embodiment, the generating unit may be adapted to provide a UE with an uplink grant for the purpose of receiving an uplink transmission on the granted resource, wherein the uplink transmission comprises at least channel state feedback. The scheduler may also be adapted to use the uplink transmission to estimate the uplink channel quality for link adaptation and/or channel dependent scheduling of uplink data from the UE.

[0031] The generating unit may be adapted to provide a UE with an uplink grant for the purpose of maintaining uplink synchronization. Alternatively, the generating unit may be adapted to generate an uplink grant of variable size, enabling the base station to request for channel state feedback information of a variable size.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] The present invention will now be described in more detail by means of exemplary embodiments and with reference to the accompanying drawings, in which:

- Figure 1 is a basic overview of a signalling procedure between a user equipment and an eNodeB, according to the prior art.
- Figure 2 is a table indicating a configuration of CQI report triggers, according to the prior art.
- Figure 3 is a flow chart illustrating a procedure for providing a CQI report from a user equipment to an eNodeB, according to the prior art.
- Figure 4a is a flow chart illustrating a procedure for selecting a CQI report in user equipment, according to one embodiment.
- Figure 4b is a flow chart illustrating a procedure for selecting a CQI report in a user equipment, according to another embodiment.
- Figure 5 is a flow chart illustrating a procedure for selecting a CQI report in a user equipment, according to yet another embodiment.
- Figure 6 is a flow chart illustrating a procedure for selecting a CQI report in a user equipment, according to another alternative embodiment.
- Figure 7 is a block diagram, schematically illustrating an eNodeB, adapted to request for a CQI report, according to any of the described embodiments.
- Figure 8 is a block diagram, schematically illustrating a UE, adapted to provide a CQI report to a base station, according to any of the described embodiments.
- Figure 9 is a flow chart illustrating a procedure for an eNodeB requesting a CQI report from a UE, according to one embodiment.
- Figure 10 is a flow chart illustrating a procedure for an eNodeB requesting for a CQI report from a UE, according to another embodiment.

DETAILED DESCRIPTION

[0033] Briefly described, the present invention involves a method, a user equipment and a base station adapted to handle channel state feedback reports in a more flexible way. More specifically, a channel state feedback procedure is provided which utilises the resources available for transmission of channel state feedback more efficiently. This is achieved by including uplink grant availability into the channel state feedback reporting triggers used for determining when and how to send channel state feedback from a UE, i.e. a channel state feedback reporting rule is set-up at the UE, specifying that the channel state feedback reporting will rely on whether a respective UE has obtained an uplink grant or not. Alternatively, uplink grant availability is configured to be the only trigger, specifying which type of channel state feedback report to transmit. By using an uplink grant, alone

or in combination with other channel state feedback trigger criteria, a base station will also be able to get more out of using channel state feedback reports than what is possible with prior art solutions.

[0034] In the following exemplified embodiments, channel state feedback reports delivered from UEs will consequently be referred to as CQI reports and base stations will be referred to as enhanced LTE base stations, i.e. eNodeBs. Furthermore, the channel state feedback rules, specifying when to transmit a CQI report, which may be expressed in terms of a logical expression involving one or a combination of timers, events and/or conditions, will be referred to as CQI reporting triggers. It is, however, to be understood that the described embodiments may be applicable also for other comparable channel state feedback implementations.

[0035] Figure 3 is a simplified flow chart illustrating a procedure for providing channel state feedback in the form of CQI reports from a UE to an eNodeB, according to the prior art. In a first **step 300**, the criteria for when and how to deliver different types of CQI reports, typically defined as specified above with reference to figure 2, configured as a CRTS by eNodeB, is delivered to and received by the UE. In a next **step 301**, a continuous checking procedure, for determining whether the CRT criteria specified by the CRTS is fulfilled, is initiated. If the criteria of a CRT is found to be fulfilled in a **step 302**, a CQI report of the respective type will be transmitted by the UE, as illustrated with a final **step 303**. If, however, the CRT criteria is not fulfilled, the checking procedure is repeated starting again with step 301. If there are a plurality of different types of CQI reports configured for the UE, the checking procedure will be repeated accordingly for each report type. Obviously, such a procedure for deciding when to transmit CQI reports leaves no room for flexibility as to the use of available resources or as to what information that can be retrieved from a CQI report.

[0036] Accurate channel quality knowledge at the eNodeB is mainly required when data is transmitted in the downlink. When there is no downlink data transmission taking place, there is, however, no or very small need for detailed CQI reports. Furthermore, when the UE is receiving data in the downlink, there will typically also be transmission activity in the uplink, and, thus, CQI reports should preferably be sent mainly when the UE is anyway transmitting in the uplink in response to downlink transmissions, as this will minimize the amount of semi-statically allocated CQI resources. For this reason, the CQI overhead can be reduced by defining two different CQI formats, wherein a first format using a larger number of bits, is used in situations when the UE would transmit data in the uplink anyway, while a second format using a smaller number of bits is used for CQI transmission only. Since the transmission structure is different for the two transmission cases, having different sizes for the two CQI reporting formats, such a procedure will not complicate the overall structure.

[0037] According to one embodiment, two different

types of CQI reports, specified as a low-resolution type, i.e. a coarse type, and as a high-resolution type, i.e. a detailed type, respectively, are specified and the CQI reporting trigger criteria associated with these two CQI report types is set-up in such a way that if it is found that a UE has received an uplink grant from an eNodeB during a CRT check, the UE will transmit a detailed high-resolution CQI report using the granted resource, while a coarse low-resolution CQI report will be transmitted on the dedicated uplink physical control channel, if no uplink grant has been received. A method of managing CQI report delivery according to this embodiment will now be described in further detail with reference to figure 4a.

[0038] The first two **steps 400**, and **401** are executed in the same manner as for the prior art described above, referring to figure 3. In a subsequent **step 403**, however, it is determined if the UE has received an uplink grant or not. The presence of an uplink grant at the UE is unconditionally interpreted by the UE as an indication that a CQI report of a first type (type 1) is to be transmitted to the eNodeB on the granted resource. Such a transmission, which may comprise both data and channel state feedback information, is transmitted in a **step 404**. If, however, no uplink grant is present at the UE, a CQI report of a second type (type 2), comprising only channel state feedback information is to be transmitted on a dedicated resource, as indicated in another **step 405**. Alternatively, the type 2 CQI report alternative may be configured to instruct the UE to not transmit any CQI report at all, i.e. a CQI report is only transmitted to the eNodeB of an uplink grant is present at the UE.

[0039] According to another embodiment, which will be described with reference to figure 4b, also other trigger criteria, defined as CRT criteria, is considered when determining what type of CQI report to transmit from the UE. The CRT criteria may e.g. be based on the time since the last transmission of a CQI report took place and/or whether the present downlink activity exceeds a predefined threshold or not.

[0040] In figure 4b, **steps 400** and **401** are equivalent to the ones already shown in figures 3 and 4a. In a next **step 402**, however, the relevant CRT criteria is checked. If the CRT criteria is not valid, no CQI report is transmitted, and the checking procedure is restarted at step 401. If, on the other hand, the CRT criteria is found to be valid, it is determined if an uplink grant is present at the UE in a next **step 403**. If an uplink grant is not present, a coarse CQI report of type 2 is transmitted in a **step 404**, while a more detailed report of type 1 is instead transmitted in another **step 405** if an uplink grant is present at the UE. Also in this scenario, the type 2 report alternative may be configured to instruct the UE to not transmit any CQI report at all.

