
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

РСТ WORLD INTELLECTUAL PROPERTY ORGANIZATION 
International Bureau

(54) Title: USING A HIGH LEVEL PROGRAMMING LANGUAGE WITH A MICROCONTROLLER

(51) International Patent Classification 6 :

GO6F9/46, GO7F7/1O Al
(11) International Publication Number: wo 98/19237

(43) International Publication Date: 7 May 1998 (07.05.98)

(21) International Application Number: PCT/US97/18999

(22) International Filing Date: 22 October 1997 (22.10.97)

(30) Priority Data:
October 1996 (25.10.96) US ة29,057 60/25

(71) Applicant: SCHLUMBERGER TCCHNOLOGIES，INC.
[US/US]; 8311 North R.R. 620, Austin，TX 78726 (US).

(72) Inventors: WILKINSON，Timothy，J.; 6 Drumna House，20
Oakleigh Park South，Whetstone١ London Μ20 9JU (GB).
GUTri^RY，Scott，B.; 19 Foster Road，Belmont，MA
02178-3736 (US). KRISHNA，Ksheerabdhi; 2831 Little
Elm Trail，Cedar Park，TX 786Í3 (US). MONTGOMERY，
Michael，A.; 906 Neison Ranch Road，Cedar Park，TX

٦>؟6٦١ .دلآللمك

(74) Agents: PRUNER, Fred，G., Jr. et al.; Fish & Richardson p.c.，
Suite 1200, One Riverway，Houston，TX 77056 (US).

(81) Designated States: AL，AM, AT，AU，AZ，BA，BB，BG，BR, 
Β١٢> CA, CH，CN, cu，cz, ¿E，DK，EE，ES，FI: GB: GE: 
GH: HU，ID: IL，IS，JP，KE, KG, KP, KR，KZ： LC: LK： 
LR, LS，LT，LU, LV, MD，MG, MK, MN, MW, MX: N0, 
NZ, PL: PT, RO, RU, SD，SE，SG, SI，SK，SL, TJ，TM: 
та: TT: UA, UG，uz，VN，YU，zw, ARIPO patent (GH: 
KE, LS, MW, SD，sz，UG, ZW), Eurasian patent (AM，AZ, 
BY, KG, KZ, MD，RU, TJ，TM؛，European patent (AT: BE, 
CH: DE: DK，ES，FI，FR, GB, GR, IE, IT: LU，MC, NL： 
PT，SE)，OAPI patent (BF，BJ，CF，CG, CI: CM: GA，GN， 
ML，MR, NE，SN，TO，TC).

Published
With international search report.

(57) Abstract

An integrated circuit card is used with a terminal. 
The integrated^ circuit card includes a memory that stores 
an interpreter and an application that has a high level 
programming language format. A processor of the card is 
configured to use the interpreter to interpret the application 
for execution and to use a communicator of the card to 
communicate with the terminal.

ία
Terminal



FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania
AM Armenia
AT Austria
AU Australia
AZ Azerbaijan
BA Bosnia and Herzegovina 
BB Barbados
BE Belgium
BF Burkina Faso
BG Bulgaria
BJ Benin
BR Brazil
BY Belarus
CA Canada
CF Central African Republic
CG Congo
CH Switzerland
CI Côte dlvoire
CM Cameroon
CN China
cu Cuba
cz Czech Republic
DE Germany
DK Denmark
EE Estonia

ES Spain
FI inland

FR France
GA Gabon
GB United Kingdom
GE Georgia
GH Ghana
GN Guinea
GR Greece
HU Hungary
IE Ireland
IL Israel
IS Iceland
IT Italy
JP Japan
KE Kenya
KG Kyrgyzstan
KP Democratic People’s

Republic of Korea 
KR Republic of Korea
KZ Kazakstan
LC SaintLucia
L【 Liechtenstein
LK Sri Lanka
LR Liberia

Lesotho 
Lithuania 
Luxembourg 
Latvia 
Monaco
Republic of Moldova 
Madagascar 
The former Yugodav 
Republic of Macedonia 
Mali
Mongolia 
Mauritania 
Malawi 
Mexico 
Niger 
Netherlands
Norway 
New z aland 
Poland
Portugal 
Romania
Russian Federation 
Sudan 
Sweden
Singapore

LS
LT
LU
LV
MC
MD
MG

隱
L
 
ة

N
 
جج

SI Slovenia
SK Slovakia
SN Senegal
sz Swaziland
TD Chad
TG Togo
TJ T^iikistan
TM Turkmenistan
TR Turkey
TT Trinidad and Tobago
UA Ukraine
UG Uganda
US United States of America
uz Uzbekistan
VN VietNam
YU Yugoslavia
zw Zimbabwe



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-1-

USING A HIGH LEVEL PROGHMING lANGUAGE
WITH A MICROCONTROLLER

A portion of the disclosure of this patent 
document contains material which is subject to copyright 
protection. The copyright owner has no objection to the 
facsimile reproduction by anyone of the patent document 
or the patent disclosure, as it appears in the Patent and 
Trademark Office patent file or records, but otherwise 
reserves all copyright rights whatsoever.

Under 35 u.s.c. § 119(e), this application claims 
benefit of prior U.S. provisional application Serial No. 
60/029,057, filed October 25, 1996.

Background of the Invention
This invention relates in general to the field of 

programming, and more particularly to using a high level 
programming language with a smart card or a 
microcontroller.

Software applications written in the Java 
high-level programming language have been so designed 
that an application written in Java can be run on many 
different computer brands or computer platforms without 
change. This is accomplished by the following procedure. 
When a Java application is written, it is compiled into 
"Class" files containing byte codes that are instructions 
for a hypothetical computer called a Java virtual 
Machine. An implementation ◦f this virtual machine is 
written for each platform that is supported. When a user 
wishes to run a particular Java application on a selected 
platform, the class files compiled from the desired 
application is loaded onto the selected platform. The 
Java virtual machine for the selected platform is run, 
and interprets the byte codes in the class file, thus 
effectively running the Java application.



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-2-

Java is described in the following references 
which are hereby incorporated by reference: (1〉 Arnold, 
Ken, and James Gosling, "The Java Programming Language/" 
Addison-Wesley, 1996； (2) James Gosling, Bill Joy, and
Guy Steele, "The Java Language Specification," Sun 
Microsystems, 1996, (web site: 
http://java.sun.com/doc/language_specification〉; (3) 
James Gosling and Henry McGilton, "The Java Language 
Environment: A white Paper," Sun Microsystems, 1995 (web 
site: http://java.sun.com/doc/language_environment/ 〉ً and 
(4) Tim Lindholm and Frank Yellin, "The Java Virtual 
Machine Specification," Addison-Wesley, 1997. These 
texts among many others describe how to program using 
Java.

In order for a Java application to run on a 
specific platform, a Java virtual machine implementation 
must be written that will run within the constraints of 
the platform, and a mechanism must be provided for 
loading the desired Java application on the platform, 
again keeping within the constraints of this platform.

Conventional platforms that support Java are 
typically microprocessor-based computers, with access to 
relatively large amounts of memory and hard disk storage 
space. Such microprocessor implementations frequently 
are used in desktop and personal computers. However, 
there are no conventional Java implementations on 
microcontrollers, as would typically be used in a smart 
card.

Microcontrollers differ from microprocessors in 
many ways. For example, a microprocessor typically has a 
central processing unit that requires certain external 
components (e.g., memory, input controls and output 
controls) to function properly, A typical 
microprocessor can access from a megabyte to a gigabyte 
of memory, and is capable of processing 16, 32, or 64

http://java.sun.com/doc/language_specification%25e3%2580%2589
http://java.sun.com/doc/language_environment/%25e3%2580%2589%25d9%258b


wo 98/19237 PCT/US97/18999

-3-

bits of information or more with a single instruction. In 
contrast to the microprocessor, a microcontroller 
includes a central processing unit, memory and other 
functional elements, all on a single semiconductor

5 substrate, or integrated circuit (e.g., a "chip"). As 
compared to the relatively large external memory accessed 
by the microprocessor, the typical microcontroller 
accesses a much smaller memory. A typical 
microcontroller can access one to sixty-four kilobytes of

10 built-in memory, with sixteen kilobytes being very 
common.

There are generally three different types of 
memory used: random access memory (RAM), read only memory 
(ROM), and electrically erasable programmable read only

15 memory (EEPROM). In a microcontroller, the amount of 
each kind of memory available is constrained by the 
amount of space on the integrated circuit used for each 
kind of memory. Typically, RANI takes the most space, and 
is in shortest supply, ROM takes the least space, and is

20 abundant. EEPROM is more abundant than RAM, but less 
than ROM.

Each kind of memory is suitable for different 
purposes. Although ROM is the least expensive, it is 
suitable only for data that is unchanging, such as

25 operating system code. EEPROM is useful for storing data 
that must be retained when power is removed, but is 
extremely slow to write, n can be written and read at 
high speed, but is expensive and data in RAM is lost when 
power is removed.

30 A microprocessor system typically has relatively little 
ROM and EEPROM, and has 1 to 128 megabytes of RAM, since 
it is not constrained by what will fit on a single 
integrated circuit device, and often has access to an 
external disk memory system that serves as a large

35 writable, non-volatile storage area at a lower cost that



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-4ا
EEPROM. However, a microcontroller typically has a small 
RAM of 0.1 to 2.0 K, 2Κ to 8Κ of EEPROM, and 8Κ - 56Κ of 
ROM.

Due to the small number of external components 
required and their small size, microcontrollers 
frequently are used in integrated circuit cards, such as 
smart cards. Such smart cards come in a variety of 
forms, including contact-based cards, which must be 
inserted into a reader to be used, and contactless cards, 
which need not be inserted. In fact, microcontrollers 
with contactless communication are often embedded into 
specialized forms, such as watches and rings, effectively 
integrating the functionality of a smart card in an 
ergonomically attractive manner.

Because of the constrained environment, 
applications for smart cards are typically written in a 
low level programming language (e.g., assembly language) 
to conserve memory.

The integrated circuit card is a secure, robust, 
tamper-resistant and portable device for storing data. 
The integrated circuit card is the most personal of 
personal computers because of its small size and because 
of the hardware and software data security features 
unique to the integrated circuit card.

The primary task of the integrated circuit card 
and the microcontroller on the card is to protect the 
data stored on the card. Consequently, since its 
invention in 1974, integrated circuit card technology has 
been closely guarded on these same security grounds. The 
cards were first used by French banks as debit cards. In 
this application, before a financial transaction based on 
the card is authorized, the card user must demonstrate 
knowledge ◦f a 4-digit personal identification number 
(PIN) stored in the card in addition to being in 
possession of the card. Any information that might



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-5- 

contribute to discovering the PIN number on a lost or 
stolen card was blocked from public distribution. In 
fact, since nobody could tell what information might be 
useful in this regard, virtually all information about 
integrated circuit cards was withheld.

Due to the concern for security, applications 
written for integrated circuit cards have unique 
properties. For example, each application typically is 
identified with a particular owner or identity. Because 
applications typically are written in a low-level 
programming language, such as assembly language, the 
applications are written for a particular type of 
microcontroller. Due to the nature of low level 
programming languages, unauthorized applications may 
access data on the integrated circuit card. Programs 
written for a integrated circuit card are identified with 
a particular identity so that if two identities want to 
perform the same programming function there must be two 
copies of some portions ◦f the application on the 
microcontroller of the integrated circuit card.

Integrated circuit card systems have historically 
been closed systems. An integrated circuit card 
contained a dedicated application that was handcrafted to 
work with a specific terminal application. Security 
checking when an integrated circuit card was used 
consisted primarily of making sure that the card 
application and the terminal application were a matched 
pair and that the data on the card was valid.

As the popularity of integrated circuit cards 
grew, it became clear that integrated circuit card users 
would be averse to carrying a different integrated 
circuit card for each integrated circuit card 
application. Therefore, multiple cooperating 
applications began to be provided on single provider 
integrated circuit cards. Thus, for example, an



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

٠ б -

automated teller machine (ATM) access card and a debit 
card may coexist on a single integrated circuit card 
platform. Nevertheless, this was still a closed system 
since all the applications in the terminal and the card 
were built by one provider having explicit knowledge of 
the other providers.

The paucity of information about integrated 
circuit cards -- particularly information about how to 
communicate with them and how to program them -- has 
i^eded the general application of the integrated circuit 
card. However, the advent of public digital networking 
(e٠g٠/ the Internet and the World wide Web) has opened 
new domains of application for integrated circuit cards. 
In particular、 this has lead to a need to load new 
applications on the card that do not have explicit 
knowledge ◦f the other providers, but without the 
possibility of compromising the security of the card. 
However, typically, this is not practical with 
conventional cards that are programmed using low level 
languages.

Summary of the Invention
In general, in one aspect, the invention features 

an integrated circuit card for use with a terminal. The 
integrated circuit card includes a memory that stores an 
interpreter and an application that has a high level 
programming language format. A processor of the card is 
configured to use the interpreter to interpret the 
application for execution and to use a communicator of 
the card to communicate with the terminal.

Among the advantages of the invention are one or 
more of the following. New applications may be 
downloaded to a smart card without compromising the 
security cf the smart card. These applications may be 
provided by different companies loaded at different times



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-٦-

using different terminals. Security is not comprised 
since the applications are protected against unauthorized 
access of any application code or data by the security 
features provided by the Java virtual machine. Smart 
card applications can be created in high level languages 
such as Java and Eiffel, using powerful mainstream 
program development tools. New applications can be 
quickly prototyped and downloaded to a smart card in a 
matter of hours without resorting to soft masks.
Embedded systems using microcontrollers can also gain 
many of these advantages for downloading new 
applications, high level program development, and rapid 
prototyping by making use of this invention.

Implementations of the invention may include one 
or more of the following. The high level programming 
language format of the application may have a class file 
format and may have a Java programming language format. 
The processor may be a microcontroller. At least a 
portion of the memory may be located in the processor.

The application may have been processed from a 
second application that has a string of characters, and 
the string of characters may be represented in the first 
application by an identifier (e.g., an integer〉.

