20107054011 A2 I 00 O 010 0 00 I

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. -

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

(43) International Publication Date \:_?___/

14 May 2010 (14.05.2010) PCT WO 2010/054011 A2
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
HO4N 7/26 (2006.01) kind of national protection available). AE, AG, AL, AM,
21 International Abplication Number- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
PCT/US2009/063304 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(22) International Filing Date: HN, HR, HU, ID, I, IN, IS, JP, KE, KG, KM, KN, KP,
4 November 2009 (04.11.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,

TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

12/264,892 4 November 2008 (04.11.2008) ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): AD- GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
VANCED MICRO DEVICES, INC. [US/US]; One ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Amd Place, Sunnyvale, CA 94088 (US). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCHMIT, Michael,
L. [US/US]; One Amd Place, Sunnyvale, CA 94088 (US).
MEEYAKHAN RAWTHER, Rajy [IN/US]; One Amd

Place, Sunnyvale, CA 94088 (US). Published:
(74) Agents: COURTNEY, Barbara, B. et al.; COURTNEY — without international search report and to be republished
STANIFORD & GREGORY LLP, 10001 N. De Anza upon receipt of that report (Rule 48.2(g))

Blvd., Suite 300, Cupertino, CA 95014 (US).

(54) Title: SOFTWARE VIDEO TRANSCODER WITH GPU ACCELERATION

302 304 314

T |Q iDCT \ Reconslrucuon b
Video / De soded
Bitstream Videa
mecs
Motion | Refercnce
Compensation Frames

Entropy
Decode

$
308

[Video |
Scaler 218
Preprocessing ME Engine MB Coding 324
328
Video Motion Estimation Q tzati §
Frames | Coarse and = fDCT I—>| Bitstream
2 320 Qi egid
28 x, 2%, 1, %, %) iQ,iDCT lencode
Frame Slats & L, recon
ME Stats
T_‘ Reference Frames)_l
FIG.3 2

(57) Abstract: Embodiments of the invention as described herein provide a solution to the problems of conventional methods as
stated above In the following description, various examples are given for illustration, but none are intended to be limiting Embod-
iments are directed to a transcoding system that shares the workload of video transcoding through the use of multiple central pro-
cessing unit (CPU) cores and/or one or more graphical processing units (GPU), including the use of two components within the
GPU a dedicated hardcoded or programmable video decoder for the decode step and compute shaders for scaling and encoding
The system combines usage of an industry standard Microsoft DXVA method for using the GPU to accelerate video decode with a
GPU encoding scheme, along with an intermediate step of scaling the video.

WO 2010/054011 PCT/US2009/063304

SOFTWARE VIDEO TRANSCODER WITH GPU ACCELERATION
Inventors:

Michael L. Schmit
Rajy Meeyakhan Rawther

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation-in-Part application of currently
pending patent application number 12/189,060, entitled “Software Video Encoder with
GPU Acceleration,” filed on August 8, 2008, which is a Continuation-In-Part
application of U.S. Patent Application No. 11/960,640, filed December 19, 2007, which
claims the benefit of U.S. Provisional Patent Application No. 60/928,799, filed May 11,
2007, and which is related to U.S. Patent Application No. 11/951,222, filed December

5,2007, all of which are incorporated herein by reference in their entirety.

FIELD
The disclosed embodiments relate generally to video display technology, and

more specifically to transcoding digital video data.

BACKGROUND OF THE DISCLOSURE

Transcoding is the direct digital-to-digital conversion of one digitally encoded

format to another format. Transcoding can be found in many areas of content
adaptation and is often used to convert incompatible or obsolete data into a more
suitable format. It is also used to archive or distribute content on different types of
digital media for use in different playback devices, such as converting songs from CD
format to MP3 format for playback on computers and MP3 players. Transcoding is
also commonly used in the area of mobile phone content adaptation. In this case,
transcoding is necessary due to the diversity of mobile devices and their capabilities.
This diversity requires an intermediate state of content adaptation in order to make sure
that the source content will adequately play back on the target device.

One popular area in which transcoding is used is the Multimedia Messaging
Service (MMS), which is the technology used to send or receive messages with media

(image, sound, text and video) between mobile phones. For example, when a camera

WO 2010/054011 PCT/US2009/063304

phone is used to take a digital picture, a high-quality image usually of at least 640x480
resolution is created. Sending the image to another phone may require that this high
resolution image be transcoded to a lower resolution image with less color in order to
better fit the target device's screen size and display limitations. Transcoding is also
used by home theatre software, such as to reduce the usage of disk space by video files.
The most common operation in this application is the transcoding of MPEG-2 files to
the MPEG-4 format. With the huge number of online multimedia content and number
of different devices available, real-time transcoding from any input format to any
output format is becoming a necessary to provide true search capability for any
multimedia content on any mobile device.

Present transcoding schemes typically utilize only the CPU resources of the
processing system. Because of the size of video data, this can present a substantial
processing overhead for the system, while additional available resources, such as GPU
bandwidth often is underutilized in such operations.

What is desired, therefore, is a transcoding process that utilizes both GPU and

CPU resources for the tasks performed in the transcode pipeline.

WO 2010/054011 PCT/US2009/063304

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not limitation in the figures

of the accompanying drawings, in which like references indicate similar elements and
in which:

Figure 1 is a block diagram of a video transcoding pipeline that implements a
method of video transcoding, under an embodiment.

Figure 2 is a block diagram of a processing system implementing a video
transcoder pipeline, under an embodiment.

Figure 3 illustrates a video transcoding pipeline with further processing
components, under an embodiment.

Figure 4 illustrates a video edit pipeline that implements a video decode
process, according to an embodiment.

Figure 5 illustrates a video edit pipeline including frame pooling for video data
decoding, under an embodiment.

Figure 6 illustrates a full transcoding pipeline for content that includes both
video and audio content, under an embodiment.