[0041] Including uplink grant availability in the CQI reporting triggers has large implications on the practical usage of the CQI reports, since the CQI reports may be useful for a lot more purposes compared to what can be achieved with other state of the art solutions. A scheduler

of an eNodeB may for example grant a UE a specific resource for the purpose of performing uplink channel estimation, regardless if it has received a scheduling request from the UE or not. If the UE responds to the grant by transmitting a CQI report on the granted resource, the scheduler will be provided with information about the uplink and downlink channel quality at the same time. Such a procedure may be used as a more effective alternative to channel sounding, where only a reference signal, carrying no information is transmitted from the UE.

[0042] In the situation when a UE has an uplink grant but no uplink data buffered for transmission, a CQI type 2 report received by the eNodeB, implicitly indicates to the eNodeB that the UE has no uplink data, and as a consequence for the eNodeB, requesting for empty buffer status information by the eNodeB will be superfluous, resulting in reduced signaling.

[0043] The described channel state feedback procedure can enable the scheduler of an eNodeB, which typically consists of an uplink scheduling function and a downlink scheduling function, to perform a trade-off between uplink and downlink capacity. If the downlink scheduling function requires a CQI report to be delivered, it can check with the uplink scheduling function if the corresponding UE has an uplink grant or not. If the UE already has an uplink grant, the scheduler can expect a CQI report to be transmitted on the granted resource. If, however, the UE does not have an uplink grant, the downlink scheduling function may request the uplink scheduling function to schedule the corresponding user in the near future, even if the corresponding user has not made any scheduling request. If the uplink load is low, the uplink scheduling function may choose to give the user a grant just for the sake of transmitting the CQI report that the downlink scheduling function requested. If, on the other hand, the present uplink load is high, i.e. higher than a specified threshold value, the uplink scheduling function may prioritize uplink data transmission from other users, and, thus, no resources will be used for CQI reporting as long as the uplink load remains high.

[0044] Channel state feedback may also be used to keep uplink users synchronized. The channel state feedback retrieved by the eNodeB in response to a received uplink grant may be used to control the load on the uplink synchronization channel, allowing the eNodeB to gain direct control of which users to keep in synchronized state. For example, in situations with low load, the scheduler can choose to keep the users synchronized for a relatively long time period in order to provide a quicker response time once new data arrives at the UE. Thus scheduled CQI reports may be used instead of synchronization probes on the uplink synchronization channel.

[0045] In situations when the UE is power limited on the uplink it may not be able to transmit a CQI report and data in the same TTI. For coverage reasons it would then be beneficial to have the option to turn off CQI reporting in cases where it has been found that the energy left for data transmission has fallen below a threshold. There-

fore, also the remaining available energy for data transmission could be included in the CQI reporting trigger criteria. Since CQI reports and data transmissions are time multiplexed on the uplink, the removal of the CQI reporting from the TTI will give a power limited UE more time to transmit the data symbols, and hence the energy of the data part can be increased. The eNodeB may interpret an absence of a CQI report that should have been included according to one CTR as an indication that the power headroom of that UE is zero or below a minimum level. This option, thus can be used to avoid explicit signaling of the power headroom for severely power limited UEs.

[0046] It is also possible to combine the suggested channel state feedback procedure with a rule that provides uplink grants implicitly, e.g. by associating every downlink transmission with an implicitly granted uplink resource. An uplink resource grant may then be pre-configured in such a way that every UE that is scheduled in

the downlink can derive an uplink grant for a future uplink transmission. This implicit uplink grant may e.g. be based on the position of the downlink resource allocation description on the downlink scheduling control channel. Such a rule could be beneficial since we know that when there is downlink data to transmit to a UE, transmission of HARQ feedback, TCP feedback, and CQI reports in the uplink will be required. In one alternative embodiment, a flag in the downlink assignment could be used to indicate if a downlink assignment is to be associated with an implicitly granted uplink resource or not.

[0047] Also the use of DRX/DTX, i.e. Discontinuous reception/ Discontinuous transmission, in the UE may affect the procedure for delivery of CQI reports. A UE operating in a DRX/DTX mode may fail to produce an expected CQI report of a certain type since it is configured to not listen to the downlink reference symbols all of the time. Thus, a CQI triggering criteria may also include information regarding whether the UE is in a certain DRX/DTX mode or not. A UE in DRX mode may e.g. transmit a snapshot CQI report, based on a single observation of the downlink reference symbols, while a processed CQI report based on observations of downlink reference symbols from several TTIs may instead be transmitted if the UE is not in DRX mode.

[0048] A CQI reporting rule according to the claimed invention can be set-up stating that if a UE obtains an uplink grant when the UE has no uplink data to transmit, it sends channel state feedback, such as a CQI report on the granted resource, even if no other CTR criteria that normally triggers a CQI report transmission is valid. As a consequence, the eNodeB may interpret a scheduled uplink transmission that only consists of channel state feedback, such as a CQI report, as an implicit signaling of an empty buffer status information message, and as an acknowledgement of the uplink grant that was transmitted in the downlink.

[0049] An alternative procedure for managing CQI report delivery in a UE according to another embodiment

will now be described with reference to figure 5. According to this embodiment, also presence or absence of uplink data in the UE is considered and two different type 1 CQI reports, i.e. detailed reports are introduced, namely a full type 1 CQI report, comprising only channel state feedback information, and a combined type 1 CQI report, comprising a combination of uplink data and channel state feedback information.

[0050] In resemblance to the previous embodiment, also this embodiment starts with the configuring of a CRTS of a UE, as illustrated with a first **step 500**, followed by the initiation of a procedure for continuously checking the CRTs, specified by the CRTs in a next **step 501**, a checking of CRT criteria in a **step 502**, and of an uplink grant in a subsequent **step 503**. In resemblance to the previous embodiment, no uplink grant in the UE results in the transmission of a type 2 CQI report in a **step 504**. If, however, an uplink grant is found to be present in step 503, it is determined whether there is uplink data present in the UE in a next **step 505**. Depending on whether uplink data is present in the UE or not, a full or a combined CQI report of type 1 will be chosen for transmission of the channel state feedback information. Accordingly, no uplink data will result in the transmission of a full type 1 CQI report in a **step 506**. Such a detailed report may be configured to contain anything from e.g. 10 % channel quality information, leaving remaining space empty, to 100 % channel quality information. If instead uplink data is present, a combined type 1 CQI report will be transmitted, as illustrated with another **step 507**. Once a report has been delivered from the UE, the CRT checking procedure is repeated, starting with step 501. If the eNodeB provides the UE with an uplink grant according to the described embodiment it will, however, not know if it is to expect a type 1 CQI report or a type 2 CQI report since it does not know if the UE has uplink data or not. The eNodeB therefore will have to perform blind detection to determine whether a type 1 CQI report is a full or a combined version.

[0051] The introduction of an uplink grant of a dynamic size may enable the eNodeB to implicitly know the transmission format of received channel quality information and, thus, to provide a powerful alternative to blind detection. The use of such a dynamic uplink grant will now be illustrated in yet another embodiment with reference to figure 6. Also in figure 6, the initial steps, namely **Steps 600-604** are basically performing the same procedures as steps 500-504 in figure 5, wherein a CQI report of type 2 is transmitted on a dedicated channel in step 604, if no uplink grant is present at the UE. If an uplink grant is present at the UE, the size of the uplink grant will be considered in a **step 605**. In step 605, it is determined whether the size of that uplink grant exceeds a first threshold T1. If this is the case, a CQI report of type 1, having a specific size, size 1, associated with the comparison step, is transmitted to eNodeB in a **step 606**. If, however, the size of the uplink grant is smaller than T1, the procedure may be repeated, wherein the uplink grant

is gradually compared to smaller thresholds, T2..Tn, where $T1 > T2 > \dots > Tn$, until a match is found, i.e. the size of the uplink grant is bigger than a threshold, and a CQI report corresponding to the respective comparison

5 step is transmitted. A final comparison is illustrated with a **step 607**, which results in either the transmission of a size n type 1 CQI report or no report at all. The smallest threshold, Tn may have a small amount or even be set to 0 if it is required that a CQI report is to be transmitted 10 on each occasion when the CTR criteria has been found to be valid.