The processor may be also configured to receive a 
request from ة requester (e.g., a processor or a 
terminal〉 to access an element (e.g., an application 
stored in the memory, data stored in the memory or the 
communicator) of the card, after receipt of the request, 
interact with the requester to authenticate an identity 
of the requester, and based on the identity, selectively 
grant access t◦ the element.

The memory may also store an access control list 
for the element. The access control list furnishes an 
indication of types of access to be granted to the 
identity, and based on the access control list, the



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

- 8 -

processor selectively grants specific types of access 
(e.g٠, reading data, writing data, appending data, 
creating data, deleting data or executing an application) 
to the requester.

The application may be one of a several 
applications stored in the memory. The processor may be 
further configured to receive a request from a requester 
to access one of the plurality ◦f applications' after 
receipt of the request, determine whether said one of the 
plurality of applications complies with a predetermined 
set of rules; and based on the determination, selectively 
grant access to the requester to said one of the 
plurality of applications. The predetermined rules 
provide a guide for determining whether said one of the 
plurality of applications accesses a predetermined region 
of the memory. The processor may be further configured 
to authenticate an identity of the requester and grant 
access to said one of the plurality of applications based 
on the identity.

The processor may be also configured to interact 
with the terminal via the communicator to authenticate an 
identity; determine if the identity has been 
authenticated; and based on the determination, 
selectively allow communication between the terminal and 
the integrated circuit card.

The communicator and the terminal may communicate 
via communication channels. The processor may also be 
configured to assign one of the communication channels to 
the identity when the processor allows the communication 
between the terminal and the integrated circuit card. 
The processor may also be configured to assign a session 
key to the assigned communication channel and use the 
session key when the processor and the terminal 
communicate via the assigned communication channel.



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

—و -

The terminal may have a card reader, and the 
communicator may include a contact for communicating with 
the card reader. The terminal may have a wireless 
communication device, and the communictor may include a 
wireless transceiver for communicating with the wireless 
communication device. The terminal may have a wireless 
communication device, and the communicator may include a 
wireless transmitter for communicating with the wireless 
communication device.

In general, in another aspect, the invention 
features a method for use with an integrated circuit card 
and a terminal. The method includes storing an 
interpreter and at least ◦ne application having a high 
level programming language format in a memory of the 
integrated circuit card. A processor ◦f the integrated 
circuit card uses the interpreter to interpret the at 
least one application for execution, and the processor 
uses a communicator of the card when communicating 
between the processor and the terminal.

In general, in another aspect, the invention 
features a smart card. The smart card includes a memory 
that stores a Java interpreter and a processor that is 
configured to use the interpreter to interpret a Java 
application for execution.

In general, in another aspect, the invention 
features a microcontroller that has a semiconductor 
substrate and a memory located in the substrate. A 
programming language interpreter is stored in the memory 
and is configured to implement security checks. A 
central processing unit is located in the substrate and 
is coupled to the memory.

Implementations of the invention may include one 
or more of the following. The interpreter may be a Java 
byte code interpreter. The security checks may include



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-10 -

establishing firewalls and may include enforcing a 
sandbox security model.

In general, in another aspect, the invention 
features a smart card that has a programming language 
interpreter stored in a memory of the card. The 
interpreter is configured to implement security check. A 
central processing unit of the card is coupled to the 
memory.

In general, in another aspect, the invention 
features an integrated circuit card that is used with a 
terminal. The card includes a communicator and a memory 
that stores an interpreter and first instructions of a 
first application. The first instructions have been 
converted from second instructions of a second 
application. The integrated circuit card includes a 
processor that is coupled to the memory and is configured 
to use the interpreter to execute the first instructions 
and to communicate with the terminal via the 
communicator.

Implementations ◦f the invention may include one 
or more of the following. The first and/or second 
applications may have class file format(s). The first 
and/or second applications may include byte codes, such 
as Java byte codes. The first instructions may be 
generalized or renumbered versions of the second 
instructions. The second instructions may include 
constant references, and the first instructions may 
include constants that replace the constant references ◦f 
the second instructions. The second instructions may 
include references, and the references may shift location 
during the conversion of the second instructions to the 
first instructions. The first instructions may be 
relinked to the references after the shifting. The first 
instructions may include byte codes for a first type of 
virtual machine, and the second instructions may include



WO 98/19237 PCT/US97/18999

- 11 -

5

10

15

20

25

30

35

byte codes for a second type of virtual machine. The 
first type is different from the second type.

In general, in another aspect, the invention 
features a method for use with an integrated circuit 
card. The method includes converting second instructions 
◦f a second application to first instructions of a first 
application; storing the first instructions in a memory 
of the integrated circuit card' and using an interpreter 
of the integrated circuit card to execute the first 
instructions .

In general, in another aspect, the invention 
features an integrated circuit for use with a terminal. 
The integrated circuit card has a communicator that is
configured to communicate with the terminal and a memory 
that stores a first application that has been processed 
from a second application having a string of characters.
The string of characters are represented in the first
application by an identifier. The integrated circuit 
card includes a processor that is coupled to the memory. 
The processor is configured to use the interpreter to 
interpret the first application for execution and to use
the communicator to communicate with the terminal.

In general, in another aspect, the invention 
features a method for use with an integrated circuit card 
and a terminal. The method includes processing a second 
application to create a first application. The second 
application has a string of characters. The string of 
characters is represented by an identifier in the second 
application. An interpreter and the first application 
are stored in a memory of the integrated circuit card. A 
processor uses an interpreter to interpret the first 
application for execution.

In general, in another aspect, the invention 
features a microcontroller that includes a memory which 
stores an application and an interpreter. The



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

-12 -

application has a class file format. A processor of the 
microcontroller is coupled to the memory and is 
configured to use the interpreter to interpret the 
application for execution.

In implementations of the invention, the 
microcontroller may also include a communicator that is 
configured to communicate with a terminal.

In general, in another aspect, the invention 
features a method for use with an integrated circuit 
card. The method includes storing a first application in 
a memory of the integrated circuit card, storing a second 
application in the memory of the integrated circuit card, 
and creating a firewall that isolates the first and 
second applications so that the second application cannot 
access either the first application or data associated 
with the first application.

In general, in another aspect, the invention 
features an integrated circuit card for use with a 
terminal. The integrated circuit card includes a 
communicator that is configured to communicate with the 
terminal, a memory and a processor. The memory stores 
applications, and each application has a high level 
programming language format. The memory also stores an 
interpreter. The processor is coupled to the memory and 
is configured to: a.) use the interpreter to interpret 
the applications for execution, b.〉 use the interpreter 
to create a firewall to isolate the applications from 
each other, and c.) use the communicator to communicate 
with the terminal.

Other advantages and features will become apparent 
from the following description and from the claims.

Brief Description of the Drawinq



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

-13 -

Fig. 1 is a block diagram of an integrated card 
system.

Fig. 2 is a flow diagram illustrating the 
preparation of Java applications to be downloaded to an 
integrated circuit card.

Fig. 3 is a block diagram of the files used and 
generated by the card class file converter.

Fig. 4 is ة block diagram illustrating the 
transformation of application class file(s) into a card 
class file.

Fig. 5 is a flow diagram illustrating the working 
of the class file converter.

Fig. 6 is a flow diagram illustrating the 
modification of the byte codes.

Fig. 7 is a block diagram illustrating the 
transformation ◦f specific byte codes into general byte 
codes.

Fig. 8 is a block diagram illustrating the 
replacement of constant references with constants.

Fig. 9 is a block diagram illustrating the 
replacement of references with their updated values.

Fig. 10 is a block diagram illustrating 
renumbering of original byte codes.

Fig. 11 is a block diagram illustrating 
translation of original byte codes for a different 
virtual machine architecture.

Fig 12 is a block diagram illustrating loading 
applications into an integrated circuit card.

Fig. 13 is a block diagram illustrating executing 
applications in an integrated circuit card.

Fig. 14 is a schematic diagram illustrating memory 
organization for ROM, RAM and EEPROM.

Fig. 15 is a flow diagram illustrating the overall 
architecture of the Card Java virtual machine.



WO 98/19237 PCT/US97/18999

- 14 -

Fig. 16 is a flow diagram illustrating method 
execution in the Card Java virtual machine with the

5

10

15

20

25

30

35

security checks.
Fig. 17 is a flow diagram illustrating byte code

execution in the Card Java virtual machine.
Fig. 18 is a flow diagram illustrating method 

execution in the Card Java virtual machine without the
security checks.

Fig. 19 is a block diagram illustrating the 
association between card applications and identities.

Fig. 20 is a block diagram illustrating the access 
rights of a specific running application.

Fig. 21 is 
smart card.

Fig. 22 is 
telephone.

Fig. 23
on a key ring.

Fig. 24
on a ring.

Fig. 25
on a circuit card of an automobile.

a perspective view of a microcontroller
on

on
is

is

is

a perspective view of

a perspective view of

a perspective view of

a perspective view of

a microcontroller

a microcontroller

a microcontroller

a microcontroller

a

a

Detailed Description of the Preferred Embodiments
Referring to Fig. 1/ an integrated circuit card 10 

(e.g./ a smart card) is constructed to provide a high 
level, Java-based, multiple application programming and 
execution environment. The integrated circuit card 10 
has a communicator 12a that is configured to communicate 
with a terminal communicator 12b ◦f a terminal 14. In 
some embodiments, the integrated circuit card 10 is a 
smart card with an 8 bit microcontroller, 512 bytes of 
RAM, 4Κ bytes of EEPROM, and 20Κ ◦f ROM; the terminal 
communicator 12b is a conventional contact smart card 
reader； and the terminal 14 is a conventional personal



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

- 15 -

Computer running the Windows NT operating system 
supporting the personal computer smart card (PC/SC) 
standard and providing Java development support.

In some embodiments, the microcontroller, memory 
and communicator are embeddd in a plastic card that has 
substantially the same dimensions as a typical credit 
card. In other embodiments, the microcontroller, memory 
and communicator are mounted within bases other than a 
plastic card, such as jewelry (e.g., watches, rings or 
bracelets), automotive equipment, telecommunication 
equipment (e.g., subscriber identity module (SIM) cards), 
security devices (e.g., cryptographic modules) and 
appliances.

The terminal 14 prepares and downloads Java 
applications to the integrated circuit card 10 using the 
terminal communicator 12b. The terminal communicator 12b 
is a communications device capable of establishing a 
communications channel between the integrated circuit 
card 10 and the terminal 14. Some communication options 
include contact card readers, wireless communications via 
radio frequency or infrared techniques, serial 
communication protocols, packet communication protocols, 
ISO 7816 communication protocol, to name a few.

The terminal 14 can also interact with 
applications running in the integrated circuit card 10. 
In some cases, different terminals may be used for these 
purposes. For example, one kind of terminal may be used 
to prepare applications, different terminals could be 
used to download the applications, and yet other 
terminals could be used to run the various applications. 
Terminals can be automated teller machines (ATMjs, point- 
of-sale terminals, door security systems, toll payment 
systems, access control systems, or any other system that 
communicates with an integrated circuit card or 
microcontroller.



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-16 -

The integrated circuit car'd 10 contains a card 
Java virtual machine (Card JVM) 16, which is used to 
interpret applications which are contained on the card
10.

Referring to Fig. 2, the Java application 20 
includes three Java source code files A.java 20a, B.java 
20b, and Cl java 20c, These source code files are prepared 
and compiled in a Java application development 
environment 22. When the Java application 20 is compiled 
by the development environment 22, application class 
files 24 are produced, with these class files A.class 
24a, B.class 24b, and c.class 24c corresponding to their 
respective class Java source code 20a, 20b, and 20c. The 
application class files 24 follow the standard class file 
format as documented in chapter 4 of the Java virtual 
machine specification by Tim Lindholm and Frank Yellin, 
”The Java Virtual Machine Specification,أ Addison-Wesley, 
1996. These application class files 24 are fed into the 
card class file converter 26, which consolidates and 
compresses the files, producing a single card class file 
27. The card class file 27 is loaded to the integrated 
circuit card 10 using a conventional card loader 28.

Referring to Fig. 3, the card class file converter 
26 is a class file postprocessor that processes a set of 
class files 24 that are encoded in the standard Java 
class file format, optionally using a string to ID input 
map file 30 to produce a Java card class file 27 in a 
card class file format. One such card class file format 
is described in Appendix A which is hereby incorporated 
by reference. In addition, in some embodiments, the card 
class file converter 26 produces a string to ID output 
map file 32 that is used as input for a subsequent 
execution of the card class file converter.

In some embodiments, in order for the string to ID 
mapping to be consistent with a previously generated card



WO 98/19237 PCT/US97/18999

- 17 - 

5

10

15

20

25

30

35

class file (in the case where multiple class files 
reference the same strings) ر the card class file 
converter 26 can accept previously defined string to ID 
mappings from a string to ID input map file 30. In the 
absence of such a file, the IDs are generated by the card 
class file converter 26. Appendix B, which is hereby 
incorporated by reference, describes one possible way of 
implementing and producing the string to ID input map 
file 30 and string to ID output map file 32 and 
illustrates this mapping via an example.

Referring to Fig. 4, a typical application class 
file 24a includes class file information 41; a class 
constant pool 42; class, fields created, interfaces 
referenced, and method information 43； and various 
attribute information 44, as detailed in aforementioned 
Java Virtual Machine Specification. Note that much of 
the attribute information 44 is not needed for this 
embodiment and is eliminated 45 by the card class file 
converter 26. Eliminated attributes include SourceFile,
Constantvalue, Exceptions, LineNumberTable, 
LocalVariableTable, and any optional vendor attributes.
The typical card class file 27 as described in Appendix A 
is derived from the application class files 24 in the 
following manner. The card class file information 46 is 
derived from the aggregate class file information 41 of
all application class files 24a, 24b, and 24c. The card 
class file constant pool 47 is derived from the aggregate 
class constant pool 42 of all application class files 
24a, 24b, and 24c. The card class, fields created.
interfaces referenced, and method 
derived from the aggregate class, 
interfaces referenced, and method 
application class files 24a, 24b,
attribute information 49 in this embodiment is derived 

information 48 is
fields created, 
information 43 of all
and 24c٠ The card

from only the code attribute of the aggregate attribute



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

- 18 - 

information 44 of all application class files 24a, 24b, 
and 24c.