Figure 7 is a flowchart that illustrates an overall method of transcoding digital

video data using multiple decode processes, under an embodiment.

WO 2010/054011 PCT/US2009/063304

DETAILED DESCRIPTION

Embodiments of the invention as described herein provide a solution to the
problems of conventional methods as stated above. In the following description,
various examples are given for illustration, but none are intended to be limiting.
Embodiments are directed to a transcoding system that shares the workload of video
transcoding through the use of multiple central processing unit (CPU) cores and/or one
or more graphical processing units (GPU), including the use of two components within
the GPU: a dedicated hardcoded or programmable video decoder for the decode step
and compute shaders for scaling and encoding. The system combines usage of an
industry standard Microsoft DXVA method for using the GPU to accelerate video
decode with a GPU encoding scheme, along with an intermediate step of scaling the
video.

Transcoding generally refers to the process of transforming video data from a
first format to a second format. Transcoding involves starting with encoded video and
encoding it again after a decode process. For example, source video that is encoded in
one format and stored digitally is decoded, and then encoded to another format, or even
re-encoded to the same format. Intermediate operations may also be performed on the
transcoded video, such as scaling, blending with other video, and so prior to encoding
in the second video format. Figure 1 is a block diagram of a video transcoding
pipeline that implements a method of video transcoding, under an embodiment. As
shown in Figure 1, system 100 includes a video bitstream 102 that is encoded in a first
data format. The bitstream is decoded in video decode process 104. The decoded
video data is then scaled using video scaler 106. The scaled video data is then encoded
in video encoder 108 to produce a bitstream 110 that is formatted in a second video
format.

In one embodiment, the video transcoding pipeline of Figure 1 is implemented
in a processing system that comprises a processing platform including at least one
central processing unit (CPU) and at least one graphics processing unit (GPU). Figure
2 is a block diagram of a processing system implementing a video transcoder pipeline,
under an embodiment. For the system of Figure 2, video data in a first format is stored
in data store 210 and transmitted to processor platform 202 in accordance with the first

video format 211. The processor platform 202 includes a CPU 204, a GPU 206, and

WO 2010/054011 PCT/US2009/063304

memory 208. The GPU 206 may be a graphics processing unit that is separate from the
CPU, but that is provided on the same motherboard or card of the processor platform
202. It may also be provided as a separate unit that is coupled to CPU over a bus or
similar interconnection. Alternatively, GPU 206 may represent graphical processing
circuits or functionality that is tightly coupled or provided as functionality within CPU
204. A transcoding process is implemented through a combination of functions
provided by one or more of CPU 204 and GPU 206 to produce video data in a second
format 213, which can be transferred to a datastore 214 and/or displayed through
display device 212, or transmitted to other devices over interface links or networks,
such as the Internet.

Figure 3 illustrates the video transcoding pipeline of Figure 1 in further detail,
under an embodiment. For the embodiment of Figure 3, the video bitstream is encoded
using entropy coding. Entropy coding is a special form of lossless data compression
that involves arranging the image components in a "zigzag" order employing run-length
encoding (RLE) algorithm that groups similar frequencies together, inserting length
coding zeros, and then using Huffman coding on what the portion that remains.
Huffman coding generally refers to the use of a variable-length code table for encoding
a source symbol (such as a character in a file) where the variable-length code table has
been derived in a particular way based on the estimated probability of occurrence for
each possible value of the source symbol.

In system 300, the encoded bitstream 302 is decoded using entropy decoder
304. The decoding process involves a number of variable length decoding steps,
including inverse DCT (iDCT) 306, dequantization, renormalization of outputs 310,
and so on. In one embodiment, a motion estimation process 308 is performed on
reference frames 312 generated by the reconstruction step 310. The decoded video
frames 314 are then scaled in a video scaler process 316. The scaled video frames 318
are then encoded to the second format through an encoding process illustrated as blocks
320 to 324. The video frames are first preprocessed 320, and then input to a motion
estimation engine 322. An MB coding process 324 then generates the bitstream 328 of
the second format, and reference frames 326 that are fed back to the motion estimation
engine 322. In one embodiment, the one or more of the encoding processes of Figure 3

as represented by blocks 320 to 324, is implemented using the encoder process

WO 2010/054011 PCT/US2009/063304

described in U.S. Patent No. 12/189,060, which is incorporated in its entirety by
reference.

As shown in Figure 3, the first step in the transcoding pipeline is decoding the
video bitstream 102 that has been encoded in a particular digital format. Under an
embodiment, the decoding process utilizes resources provided by the GPU 206 as well
as the CPU 204 to optimize processing throughput as well as the execution of other
steps, such as scaling or blending that may use CPU resources, as well.

Under an embodiment, there are three different ways to decode the video
bitstream 102 using the processing platform 102 that has both CPU and GPU
processors. Depending upon the encoding format of the original bitstream 102, as well
as the other transcode processes involved, one of the three decode methods is selected
for a particular input bitstream.

In a first method, the CPU alone 204 is used to perform all of the steps related
to the decode function 104. This is generally a software only implementation, in which
the GPU 206 is then used to perform the scaling 106 and encoding functions. The CPU
decoder method may also be referred to as a software decoder.

In a second method, a portion of the decoding process is performed on the CPU
and the remainder is performed on the GPU. This is a software plus graphics chip
solution that comprises a GPU programmable decoder system. In this method, the
decoding performed on the CPU includes decoding steps up to the entropy decode step
304. The entropy decoding step and the optional scaling step 316 are performed on the
GPU.