[0052] A simplified block diagram of a base station, exemplified as an eNodeB, adapted to operate in accordance with at least the embodiments described above, will 15 now be described with reference to figure 7. It is to be understood that, for simplicity reasons, units which are not necessary for the understanding of the claimed invention have been omitted. It is also to be understood that all units mentioned in this document are to be interpreted as exemplified logical units, which may be implemented as single units or in combination with other units in any of various possible ways.

[0053] The eNodeB **700** comprises a scheduler **701**, adapted to administrate scheduling between the eNodeB 25 and one or more UEs, represented here by UE **800**. The scheduler 701, which typically includes separate uplink and downlink scheduling functions (not shown), comprises a generating unit **703**, adapted to determine whether channel state feedback information is required or not according to predetermined rules configured for the scheduler 701, and to generate an uplink grant to be transmitted 30 to the UE 800 when it is found that channel state feedback information is required. An uplink grant generated by the scheduler 701 is transmitted to the respective UE via a transmitting unit **704** of a transceiver **705**, and channel state feedback, which may be transmitted to the eNodeB 700 in response to the uplink grant, is received by a receiving unit **706** of the transceiver unit 705. Also rules for 35 how to interpret the information retrieved from channel state feedback, or absence of expected channel state feedback, will be specified in the configuration of the scheduler.

[0054] Also a UE operating in accordance with at least the embodiment described above, will require modifications. A simplified block diagram of a UE, according to 45 one embodiment, will now be described with reference to figure 8. Also in this figure, units and functions not necessary for the understanding of the claimed invention have been omitted. The UE **800** communicating with an eNodeB **700**, comprises a generating unit **801** for generating a CQI report when the specified criteria is found to be valid, according to any of the embodiments described above. The generating unit 801 further comprises a determining unit **802**, adapted to determine whether a 50 respective CRT criteria is fulfilled or not, and, thus, whether a respective CQI report is to be transmitted or not. Obviously, the determining unit 802 is configured to determine whether an uplink grant has been received by

the receiving unit 804 of a transceiver unit 805 of UE 800 and is present at the UE or not. The determining unit 802 also may determine whether the UE has uplink data to transmit or not. In addition, the determining unit may take the size of a received uplink grant into consideration when determining which version of channel state feedback information to transmit. The CQI reporting trigger criteria, specified for the UE in one or more CRTs 806, is stored within, or in association with the generating unit 801. Once the availability of an uplink grant, and, if applicable, the validity of the remaining CRT criteria, has been determined by the determining unit 802, a CQI report is generated by the generating unit 801. The chosen CQI report is then transmitted to the eNodeB 700 via a transmitting unit 807 of the transceiver unit 805.

[0055] The operating steps of an eNodeB according to one embodiment will now be described with reference to figure 9, where scheduling is activated in a first **step 900**. When it is determined by the scheduler of eNodeB that a CQI report is required in a next **step 901**, the scheduler generates an uplink grant in a **step 904**, and transmits an uplink grant to the respective UE in a final **step 905**. The scheduling then proceeds accordingly, wherein the CQI report is awaited. In one alternative, the step 901 may be represented by checking the condition whether downlink data is present or not, i.e. if downlink data for the respective UE is present at the eNodeB, an uplink grant is generated in step 904 and transmitted in step 905, while no UL grant is transmitted otherwise.

[0056] An alternative embodiment of a configuration of the eNodeB is described with reference to figure 10, where the first **step 900** and the final steps 904 and 905 are the same as described in the previous embodiment. In **step 902**, it is determined whether downlink data is present or not. If downlink data is present, the uplink load of the eNodeB is compared to a threshold, th in a next **step 903**, and if the uplink load is found to be below that threshold, an uplink grant is generated in **step 904**, and transmitted in **step 905**. If, however, the uplink load exceeds the threshold, the present load is considered to be too high to initiate channel state feedback transmission, and, thus, no uplink request is allowed to be transmitted at that occasion.

[0057] In the following, possible related examples are listed:

1. A method in a user equipment, UE (800), for providing channel state feedback from the UE to a base station (700), characterized by the steps of

- determining (403) whether the UE has received an uplink grant from the base station or not;
- transmitting (404) a first type of channel state feedback information to the base station on the granted resource in case the UE has received an uplink grant;
- transmitting (405) a second type of channel state feedback information on a dedicated resource

or no channel state feedback information in case the UE has not received an uplink grant, wherein said second type of information is less detailed than the first type.

5 2. A method according to example 1, further comprising the step (402) of determining whether the channel state feedback trigger criteria specified for said UE is valid and wherein the respective channel state feedback information is transmitted (404,405) only if said channel state feedback trigger criteria is valid.

10 3. A method according to examples 1 or 2, wherein if the UE has no uplink grant the second, a less detailed type of channel state feedback information is periodically transmitted while the more detailed first type of channel state feedback information is periodically transmitted if the UE does have an uplink grant.

15 4. A method according to examples 1 or 2, further comprising the step of determining whether the UE has uplink data (505) and if the UE has uplink data and an uplink grant a scheduled uplink transmission (507) will consist of both channel state feedback information and uplink data.

20 5. A method according to examples 1 or 2, further comprising the step of determining whether the UE has uplink data and if an uplink grant but no uplink data is present a scheduled uplink transmission (506) will consist of only channel state feedback information.

25 6. A method according to example 5, wherein said scheduled uplink transmission is utilized as a signaling of an empty buffer status information to the base station.

30 7. A method according to example 5, wherein said scheduled uplink transmission is utilized as an acknowledgement of the uplink grant that was transmitted in the downlink.

35 8. A method according to any of examples 1-3, wherein the type of report to be used for transmission of the respective channel state feedback information is dependant on the size of the received uplink grant.

40 9. A method according to example 8, further comprising the step of comparing the size of said uplink grant to a threshold (605), T1 and wherein the channel state feedback information is transmitted in a report of a first type (606) of a size associated with T1 if said uplink grant size exceeds T1.