To avoid dynamic linking in the card, all the 
information that is distributed across several Java class 
file 24a, 24b, and 24c that form the application 24, are 
coalesced into one card class file 27 by the process 
shown in the flowchart in Fig. 5. The first class file 
to be processed is selected 51a. The constant pool 42 is 
compacted 51b in the following manner. All objects, 
classes, fields, methods referenced in a Java class file 
24a are identified by using strings in the constant pool 
42 of the class file 24a. The card class file converter 
26 compacts the constant pool 42 found in the Java class 
file 24a into an optimized version. This compaction is 
achieved by mapping all the strings found in the class 
file constant pool 42 into integers (the size of which is 
microcontroller architecture dependent). These integers 
are also referred to as IDs. Each ID uniquely identifies 
a particular object, class, field or method in the 
application 20. Therefore, the card class file converter 
26 replaces the strings in the Java class file constant 
pool 42 with its corresponding unique ID. Appendix B 
shows an example application HelloSmartCard.java, with a 
table below illustrating the IDs corresponding to the 
strings found in the constant pool of the class file for 
this application. The IDs used for this example are 16- 
bit unsigned integers.

Next, the card class file converter 26 checks for 
unsupported features 51c in the Code attribute of the 
input Java class file 24a. The Card JVM 16 only supports 
a subset of the full Java byte codes as described in 
Appendix c, which is hereby incorporated by reference. 
Hence, the card class file converter 26 checks for 
unsupported byte codes in the Code attribute of the Java 
class file 24a. If any unsupported byte codes are found



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-19 -

52, the card class file converter flags an error and 
stops conversion 53. The program code fragment marked 
١١Α〃 in APPENDIX D shows how these spurious byte codes are 
apprehended. Another level of checking can be performed 
by requiring the standard Java development environment 22 
to compile the application 20 with a ١-g/ flag. Based on 
the aforementioned Java virtual machine specification, 
this option requires the Java compiler to place 
information about the variables used in a Java 
application 20 in the LocalVariableTable attribute of the 
class file 24a. The card class file converter 26 uses 
this information to check if the Java class file 24a 
references data types not supported by the Java card.

Next, the card class file converter 26 discards 
all the unnecessary parts 51c of the Java class file 24a 
not required for interpretation. A Java class file 24a 
stores information pertaining to the byte codes in the 
class file in the Attributes section 44 of the Java class 
file. Attributes that are not required for 
interpretation by the card JVM 16, such as SourceFile, 
Constantvalue, Exceptions, LineNumberTable, and 
LocalVariableTable may be safely discarded 45. The only 
attribute that is retained is the Code attribute. The 
Code attribute contains the byte codes that correspond to 
the methods in the Java class file 24a.

Modifying the byte codes 54 involves examining the 
Code attribute information 44 for each method in the 
class file, and modifying the operands of byte codes that 
refer to entries in the Java class file constant pool 42 
to reflect the entries in the card class file constant 
pool 47. In some embodiments, the byte codes are also 
modified, as described below.

Modifying the byte codes 54 involves five passes 
(with two optional passes) as described by the flowchart 
in Fig. 6. The original byte codes 60 are found in the



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

- 20 -

Code attribute 44 of the Java class file 24a being 
processed. The first pass 61 records all the jumps and 
their destinations in the original byte codes. During 
later byte code translation, some single byte code may be 
translated to dual or triple bytes. Fig. 7 illustrates 
an example wherein byte code ILOAD—0 is replaced with two 
bytes, byte code ILOAD and argument 0. When this is 
done, the code size changes, requiring adjustment of any 
jump destinations which are affected. Therefore, before 
these transformations are made, the original byte codes 
60 are analyzed for any jump byte codes and a note made 
of their position and current destination. The program 
code fragment marked ١١Β〃 in Appendix D shows how these 
jumps are recorded. Appendix D is hereby incorporated by 
reference.

Once the jumps are recorded, if the optional byte 
code translation is not being performed 62, the card 
class file converter 26 may proceed to the third pass 64.

Otherwise, the card class file converter converts 
specific byte codes into generic byte codes. Typically, 
the translated byte codes are not interpreted in the Card 
iJVM 16 but are supported by converting the byte codes 
into equivalent byte codes that can be interpreted by the 
Card JVM 16 (see Fig. 7). The byte codes 70 may be 
replaced with another semantically equivalent but 
different byte codes 72. This generally entails the 
translation of short single specific byte codes such as 
ILOAD_0 into their more general versions. For example, 
ILOAD_0 may be replaced by byte code ILOAD with an . 
argument 0. This translation is done to reduce the 
number of byte codes translated by the Card Л 16, 
consequently reducing the complexity and code space 
requirements for the Card iZTVM 16. The program code 
fragment marked ١١c" in Appendix D shows how these 
translations are made. Note that such translations



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-フ1 - 

increase the size of the resulting byte code and force 
the re-computation of any jumps which are affected.

In the third pass 64, the card class file 
converter rebuilds constant references via elimination of 
the strings used to denote these constants. Fig, 8 shows 
an example wherein the byte code LDC 80 referring to 
constant "18" found via an index in the Java class file 
24a constant pool 42 may be translated into BIPUSH byte 
code 82. In this pass the card class file converter 26 
modifies the operands to all the byte codes that refer to 
entries in the Java class file constant pool 42 to 
rerlect their new location in the card class file 
constant pool 47. Fig. 9 shows an example wherein the 
argument to a byte code, INVOKESTATIC 90, refers to an 
entry in the Java class file constant pool 42 that is 
modified to reflect the new location of that entry in the 
card class file constant pool 47. The modified operand 
94 shows this transformation. The program code fragment 
marked ١١D〃 in Appendix D shows how these modifications 
are made .

Once the constant references are relinked, if the 
optional byte code modification is not being performed, 
the card class rile converter may proceed to the fifth 
and final pass 67.

Otherwise, the card class rile converter modifies 
the original byte codes into a different set of byte 
codes supported by the particular Card JVM 16 being used. 
One potential modification renumbers the original byte 
codes 60 into Card ¿TVM 16 byte codes (see Fig. 10) . This 
renumbering causes the byte codes 100 in the original 
byte codes 60 to be modified into a renumbered byte codes 
102. Byte code ILOAD recognized by value 21 may be 
renumbered to be recognized by value 50. This 
modification may be done for optimizing the type tests 
(also known in prior art as Pass 3 checks) in the Card



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-22 -

JVM 16. The program code fragment marked ١Έ〃 in Appendix 
D shows an implementation of this embodiment. This 
modification may be done in order to reduce the program 
space required by the Card JVM 16 to interpret the byte 
code. Essentially this modification regroups the byte 
codes into Card JVM 16 byte codes so that byte codes with 
similar operands, results are grouped together, and there 
are no gaps between Card JVM 16 byte codes. This allows 
the Card JVM 16 to efficiently check Card JVM 16 byte 
codes and validate types as it executes.

In some embodiments, the card class file converter 
modifies the original byte codes 60 into a different set 
of byte codes designed for a different virtual machine 
architecture, as shown in Fig. 11. The Java byte code 
ILOTkB 112 intended for use on a word stack 114 may be 
replaced by Card JVM 16 byte code ILOAD_B 116 to be used 
on a byte stack 118. An element in a word stack 114 
requires allocating 4 bytes of stack space, whereas an 
element in the byte stack 118 requires only one byte of 
stack space. Although this option may provide an 
increase in execution speed, it risks losing the security 
features available in the original byte codes.

Since the previous steps 63, 64 or 66 may have 
changed the size of the byte codes 60 the card class file 
converter 26 has to relink 67 any jumps which have been 
effected. Since the jumps were recorded in the first 
step 61 of the card class file converter 26, this 
adjustment is carried out by fixing the jump destinations 
to their appropriate values. The program code fragment 
marked ١'F" in Appendix D shows how these jumps are fixed.

The card class file converter now has modified 
byte codes 68 that is equivalent to the original byte 
codes 60 ready for loading. The translation from the 
Java class file 24a to the card class file 27 is now 
complete.



wo 98/19237 PCT/US97/18999

-23 -

Referring back to Fig. 5, if more class files 24 
remain to be processed 55 the previous steps 51a, 51b, 
51С/ 52 and 54 are repeated for each remaining class 
file. The card class file converter 26 gathers 56 the 

5 maps and modified byte codes for the classes 24 that have 
been processed, places them as an aggregate and generates 
57 a card class file 27. If required, the card class 
file converter 26 generates a string to ID output map 
file 32, that contains a list of all the new IDs

10 allocated for the strings encountered in the constant 
pool 42 of the Java class files 24 during the 
translation.

Referring to Fig. 12, the card loader 28 within 
the terminal 14 sends a card class file to the loading 

15 and execution control 120 within the integrated circuit 
card 10 using standard ISO 7816 commands. The loading 
and execution control 120 with a card operating system 
122, which provides the necessary system resources, 
including support for a card file system 124, which can 

20 be used to store several card applications 126. Many 
conventional card loaders are written in low level 
languages, supported by the card operating system 122. 
In the preferred embodiment, the bootstrap loader is 
written in Java, and the integrated circuit card 10 

25 includes a Java virtual machine to run this application.
A Java implementation of the loading and execution 
control 120 is illustrated in Appendix E which is hereby 
incorporated by reference. The loading and execution 
control 120 receives the card class file 26 and produces 

30 a Java card application 126Χ stored in the card file 
system 126 in the EEPROM of the integrated circuit card 
10. Multiple Java card applications 126Χ, I26y, and 126ζ 
can be stored in a single card in this manner. The 
loading and execution control 120 supports commands 

35 whereby the terminal 14 can select which Java card



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

-24 - 

application to run immediately, or upon the next card 
reset.

Referring to Fig. 13, upon receiving a reset or an 
execution command from the loading and execution control 
120, the Card Java virtual Machine (Card JVM) 16 begins 
execution at a predetermined method (for example, main) 
of the selected class in the selected Java Card 
application 126ζ. The Card JVM 16 provides the Java card 
application 126Ζ access to the underlying card operating 
system 122, which provides capabilities such as 1/0, 
EEPROM support, file systems, access control, and other 
system functions using native Java methods as illustrated 
in Appendix F which is hereby incorporated by reference.

The selected Java card application 126ζ 
communicates with an appropriate application in the 
terminal 14 using the communicator 12a to establish a 
communication channel to the terminal 14. Data from the 
communicator 12a to the terminal 14 passes through a 
communicator driver 132 in the terminal, which is 
specifically written to handle the communications 
protocol used by the communicator 12a.. The data then 
passes to an integrated circuit card driver 134, which is 
specifically written to address the capabilities of the 
particular integrated circuit card 10 being used, and 
provides high level software services to the terminal 
application 136. In the preferred embodiment, this 
driver would be appropriate PC/SC Smartcard Service 
Provider (SSP) software. The data then passes to the 
terminal application 136, which must handle the 
capabilities provided by the particular card application 
126Ζ being run. In this manner, commands and responses 
pass back and forth between the terminal application 136 
and the selected card application 126ζ. The terminal 
application interacts with the user, receiving commands



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

-25 _

from the user, some of which are passed to the selected 
Java card application 126ζ, and receiving responses from 
the Java card application 126Ζ, which are processed and 
passed back to the user.

Referring to Fig. 14, the Card JVM 16 is an 
interpreter that interprets a card application 126Χ. The 
memory resources in the microcontroller that impact the 
Card JVM 16 are the Card ROM 140, Card RAM 141 and the 
Card EEPROM 142. The Card ROM 140 is used to store the 
Card JVM 16 and the card operating system 122. Card ROM 
140 may also be used to store fixed card applications 
14Oa and class libraries 14Ob. Loadable applications 
I41a, I41b and libraries 141c may also be stored in Card 
n 141. The Card JVM 16 interprets a card application 
I41a, I41b, or 14Oa. The Card JVM 16 uses the Card RAM 
to store the I stack I44a and system state variables 
I44b. The Card JVM 16 keeps track of the operations 
performed via the ١7M stack I44a. The objects created by 
the Card JVM 16 are either on the RAM heap I44c, in the 
EEPROM heap I46a, or in the file system 147.

All of the heap manipulated by the Card JVM 16 may 
be stored in the Card RAM 141 as a n Heap I44c, or it 
may be distributed across to the Card EEPROM 142 as a 
EEPROM Heap I46a. Card n 141 is also used for 
recording the state of the system stack 148 that is used 
by routines written in the native code ◦f the 
microcontroller. The Card JVM 16 uses the Card EEPROM 
142 to store application data either in the EEPROM heap 
I46a or in the file system 147. Application data stored 
in a file may be manipulated via an interface to the card 
operating system 122. This interface is provided by a 
class library 14Ob stored in Card ROM 140, by a loadable 
class library 141c stored in Card EEPROM 142. One such 
interface is described in Appendix F. Applications and



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

-26 -

data in the card are isolated by a firewall mechanism 
149.

To cope with the limited resources available on 
microcontrollers, the Card JVM 16 implements a strict 
subset ◦f the Java programming language. Consequently, a 
Java application 20 compiles into a class file that 
contains a strict subset of Java byte codes. This 
enables application programmers to program in this strict 
subset of Java and still maintain compatibility with 
existing Java Virtual Machines. The semantics of the 
Java byte codes interpreted by the Card JVM 16 are 
described in the aforementioned Java Virtual Machine 
Specification. The subset of byte codes interpreted by 
the Card JVM 16 can be found in Appendix c. The card 
class file converter 26 checks the Java application 20 to 
ensure use of only the features available in this subset 
and converts into a form that is understood and 
interpreted by the Card JVM 16.