In a third method, dedicated hardware decoder circuitry present in the GPU
(GPU hardware decoder) is employed for the decoding. Decoding is performed using a
hardware/programmable video processor to decode the bitstream through the entropy
decode step 304. The GPU hardware decoder may implemented in a programmable
processing chip that has dedicated hardware with specific instructions, and is designed
to implement certain specifications of one or more codecs. In one embodiment, the
GPU hardware decoder is implemented as a UVD (Unified Video Decoder) portion of
the GPU hardware, and is configured to support the hardware decode of H.264 and VC-
1 video codec standards, or other codecs. In general, the UVD handles decoding of

H.264/AVC, and VC-1 video codecs almost entirely in hardware. The UVD offloads

WO 2010/054011 PCT/US2009/063304

nearly all of the video-decoder process for VC-1 and H.264, requiring minimal host
(CPU) attention. In addition to handling VLC/CAVLC/CABAC, frequency transform,
pixel prediction and inloop deblocking functions, the UVD also contains an advanced
video post-processing block. Various post-processing operations from the UVD may
include denoising, de-interlacing, scaling/resizing, and similar operations. The
hardware/programmable video processor (e.g., UVD) may be implemented through any
appropriate combination of processing circuitry that performs reverse entropy (variable
length decode) uses programmable GPU shaders to do a remaining portion of the
decoding operations.

For purposes of this description, “H.264” refers to the standard for video
compression that is also known as MPEG-4 Part 10, or MPEG-4 AVC (Advanced
Video Coding). H.264 is one of the block-oriented motion-estimation-based codecs
developed by the ITU-T Video Coding Experts Group (VCEG) together with the
ISO/IEC Moving Picture Experts Group (MPEG).

In one embodiment, the decode stage 304-314 of the UVD is configured to
allow copying of the decoded bitstream out of the GPU 206 and into the CPU 204,
This allows the CPU to perform the encoding steps 318-324 in the CPU. For this
embodiment, the output from the video scaler 316 is output to CPU memory 208. This
allows the system to share the processing load between the GPU and the CPU, since a
copy of the data must be made available to both the GPU and the CPU. The encoding
process using the UVD hardware allows a copy to be made at high speed for use by the
CPU. This allows a copy of the images to be maintained by both the GPU and CPU
separately. Any shared processing that is done by both the GPU and CPU thus involves
the sharing of certain information rather than the transmission of the full images
between the two units. This greatly reduces the bandwidth overhead required for
shared CPU/GPU operations on the input video bitstream.

The scaler 316 of Figure 3 is embodied in any appropriate scaler process or
circuit that takes input image and resizes it according to a defined ratio. In general,
image scaling comprises changing the picture size of a video, and is also known as
transsizing. The scaling step is optional, and can be used if the output resolution differs
from the media resolution. The scaler may be used to adjust the image for playback

between different types of devices. For example, High Definition (HD) television

WO 2010/054011 PCT/US2009/063304

transmissions are typically of size 1280x720 pixels up to 1920x1080 pixels. However,
definition for digital cinema (projection in movie theaters) and digital intermediates
(the format used internally in Hollywood production studios) can be as high as
approximately 3000 x 4000 pixels. The scaler process may be implemented as a CPU
scaler or a GPU scaler, which may be a hardware scaler or programmable pixel shader.

For the embodiment in which the second method of decoding is implemented,
that is, the software plus graphics chip solution in which decoding is performed on both
the CPU and GPU, there are two possible variations that may be implemented through
the use of the DirectX Video Acceleration (DXVA) interface defined by Microsoft
Corporation. DXVA is an API (application program interface) specification that allows
video decoding to be hardware accelerated and specifies how a decoder accesses the
portions that are on the GPU. It allows the decoder to offload a number (e.g., the last
two or three) decode pipeline stages to the GPU, after which the data is present on the
GPU and ready to display. The pipeline allows certain CPU-intensive operations such
as iDCT, motion compensation, deinterlacing and color correction to be offloaded to
the GPU.

DXVA works in conjunction with the video rendering model used by the video
card of the system. The DXVA is used by software video decoders to define a codec-
specific pipeline for hardware-accelerated decoding and rendering of the codec. The
pipeline starts at the CPU which is used for parsing the media stream and conversion to
DXVA-compatible structures. DXVA specifies a set of operations that can be hardware
accelerated and device driver interfaces (DDIs) that the graphic driver can implement to
accelerate the operations. If the codec needs any of the supported operations, it can use
these interfaces to access the hardware-accelerated implementation of these operations.
The decoded video is handed over to the hardware video renderer where further post-
processing might be applied to it before being rendered to the device. DXVA specifies
the motion compensation 308 DDI, which specifies the interfaces for iDCT operations
306, Huffman coding, color correction, motion compensation, alpha blending, inverse
quantization colorspace conversion and frame-rate conversion operations, among
others.

In general, the DXVA API is used for Microsoft Windows compatible

processing platforms. For processing platforms that use other operating systems, a

WO 2010/054011 PCT/US2009/063304

DXVA-like interface can be used. Such an interface can be any API that offloads
certain decode pipeline stages to the GPU. For Linux compatible processing platforms,
the API may be implemented through the X-Video Motion Compensation (XvMC) API,
for example. XvMC is an extension of the X video extension (Xv) for the X Window
System, and allows video programs to offload portions of the video decoding process to
the GPU.

For the embodiment in which the CPU performs the entropy decoding process
304 and the GPU performs the iDCT 306 and motion compensation 308 steps onward,
the DXVA API dictates the information that is transmitted from the decoder 304 to each
of the iDCT 306 and motion compensation 308 processes. Various different versions of
the DXVA standard may be available, such as DXVA 1.0 and 2.0. For the embodiment
in which the UVD performs the steps of the entropy decode process 304 onward, the
DXVA 2.0 API specification may be used.

Embodiments of the decoding pipeline can be applied to video transcode and
editing applications in which two or more bitstreams are processed. The different
choices available for the decode process, that is CPU only, CPU plus GPU, UVD, or
use of the DXVA 1.0 or 2.0 API facilitates video editing applications that may use
multiple bitstreams, each of which may represent different scenes, for example.