45 10. A method according to example 9, wherein if said

size does not exceeds T1, said comparison is gradually repeated for one or more thresholds (607), T2..Tn, wherein T1 > T2 .. > Tn and wherein a match results in the transmission of a report of an associated size (608). 5

11. A method according to any of the preceding examples, wherein the size of the uplink grant is an indication of the bandwidth, the modulation size, and/or the code rate associated with the uplink grant. 10

12. A method according to any of the preceding examples, wherein remaining available energy for data transmission is included on the uplink as a condition for transmission of the channel state feedback information. 15

13. A user Equipment, UE (800), for providing channel state feedback from the UE to a base station (700), 20

characterised by:

- a determining unit (802) for determining whether the UE has received an uplink grant from the base station or not, 25
- a transmitting unit (807) for transmitting a first type of channel state feedback information to the base station on the granted resource in case the UE has received an uplink grant, or a second type of channel state feedback information on a dedicated resource, or no channel state feedback information in case the UE has not received an uplink grant, wherein said second type of information is less detailed than the first type. 30

14. A UE according to example 13, wherein said determining unit is further adapted to determine whether relevant channel state feedback trigger criteria specified for said UE is valid or not and wherein said transmitting unit is adapted to only transmit channel state feedback information if also said channel state feedback trigger criteria is valid. 35

15. A UE according to example 13 or 14, wherein said channel state feedback information is transmitted in a report generated by a generating unit (801). 40

16. A UE according to example 15, wherein said generating unit is adapted to periodically generate a second, less detailed report type in case the UE has no uplink grant and a second, more detailed report type in case the UE does have an uplink grant. 45

17. A UE according to any of examples 13-16, wherein said determining unit is adapted to compare the size of said uplink grant to a threshold, T1 and wherein said generating unit is adapted to generate a report associated with T1 if said size exceeds T1. 50

18. A UE according to example 17, wherein if said size does not exceeds T1, said determining unit is further adapted to gradually repeat said comparison procedure for one or more thresholds, T2..Tn, wherein T1 > T2 .. > Tn, and wherein said generating unit is adapted to transmit a report of an associated size if a comparison match. 55

19. A UE according to any of examples 13-18, wherein said determining unit is adapted to include remaining available energy for data transmission on the uplink as a condition for generating said report. 60

20. A method in a base station (700) comprising a scheduler for obtaining channel state feedback from a UE (800), **characterized by** the steps of

- determining (901) if channel state feedback is required, 65
- generating (904) an uplink grant in case channel state feedback is required, and
- providing (905) a generated uplink grant to the UE in order to receive the channel state feedback on the granted resource. 70

21. The method according to example 20, wherein said determining step further comprises determining if downlink data is present in the base station and in case downlink data is present, generating and providing an uplink grant to the UE in order to receive downlink channel state feedback on the granted resource. 75

22. The method according to example 21, wherein said determining step further comprises determining (903) whether the uplink load is below a threshold, th, and in case the uplink load is below said threshold generating and providing an uplink grant to the UE. 80

23. The method according to example 20, wherein an uplink grant is provided to the UE for the purpose of receiving an uplink transmission on the granted resource containing at least channel state feedback, and wherein the uplink transmission from the UE is used for estimating the uplink channel quality for link adaptation and/or channel dependent scheduling of uplink data from the UE. 85

24. The method according to example 20, wherein an uplink grant is provided to the UE for the purpose of maintaining uplink synchronization. 90

25. The method according to any of examples 20-24, wherein the size of the uplink grant is variable. 95

26. A base station (700) comprising a scheduler (701) for obtaining channel state feedback from a user equipment ,UE (800), **characterized by:**

- a generating unit (703) adapted to determine whether channel state feedback is required or not and to generate an uplink grant in order to receive channel state feedback from the UE on a granted resource in case channel state feedback is required,
- a transmitting unit (704) adapted to transmit the uplink grant to the UE, and
- a receiving unit (706) adapted to receive channel state feedback in response to the transmitted uplink grant.

27. A base station according to example 26, wherein said generating unit is further adapted to provide an uplink grant to the UE in order to receive downlink channel state feedback required for link adaptation and/or channel dependent scheduling of downlink data to the UE on the granted resource if the base station has downlink data.

28. A base station according to example 27, wherein said generating unit is further adapted to provide an uplink grant to the UE in case the uplink load is also below a threshold, th , such that uplink data from other UEs will not be negatively affected.

29. A base station according to example 27, wherein said generating unit is further adapted to provide an uplink grant to the UE in order to receive an uplink transmission on the granted resource containing at least channel state feedback, and wherein said scheduler is adapted to use the uplink transmission to estimate the uplink channel quality for link adaptation and/or channel dependent scheduling of uplink data from the UE.

30. A base station according to example 27, wherein said generating unit is adapted to provide a UE with an uplink grant for the purpose of maintaining uplink synchronization.

31. A base station according to any of examples 26-30, wherein said generating unit is adapted to generate an uplink grant of variable size.

[0058] To conclude, with more efficient control channel handling, the total available resources of a network can be more efficiently utilized, resulting in an improved network capacity.

[0059] Even though the invention has been described in relation to the concept of LTE, it could be applied to any system that applies channel state feedback reporting, such as e.g. CQI reporting, and scheduled uplink, such as e.g. WCDMA with enhanced uplink. The invention is, thus, not limited to the disclosed embodiments, but is intended to cover various modifications within the scope of the appended claims.

Claims

1. A method in a base station (700) comprising a scheduler for obtaining channel state feedback from a UE (800), **characterized by** the steps of
 - determining (901) if channel state feedback is required,
 - generating (904) an uplink grant in case channel state feedback is required, and
 - providing (905) a generated uplink grant to the UE in order to receive a first type of channel state feedback information on the granted resource, said first type of information is more detailed than a second type of channel state feedback information that is received from the UE on a dedicated resource in case no uplink grant has been provided.
2. The method according to claim 1, wherein said determining step further comprises determining if downlink data is present in the base station and in case downlink data is present, generating and providing an uplink grant to the UE in order to receive downlink channel state feedback on the granted resource.
3. The method according to claim 1, wherein said determining step further comprises determining (903) whether the uplink load is below a threshold, th , and in case the uplink load is below said threshold generating and providing an uplink grant to the UE.
4. The method according to claim 1, wherein an uplink grant is provided to the UE for the purpose of receiving an uplink transmission on the granted resource containing at least channel state feedback, and wherein the uplink transmission from the UE is used for estimating the uplink channel quality for link adaptation and/or channel dependent scheduling of uplink data from the UE.
5. The method according to claim 1, wherein an uplink grant is provided to the UE for the purpose of maintaining uplink synchronization.
6. The method according to any of claims 1-5 wherein the size of the uplink grant is variable.
7. A base station (700) comprising a scheduler (701) for obtaining channel state feedback from a user equipment ,UE (800), **characterized by**:
 - a generating unit (703) adapted to determine whether channel state feedback is required or not and to generate an uplink grant in order to receive channel state feedback from the UE on a granted resource in case channel state feed-

back is required,	- a transmitting unit (704) adapted to transmit the uplink grant to the UE, and	willigung an die UE, um einen ersten Typ von
- a receiving unit (706) adapted to receive a first	type of channel state feedback information on the granted resource in response to the transmitted uplink grant, wherein said first type of information is more detailed than a second type of channel state feedback information that is received from the UE on a dedicated resource in case no uplink grant has been provided.	Kanalzustands-Rückmeldungsinformationen auf der bewilligten Ressource zu empfangen, wobei der erste Typ von Informationen detaillierter als ein zweiter Typ von Kanalzustands-Rückmeldungsinformationen ist, der von der UE auf einer dedizierten Ressource empfangen wird, falls keine Uplink-Bewilligung übermittelt wurde.
5		
10		
15		
20		
25		
30		
35		
40		
45		

Patentansprüche

<p>1. Verfahren in einer Basisstation (700), die einen Scheduler zum Einholen von Kanalzustandsrückmeldung von einer UE (800) umfasst, gekennzeichnet durch die folgenden Schritte:</p> <ul style="list-style-type: none"> - Bestimmen (901), ob Kanalzustandsrückmeldung benötigt wird, - Erzeugen (904) einer Uplink-Bewilligung, falls Kanalzustandsrückmeldung benötigt wird, und - Übermitteln (905) einer erzeugten Uplink-Bewilligung an die UE (800), falls Kanalzustandsrückmeldung benötigt wird 	<p>50</p>
--	-----------

stands-Rückmeldungsinformationen auf der bewilligten Ressource in Reaktion auf die gesendete Uplink-Bewilligung empfängt, wobei der erste Typ von Informationen detaillierter als ein zweiter Typ von Kanalstands-Rückmeldungsinformationen ist, der von der UE auf einer dedizierten Ressource empfangen wird, falls keine Uplink-Bewilligung übermittelt wurde.