In other embodiments, the Gard JVM 16 is designed 
to interpret a different set or augmented set of byte 
codes 116. Although a different byte code set might lead 
to some performance improvements, departing from a strict 
Java subset may not be desirable from the point of view 
of security that is present in the original Java byte 
codes or compatibility with mainstream Java development 
tools.

All Card ¿1 16 applications 126 have a defined 
entry point denoted by a class and a method in the class. 
This entry point is mapped in the string to ID input map 
30 and assigned by the card class file converter 26. 
Classes, methods and fields within ة Java application 20 
are assigned IDs by the card class file converter 26. 
For example, the ID corresponding to the main application 
class may be defined as FOOl and the ID corresponding to



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

- 27 -

its main method, such as "main()VI١ could be defined as 
F002.

The overall execution architecture of the Gard JI 
is described by the flowchart in Fig. 15. Execution of 
the Card JVM 16 begins at the execution control 120, 
which chooses a card application 126Ζ to execute. It 
proceeds by finding and assigning an entry point 152 (a 
method) in this card application for the Gard Л 16 to 
interpret. The Card Л 16 interprets the method 153. 
If the interpretation proceeds successfully 154, the Card 
JVM 16 reports success 155 returning control back to the 
execution control 120. If in the course of 
interpretation 153 the Card Л 16 encounters an 
unhandled error or exception (typically a resource 
limitation or a security violation), the Card JVM 16 
stops 156 and reports the appropriate error to the 
terminal 14.

An essential part of the Card Л 16 is a 
subroutine that handles the execution of the byte codes. 
This subroutine is described by the flowchart in Fig. 16. 
Given a method 160 it executes the byte codes in this 
method. The subroutine starts by preparing for the 
parameters of this method 161. This involves setting the 
VM stack I44a pointer, I stack I44a frame limits, and 
setting the program counter to the first byte code of the 
method.

Next, the method flags are checked 162. If the 
method is flagged native, then the method is actually a 
call to native method code (subroutine written in the 
microcontroller's native processor code) . In this case, 
the Card Л 16 prepares for an efficient call 163 and 
return to the native code subroutine. The parameters 七〇 

the native method may be passed on the VM stack 144ة or 
via the System stack 148. The appropriate security 
checks are made and the native method subroutine is



WO 98/19237 PCT/US97/18999

-28 -

5

10

15

20

25

30

35

called. On return, the result (if any) of the native 
method subroutine is placed on the I stack I44a so that 
it may be accessed by the next byte code to be executed.

The dispatch loop 164 of the Card JVM 16 is then 
entered. The byte code dispatch loop is responsible for 
preparing, executing, and retiring each byte code. The 
loop terminates when it nnishes interpreting the byte 
codes in the method 160, or when the Card Л 16 
encounters a resource limitation or a security violation.

If a previous byte code caused a branch to be 
taken 165 the Card JI prepares for the branch I65a. The 
next byte code is retrieved I65b. In order to keep the 
cost of processing each byte code down, as many common 
elements such as the byte code arguments, length, type 
are extracted and stored.

To provide the security offered by the security 
model of the programming language, byte codes in the 
class file must be verified and determined conformant to
this model. These checks are typically carried out in 
prior art by a program referred to as the byte code 
verifier, which operates in four passes as described in 
the Java virtual Machine Specification. To offer the 
run-time security that is guaranteed by the byte code 
verifier, the Card JVM 16 must perform the checks that 
pertain to the Pass 3 and Pass 4 of the verifier. This 
checking can be bypassed by the Card JVM 16 if it can be 
guaranteed (which is almost impossible to do) that the
byte codes 60 interpreted by the Card JVM 16 are secure. 
At the minimum, code security can be maintained as long
as object references cannot be faked and the VM stack
I44a and local variable bounds are observed. This
requires checking the state of the I stack I44a with 
respect to the byte code being executed.

To enforce the security model of the programming
language, a 256-byte table is created as shown in



WO 98/19237 PCT/US97/18999

- 29 —

5

10

15

20

25

30

35

Appendix G which is hereby incorporated by reference. 
This table is indexed by the byte code number. This 
table contains the type and length information associated 
with the indexing byte code. It is encoded with the 
first 5 bits representing type, and the last 3 bits
representing length. The type and length of the byte 
code is indexed directly from the table by the byte code 
number. This type and length is then used for checking 
as shown in Appendix H which is hereby incorporated by
reference. In Appendix Н/ the checking process begins by
decoding the length and type from the table in Appendix G 
which is hereby incorporated by reference. The length is
used to increment the program counter. The type is used
first for pre-execution checking, to insure that the data
types on the VM stack I44a are correct for the byte code 
that is about to be executed. The 256 bytes of ROM for 
table storage allows the original Java byte codes to be
run in the Card JVM 16 and minimizes the changes required 
to the Java class file to be loaded in the card.
Additional Java byte codes can be easily supported since 
it is relatively easy to update the appropriate table 
entries.

In other embodiments, as shown in Fig. 10, the 
Java byte codes in the method are renumbered in such a 
manner th^t the byte code type and length information 
stored in the table in Appendix H is implicit in the 
reordering. Appendix H is hereby incorporated by 
reference. Consequently, the checks that must be 
performed on the state of the VM stack I44a and the byte 
code being processed does not have to involve a table 
look up. The checks can be performed by set of simple 
comparisons as shown in Appendix 工 which is hereby 
incorporated by reference. This embodiment is preferable 
when ROM space is at a premium, since it eliminates a 
256-byte table. However adding new byte codes to the set



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-30 -

◦f supported byte codes has to be carefully thought out 
since the new byte codes have to fit in the implicit 
numbering scheme of the supported byte codes.

In another embodiment, the Card ،n 16 chooses not 
to perform any security checks in favor of Card Л 16 
execution ^eed. This is illustrated in the flowchart in 
Fig. 18٠ The flow chart in Fig. 18 is the same as that 
of Fig. 16 with the security checks removed. This option 
is not desirable from the point of view of security, 
unless it can be guaranteed that the byte codes are 
secure.

The Card JVM 16 may enforce other security checks 
as well. If the byte code may reference a local 
variable, the Card JVM 16 checks if this reference is 
valid, throwing an error if it is not. If the reference 
is valid, the Card JVM 16 stores the type of the local 
variable for future checking. The I stack I44a pointer 
is checked to see if it is still in a valid range. If 
not an exception is thrown. The byte code number is 
checked. If it is not supported, an exception is thrown.

Finally, the byte code itself is dispatched I65d. 
The byte codes translated by the Card JVM 16 are listed 
in Appendix c. The semantics of the byte codes are 
described in the aforementioned Java virtual Machine 
Specification with regard to the state of the f stack 
 .before and after the dispatch of the byte code ة144
Note also that some byte codes (the byte codes, 
INVOKESTATIC, INVOKESPECIAL, INVOKENONVIRTUAL and 
I^OKEVIRTUAL) may cause reentry into the Card Л 16, 
requiring processing to begin at the entry of the 
subroutine 161. Fig. 17 shows the flowchart of the byte 
code execution routine. The routine is given ة byte code 
171 to execute. The Card JVM 16 executes 172 the 
instructions required for the byte code. If in the 
course of executing the Card Л 16 encounters a resource



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

-31 -

limitation 173, it returns an error 156. This error is 
returned to the terminal 16 by the Card ،JVM 16. If the 
byte code executes successfully, it returns a success 
175·

After execution, the type of the result is used to 
set the VM stack I44a state correctly I65e, properly 
flagging the data types on the VM stack I44a. The byte 
code information gathered previously I65b from the byte 
code info table is used to set the state ◦f the VM stack 
.in accordance with the byte code that just executed ة144

In other embodiments, setting the output state of 
the VM stack I44a with respect to the byte code executed 
is simplified if the byte code is renumbered. This is 
shown in Appendix 工 which is hereby incorporated by 
reference.

In yet another embodiment, the Card Л 16 may 
bypass setting the output state ◦f the VM stack 144ة in 
favor of Card JVM 16 execution speed. This option is not 
desirable from the point of view of security, unless it 
can be guaranteed that the byte codes are secure.

After the byte code has been executed, the byte 
code is retired I65f. This involves popping arguments 
oft the VM stack I44a. ◦nee byte code processing is 
completed, the loop 164 is repeated for the next byte 
code for the method.

Once the dispatch loop 164 terminates, the лтм 
stack I44a is emptied 166. This prevents any object 
references filtering down to other Card JVM 16 
invocations and breaking the Card JVM'S 16 security. 
Termination 167 of the byte code dispatch loop 164 
indicates that the Card JVM 16 has completed executing 
the requested method.

To isolate data and applications in the integrated 
circuit card 10 from each other, the integrated circuit



WO 98/19237 PCT/US97/18999

5

10

15

20

-32 -

card 10 relies on the firewall mechanism 149 provided by 
the Card JVM 16| Because the Card JVM implements the 
standard pass 3 and pass 4 verifier checks, it detects 
any attempt by an application to reference the data or 
code space used by another application, and flag a 
security error 156. For example, conventional low level 
applications can cast non-reference data types into 
references, thereby enabling access to unauthorized 
memory space, and violating security, with this 
invention, such an attempt by a card application 126ζ to 
use a non-reference data type as a reference will trigger 
a security violation 156. In conventional Java, this 
protected application environment is referred to as the 
sandbox application-interpretation environment.

However, these firewall facilities do not work 
independently. In fact, the facilities are overlapping 
and mutually reinforcing with conventional access control 
lists and enervation mechanisms shown in the following 
table:

kccess
Control

Lists

Virtual
Machine Encryption

Data access access only data to
Protection control to own another

before namespace program
operation encrypted

Program access execution data
Protection control only on encrypted in

before correct program's
execution types namespace



WO 98/19237 PCT/US97/18999

- 33 -

Access
Control

Lists

Virtual
Machine Encryption

Communication access channel only mutually
Protection control on controls authenticated

channels in own parties can
namespace communicate

5

10

15

20

25

Taken together, these facilities isolate both data 
and applications on the integrated circuit card 10 and 
ensure that each card application 126 can access only the 
authorized resources ◦f the integrated circuit card 10.

Referring to Fig. 19, card applications 126Χ, 
I26y, 126ζ can be endowed with specific privileges when 
the card applications 126 execute. These privileges 
determine, for example, which data files the card 
applications 126 can access and what operations the card 
applications 126 can perform on the file system 147. The 
privileges granted to the card applications 126 are 
normally set at the time that a particular card 
application 126Ζ is started by the user, typically from 
the terminal 14.

The integrated circuit card 10 uses cryptographic 
identification verification methods to associate an 
identity 190 (e.g., identities 19Oa, 19Ob and 19Oc) and 
hence, a set of privileges to the execution of the card 
application 126. The association ◦f the specific identity 
19Oc to the card application 126ζ is made when the card 
application 126ζ begins execution, thus creating a 
specific running application 200, as shown in Fig. 20. 
The identity 190 is a unique legible text string reliably 
associated with an identity token. The identity token 
(e.g., a personal identification number (PIN) or a RSA 
private key) is an encryption key.



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-34 -

Referring to Fig. 20, in order to run a specific 
card application 1262, the identity 19Oc of the card 
application 126Ζ must be authenticated. The identity 
19Oc is authenticated by demonstrating knowledge of the 
identity token associated with the identity 19Oc. 
Therefore, in order to run the card application 126Ζ, an 
agent (e.g., a card holder or* another application wishing 
to run the application) must show that it possesses or 
knows the application's identity-defining encryption key.

One way to demonstrate possession of an encryption 
key is simply to expose the key itself. PIN verification 
is an example of this form of authentication. Another 
way to demonstrate the possession of an encryption key 
without actually exposing the key itself is to show the 
ability to encrypt or decrypt plain text with the key.

Thus, a specific running application 200 on the 
integrated circuit card 10 includes a card application 
126ζ plus an authenticated identity 19Oc. No card 
application 126 can be run without both of these elements 
being in place. The card application 126Ζ defines data 
processing operations to be performed, and the 
authenticated identity 19Oc determines on what 
computational objects those operations may be performed. 
For example, ة specific application 126ζ can only access 
identity c's files 202 in the rile system 147 associated 
with the ^ecific identity 19Oc, and the specific card 
application 126ζ cannot access other files 204 that are 
associated with identities other than the specific 
identity 19Oc.

The integrated circuit card 10 may take additional 
steps to ensure application and data isolation. The 
integrated circuit card 10 furnishes three software 
features sets: authenticated-identity access control 
lists; a Java-based virtual machine; and one-time session 
encryption keys to protect data files, application



WO 98/19237 PCT^S97/18999

- 35 - 

execution, and communication channels, respectively. 
Collectively, for one embodiment, these features sets
provide the application data firewalls 149 for one 
embodiment. The following Mscusses each software 

5

10

15

20

25

30

35

feature set
together to

and then shows how the three sets work 
insure application and data isolation on the 

integrated circuit card 10.
An access control list (ACL) is associated with

every computational object (e.g., a data file or a 
communication channel) ◦n the integrated circuit card 10 
that is be protected, i.e., to which access is to be 
controlled. An entry on an ACL· (for ة particular 
computational object) is in a data format referred to as 
an e-tuple:

type : identity:permissions
The type field indicates the type of the following 
identity (in the identity field), e.g., a user (e.g., 
"John Smith"), or a group. The permissions field 
indicates a list of operations (e٠g., read, append and 
update) that can be performed by the identity on the 
computational object.

As an example, for a data file that has the ACL· 
entry:

USER：AcmeAirlines:RAU,
any application whose identity is "AcmeAirlines" can read 
(1Έ"), append ("A") and update ("U") the data file. In 
addition, the ACL· may be used selectively to permit the 
creation and deletion of data files. Furthermore, the 
ACL· may be used selectively to permit execution of an 
application.

Whenever a computational object is accessed by a 
running application 200, the access is intercepted by the 
Card JVM 16 and passed to the card operating system 122, 
which determines if there is an ACL associated with the 
object. If there is an associated ACL, then the identity



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-36 -

190c associated with the running application 200 is 
matched on the ACL I If the identity is not found or if 
the identity is not permitted for the type of access that 
is being requested, then the access is deded.
Otherwise, the access is allowed to proceed.