Figure 4 illustrates a video edit pipeline that implements a video decode
process, according to an embodiment. For system 400 two bitstreams 402 and 408 are
input into respective video decode processes 404 and 412. Each decoded stream is then
scaled in a respective video scaler process 406 and 414. If the bitstreams 402 and 408
represent images or scenes that are to be blended, the decoded and scaled data is then
input to a video blend and effects process 416. The blended image data can then be
sent to a display 422, or encoded to a different format using video encoder process 418
to produce data of a second format in bitstream 420. The optional display allows for
previewing of the output bitstream 420 prior to encoding. The two input bitstreams 402
and 408 may represent two video scenes that are to be blended together such as a
background and foreground image, or they can represent the instance of overlap
between the transition of one scene (bitstream #1) to another scene (bitstream #2).

In the video edit pipeline of Figure 2, each of the video decode processes 404

and 412 implements one of the video decode methods described above. The video

WO 2010/054011 PCT/US2009/063304

decode processes may both implement the same decode method (e.g., but use a UVD)
or they may implement different decode methods. For example, one the decode
processes (e.g., video decode 404) may utilize the UVD based decode process, while
the other decode process utilizes the CPU only or CPU and GPU based decode process.
This ensures that the UVD or other decode process is not overloaded by too many input
bitstreams at one time.

Although two bitstreams are illustrated in Figure 4, it should be noted that any
number of bitstreams are possible, depending upon the requirements and constraints of
the system. In general, the format of the input video bitstream will dictate which type
of encoding process 404 or 416 is used for the decode process for the input bitstream.
In an overall video editing application, the video editor may reconfigure the pipeline
400 based on the input bitstream format or formats, even in the event that a single
bitstream may be encoded in more than one format.

The blending process 416 may utilize any built-in blending capability available
on the GPU. For example, the GPU may include texture processing capabilities that
allow for blending of textures using resident processes. The video effects provided
within the video blend and effect process 416 may include certain commercially
available effects provided by known video editors, such as blending left to right, top to
bottom, or other transition effects.

Embodiments of the video decode method can be applied to standard predictive
MPEG schemes. In processing a video stream, the MPEG encoder produces three
types of coded frames. The first type of frame is called an “I” frame or intra-coded
frame. This is the simplest type of frame and is a coded representation of a still image.
In general, no processing is performed on I-frames; their purpose is to provide the
decoder a starting point for decoding the next set of frames. The next type of frame is
called a “P” frame or predicted frame. Upon decoding, P-frames are created from
information contained within the previous P-frames or I-frames. The third type of
frame, and the most common type, is the “B” frame or bi-directional frame. B-frames
are both forward and backward predicted and are constructed from the last and the next
P or [-frame. Both P-frames and B-frames are inter-coded frames. A codec encoder
may encode a stream as the following sequence: IPBB... and so on. In digital video

transmission, B-frames are often not used. In this case, the sequence may just consist

10

WO 2010/054011 PCT/US2009/063304

of I-frames followed by a number of P-frames. For this embodiment, the initial I-frame
is encoded as lossless, and all following P-frames are encoded as some fraction of
lossless compression and some fraction as no-change.

In MPEG and similar systems, decoding frames creates orders frames in a
decode order, which are different than the order that they are to be displayed. In this
case, the video editor pipeline of Figure 4 may include one or more frame pools to
facilitate the proper ordering of frames after a decode process. Figure 5 illustrates a
video edit pipeline including frame pooling for video data decoding, under an
embodiment. As shown in system 500, the output from the video scalers 502 and 506
are input to respective frame pools 504 and 508. The frame pools pool up the frames
and generate the output stream in the proper display order. Thus, as shown in Figure 5,
the frames are input into the frame pools 504 and 508 in a decode order, and are output
in the proper display order for any further blending and effects processing 510.
Alternatively, both streams could be blended in decode order, but only if both streams
have the exact same decode order and properly synchronized, which is often not the
case. Thus, it is often more advantageous to blend after pooling the frames.

The output stream can then encoded or sent to optional display 514 through a
frame rate logic process 512. The frame rate logic process 512 adapts the frame
processing capability to the display rate capability, i.e., the refresh rate of the display to
optimize the processing and display functions of the system.

Figure 6 illustrates a full transcoding pipeline for content that includes both
video and audio content, under an embodiment. The embodiment of Figure 6 shows a
single pipeline, though multiple channels are possible depending upon how many
bitstreams and decoder processes are available. In system 600, the input audio/video
bitstream 602 is input into a demultiplexer circuit 604, which separates the audio
content from the video content. The video content is sent to video decode process 606
and then scaled in video scaler 608. The scaled encoded video data is then encoded in
the second format by video encoder 610. The encoded video data is then multiplexed
612 with the audio data to produce the output bitstream 614. The audio data 616,
which was separated out from the original bitstream 602 through the demultiplexer 604
can be transcoded itself similar to the video data, or it may be passed through for re-

combination with the transcoded video data without any change. Digital audio

11

WO 2010/054011 PCT/US2009/063304

transcoding may be used to reduce the sampling of the data, change the encoding
scheme (e.g., Dolby format), degrade the quality for efficient storage or transmission,
and other effects. For the video decode function 606 that transcodes the video data, any
of the decode methods described above may be used.

Embodiments of the transcoding process allow the selection of decoding using a
number of combinations of hardware and software structures. Figure 7 is a flowchart
that illustrates an overall method of transcoding digital video data using multiple
decode processes, under an embodiment. The method of Figure 7 begins with the
transcoder pipeline receiving the input bitstream, which has been formatted according
to a first encoding scheme, block 702. For a single channel transcoder pipeline, a
single bitstream is received and transcoded, however, any practical number of channels
may be provided to transcode multiple bitstreams. The input bitstream is decoded in
block 704 in accordance with one of the possible decoding schemes. The first decoding
scheme utilizes the UVD GPU hardware system, block 706a; the second decoding
scheme utilizes both GPU and CPU resources through a GPU programmable decoder
that uses an API (e.g., DXVA, XvMC, or similar API), block 706b; and the third
decoding scheme uses one or more CPU cores exclusively without any GPU support,
block 706¢. The decoded bitstream is then scaled using a video scaler, block 708. The
scaled decoded bitstream is then encoded to the second format, block 710. The
encoding process may be performed using multiple GPU cores, block 712a, or multiple
CPU cores, block 712b.