8. Basisstation nach Anspruch 7, wobei die Erzeugungseinheit ferner so ausgelegt ist, dass sie eine Uplink-Bewilligung an die UE übermittelt, um Downlink-Kanalzustandsrückmeldung zu empfangen, die zur Streckenanpassung und/oder kanalabhängigen Disposition von Downlink-Daten für die UE auf der bewilligten Ressource benötigt wird, wenn die Basisstation Downlink-Daten aufweist. 10

9. Basisstation nach Anspruch 8, wobei die Erzeugungseinheit ferner so ausgelegt ist, dass sie eine Uplink-Bewilligung an die UE übermittelt, falls die Uplink-Last außerdem unter einer Schwelle, th , ist, derart dass Uplink-Daten von anderen UEs nicht negativ beeinflusst werden. 15

10. Basisstation nach Anspruch 8, wobei die Erzeugungseinheit ferner so ausgelegt ist, dass sie eine Uplink-Bewilligung an die UE übermittelt, um eine Uplink-Übertragung auf der bewilligten Ressource zu empfangen, die wenigstens Kanalzustandsrückmeldung enthält, und wobei der Scheduler so ausgelegt ist, dass er die Uplink-Übertragung zum Schätzen der Uplink-Kanalqualität zur Streckenanpassung und/oder kanalabhängigen Disposition von Uplink-Daten von der UE verwendet. 20

11. Basisstation nach Anspruch 8, wobei die Erzeugungseinheit so ausgelegt ist, dass sie eine UE mit einer Uplink-Bewilligung versieht, um Uplink-Synchronisation aufrechtzuerhalten. 25

12. Basisstation nach einer der Ausführungsformen 7 bis 11, wobei die Erzeugungseinheit so ausgelegt ist, dass sie eine Uplink-Bewilligung von veränderlicher Größe erzeugt. 30

Revendications

1. Procédé dans une station de base (700) comprenant un ordonnanceur destiné à obtenir une rétroaction d'état de canal en provenance d'un UE (800), **caractérisé par** les étapes de : 50

- la détermination (901) si une rétroaction d'état de canal est nécessaire,
- la génération (904) d'un octroi de liaison montante dans le cas où une rétroaction d'état de canal est nécessaire, et

55

2. Procédé selon la revendication 1, dans lequel ladite étape de détermination comprend en outre la détermination si des données de liaison descendante sont présentes dans la station de base et, dans le cas où des données de liaison descendante sont présentes, la génération et la fourniture d'un octroi de liaison montante à l'UE pour recevoir une rétroaction d'état de canal de liaison descendante sur la ressource octroyée.

3. Procédé selon la revendication 1, dans lequel ladite étape de détermination comprend en outre la détermination (903) si la charge de liaison montante est inférieure à un seuil, th , et dans le cas où la charge de liaison montante est inférieure au dit seuil, la génération et la fourniture d'un octroi de liaison montante à l'UE.

4. Procédé selon la revendication 1, dans lequel un octroi de liaison montante est fourni à l'UE dans le but de recevoir une émission de liaison montante sur la ressource octroyée contenant au moins une rétroaction d'état de canal, et dans lequel l'émission de liaison montante en provenance de l'UE est utilisée pour l'estimation de la qualité de canal de liaison montante pour une adaptation de canal et/ou un ordonnancement dépendant du canal de données de liaison montante en provenance de l'UE.

5. Procédé selon la revendication 1, dans lequel un octroi de liaison montante est fourni à l'UE dans le but de maintenir une synchronisation de liaison montante.

6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la taille de l'octroi de liaison montante est variable.

7. Station de base (700) comprenant un ordonnanceur (701) destiné à obtenir une rétroaction d'état de canal en provenance d'un équipement utilisateur, UE, (800), **caractérisée par** :

- une unité de génération (703) apte à effectuer la détermination si une rétroaction d'état de canal est nécessaire ou non, et la génération d'un octroi de liaison montante pour recevoir une ré-

canal est nécessaire, et

- la fourniture (905) d'un octroi de liaison montante généré à l'UE pour recevoir un premier type d'informations de rétroaction d'état de canal sur la ressource octroyée, ledit premier type d'informations étant plus détaillé qu'un deuxième type d'informations de rétroaction d'état de canal qui sont reçues en provenance de l'UE sur une ressource dédiée dans le cas où aucun octroi de liaison montante n'est fourni.

2. Procédé selon la revendication 1, dans lequel ladite étape de détermination comprend en outre la détermination si des données de liaison descendante sont présentes dans la station de base et, dans le cas où des données de liaison descendante sont présentes, la génération et la fourniture d'un octroi de liaison montante à l'UE pour recevoir une rétroaction d'état de canal de liaison descendante sur la ressource octroyée.

3. Procédé selon la revendication 1, dans lequel ladite étape de détermination comprend en outre la détermination (903) si la charge de liaison montante est inférieure à un seuil, th , et dans le cas où la charge de liaison montante est inférieure au dit seuil, la génération et la fourniture d'un octroi de liaison montante à l'UE.

4. Procédé selon la revendication 1, dans lequel un octroi de liaison montante est fourni à l'UE dans le but de recevoir une émission de liaison montante sur la ressource octroyée contenant au moins une rétroaction d'état de canal, et dans lequel l'émission de liaison montante en provenance de l'UE est utilisée pour l'estimation de la qualité de canal de liaison montante pour une adaptation de canal et/ou un ordonnancement dépendant du canal de données de liaison montante en provenance de l'UE.

5. Procédé selon la revendication 1, dans lequel un octroi de liaison montante est fourni à l'UE dans le but de maintenir une synchronisation de liaison montante.

6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la taille de l'octroi de liaison montante est variable.

7. Station de base (700) comprenant un ordonnanceur (701) destiné à obtenir une rétroaction d'état de canal en provenance d'un équipement utilisateur, UE, (800), **caractérisée par** :

- une unité de génération (703) apte à effectuer la détermination si une rétroaction d'état de canal est nécessaire ou non, et la génération d'un octroi de liaison montante pour recevoir une ré-

troaction d'état de canal en provenance de l'UE
sur une ressource octroyée dans le cas où une
rétroaction d'état de canal est nécessaire,
- une unité d'émission (704) apte à effectuer
l'émission de l'octroi de liaison montante à l'UE, 5
et
- une unité de réception (706) apte à effectuer
la réception d'un premier type d'informations de
rétroaction d'état de canal sur la ressource oc-
troyée en réponse à l'octroi de liaison montante 10
émis, dans laquelle ledit premier type d'informa-
tions est plus détaillé qu'un deuxième type d'in-
formations de rétroaction d'état de canal qui sont
reçues en provenance de l'UE sur une ressour-
ce dédiée dans le cas où aucun octroi de liaison 15
montante n'est fourni.

8. Station de base selon la revendication 7, dans la-
quelle ladite unité de génération est en outre apte à
effectuer la fourniture d'un octroi de liaison montante 20
à l'UE pour recevoir une rétroaction d'état de canal
de liaison descendante nécessaire pour une adap-
tation de liaison et/ou un ordonnancement dépen-
dant du canal de données de liaison descendante à
l'UE sur la ressource octroyée si la station de base 25
a des données de liaison descendante.