Referring to Fig. 13, to prevent the potential 
problems due to the single data path between the 
integrated circuit card 10 and the terminal 14, 
communication channel isolation is accomplished by 
including in the identity authentication process the 
exchange of a one-time session key 209 between the a card 
application 126ζ and the terminal application 136. The 
key 209 is then used to encrypt subsequent traffic 
between the authenticating terminal application 136 and 
the authenticated card application 126ζ. Given the 
one-time session key 209, ة rogue terminal application 
can neither "listen in" on an authenticated communication 
between the terminal 14 and the integrated circuit card 
10, nor can the rogue terminal application "spoof" the 
card application into performing unauthorized operations 
on its behalf.

Encryption and decryption of card/terminal traffic 
can be handled either by the card operating system 122 or 
by the card application itself 126Ζ. In the former case, 
the communication with the terminal 14 is being encrypted 
transparently to the application, and message traffic 
arrives decrypted in the data space of the application. 
In the latter case, the card application 126Ζ elects to 
perform encryption and decryption to provide an extra 
layer of security since the application could encrypt 
data as soon as it was created and would decrypt data 
only when it was about to be used. otherwise, the data 
would remain encrypted with the session key 209.

Thus, the application firewall includes three 
mutually reinforcing software sets. Data files are



WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-لآ٦ -

protected by authenticated-identity access control lists. 
Application execution spaces are protected by the Card 
JAZM 16٠ Communication channels are protected with 
one-time session encryption keys 209.

In other embodiments/ the above-described 
techniques are used with a microcontroller (such as the 
processor 12) may control devices (e.g., part Qf an 
automobile engine) other than an integrated circuit card. 
In these applications, the microcontroller provides a 
small platform (i.e., a central processing unit, and a 
memory, both of which are located on a semiconductor 
substrate) for storing and executing high level 
programming languages. Most existing devices and new 
designs that utilize a microcontroller could use this 
invention to provide the ability to program the 
microcontroller using a high level language, and 
application of this invention to such devices is 
specifically included.

The term application includes any program, such as 
Java applications, Java applets, Java aglets, Java 
servlets, Java commlets, Java components, and other non- 
Java programs that can result in class files as described 
below.

Class files may have a source other than Java 
program files. Several programming languages other than 
Java also have compilers or assemblers for generating 
class files from their respective source files. For 
example, the programming language Eiffel can be used to 
generate class files using Pirmin Kalberer/S "J-Eiffel11, 
an Eiffel compiler with JVM byte code generation (web 
site: http://www.spin.ch/-kalberer/jive/index.htm). An 
Ada 95 to Java byte code translator is described in the 
following reference (incorporated herein by reference): 
Taft, s. Tucker, "Programming the Internet in Ada 95", 
proceedings of Ada Europe ,96, 1996. Jasmin is a Java

http://www.spin.ch/-kalberer/jive/index.htm


WO 98/19237 PCT/US97/18999

5

10

15

20

25

30

35

-38 -

byte code assembler that can be used to generate class 
files, as described in the following reference 
(incorporated herein by reference) : Meyer, Jon and Troy 
Downing, "Java Virtual Machine”， O'Reilly, 1997. 
Regardless of the source of the class files, the above 
description applies to languages other than Java to 
generate codes to be interpreted.

Fig. 21 shows an integrated circuit card, or smart 
card, which includes a microcontroller 210 that is 
mounted to a plastic card 212. The plastic card 212 has 
approximately the same form factor as a typical credit 
card. The communicator 12a can use a contact pad 214 to 
establish ة communication channel, or the communicator 
12a can use a wireless communication system.

In other embodiments, a microcontroller 210 is 
mounted into a mobile or fixed telephone 220, effectively 
adding smart card capabilities to the telephone, as shown 
in Fig. 22. In these embodiments, the microcontroller 
210 is mounted on a module (such as a Subscriber Identity 
Module (SIM)), for insertion and removal from the 
telephone 220.

In other embodiments, a microcontroller 210 is 
added to a key ring 230 as shown in Fig. 23. This can be 
used to secure access to an automobile that is equipped 
to recognize the identity associated with the 
microcontroller 210 on the key ring 230.

Jewelry such as a watch or ring 240 can also house 
a microcontroller 210 in an ergonomic manner, as shown in 
Fig. 24. Such embodiments typically use a wireless 
communication system for establishing a communication 
channel, and are a convenient way to implement access 
control with a minimum ◦f hassle to the user.

Fig. 25 illustrates a microcontroller 210 mounted 
in an electrical subsystem 252 of an automobile 254. In 
this embodiment, the microcontroller is used for a



wo 98/19237 PCT/US97/18999

-39 -

variety of purposes, such as to controlling access to the 
automobile, (e٠g٠ checking identity or sobriety before 
enabling the ignition system of the automobile), paying 
tolls via wireless communication, or interfacing with a 

5 global positioning system (GPS) to track the location of 
the automobile, to name a few.

While specific embodiments of the present 
invention have been described, various modifications and 
substitutions will become apparent to one skilled in the 

10 art by this disclosure. Such modifications and 
substitutions are within the scope of the present 
invention, and are intended to be covered by the appended 
claims.



wo 98/19237 PCT/US97/18999
40

ΑΡΡΕ^ΙΧΑ
Card Class File Format For Preferred Embodiment
Introduction

The card class file is a compressed form of the original class file(s). The card class file 
contains only the semantic information required to interpret Java programs ^om the 
original class files. The indirect references in the original dass file are replaced with 
direct references resulting in a compact representation.
The card class file format is based on the following principles:

Stay dose to the standard class file format. The card dass file format should remain 
as close to the standard class file format as possible. The Java byte codes in the 
class file remain unaltered. Not altering the byte codes ensures that the structural 
and static constraints on them remain verifiably intact.

Ease of implementation: The card class file format should be simple enough to appeal 
to Java Virtual Machine implementers. It must allow for different yet behaviorally 
equivalent implementations.

Feasibility. The card class file format must be compact in order to accommodate smart 
card technology. It must meet the constraints of today's technology while not losing 
sight of tomorrow's innovations.

This document is based on Chapter 4, "The class file format"，in the book titled "The 
Java™ Virtual Machine Specification'll], henceforth referred to as the Red book. Since 
the document is based on the standard class file format described in the Red book, we 
only present information that is different. The Red book serves as the final authority for 
any clarificstion.

The primary changes from the standard class file format are:
The constant pool is optimized to contain only 16-bit identifiers and, where possible, 

indirection is replaced by a direct reference.
Attributes in the original class file are eliminated or regrouped.
The Java Card class File Format
This section describes the Java Card class file format. Each card class file contains one

SUBSTITUTE SHEET (RULE 26》 



٩١ - PCT/US97^8999wo 98/19237

or many Java types, where a type may be a class or an interface.
A card class file consists of a stream of 8-bit bytes. All 16-bit，32-bit, and 64-bit 
quantities are constructed by reading in two, four，and eight consecutive 8-bit bytes, 
respectively. Multi-byte data items are always stored in big-endian order, where the high 
bytes come first. In Java, this format is supported by interfaces java.io.Datainput and 
java.io.DataOutpui and classes such as java.io.DatalnputStream and 
java.io.DataOutputStream.
We define and use the same set of data types representing Java class file data: The 
types u1, u2, and u4 represent an unsigned one-, two-, or four-byte quantity, 
respectively. In Java, these types may be read by methods such as readUnsignedByte, 
readUnsignedShort，and reMint of the interface java.io.Datainput.
The card class file format is presented using pseudo-structures written ¡n a C-I¡ke 
structure notation. 丁〇 avoid confusion with the fields of Java Card Virtual Machine 
classes and class instances，the contents of the structures describing the card class file 
format are referred to as items■ Unlike the fields of a c structure，successive items are 
stored in the card class file sequentially, without padding or alignment.
Variable-sized tables, consisting of variable-sized items，are used in several class file 
structures. Although we will use C-like array syntax to refer to table items，the fact that 
tables are streams of varying-sized structures means that it is not possible to directly 
translate a table index into a byte offset into the table.
Where we refer to a data structure as an array，it is literally an array.
In order to distinguish between the card class file structure and the standard class file 
structure, we add capitalization: for example，we rename field info in the original class 
file to Fieldinfo in the card class file.
Card Class File
A card class file contains a single CardClassFile structure:

CardClassFile{
u1 major_version;
u1 minor_version:
u2 name_index:
니2 const_size:
u2 max_class:
Cplnfo constant_pool[const_size];
Classinfo class[max class]:

)

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999
-42 -

The items in the CardClassFile structure are as follows:
minor_version, major_version
The values of the minor_version and major_version items are the minor and major 
version numbers of the off-card Java Card Virtual Machine that produced this card 
class file. An implementation of the Java Card Virtual Machine normally supports card 
class files having a given major version number and minor version numbers 0 through 
some particular minor_version.
Only the Java Card Forum may define the meaning of card class file version numbers. 
name_index
The value of the namejndex item must represent a valid Java class name. The Java 
class name represented by name_index must be exactly the same Java class name 
that corresponds to the main application that is to run in the card. A card class file 
contains several classes or interfaces that constitute the application that runs in the 
card. Since Java allows each class to contain a main method there must be a way to 
distinguish the class file containing the main method which corresponds to the card 
application.
const_size
The value of const_size gives the number of entries in the card class file constant pool. 
A constant_pool index is considered valid if it is greater than or equal to zero and less 
than const_size.
maxçiass
This value refers to the number of classes present in the card class file. Since the name 
resolution and linking in the Java Card are done by the ٥ff-ca「d Java Virtual Machine all 
the class files or classes required for an application are placed together in one card 
class file.
constent_poolQ
The constant_pool ¡S a table of variable-length structures () representing various string 
constants, class names，field names，and other constants that are referred to within the 
CardClassFile structure and its substructures.
The first entry in the card class file is constant_pooi[0].
Each of the constant_pool table entries at indices 0 through const_size is a 
variable-length structure ().
class□
The class ¡S a table of max_class classes that constitute the application loaded onto the 
card.

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999wo 98/19237
-43 -

Constant Pool
A" constant-pool table entries have the following general format:

Cplnfo{
ul tag:
U1 in¿□:

}
Each item in the constant_pool table must begin with a 1-byte tag indicating the kind of 
cp_info entry. The contents of the info array varies with the value of tag. The valid tags 
and their values are the same as those specified in the Red book.
Each tag byte must be followed by two or more bytes giving information about the 
specific constant. The format of the additional information varies with the tag value. 
Currently the only tags that need to be included are CONSTANT_Class, 
CONSTANT_FieldRef，CONSTANT_MethodRef and CONSTANÍ」nterfaceRef. 

Support for other tags be added as they are included ¡n the specification. 
CONSTANT_Class
The CONSTAN٩_Class_info structure is used to represent a class or an interface:

CONSTANT_aassinfo{

ul tag;
;namejndex لا2

}
The items of the CONSTANT_Class」nfo structure are the following:
tag
The tag item has the value CONSTANT_Class (7).
name_index
The value of the namejndex item must represent a valid Java class name. The Java 
class name represented by namejndex must be exactly the same Java class name 
that is described by the corresponding CONSTANT-Class entry in the constant_pool of 
the original class file.
CONS؟ANT_Fieldref, CONSTANT_Methodref, and CONSTANTJnterfaceMe^iodref 

Fields，methods，and interface methods are represented by similar structures:
CONSTANT-Fieldreflnfo {

ul tag;
u2 class」ndex;
u2 name_sig_index;

} --

SUBSTITUTE SHEET (RULE 26〉



PCTZUS97/18999wo 98/19237 —44 —

CONSTANT_Method٢efln 0 {

:tag الا
u2 classjndex;
u2 name_sig」ndex:

} -

CONSTANTJnterfaceMethodreflnfo {

ul tag:
u2 classjndex;
u2 name_sig」ndex:

}

The items of these structures are as follows:

tag
The tag item of a CONSTANT_Fieldreflnfo structure has the value 
CONSTANT_Fieldref (9).
The tag item of a CONSTANT_Methodreflnfo structure has the value 
CONs+ANT_Methodref (1〇).

The tag item of a CONSTANTJnterfaceMethodreflnfo structure has the value 
CONSTANT」nterfaceMethodref (11).
classsjndex
The value of the classjndex item must represent a valid Java Glass or interface name. 
The name represented by classjndex must be exactly the same name that ¡S 
described by the corresponding CONSTANT-ClassJnfo entry in the constant_pool of 
the original class file.
name_sjg index
The value of the name_sig_index item must represent a valid Java name and type. The 
name and type represented by name_sig」ndex must be exactly the same name and 
type described by the CONSTANT_NameAndType_info entry in the constant_pool 
structure of the _inal class file.
Class
Each class ¡S described by a fixedêngth Classlnfo structure. The format of this 
structure ¡S:

Classlnfo{
u2 name index;
ul max_field;
ul max sfield;

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT^US97/18999
-45 -

ul max_method;
ul max_interface;
u2 superclass:
u2 access_flags:
Fieldlnfofield[max_field+max_sfield]:
Interfaceinfo interfacefmax.interfac^:
Methodlnfo method[max_method】:

}
The items of the Classinfo structure are as follows:
namejndex
The value of the namejndex item must represent a valid Java class name. The Java 
class name represented by namejndex must be exactly the same Java class name 
that is described in the corresponding ClassFile structure of the original class file. 
max_field
The value of the max_field item gives the number of Fieldinfo () structures in the field 
table that represent the instance variables，declared by this class or interface type. This 
value refers to the number of поп-static the fields in the card class file. If the class 
represents an interface the value of max_field is 0.
max_sfield
The value of the max_sfield item gives the number of Fieldinfo structures in the field 
table that represent the class variables, declared by this class or interface type. This 
value refers to the number of static the fields in the card class file.
max_method
The value of the max_method item gives the number of Methodinfo () structures in the 
method table.
maxjnterface
The value of the max_interface item gives the number of direct superinterfaces of this 
class or interface type.
superclass
For a class，the value of the superclass item must represent a valid Java class name. 
The Java class name represented by superclass must be exactly the same Java class 
name that ¡S described in the corresponding ClassFile structure of the original class file. 
Neither the superclass nor any of its superclasses may be a final class.
If the value of superclass ¡S 0, then this class must represent the class java.lang.Object， 
the only class or interface without a superclass.