In one embodiment, the choice of decoding scheme 706a-c may be selected
explicitly by the user, or it may be selected automatically by a process executed in a
processing system. The automatic process may select the decoding process depending
upon the resources available. For example, if the UVD is available, the automatic
process may dictate that the UVD be used exclusively for decoding. There may also be
a defined default and one or more backup methods, such as decode using the UVD by
default unless it is not available, in which case, decode using the CPU only, and so on.
The scaler process may also be selected based on the automatic process depending on
the decode scheme. For example, if the UVD is used for decoding, it should also be

used for scaling, and if the CPU is used for decoding, it should also be used for scaling.

12

WO 2010/054011 PCT/US2009/063304

Embodiments of the transcode system and method combine the use of a GPU
for encoding along with use of the GPU for decoding and scaling. The system enables
the use of a UVD portion of GPU hardware to decode H.264 or VC-1 encoded video
data, along with hardware based iDCT and motion compensation functions for MPEG-
2. It also enables the use of the existing standard Microsoft APT (DXVA 1.0 and 2.0)
for facilitating the decode operation. The intermediate and optional step of scaling the
video (such as re-sizing from one resolution to another) also employs the GPU
functionality. The transcode pipeline also adds the capability of decoding multiple
streams and performing a blending or special effects operations, such as for video
editing. These operations can also use the GPU resources.

The processing platform of Figure 2 embodying the transcode pipeline may be
implemented in any type of computing device that is capable of generating, playing
back or otherwise processing digital video data. Such a computing device may be a
computer or a mobile computing or communication device, such as a notebook
computer, personal digital assistant (PDA), mobile phone, game console, or any similar
class of mobile computing device with sufficient processing, communication, and
control or AV (audiovisual) playback capability. The computing device may be coupled
to other computing devices, resources or data stores directly or indirectly through one
or more networks that may comprise the Internet, a Wide Area Network (WAN), a
Local Area Network (LAN), or any combination thereof.

Embodiments are applicable to all transcoding where the input format 1s
decoded to raw pixels, then re-encoded into a different or the same codec, in a different
resolution or the same resolution, and a different bitrate or the same bitrate or quality
settings. The transcoding operation may be compressed domain transcoding, which is a
method used by programs that compress DVD video, such as for DVD backup
programs.

Although embodiments described herein have been directed to transcoding
applications, it should be noted that such embodiments are also applicable to other
applications, such as transrating. For example, lower bitrate transrating is a process
similar to transcoding in which files are coded to a lower bitrate without changing
video formats; this can include sample rate conversion, but may use the same sampling

rate but higher compression. Transrating is used to fit a given media into smaller

13

WO 2010/054011 PCT/US2009/063304

storage space, such as fitting a DVD content onto a video CD, or transmitting content
over a lower bandwidth channel.

Although embodiments have been described with reference to graphics systems
comprising GPU devices or visual processing units (VPU), which are dedicated or
integrated graphics rendering devices for a processing system, it should be noted that
such embodiments can also be used for many other types of video production engines
that are used in parallel. Such video production engines may be implemented in the
form of discrete video generators, such as digital projectors, or they may be electronic
circuitry provided in the form of separate IC (integrated circuit) devices or as add-on
cards for video-based computer systems.

In one embodiment, the system including the GPU/CPU processing platform
comprises a computing device that is selected from the group consisting of: a personal
computer, a workstation, a handheld computing device, a digital television, a media
playback device, smart communication device, and a game console, or any other
similar processing device.

Embodiments as disclosed herein comprise an apparatus for transcoding a video
stream from a first digital format to a second digital format, comprising: a decoder
receiving the video stream encoded in the first digital format and producing a decoded
video stream, wherein the decoder utilizes graphics processing unit (GPU) circuitry and
1s implemented through a combination of the GPU circuitry and at least one of a GPU
hardware decoder, a GPU programmable decoder, and a central processing unit (CPU)
software decoder; a scaler changing the picture size of the decoded video stream to
produce a scaled decoded video stream, wherein the scaler is implemented through one
of a CPU scaler or a GPU scaler; and an encoder receiving the scaled decoded video
stream and producing an output stream encoded in the second digital format.

In an embodiment, the video stream is received in a transcoding pipeline system
that comprises a processor platform including at least one GPU and one CPU.

In an embodiment, the GPU hardware decoder comprises a
hardware/programmable video processor in which a first portion of a decode operation
is performed by GPU hardware and a second portion of the decode operation is

performed by programmable GPU shaders within the GPU.

14

WO 2010/054011 PCT/US2009/063304

In an embodiment, the GPU programmable decoder includes an application
program interface (API) that allows the decoder to be hardware accelerated by
offloading certain operations executed by the CPU to be executed by the GPU.

In an embodiment, the video stream of the first digital format comprises a
plurality of video bitstreams and the decoder component comprises a plurality of
decoder components, with each video bitstream of the plurality of video bitstreams
input to a respective decoder component.

An embodiment further comprises a video blending component combining the
plurality of video bitstreams into a blended output stream in accordance with a defined
blending effect.

In an embodiment, the plurality of video bitstreams comprise MPEG video data,
the apparatus further comprising a plurality of frame pools reordering a decode order of
MPEG frames into a display order.

In an embodiment, the output stream is transmitted to a display device.

An embodiment further comprises a frame rate logic component matching a
frame rate of the blended output stream to a refresh rate of the display device.

In an embodiment, the scaled decoded video stream is transmitted to a memory
device coupled to the CPU.

In an embodiment, a first copy of the scaled decoded video stream is available
to the CPU, and a second copy of the scaled decoded video stream is available to the
GPU.