9. Station de base selon la revendication 8, dans la-
quelle ladite unité de génération est en outre apte à
effectuer la fourniture d'un octroi de liaison montante 30
à l'UE dans le cas où la charge de liaison montante
est également inférieure à un seuil, th, de sorte que
des données de liaison montante provenant d'autres
UE ne soient pas négativement affectées. 35

10. Station de base selon la revendication 8, dans la-
quelle ladite unité de génération est en outre apte à
effectuer la fourniture d'un octroi de liaison montante
à l'UE pour recevoir une émission de liaison mon-
tante sur la ressource octroyée contenant au moins 40
une rétroaction d'état de canal, et dans laquelle l'or-
donnanceur est apte à effectuer l'utilisation de
l'émission de liaison montante pour estimer la qualité
de canal de liaison montante pour une adaptation
de liaison et/ou un ordonnancement dépendant du 45
canal de données de liaison montante en provenan-
ce de l'UE.

11. Station de base selon la revendication 8, dans la-
quelle ladite unité de génération est apte à effectuer 50
la fourniture à un UE d'un octroi de liaison montante
dans le but de maintenir une synchronisation de
liaison montante.

12. Station de base selon l'une quelconque des reven-
dications 7 à 11, dans laquelle ladite unité de géné-
ration est apte à effectuer la génération d'un octroi 55
de liaison montante de taille variable.

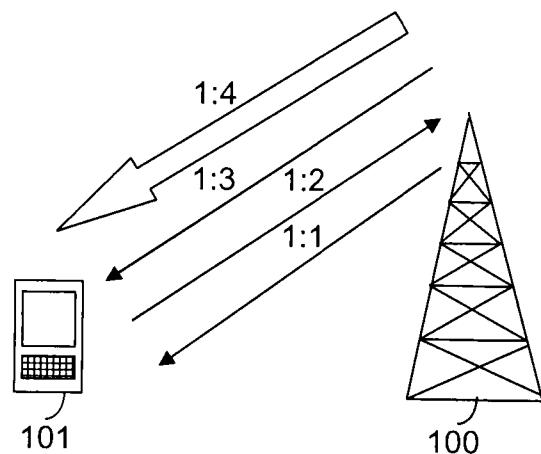


Figure 1 (PRIOR ART)

CRT 1	CQI A
CRT 2	CQI B
CRT 3	CQI C
.	.
.	.
.	.
CRT n	CQI X

Figure 2 (PRIOR ART)

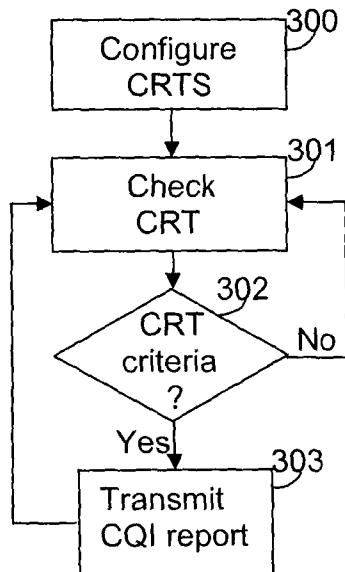


Figure 3 (PRIOR ART)