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999wo 98/19237
-46 -

For an interface，the value of superclass must always represent the Java class 
java.lang.Object.
access_flags
The value of the access_flags item is a mask of modifiers used with class and interface 
declarations. The access_flags modifiers and their values are the same as the 
access_flags modifiers in the corresponding ClassFile structure of the original class file, 
field□
Each value in the field table must be a fixed-length Fieldinfo () structure giving a 
complete description of a field in the class or interface type. The field table includes 
only those fields that are declared by this class or interface. It does not include items 
representing fields that are inherited from superclasses or superinterfaces.
interface□
Each value in the interface array must represent a valid interface name. The interface 
name represented by each entry must be exactly the same interface name that is 
described in the corresponding interface array of the original class file.
method□
Each value in the method table must be a variable-length Methodinfo () structure giving 
a complete description of and Java Virtual Machine code for a method in the class or 
interface.
The Methodinfo structures represent all methods, both instance methods and, for 
ãsses, class (static) methods，declared by this class or interface type. The method 
table only includes those methods that are explicitly declared by this class. Interfaces 
have only the single method <cl¡n¡t>, the interface initialization method. The methods 
table does not include items representing methods that are inherited from superclasses 
or superinterfaces.
Fields
Each field ¡S described by a fixed-length field_info structure. The format of this structure 
is

Fieldinfo(
니2 name」ndex;
u2 signature_index:
:access_flags لا2

The items of the Fieldinfo structure are as follows:
name index

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999wo 98/19237
-Μ -

The value of the name_index item must represent a valid Java field name. The Java 
field name represented by name_index must be exactly the same Java field name that 
is described in the corresponding fieldjnfo structure of the original class file, 
signaturejndex
The value of the signature—index item must represent a valid Java field descriptor. The 
Java field descriptor represented by signature index must be exactly the same Java 
field descriptor that ¡S described in the corresponding fieldjnfo structure of the original 
class file.
accessjlags
The value of the access_flags item ¡S a mask of modifiers used to describe access 
permission to and properties of a field. The access—flags modifiers and their values are 
the same as the access_flags modifiers in the corresponding field-info structure of the 
original class file.
Methods
Each method is described by a variable-length Methodinfo structure. The Methodinfo 
structure ¡S a variable-length structure that contains the Java Virtual Machine 
instructions and auxiliary information for a single Java method, instance initialization 
method, or class or interface initialization method. The structure has the following 
format:

Methodinfo {
u2 name」ndex:
u2 signature_index:
;maxjocal الا
u1 max_arg:
:max_stack الا
:access_flags الا
;codejength لا2
:exceptionjength لا2
:c٥de[code_length] الا
;start_pc لا2 }

:end_pc لا2
;。handler」コ لا2

;catoh_type لا2
} einfo[exception」ength];

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98/19237
-48 -

The items of the Methodinfo structure are as follows:
namejndex
The value of the namejndex item must represent either one of the special internal 
method names, either <init> or <c!init>, or a valid Java method name. The Java method 
name represented by namejndex must be exactly the same Java method name that ¡S 
described in the corresponding method_info structure of the original class file.
signature」ndex
The value of the signature_index item must represent a valid Java method descriptor. 
The Java method descriptor represented by signature_index must be exactly the same 
Java method descriptorthat ¡S described in the corresponding methodjnfo structure of 
the original class file.
maxjocal
The value of the maxjocals item gives the number of local variables used by this 
method，excluding the parameters passed to the method on invocation. The index of 
the first local variable ¡S 0. The greatest local variable index for a one-word value ¡S 
maxjocals-l.
max_arg
The value of the max_arg item gives the maximum number of arguments to this 
method.
max_stack
The value of the max_stack item gives the maximum number of words on the operand 
stack at any point during execution of this method.
access_flags
The value of the access_flags item is a mask of modifiers used to describe access 
permission to and properties of a method or instance initialization method.. The 
access_flags modifiers and their values are the same as the access_flags modifiers in 
the corresponding methodjnfo structure of the original class file.
codejength
The value of the codejength item gives the number of bytes in the code array for this 
method. The value of codejength must be greater than zero: the code array must not 
beempty.
exceptionjength
The value of the exception.length item gives the number of entries in the 
exceptionjnfo table.
code□

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98/19237 -49 -

The code array gives the actual bytes of Java Virtual Machine code that implement the 
method. When the code array is read into memory on a byte addressable machine, if 
the first byte of the array is aligned on a 4-byte boundary，the tableswitch and 
lookupswitch 32-bit offsets will be 4-byte aligned: refer to the descriptions of those 
instructions for more information on the consequences of code array alignment.
The detailed constraints on the contents of the code array are extensive and are the 
same as described in the Java Virtual Machine Specification.
einfo□
Each entry in the einfo array describes one exception handler in the code array. Each 
einfo entry contains the following items:
stert_pc，end_pc
The values of the two items start_pc and end_pc indicate the ranges in the code array 
at which the exception handler is active.
The value of start_pc must be a valid index into the code array of the opcode of an 
instruction. The value of end_pc either must be a valid index info the code array of the 
opcode of an instruction，or must be equal to codeféngth，the length of the code array. 
The value of start_pc must be less than the value of endpc.
The start_pc is inclusive and endpc is exclusive: that is, the exception handler must be 
active while the program counter is within the interval [start_pc，end_pc].
handler_pc
The value of the handler_pc item indicates the start of the exception handler. The value 
of the item must be a valid index into the code array, must be the index of the opcode 
of an instruction，and must be less than the value of the codefëngth item.
cateh_type
If the value of the catch_type item ¡S nonzero, it must represent a valid Java class type. 
The Java class type represented by catch-type must be exactly the same as the Java 
class type that is described by the catch_type in the corresponding method-info 
structure of the original class file. This class must be the class Throwable or one of its 
subclasses. The exception handler will be called only if the thrown exception is an 
instance of the given class or one of its subclasses.
If the value of the catch_type item is zero, this exception handler ¡S called for all 
exceptions. This is used to implement finally.
Attributes
Attributes used in the original class file are either eliminated or regrouped for 
compaction.

SUBSTITUTE SHEET (RUIE 26)



PCT/US97/18999wo 98/19237
-50 -

The predefined attributes SourceFile，Constantvalue，Exceptions, LineNumberTable， 
and Local-VariableTable may be eliminated without sacrificing any information required 
for Java byte code interpretation.
The predefined attribute Code which contains all the byte codes for a particular method 
are moved in the corresponding Methodinfo structure.
Constraints on Java Card Virtual Machine Code
The Java Card Virtual Machine code for a method，instance initialization method，or 
class or interface initialization method ¡S stored in the array code of the Methodinfo 
structure of a card class file. Both the static and the structural constraints on this code 
array are the same as those described in the Red book.
Umitations of the Java Card Virtual Machine and Java Card class File Format
The following limitations in the Java Card Virtual Machine are imposed by this version 
of the Java Card Virtual Machine specification:
The per-card class file constant pool is limited to 65535 entries by the 16-bit const_size 

field of the CardClassFite structure (). This acts as an internal limit on the total 
comptexity of a single card class fite. This count also includes the entries 
corresponding to the constant pool of the class hierarchy available to the application 

in the card.
The amount of code per method ¡S limited to 65535 bytes by the sizes of the indices in 

the Methodinfo structure.
The number of local variables in a method ¡S limited to 255 by the size of the max_local 

item of the Methodinfo structure ().
The number of fields of a class ¡S limited to 510 by the size of the max_field and the 

max_sfield items of the Classinfo structure ().
The number of methods of a class ¡S limited to 255 by the size of the max_method item 

of the Classinfo structure ().
The size of an operand stack is limited to 255 words by the max_stack field of the 

Methodinfo structure ().
Bibliography
[1] Tim Lindholm and Frank Yellin，The Java Virtual Machine Specification， 
Addison-Wesley, 1996.

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98/19237
-51 -

ΑΡΡΕ^ΙΧΒ
String To ID Input And Output

For the correct operation of Card JVM ¡t is very important that the declared and 
generated IDs are correctly managed. This management ¡S controied by the definitions 
¡n the string to ID input fife String-ID INMap. This textual file, the basis for which ¡S 
shown below，declares which areas of the namespace can be used for what purposes. 
One possible arrangement of this map may reserve some IDs for internal use by the 
Card JVM interpreter, and the rest ¡S allocated to Card JVM applications.

#
#String-lD INMap file.
#
# 4000 - 7FFF Available for application use.
# FOOO - FFFE Reserved fo「Gard」٧M'S internal use.
#

constantBase FOOO

MainApplication

main()٧ 

java/lang/Object 
java/lang/string 
<init>()V
<clinit>()v
[L
[I
[c
[B
[s
# 
constantBase FFFO 
し

# The area from FOOO to FFFF is reserved for
# Card JVM'S internal use.
#
# FOOO - Name of the startup class
# (changes for each application)
# F001 - Name of the startup method
# (may change for each application)
#FOO2
#FOO3
#FOO4
#FOO5
#FOO6
#FOO7
#F٥O8
#F٥O9 
#F000A

# This area ¡S reserved for simple return types. 
#FFF0

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999
-52

s 
c
В

Z

#FFF1
#FFF2
#FFF3
#FFF4
#FFF5
#FFF6

# 
constantBase 4000 # From here on this space is application dependent.

Essentially，all applications which are to be loaded into a smart card are allocated their 
own IDs within the 0x4000 to 0x7FFF. This space is free for each application since no 
loaded application is permitted to access other applications.

Care must be taken on managing the IDs for preloaded class libraries. The 
management of these IDs is helped by the (optional) generation of the string to ID 
output file String-ID OUTMap file. This map is the String-ID INMap augmented with 
the new String-ID bindings. These bindings may be produced when the Card Class File 
Converter application terminates. The String-ID ◦UTMap is generated for support 
libraries and OS interfaces loaded on the card. This map may be used as the StringJD 
INMap for smart card applications using the support libraries and OS interfaces loaded 
on the card. When building new applications this file can generally be discarded.

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999wo 98/19237 -53 -

As an example consider the following Java program，HelloSmartCard.java. When 
compiled it generates a class file HelloSmartCard.class. This class file has embedded 
in it strings that represent the class name，methods and type information. On the basis 
of the StringlD INMap described above Card Class File Converter generates a card 
class file that replaces the strings present in the class file with IDs allocated by Card 
Class File Converter. Table 1 lists the strings found in the constant pool of 
HelloSmartCard.class with their respective Card Class File Converter assigned IDs. 
Note that some strings (like "java/lang/Object") have a pre-assigned value (F002) and 
some strings (like "()ν') get a new value (4004).

Program : HelloSmartCard.java

public class HelloSmartCard {
public byte aVariable:

public static void main() {
HelloSmartCard h = new HelloSmartCard():
h.aVariable = (byte)13:

}
Relevant entries of String-ID OUTMap

SUBSTITUTE SHEET (RULE 26)



PCT^S97/18999wo 98/19237 —54 -

APPENDIX c

Byte codes supported by the Card JVM ¡n the preferred embodiment

AALOAD AASTORE ACONST NULL
ALOAD ALOAD 0 ALOAD ٢
ALOAD 2 AL0AD_3 ARETU^N
ARRAYLENGTH ASTORE ASTORE 0
ASTORE 1 ASTORE 2 AST0RE_3
ATHROV, BALOAD BASTOR^
CHECKCAST DUP DUP2
DUP2 XI DUP2 Χ2 DUP XI
DUP Χ2 GETFIELD GETSTATIC
GOTO IADD IALOAD
IAND IASTORE ICONST 0
ICONST 1 ICONST 2 ICONST 3
IC0NST_4 IC0NST_5 ICONST Ml
IDIV IFEQ IFGE
IFGT IFLE IFLT
IFNE IFNONNULL IFNULL
IF ACMPEQ IF ACMPNE IF ICMPEQ
IF—ICMPGE IF—ICMPGT IF—ICMPLE
IF—ICMPLT IF—ICMPNE lie
ILÕAD ILÕAD 0 ILOAD 1
ILOAD 2 LOAD—3 IMUL ·_
INEG - INSTAÑCEOF ΙΝΤ2ΒΥΤΕ
INT2CHAR INT2SHORT INVOKENTERFACE
INVOKENONVIRTUAL INVOKESTATIC INVOKEVIRTUAL
IOR IREM IRETURN
ISHL ISHR ISTORE
ISTORE 0 ISTORE 1 ISTORE 2
IST0RE_3 ISUB IUSHR
IXOR JSR LDC1
LDC2 LOOKUPSWITCH NEW
NEWARRAY NOP POP
ΡΟΡ2 PUTFIELD PUTSTATIC
RET RETURN SALOAD
SASTORE SIPUSH SWAP
TABLESWITCH BIPUSH

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCTZUS97/18999
- 55 -

Standard Java byte codes numbers for the byte codes supported in the preferred 
embodiment

package util:

I*
* List of actual Java Bytecodes handled by this JVM
٠ ref. Lindohlm and Yellin.
*

* Copyright (c) 1996 Schlumberger Austin Products Center，
* Schlumberger，Austin，Texas，USA.
!٠

public interface BytecodeDefn {
public static final byte j_N0P = (byte)0;
public static final byte ACONST_NULL = (byte)1;
public static final byte IC0NST_M1 = (byte)2:
public static final byte ICONST_0 = (byte)3:
public static final byte IC0NST_1 = (byte)4;
public static final byte ICONST__2 = (byte)5;
public static final byte IC0NST_3 = (byte)6;
public static final byte IC0NST_4 = (byte)7;
public static final byte ICONS٢_5 = (byte)8:
public static final byte BIPUSH = (byte)16:
public static final byte SIPUSH = (byte)17;
public static final byte LDC1 = (byte)18;
public static final byte LDC2 = (byte)19;
public static final byte !LOAD = (byte)21;
public static final byte ALOAD = (byte)25;
public static final byte ILOAD_0 = (byte)26;
public static final byte ILOADJ = (byte)27;
public static final byte IL0AD_2 = (byte)28;
public static final byte IL0AD_3 = (byte)29;
public static final byte ALOAD_0 = (byte)42:
public static final byte AL0AD_1 = (byte)43;