In an embodiment, the video stream includes an audio channel, the apparatus
further comprising: a demultiplexer separating the audio channel from video frames
comprising the video stream prior to generation of the decoded video stream; and a
multiplexer adding back the audio channel to the output stream encoded in the second
digital format and encoding in the encoder.

In an embodiment, the audio channel is transcoded from a first audio format to a
second audio format prior to being added back to the output stream.

Embodiments described herein further include a method of transcoding a video
stream from a first digital format to a second digital format, comprising: receiving the
video stream encoded in the first digital format from a datastore; decoding the received

video stream to produce a decoded video stream, wherein the decoding method is

15

WO 2010/054011 PCT/US2009/063304

implemented through a combination of graphics processing unit (GPU) resources and
central processing unit (CPU) resources, the decoding method utilizing the GPU
resources in combination with at least one of a GPU hardware decoder, a GPU
programmable decoder, and a CPU software decoder; scaling the picture size of the
decoded video stream to produce a scaled decoded video stream, wherein the scaler is
implemented through one of a CPU scaler or a GPU scaler; and encoding the scaled
decoded video stream to produce an output stream encoded in the second digital format.

An embodiment further comprises selecting an appropriate decoding method
using one of the GPU hardware decoder, the GPU programmable decoder, or the CPU
software decoder.

In an embodiment, the selecting step is performed by one of user selection, an
automatic process, or determination by the first digital format.

An embodiment further comprises transmitting the scaled decoded video stream
is transmitted to a memory device coupled to a CPU on a processing platform including
the CPU and a GPU so that a first copy of the scaled decoded video stream is available
to the CPU and a second copy of the scaled decoded video stream is available to the
GPU.

In an embodiment, the GPU hardware decoder comprises a
hardware/programmable video processor in which a first portion of a decode operation
is performed by GPU hardware and a second portion of the decode operation is
performed by programmable GPU shaders within the GPU, and wherein the GPU
programmable decoder includes an application program interface (API) that allows the
decoder to be hardware accelerated by offloading certain operations executed by the
CPU to be executed by the GPU.

In an embodiment, the video stream of the first digital format comprises a
plurality of video bitstreams and the decoder component comprises a plurality of
decoder components, with each video bitstream of the plurality of video bitstreams
input to a respective decoder component, the method further comprising blending the
plurality of video bitstreams into a blended output stream in accordance with a defined
blending effect.

In an embodiment, the plurality of video bitstreams comprise MPEG video data,

the method further comprising: pooling the plurality of frames into frame pools to

16

WO 2010/054011 PCT/US2009/063304

reorder a decode order of MPEG frames into a display order; and transmitting the
output stream to a display device.

An embodiment further comprises matching a frame rate of the blended output
stream to a refresh rate of the display device.

Embodiments described herein further include a video processing system
comprising: a central processing unit (CPU); a graphics processing unit (GPU) coupled
to the CPU; and
a video transcoder pipeline transcoding a video stream from a first digital format to a
second digital format, the transcoder pipeline comprising a decoder receiving the video
stream encoded in the first digital format and producing a decoded video stream,
wherein the decoder utilizes graphics processing unit (GPU) circuitry and is
implemented through a combination of the GPU circuitry and at least one of a GPU
hardware decoder, a GPU programmable decoder, and a central processing unit (CPU)
software decoder, a scaler changing the picture size of the decoded video stream to
produce a scaled decoded video stream, wherein the scaler is implemented through one
of a CPU scaler or a GPU scaler, and an encoder receiving the scaled decoded video
stream and producing an output stream encoded in the second digital format.

In an embodiment, the GPU hardware decoder comprises a
hardware/programmable video processor in which a first portion of a decode operation
is performed by GPU hardware and a second portion of the decode operation is
performed by programmable GPU shaders within the GPU.

In an embodiment, the GPU programmable decoder includes an application
program interface (API) that allows the decoder to be hardware accelerated by
offloading certain operations executed by the CPU to be executed by the GPU.

In an embodiment, an appropriate decoding method using one of the GPU
hardware decoder, the GPU programmable decoder, or the CPU hardware decoder is
selected through one of user selection, an automatic process, or determination by the
first digital format.

Aspects of the system described herein may be implemented as functionality
programmed into any of a variety of circuitry, including programmable logic devices
(“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array

logic (“PAL”) devices, electrically programmable logic and memory devices and

17

WO 2010/054011 PCT/US2009/063304

standard cell-based devices, as well as application specific integrated circuits. Some
other possibilities for implementing aspects include: memory devices, microcontrollers
with memory (such as EEPROM), embedded microprocessors, firmware, software, etc.
Furthermore, aspects of the video transcoding system may be embodied in
microprocessors having software-based circuit emulation, discrete logic (sequential and
combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of
any of the above device types. The underlying device technologies may be provided in
a variety of component types, e.g., metal-oxide semiconductor field-effect transistor
(“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS™),
bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g ,
silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed
analog and digital, and so on.

It should also be noted that the various functions disclosed herein may be
described using any number of combinations of hardware, firmware, and/or as data
and/or instructions embodied in various machine-readable or computer-readable media,
in terms of their behavioral, register transfer, logic component, and/or other
characteristics. Computer-readable media in which such formatted data and/or
instructions may be embodied include, but are not limited to, non-volatile storage
media in various forms (e.g., optical, magnetic or semiconductor storage media) and
carrier waves that may be used to transfer such formatted data and/or instructions
through wireless, optical, or wired signaling media or any combination thereof.
Examples of transfers of such formatted data and/or instructions by carrier waves
include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the
Internet and/or other computer networks via one or more data transfer protocols (e.g.,
HTTP, FTP, SMTP, and so on).

Unless the context clearly requires otherwise, throughout the description and the

2% <¢

claims, the words “comprise,” “comprising,” and the like are to be construed in an
inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense
of “including, but not limited to.” Words using the singular or plural number also
include the plural or singular number respectively. Additionally, the words “herein,”
“hereunder,” “above,” “below,” and words of similar import refer to this application as

a whole and not to any particular portions of this application. When the word “or” is

18

WO 2010/054011 PCT/US2009/063304

used in reference to a list of two or more items, that word covers all of the following
interpretations of the word: any of the items in the list, all of the items in the list and
any combination of the items in the list.