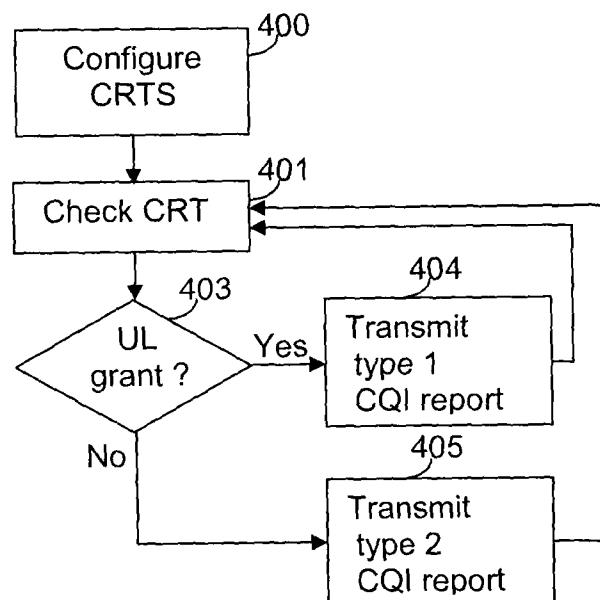


Figure 4a

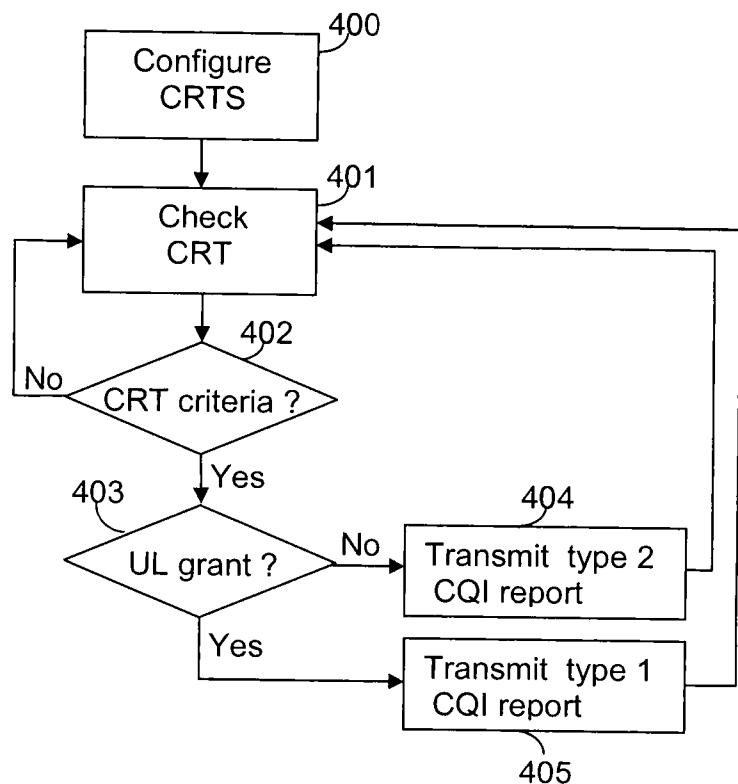


Figure 4b

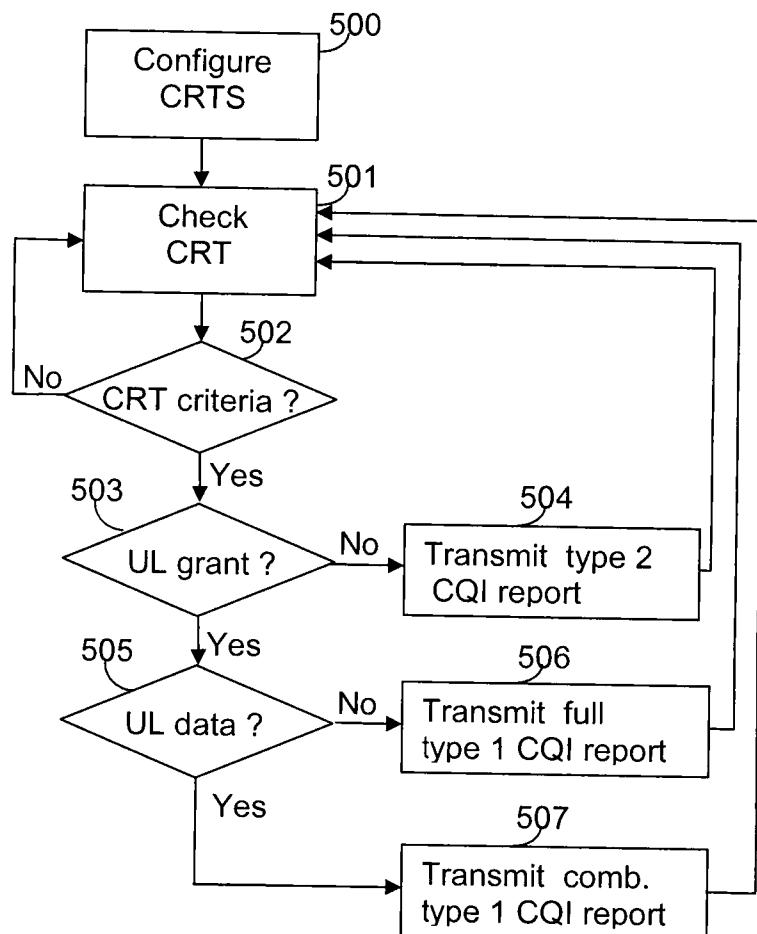


Figure 5

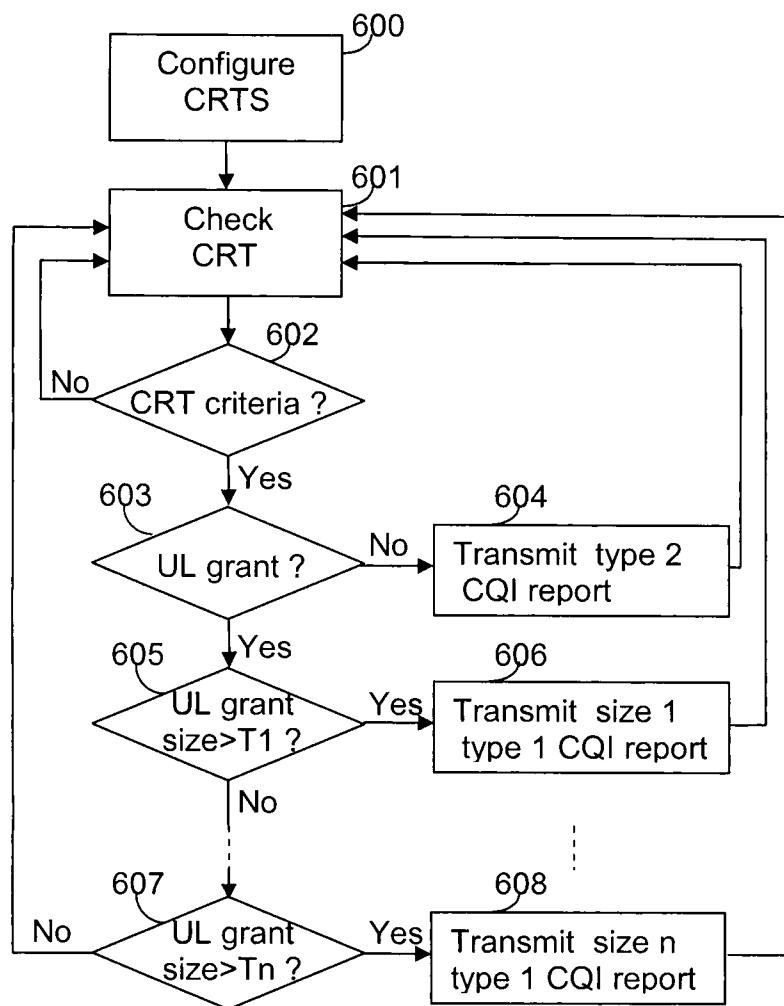


Figure 6

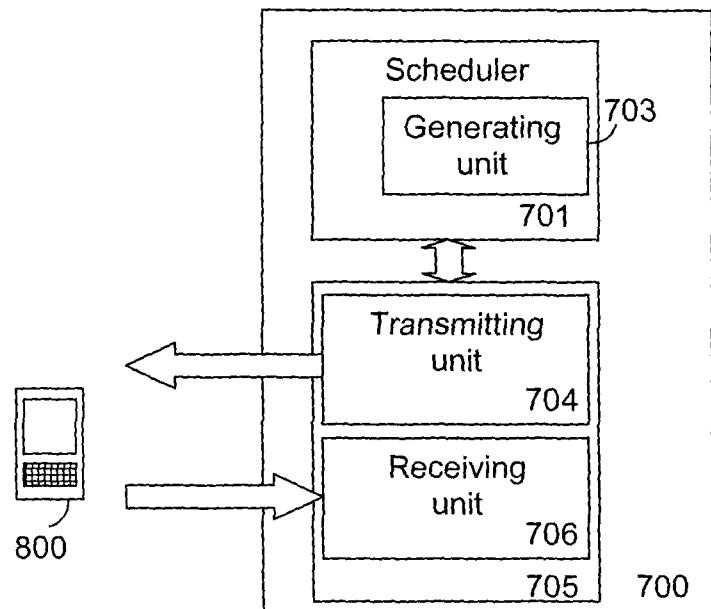


Figure 7

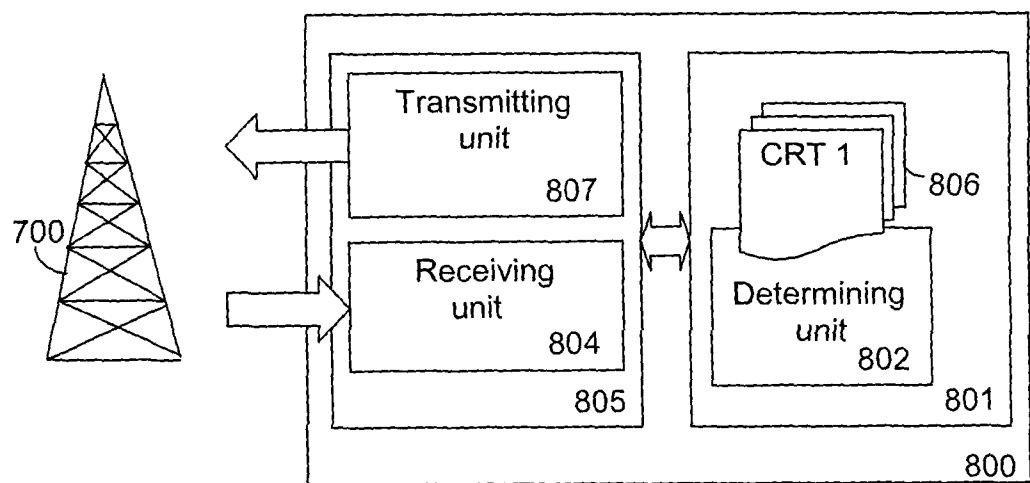


Figure 8

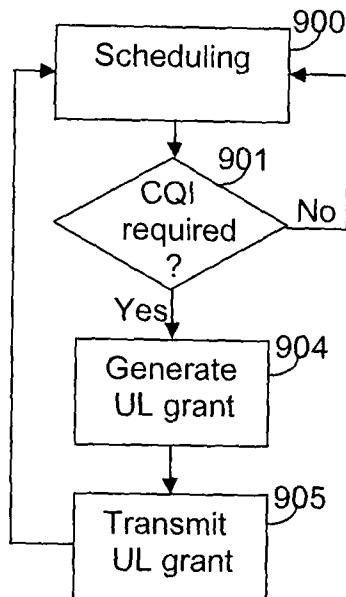
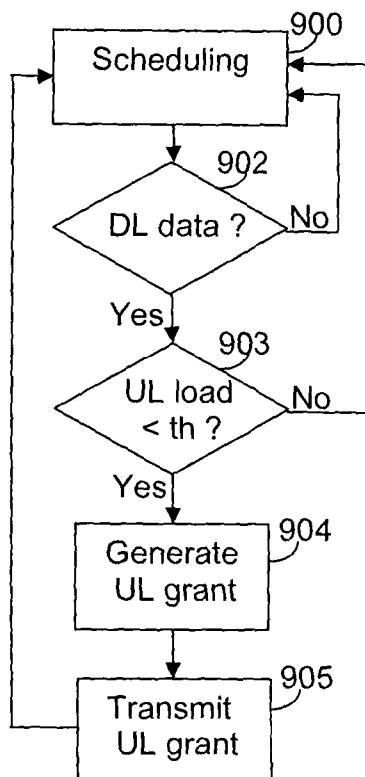
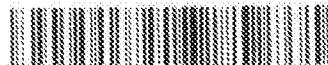