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999
٠٠ 56 ٠٠

public static final byte AL0AD_2 = (byte)44: 
public static final byte ALOAD__3 = (byte)45; 
public static final byte IALOAD = (byte)46; 
public static final byte AALOAD = (byte)50; 
public static final byte BALOAD = (byte)51: 
public static final byte CALOAD = (byte)52; 
public static final byte ISTORE = (byte)54; 
public static final byte ASTORE = (byte)58: 
public static final byte ISTORE_0 = (byte)59: 
public static final byte IST0RE_1 = (byt'e)60; 

public static final byte IST0RE_2 = (byte)61 ; 
public static final byte IST0RE_3 = (byte)62; 
public static final byte ASTORE_0 = (byte)75; 
public static final byte AST0RE_1 = (byte〉76; 
public static final byte AST0RE_2 = (byte)77: 
public static final byte AST0RE_3 = (byte)78; 
public static final byte IASTORE = (byte)79; 
public static final byte AASTORE = (byte)83: 
public static final byte BASTORE = (byte)84: 
public static final byte CASTORE = (byte)85: 
public static final byte POP = (byte)87;
public static final byte ΡΟΡ2 = (byte)88: 
public static final byte DUP = (byte)89;
public static final byte DUP_X1 = (byte)90; 
public static final byte DUP_X2 = (byte)91 ; 
public static final byte DUP2 = (byte)92: 
public static final byte DUP2_X1 = (byte)93; 
public static final byte DUP2_X2 = (byte)94: 
public static final byte SWAP = (byte)95; 
public static final byte IADD = (byte)96;
public static final byte ISUB = (byte)IOO: 
public static final byte IMUL = (byte)1O4; 
public static final byte IDIV = (byte)108; 
public static final byte IREM = (byte)112; 
public static final byte INEG = (byte)116;

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT^S97/18999-57 -

public static final byte ISHL = (byte)12O;
public static final byte ISHR = (byte)122:
public static final byte lUSHR = (byte)124:
public static final byte lAND = (byte)126:
public static final byte OR = (byte)128;
public static final byte IXOR = (byte)130:
public static final byte IINC = (byte)132;
public static final byte ΙΝΤ2ΒΥΤΕ = (byte)145;
public static final byte INT2CHAR = (byte)146: 
public static final byte INT2SHORT = (byte)147;
public static final byte IFEQ = (byte)153:
public static final byte IFNE = (byte)154:
public static final byte IFLT = (byte)155:
public static final byte IFGE = (byte)156:
public static final byte IFGT = (byte)157;
public static final byte IFLE = (byte)•158: 
public static final byte IFJCMPEQ = (byte)159;
public static final byte IFJCMPNE = (byte)160: 
public static final byte IFJCMPLT = (byte)161;
public static final byte IFJCMPGE = (byte)162; 
public static final byte IFJCMPGT = (byte)163;
public static final byte IFJCMPLE = (byte)164; 
public static final byte IF_ACMPEQ = (byte)165: 
public static final byte IF_ACMPNE = (byte)166;
public static final byte GOTO = (byte)167:
public static final byte j_JSR = (byte)168:
public static final byte RET = (byte)169:
public static final byte TABLESWITCH = (byte)170; 
public static final byte LOOKUPSWITCH = (byte)171 : 
public static final byte IRETURN = (byte)172: 
public static final byte ARETURN = (byte)176;
public static final byte RETURN = (byte)177; 
public static final byte GETSTATIC = (byte)178;
public static final byte PUTSTATIC = (byte)179: 
public static final byte GETFIELD = (byte)180;

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97^8999- 58 -

public static final byte PUTFIELD = (b٧te)181;
public static final byte INVOKEVIRTUAL = (byte)182;
public static final byte INVOKENONVIRTUAL = (byte)183; 
public static final byte INVOKESTATIC = (byte)184: 
public static final byte INVOKEINTERFACE = (byte)185: 
public static final byte NEW = (byte)187;
public static final byte NEWARRAY = (byte)188;
public static final byte ARRAYLENGTH = (byte)190;
public static final byte ATHROW = (byte)191 :
public static final byte CHECKCAST = (byte)192;
public static final byte INSTANCEOF = (byte)193;
public static final byte IFNULL = (byte)198;
public static final byte IFNONNULL = (byte)199;

}

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999wo 98/19237 - 59 -

APPENDIX D
Card Class File Converter byte code conversion process

I*
* Reprocess code block.
*I

static
void
reprocessMethod(iMethod* imeth)

¡nt pc:
¡nt npc;
¡nt align:
bytecode* code;
int codelen:
int i;
int opad:
int npad;
¡nt ape;
¡nt high;
¡nt low;

/* codeinfo is a table that keeps track of the valid Java bytecodes and their
* corresponding translation
*1
code = imeth-axternal^code;
codeten = ¡meth->external->codejength;

jumpPos = 0;
align = 0;

/* Scan for unsupported opcodes */
for (pc = 0; pc < codeten; pc = npc) {
if (codeinfo[code[pc]】.valid == 0) {
errorC'Unsupported opcode %d"，code[pc]);

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97^8999
- 60 -

}
npc = nextPC(pc，code):

}

/* Scan for jump instructions an insert into jump table */
for (pc = 0; pc < codelen; pc = npc) {

npc = nextPC(pc，code):

¡f (code¡nfo[code[pc]]_٧al¡d == 3) {
¡nsert」ump(pc+1, pc, (int16)((code[pc+1] « 8)|code[pc+2]));

}
else ¡f (code¡nfo[code[pc]].٧al¡d == 4) {

apc = pc &-4;
low = (c٥de[apc+8] « 24) I (c٥de[apc+9j « 16)

I (c٥de[apc+^] « 8) I code[apc+11】;

high = (c٥de[apc+12] « 24) I (c٥de[apc+13] « 16)
I (c٥de[apc+14] « 8) I c٥de[apc+15];

for (i = 0: i < high-low+l; Í++) {
¡nsertJump(apc+(¡*4)+18, pc, 

(¡nt16)((code[apc+(¡*4)+18】« 8)丨 code[apc+(¡*4)+19]));} : : 

insertJump(apc+6, pc, (int16)((code[apc+6] « 8) I c٥de[apc+7]));
}
else if (codeinfo[code[pc„.valid == 5) {

ape = pc & -4:
low = (c٥de[apc+8] « 24) I (c0de[apc+9] « 16)

I (c٥de[apc+^] « 8) I code[apc+11J;
for (i = 0; i < low: Í++) { 

insert」ump(apc+(i*8)+18, pc,
(int16)((code[apc+(i*8) + 18] « 8)丨 code[apc+(¡*8)+19]));٠ {

insertJump(apc+6, pc, (int16)((code[apc+6] « 8) I c٥de[apc+7】)): 

}
}

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999
—61

#ifdefT^SLATE_BYTECODE
!* Translate specific opcodes to general ones *ر
for (pc = 0: pc < codelen; pc = npc) {
/*This ¡S a translation code */
¡f (codeinfo[code[pc】】.valid == 2) { 
switch (code[pc】){ 

case ILOAD_0: 
caselLOADJ: 
case IL0AD_2: 
case IL0AD_3:

insertSpace(code，&codelen，pc, 1);
align += 1;
c٥de[pc+1] = code[pc] - ILOAD_0: 
c٠de[pc+0] = ILOAD;
break;

case ALOAD_0:
case ALOAD」:

case AL0AD_2:
case AL0AD_3:

insertSpace(code，&codelen，pc, 1): 
align += 1;
c٥de[pc+1] = code[pc】・ ALOAD-O:
code[pc+0] = ALOAD: 
break:

case ISTORE_0:
case IST0RE_1:
case IST0RE_2:
case IST0RE_3:

insertSpace(code, &codelen，pc, 1): 
align += 1:
c٥de[pc+1] = code[pc) - ISTORE—O:
code[pc+0] = ISTORE:

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-62 -

break;

case ASTORE_0:
case AST0RE_1:
case AST0RE_2:
case AST0RE_3:
insertSpace(code，&codelen, pc, 1): 
align += 1;
code[pc+1] = code[pc] - ASTORE_0; 
c٠de[pc+O] = ASTORE;
break;

case IC0NST_M1:
insertSpace(code, &codelen，pc, 2); 
align += 2;
code[pc+2] = 255;
code[pc+1] = 255;
code[pc+0] = SIPUSH;
break;

case ICONST_0:
case IC0NST_1:
case 1CONST：2:

case ICONST__3:
case IC0NST_4:
case IC0NST_5:

insertSpace(code, &codelen, pc, 2); 
align += 2;
code[pc+2] = codefpc] - ICONST_0; 
code[pc+1] = 0;
code؛pc，= SIPUSH;

break;

case LDC1:
insertSpace(code, &codelen，pc, 1);

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-63 -

align += *1: 
c٠de[pc+1] 
code[pc+0】 

break:

0: 
LDC2;

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97^8999
- 64 -

case BIPUSH:
insertSpace(code，&codelen，pc，1);
align +=1;
¡f ((¡nt8)code[pc+2] >= 0) {
c٥de[pc+1] = 0:

}
eise{

code[pc+1J = 255;

}
code[pc+0] = SIPUSH:
break:

caselNT2SHORT:
removeSpace(code, &codelen，pc, 1);
align-=1:
npc = pc;
continue:

}
}
else if (code¡nfo[code[pc]].٧al¡d == 4 II codeinfo[code[pc]]_valid == 5) {
/* Switches are aligned to 4 byte boundaries. Since we are inserting and
* removing bytecodes, this may change the alignment of switch instructions.
* Therefore，we must readjust the padding in switches to compensate.
*I

opad = (4 - (((pc+1) - align) % 4)) % 4; /* Current switch padding */
npad = (4- ((pc+1) % 4)) % 4; I* New switch padding *I
if (npad > opad) {

¡nsertSpace(code，&codelen, pc+1, npad - opad);
align += (npad - opad);

}
else ¡f (npad < opad) {

removeSpace(code, &codelen，pc+1, opad - npad);
align -= (opad - npad);

}

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98，19237 -65 -

}

пре = nextPC(pc, code):

}
#endif

/* Relink constante */
for (pc = 0: pc < codelen; pc = npc) {

npc = nextPC(pc，code);
¡ = (U¡nt16)((code[pc+1] « 8) + code[pc+2】);

switch (code_) {
case LDC2:
/٠ '¡' == general index */
switch (cltem(i).type) {
case CONSTANT—lnteger:

i = cltem(i)_v.t¡nt: 
code[pc] = SIPUSH;
break;

case CONSTANT_String:
i = buiidStringlndex(¡);
break;

default:
errorC'Unsupported iMding of constant type"); 
break;

}
break;

case NEW:
case INSTANCEOF:
case CHECKCAST:
/٠ '¡' == class index *I

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97^8999
-66 -

i = buildClasslndex(¡):
break;

caseGETFIELD:
case PUTFIELD:
/* '¡' == field index */
/* i = buildFieldSignaturelndex(¡); *I
i = buildStaticFieldSignaturelndex(¡); 
break;

caseGETSTATIC:
case PUTSTATIC:

/*1¡' == field index */
¡ = buildStaticFieldSignaturelndex(¡); 
break;

case INVOKEVIRTUAL:
case INVOKENONVIRTUAL: 
caselNVOKESTATIC:
case INVOKEINTERFACE:

1★ 'i' == method signature index ★I
\ = buildSignaturelndex(¡);
break;

}

l* Insert application constant reference *I 
c٥de[pc+1] = (i » 8) & OxFF;
code[pc+2] = i & OxFF;

}

#¡fdef M0DIFY_BÏÏEC0DE
/* Translate codes *I
for (pc = 0; pc < codelen; pc = npc) {

npc = nextPC(pc，code);

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999wo 98/19237
- 67 -

code[pc] = codeinfo[code[pc]】.translation: 
}

#end¡f

/* Renk jumps*/
for (i = 0; ¡ < jumpPos; ¡++) {
apc = jumpTable[i].at:
pc = jumpTable[i].f「om;
npc = jumpTable[i].to - pc:

codefapc+이 = (npc » 8) & OxFF;
C0de[apc+1] = npc & OxFF;

}

/* Fixup length *I
imeth->extemal->code」ength = codelen: 
imeth->esize = (SIZEOFMETHOD + codelen + 3) & "4;

}

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999-68 -

APPENDIXE
Example Loading And Execution Control Program

public class Bootstrap {

// Constants used throughout the program 
static final byte BUFFER_LENGTH = 32; 
static final byte ACK_SIZE = (byte)1 ;
static final byte ACK_CODE = (byte)0;
static final byte ◦S_HEADER_SIZE = (byte)Oxl 0; 
static final byte GPOS_CREATE_FILE = (byte)OxEO;

static final byte ST_INVALID_CLASS = (byte)OxCO;
static final byte STJNVALID：PARAMETER : (byte)OxAO: 
static final byte STJNS_NoisUPPORTED = (byte)OxBO:

static final byte ST_SUCCESS = (byte)OxOO:

static final byte ISO_COMMAND_LENGTH = (byte)5: 
static final byte ISO_READ_BINARY = (byte)OxBO;
static final byte ISO_UPDATE—BINARY = (byte)0xD6;
static final byte ISO=INIT_ApS」CATION = (byte)0xF2: 

static final byte ISO_VERIFY_KEY = (byte)0x2A: 
static final byte ISO_SELECT_FILE = (byte)0xA4:

static final byte ISO_CLASS = (byte)OxCO;
static final byte ISO=APP_CLASS = (byte)OxFO:

public static void main () {

byte pbuffer[] = new byte[ISO_COMMAND_LENGTH]:
byte dbuffer[] = new byte[BUFFER_LENGTH]:
byte ackByte„ = new byte[ACK_SIZE】;