The above description of illustrated embodiments of the video transcoding
system is not intended to be exhaustive or to limit the embodiments to the precise form
or instructions disclosed. While specific embodiments of, and examples for, processes
in graphic processing units or ASICs are described herein for illustrative purposes,
various equivalent modifications are possible within the scope of the disclosed methods
and structures, as those skilled in the relevant art will recognize.

The elements and acts of the various embodiments described above can be
combined to provide further embodiments. These and other changes can be made to the
disclosed system in light of the above detailed description.

In general, in the following claims, the terms used should not be construed to
limit the disclosed method to the specific embodiments disclosed in the specification
and the claims, but should be construed to include all operations or processes that
operate under the claims. Accordingly, the disclosed structures and methods are not
limited by the disclosure, but instead the scope of the recited method is to be
determined entirely by the claims.

While certain aspects of the disclosed embodiments are presented below in
certain claim forms, the inventors contemplate the various aspects of the methodology
in any number of claim forms. For example, while only one aspect may be recited as
embodied in machine-readable medium, other aspects may likewise be embodied in
machine-readable medium. Accordingly, the inventor reserves the right to add
additional claims after filing the application to pursue such additional claim forms for

other aspects.

19

WO 2010/054011 PCT/US2009/063304

CLAIMS

What is claimed is:

1. An apparatus for transcoding a video stream from a first digital format to a
second digital format, comprising:

a decoder receiving the video stream encoded in the first digital format and
producing a decoded video stream, wherein the decoder utilizes graphics processing
unit (GPU) circuitry and is implemented through a combination of the GPU circuitry
and at least one of a GPU hardware decoder, a GPU programmable decoder, and a
central processing unit (CPU) software decoder;

a scaler changing the picture size of the decoded video stream to produce a
scaled decoded video stream, wherein the scaler is implemented through one of a CPU
scaler or a GPU scaler; and

an encoder receiving the scaled decoded video stream and producing an output

stream encoded in the second digital format.

2. The apparatus of claim 1 wherein the video stream is received in a transcoding
pipeline system that comprises a processor platform including at least one GPU and one

CPU.

3. The apparatus of claim 2 wherein the GPU hardware decoder comprises a
hardware/programmable video processor in which a first portion of a decode operation
is performed by GPU hardware and a second portion of the decode operation is

performed by programmable GPU shaders within the GPU.
4. The apparatus of claim 2 wherein the GPU programmable decoder includes an
application program interface (API) that allows the decoder to be hardware accelerated

by offloading certain operations executed by the CPU to be executed by the GPU.

S. The apparatus of claim 1 wherein the video stream of the first digital format

comprises a plurality of video bitstreams and the decoder component comprises a

20

WO 2010/054011 PCT/US2009/063304

plurality of decoder components, with each video bitstream of the plurality of video

bitstreams input to a respective decoder component.

6. The apparatus of claim 5 further comprising a video blending component
combining the plurality of video bitstreams into a blended output stream in accordance

with a defined blending effect.

7. The apparatus of claim 6 wherein the plurality of video bitstreams comprise
MPEG video data, the apparatus further comprising a plurality of frame pools

reordering a decode order of MPEG frames into a display order.

8. The apparatus of claim 7 wherein the output stream is transmitted to a display
device.
9. The apparatus of claim 8 further comprising a frame rate logic component

matching a frame rate of the blended output stream to a refresh rate of the display

device.

10. The apparatus of claim 1 wherein the scaled decoded video stream is

transmitted to a memory device coupled to the CPU.

11 The apparatus of claim 11 wherein a first copy of the scaled decoded video
stream is available to the CPU, and a second copy of the scaled decoded video stream is

available to the GPU.

12, The apparatus of claim 1 wherein the video stream includes an audio channel,
the apparatus further comprising:

a demultiplexer separating the audio channel from video frames comprising the
video stream prior to generation of the decoded video stream; and

a multiplexer adding back the audio channel to the output stream encoded in the

second digital format and encoding in the encoder.

21

WO 2010/054011 PCT/US2009/063304

13. The apparatus of claim 12 wherein the audio channel is transcoded from a first

audio format to a second audio format prior to being added back to the output stream.

14, Amethod of transcoding a video stream from a first digital format to a second
digital format, comprising:

receiving the video stream encoded in the first digital format from a datastore;

decoding the received video stream to produce a decoded video stream, wherein
the decoding method is implemented through a combination of graphics processing unit
(GPU) resources and central processing unit (CPU) resources, the decoding method
utilizing the GPU resources in combination with at least one of a GPU hardware
decoder, a GPU programmable decoder, and a CPU software decoder;

scaling the picture size of the decoded video stream to produce a scaled decoded
video stream, wherein the scaler is implemented through one of a CPU scaler or a GPU
scaler; and

encoding the scaled decoded video stream to produce an output stream encoded

in the second digital format.

15 The method of claim 14 further comprising selecting an appropriate decoding
method using one of the GPU hardware decoder, the GPU programmable decoder, or
the CPU software decoder.

16. The method of claim 15 wherein the selecting step is performed by one of user

selection, an automatic process, or determination by the first digital format.

17. The method of claim 14 further comprising transmitting the scaled decoded
video stream is transmitted to a memory device coupled to a CPU on a processing
platform including the CPU and a GPU so that a first copy of the scaled decoded video
stream 1is available to the CPU and a second copy of the scaled decoded video stream is

available to the GPU.