Figure 9




Figure 10

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

- **E.DAHLMAN ; S.PARKVALL ; J.SKÖLD ; P,BEM-
ING.** 3G Evolution: HSPA and LTE for Mobile Broad-
band. Academic Press, 2007 [0005]
- CQI Feedback for EUTRA. *R1-070049, 3GPP TSG
RANI #47bis [0005]*

SZTNH-100039136

716188/KOT

**CSATORNAÁLLAPOT-VISSZACSATOLÁS ELJUTTATÁSA
TÁVKÖZLÉSI RENDSZERBEN**

Szabadalmi igénypontok

1. Eljárás bázisállomásban (700), amely tartalmaz egy ütemezőt, hogy csatornaállapot-visszacsatolást szerezzen egy UE (800) felhasználói berendezéstől, a következő lépésekkel jellemzve:
 - annak meghatározása (901), hogy kell-e csatornaállapot-visszacsatolás,
 - felfelé irányú kapcsolati támogatás előállítása (904), amennyiben csatornaállapot-visszacsatolás szükséges, és
 - előállított felfelé irányú kapcsolati támogatás biztosítása (905) azért, hogy első típusú csatornaállapot-visszacsatolási információt vegyen a támogatott erőforráson, az első típusú információ részletesebb, mint egy második típusú csatornaállapot-visszacsatolási információ, amelyet az UE-től vesznek célra rendelt erőforráson, amennyiben nincs biztosítva felfelé irányú kapcsolati támogatás.
2. Az 1. igénypont szerinti eljárás, ahol a meghatározó lépés továbbá tartalmazza annak meghatározását, hogy lefelé irányuló kapcsolati adat jelen van-e a bázisállomásban, és amennyiben lefelé irányuló kapcsolati adat jelen van, felfelé irányú kapcsolati támogatás előállítása és biztosítása az UE-nek, hogy lefelé irányuló kapcsolati csatornaállapot-visszacsatolást vegyen a támogatott erőforráson.
3. Az 1. igénypont szerinti eljárás, ahol a meghatározó lépés továbbá tartalmazza annak meghatározását (903), hogy a felfelé irányú kapcsolati terhelés egy távközlési hálózat kúszóbérték alatt van-e, és amennyiben a felfelé irányú kapcsolati terhelés a kúszóbérték alatt van, felfelé irányú kapcsolati támogatás előállítása és biztosítása az UE-nek.
4. Az 1. igénypont szerinti eljárás, ahol egy felfelé irányú kapcsolati támogatása van biztosítva az UE-nek arra a célra, hogy felfelé irányú kapcsolati adást vegyen a támogatott erőforráson, amely legalább csatornaállapot-visszacsatolást tartalmaz, és ahol az UE-től

való felfelé irányú kapcsolati adást a felfelé irányú kapcsolati csatorna minőségének becslésére használják az UE-től való felfelé irányú kapcsolati adatok kapcsolati alkalmazásához és/vagy csatornafüggő ütemezéséhez.

5. Az 1. igénypont szerinti eljárás, ahol felfelé irányú kapcsolati támogatás van biztosítva az UE-nek a felfelé irányú kapcsolati szinkronizálás fenntartása céljából.
6. Az 1 - 5. igénypontok egyike szerinti eljárás, ahol a felfelé irányú kapcsolati támogatás mérete változó.
7. Bázisállomás (700), amely tartalmaz egy ütemezőt (701), hogy csatornaállapot-visszacsatolási szerezzen egy UE (800) felhasználói berendezéstől, a következőkkel jellemzve:
 - előállító egység (703), amelyet annak meghatározására alkalmaznak, hogy kell-e csatornaállapot-visszacsatolás vagy sem, valamint felfelé irányú kapcsolati támogatás előállítására, hogy csatornaállapot-visszacsatolást vegyen az UE-től egy támogatott erőforráson, amennyiben csatornaállapot-visszacsatolás szükséges,
 - adó egység (704), amelyet a felfelé irányú kapcsolati támogatásnak az UE-hez való adására alkalmaznak, és
 - vevő egység (706), amelyet arra alkalmaznak, hogy első típusú csatornaállapot-visszacsatolási információt vegyen a támogatott erőforráson válaszul a továbbított felfelé irányú kapcsolati támogatásra, ahol az első típusú információ részletesebb, mint egy második típusú csatornaállapot-visszacsatolási információ, amelyet az UE-től vesznek célra rendelt erőforráson, amennyiben nincs biztosítva felfelé irányú kapcsolati támogatás.
8. A 7. igénypont szerinti bázisállomás, ahol az előállító egységet továbbá arra alkalmazzák, hogy felfelé irányú kapcsolati támogatást biztosítson az UE-nek, hogy lefelé irányuló kapcsolati csatornaállapot-visszacsatolást vegyen, amely lefelé irányuló kapcsolati adatoknak az UE-hez való, a támogatott erőforráson történő kapcsolata alkalmazásához és/vagy csatornafüggő ütemezéséhez szükséges, ha a bázisállomásnak van lefelé irányuló kapcsolati adata.

9. A 8. igénypont szerinti bázisállomás, ahol az előállító egységet továbbá arra alkalmazzák, hogy felfelé irányú kapcsolati támogatást biztosítson, amennyiben a felfelé irányú kapcsolati terhelés szintén egy th küszöbérték alatt van, úgyhogy más UE-ktől való felfelé irányú kapcsolati adatok nem lesznek negatívan befolyásolva.
10. A 8. igénypont szerinti bázisállomás, ahol az előállító egység továbbá arra van kialakítva, hogy felfelé irányú kapcsolati támogatást biztosítson az UE-nek, hogy felfelé irányú kapcsolati adást vegyen a támogatott erőforráson, amely legalább csatornaállapot-visszaesést tartalmaz, és ahol az ütemezőt arra alkalmazzák, hogy a felfelé irányú kapcsolati adást használja a felfelé irányú kapcsolati csatorna minőségének becsülésére az UE-től való felfelé irányú kapcsolati adatok kapcsolatalkalmazásához és/vagy csatornafüggetlen ütemezéséhez.
11. A 8. igénypont szerinti bázisállomás, ahol az előállító egység arra van kialakítva, hogy ellásson egy UE-t felfelé irányú kapcsolati támogatással felfelé irányú kapcsolati szinkronizálás fenntartása céljából.
12. A 7 – 11. igénypontok egyike szerinti bázisállomás, ahol az előállító egységet különböző méretű felfelé irányú kapcsolati támogatás előállítására alkalmazzák.