18. The method of claim 14 wherein the GPU hardware decoder comprises a

hardware/programmable video processor in which a first portion of a decode operation

22

WO 2010/054011 PCT/US2009/063304

is performed by GPU hardware and a second portion of the decode operation is
performed by programmable GPU shaders within the GPU, and wherein the GPU
programmable decoder includes an application program interface (API) that allows the
decoder to be hardware accelerated by offloading certain operations executed by the

CPU to be executed by the GPU.

19. The method of claim 14 wherein the video stream of the first digital format
comprises a plurality of video bitstreams and the decoder component comprises a
plurality of decoder components, with each video bitstream of the plurality of video
bitstreams input to a respective decoder component, the method further comprising
blending the plurality of video bitstreams into a blended output stream in accordance

with a defined blending effect.

20. The method of claim 19 wherein the plurality of video bitstreams comprise
MPEG video data, the method further comprising:

pooling the plurality of frames into frame pools to reorder a decode order of
MPEG frames into a display order; and

transmitting the output stream to a display device.

21. The method of claim 20 further comprising matching a frame rate of the

blended output stream to a refresh rate of the display device.

22. A video processing system comprising;
a central processing unit (CPU);
a graphics processing unit (GPU) coupled to the CPU; and
a video transcoder pipeline transcoding a video stream from a first digital format to a
second digital format, the transcoder pipeline comprising
a decoder receiving the video stream encoded in the first digital format
and producing a decoded video stream, wherein the decoder utilizes graphics
processing unit (GPU) circuitry and is implemented through a combination of the
GPU circuitry and at least one of a GPU hardware decoder, a GPU programmable

decoder, and a central processing unit (CPU) software decoder,

23

WO 2010/054011 PCT/US2009/063304

a scaler changing the picture size of the decoded video stream to
produce a scaled decoded video stream, wherein the scaler is implemented through
one of a CPU scaler or a GPU scaler, and

an encoder receiving the scaled decoded video stream and producing an

output stream encoded in the second digital format.

23. The system of claim 22 wherein the GPU hardware decoder comprises a
hardware/programmable video processor in which a first portion of a decode operation
is performed by GPU hardware and a second portion of the decode operation is

performed by programmable GPU shaders within the GPU.

24, The system of claim 22 wherein the GPU programmable decoder includes an
application program interface (API) that allows the decoder to be hardware accelerated

by offloading certain operations executed by the CPU to be executed by the GPU.

25. The system of claim 22 wherein an appropriate decoding method using one of
the GPU hardware decoder, the GPU programmable decoder, or the CPU hardware
decoder is selected through one of user selection, an automatic process, or

determination by the first digital format.

24

1 / 7 PCT/US2009/063304

WO 2010/054011

weaJisiig

S

0LL

Japooug
O3pIA

I'OId

S

801

19|e2g
0dpIA

apoo9Q
03pIA

vol

weaJ}s)ig
O3pIA

S

c0l

WO 2010/054011 2 / 7 PCT/US2009/063304

202
PROCESSOR PLATFORM

CPU
'—_\\/ 204
210 —
S 211 GPU
206
MEMORY
208

N
—
w

FIG. 2

3/7 PCT/US2009/063304

WO 2010/054011

9

[AY

souleld o90Ud.id)oy J

¢ OId

[AA% s}e}s I
Am:._mv_oo_nmg uoosal 9 S)elg awelq
" 8podUd | Aqi DI (% ‘2 ‘L “XZ “Xp)
weans}lg |¢— Adosua Siustusuyey Oce SLe
|7 luonezpuenp 100} | Gy co_ume“me_wwm io)14 osiousq [SBOWEIJ
m PR : aoepeul-oQg O3PIA
8¢¢
143 Buipoo g auibug g buissasoidaiyg 4
gl¢
> 19]eong
O3PIA
80¢
(AR S
Sauwield uonjesuadwon
CRITETETEY| UOION
sawiel *

09pIA apooaQg weau}s}ig
popooaQ 4/ V'l Kdosug 09pIA

3 uoijongsuoday | 10a! ‘o! i

S $
p1E S S 3
0Lf 908 ¥0¢ ¢0¢

417 PCT/US2009/063304

WO 2010/054011

P OId

444
$
(leuondo)
Aejdsi@
Japooug
weauysiig -« O3pIA
; M
0cy 917
00¥

SELEE

pue pu3a|g

O3PIA

oLy

cH#
weausyg

O9pIA

80v

LQ_NOW QﬁOOQD
oopip [03pIA
— M
LQ_NUW i QUOOQD
oapip [03pIA
S 3
90y vOb

L#
weas}s)ig

O3pIA

cOv

PCT/US2009/063304
5/7

WO 2010/054011

(leuondo)

¢ 2160j
>m_n_m_ﬁ_ 9)el awel

S

§

1455]

clg

ERN A‘

SELITE
pue puajg
09pIA

S
01§

SO

H

JoapJo Ae|dsip

v

|00d lajeosg
olue.d4 O3PIA
2 S
806G 906
19pJo 2podap
jood 19|e9g
owel | _ 09pPIA
$ $
¥0S ¢05

6/7 PCT/US2009/063304

WO 2010/054011

9O

919
S

(ebueys ou yum ybnouyy
passed .10 pspoosuel) aq ued)

weassijig

XN

Japooug
O9pPIA

$
719

|

o
o
©

¢l9

$
019

olpny /

p Ja]eog apooaQ
ospip | 0apIA xnwag
S g s
809 909 »03

weaJys}ig

S
209

WO 2010/054011

717

PCT/US2009/063304

RECEIVE INPUT BITSTREAM OF FIRST FORMAT

702

A 4

DECODE INPUT BITSTREAM

704

Y

A 4

HARDWARE

GPU
(UVD)

706a

GPU/CPU
API
(DXVA, XvMC)
706b

A 4

Y

HARDWARE

CPU

706¢c

SCALE DECODED BITSTREAM

708

\ 4

ENCODE BITSTREAM TO SECOND FORMAT

710
h 4 \ 4
MULTIPLE MULTIPLE
GPU CPU
CORES CORES
712a 712b

FI1G.7

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