//short fileld:
short offset:

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98/19237 -Β٩ί١

byte bRetumStatus;

"Initialize Communications
-OS.SendATR():

d。{

"Retrieve the command header
_OS.GetMessage(pbuffer，ISO_COMMAND_LENGTH，ACKÇODE):

"Verify class of the message - Only ISO + Application
if ((pbuffer^ != ISO_APP_&lASS)

&& (pbuffer^ != ISO_CLASS)) { 
_OS.SendStatus(STJNVALID_CLASS);

}
else{
"go through the switch
"Send the acknowledge code

"Verify if data length too large
if (pbufíer[4] > BUFFER_LENGTH) {

bRetumStatus = STJNVALlD_PARAMETER;
}
else
{

switch (pbuffer[1]) {
case ISO_SELECT_FILE:
"we always assume that length is 2
if (pbuffe「[4] != 2){

bRetumáatus = ST_INVAUD_PARAMETER;

}
else
{

// get the fileld(offset) in the data buffer
—◦S.GetMessage(dbuffer, (byte)2, pbuffer[1]);
// cast dbuffe「[0..1] into a short

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-69/2 -

offset = (short) ((dbuffer[o】« 8) I (dbuffer[1] & OxOOFF)): 
bReturnStatus = _OS.SelectFile(offset):

}
break:

case ISO_VERIFY_KEY:
II Get the Key from the terminal
—OS.GetMessage(dbuffer, pbuffer[4】٠ pbuffer[1]):

bReturnStatus = _OS_VerifyKey(pbuffer[3],
dbuffer, 
pbuffe「[4]);

break;

case ISOJN!T_APPLICATION:
"Should send the id of a valid program file 
_OS.GetMessage(dbuffer, (byte)1, pbufíer[1]);
// compute fileld(offset) from pbuffer[2..3] via casting 
offset = (short) ((pbuffe「[2] « 8) I (pbuffe「[3] & OxOOFF)); 
bReturnStatus = _OS_Execute(offset，

dbuffer[o]);
break:

case GPOS_CREATE_FILE:
¡f (pbuffer¡4] != OS_HEADER_SIZE) {

bReturnStatus = ST_INVALID_PARAMETER: 
break:

}
"ReceiveThe data
—◦S.GetMessage(dbuffer٠ pbuffe「[4]，pbuffer[1]); 
bReturnStatus = _OS.CreateFile(dbuffer);
break:

case ISO_UPDATE_BINARY:
_OS.GetMessage(dbuffer, pbuffe「[4], pbuffel]);
// compute offset from pbuffer[2..3] via casting 

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999-69/3 -

offset = (short) ((pbuffe٢[2] « 8) I (pbuffe٢[3] & OxOOFF)): 
"assumes that a file is already selected 
bReturnStatus = _OS.W٢¡teB¡naryF¡le (offset,

pbuffër[4],
dbuffer);

break:
case ISO_READ_BWARY:

// compute offset from pbuffer[2..3] via casting 
offset = (short) ((pbuffer[2] « 8) I (pbuffe「[3] & OxOOFF)): 
"assumes that a file ¡S already selected 
bReturnStatus = _OS.ReadBinaryFile (offset，

pbuffer[4], 
dbuffer):

// Send the data if successful
ackByt_ = pbuffer[1]:
if (bReturnStatus == S^_SUCCESS) {

-◦S.SendMessage(ackByte，ACK-SIZE); 
_OS.SendMessage(dbuffer, pbuffe「[4]):

}
break;

default:
bReturnStatus = ST_INS_NOT_SUPPORTED:

}
}

_OS.SendStatus(bReturnStatus);

}
}
while (true);

}

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-69/4 -

APPENDIX F
Methods For Accessing Card Operating System CapabHities In The Preferred 
Embodiment

public class _OS{

Static native byte 
static native byte 
static native byte 
static native byte

SelectFile (short filejd):
SelectParent 0;
SelectCD ():
SelectRoot ();

static native byte 
static native byte

CeateFile (byte file_hdr[]);
DeleteFite (short file_id);

"General File Manipulation
static native byte 
static native byte 
static native short

ResetFile 0;
ReadByte (byte offset);
ReadWord (byte offset);

"Header Manipulation
static native byte GetFilelnfo (byte file_hdr[】)；

П Binary File support
static native byte ReadBinaryFile (short offset, 

byte datajength, 
byte buffer[]);

static native byte WriteBinaryFile (short offset， 
byte data_length， 
byte buffer[】)；

// Record File support
static native byte SelectRecord (byte record_nb,

byte mode);
static native byte 
static native byte

NextRecord ():
PreviousRecord ();

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT^JS97/18999-69/5 -

static native byte ReadRecord (byte record_data[L
byte rec٥「d_nb.
byte offset，

byte length):
static native byte WriteRecord (byte buffer[].

byte ٢eco٢d_nb，

byte offset.
byte length):

!1 Cyclic File Support
static native byte LastUpdatedRec ():

// Messaging Functions
static native byte

static native byte

static native byte

static native byte

GetMessage (byte buffer[!, 
byte expectedjength, 
byte ack_code);

SendMessage (byte buffe「[], 

byte datajength):
SetSpeed (byte speed);

"Identity Management
static native byte 
static native byte

CheckAccess (byte açaction);
VerifyKey (byte key_number，

byte key_buffer[]， 
byte keyjength);

static native byte VerifyCHV (byte CHV_numbe「， 

byte CHV_buffer[], 
byte unblock_flag):

ModifyCHV (byte CHV_number, 
byte old_CHV_buffer□， 
byte new_CHV_buffer[], 
byte unblock_flag):

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 -69/6 - PCT/US97^8999

static native byte 
static native byte

GetFileStatus 0：

SetFileStatus (byte file_status);

static native byte GrantSupervisorMode ();
static native byte RevokeSupervisorMode();

static native byte SetFileACL (byte file_acl[]);
static native byte GetFileACL (byte file_acl□);

"File context manipulation
static native void InitFileStatus ();
static native void BackupFileStatus ();
static native void RestoreFileStatus ();

//Utilities
static native byte CompareBuffe「 (byte patternjength 

byte bufferl[]， 
byte buffe「_2[】)；

static native short AvailableMemory ();
static native void ResetCard (byte mode);
static native byte SendATR ():

static native byte SetDefaultATR (byte buffer□,
byte length);

static native byte Execute (short file_id,
byte flag):

II Global state variable functions
static native byte 
static native byte 
static native short 
static native byte 
static native byte 
static native short 
static native void

Getldentity (): 
GetRecordNb (); 
GetApplicationld (): 
GetRecordLength ():
GetFileType 0：

GetFileLength ();
SendStatus (byte status);

SUBSTITUTE SHEET (RUIE 26)



wo 98/19237 PCT/US97/18999
-沾门-

}

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-69/8 -

APPENDIX G

Byte Code Attributes Tables

Dividing Java byte codes into type groups

Each bytecode is assigned a 5 bit type associated with it. This is used to group the 
codes into similarly behaving sets. In general this behaviour reflects how the types of 
byte codes operate on the stack, but types 0, 13, 14, and 15 reflect specific kinds of 
instructions as denoted in the comments section.

The table below lustrates the state of the stack before and after each type of 
instruction is executed.

Type Before execution After exececution Comment

0 legal instruction
1 stk0==int stk1==int p٥p(1)
2 stk٥==int pop(1)
3 stk٥==int Stk1==int ρορ(2)
4
5 push(1)
6 stkO==¡nt Stk1==int ρορ(3)
7 stk0==int ρορ(1)
8 stk٥==ref ρορ(1)
9 stk0==int Ρ٥Ρ(1)
10 push(1) stko<-¡nt
11 push(1) stko<-「ef
12 stk٥==ref stkO<-¡nt
13 DUPs，SWAP instructions
14 NVOKE instructions
15 FIELDS instructions
16 stkOc-ref

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98/19237 -69/9 -

Using Standard Java Byte Code (without reordering》· Attribute Lookup Table

م

* Table of bytecode decode information. This contains a bytecode type
* and a bytecode length. We currently support all standard bytecodes
* (¡e. no quicks) which gives US codes 0 to 201 (202 codes ¡n all).
Ί

*define T_ 0
*define ТЗ 1
#define Τ6 2
*define T1 3
*define Τ2 4
#define Τ7 5

*define Τ9 6
*define Τ8 7
*define Τ12 8
*define TO 9
#define Τ5 10
*define Til 11
#define Τ16 12
#define Τ4 13
*define Τ13 14
*define Τ14 15
*define Τ15 16

*define D(T,L)
_BUlLDJÏÏPE_ANDJLENGTH(T, L)
¿define _¿^LD=ITYPE_AND_ILENG٢H(T，L) 

(_BUILDJÏÏPE(T)LBUILDJLENGTH(L))
#define _BULD」TYPE(T)
#define =B^ÎD；；ILENGTH(L)
*define ：GET_I٠٢YPE(I)
#define =GET]LENGTH(I)

((T) « 3)
(L)
((l)&0xF8) 

((l)&OxO7)

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999-69/10 -

const uint8 _SC0DE _decode¡nfo[256] = {
/* NOP ٠/
/*ACONST_NULL */ 
/*ICONSTJVI1 */
/*ICONST=0 /٠
٠/!CONST=1 /٠
٠/ICONST=2 *I
/٠ IC0NST：3 /٠
٠/ICONST=4 t
/٠ICOHST：5 *I

/

١أ
 
١كا
 
كال

 /ί\ /ί

١ 、
—，
 
كا
 
كا

 

、・_
〆
 

、·_·
， 

D
D
D
D
D
D
D
D
D
D
D

1

0

0

0

0

0

0

0

Τ

٦
٦

٦

Τ

Γ

Γ

Γ

٦
Τ
Τ

D(T_,1)，

D(T_٠1),
D(T_,1),
D(T-，1)，

D(T_٠1),
D(T1O,2),
D(T1O,3),
D(T_,2)i

D(T11,3),
D(T-,3)，

D(T5 ,2)1
D(T_٠2)i
D(T-,2),
D(T-,2)i

D(T5,2),
D(T5٠1),
D(T5٠1),
D(T5,1),
D(T5,1),

D(T_，1)٠
D(T_٠1)I
D(T-，1)，

D(T_，1)，

，BIPUSH " 
，SIPUSH */ 
/* LDC1 
/*LDC2

_\\*ا٢مجد ٠!

I* *ا
/*ILOAD_0 ٠/ 
/*IL0AD=1 *I 

/٠ILOAD=2 *I 
/٠ILOAD=3 *I

*/
*I

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/1899969/11 -

D(T_,1),

D(T_,1),
D(T_,1)i
D(T_,1), 
D(T .1).
D(T:，1)，

D(T_٠1),
D(T_٠1)i 
D(T .1). 
D(T5,1), /٠ AL0ADÇ */
D(T5٠1). /* ALOAD) *1

D(T5,1), /*AL0AD=2 */
D(T5,1)， /٠ AL0AD=3 *f

D(T_,1)٠ /*IALOAD *1

D(T_,1), 

D(T，1), 
D(T：,1).

D(T_,1)٠ ا٠دتجدكهلج */

D(T7,1)٠ /* BALOAD */

D(T_٠D٠ /*CALOAD *1

D(T7,1)٠ 1* */
D( Τ2，2), /*ISTORE */
D(T_,2)，
D(T：,2),

D(T_，2),
D(T8,2)i /*ASTORE */
D(T2J), /*ISTORE_0
D(T2,”，

/*IST0RE:1

D(T2,1)٠ 1* IST0RE=2

D(T2,1), /٠ISTORE：3

D(T .1)，

D(T_J)٠
D(T_٠1),
D(T_，1)I
D(T_,1),

*/
*/
*/
*/

SUBSTITUTE SHEET (RUIE 26)



wo 98/19237 69/12 - PCT/US97/18999

D(T_,1)i 

D(T ,1). 
D(T_٠1),
D(T_٠1),
D(T_|1),

D(T_٠D٠
D(T8|1)i 1 ASTOREÇ */
D(T8|1)٠ /*AST0RE=1 */
D(T8,1)i

/* AST0RE=2 */
D(T8,1), /* AST0RE=3 */
D(T_，1), 1* IASTOR¿" *1

DT .1).

D(T_,D٠
D(T_٠D٠
D(T_,1), /* AASTORE */
D(T6,1), /٠ BASTORE */

D(T_٠1), /* CASTORE */

D(T6,1), /٠ SASTORE */
D(T2,1), /* POP /٠
D(T3,1)٠ /* ΡΟΡ2 */
D(T13,1), /・「，IIP */
D(T13,1)， /*DUP_X1 */
D(T13,1), /*DUP=X2 기

D(T13,1), /٠DUP2 */
D(T13,1)i /*DUP2_X1 *1

D(T13,1), /*DUP2=X2 ٠/
D(T13,1), /* SWAP *1

D(T1,1), /* IADD */

D(T_J)٠
D(T_,1),
D(T1 ,1),
D(T_,1), !* ISUB *1

D(T_,1),
D(T_٠1),

D(T_,1),

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-69/13 -

*I

D(T1，1), /*IMUL
D(T_,1),
D(T:，1),

D(T_|1).
D( Τ1 ,1), /*IDIV

D(T_٠1),
D(T_.1)٠
D(T_,1),
D(T1,1), /*IREM

D(T_，1)I
D(T_|1)，

D(T_,1),
D(T9,1), /* INEG

D(T_，1)I
D(T_,1),
D(T_，1)，

D( Τ1，1), /*ISHL

DT，1).
D(T1,1), /*ISHR

D(T-|1),
D(T1,1), /*IUSHR

D(T_,1),
D(T1 ,1), 1* IAND

D(T_,1)٠
D(T1,1), /*IOR
D(T_|1),
D(T1 ,1), 1* IXOR
D(T_|1),
D(T4,3), /*IINC
D(T_٠1),
D(T:，1)，

D(T_,1),
D(T_,1),
D(T=，1)i

D(T_J),

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCTZUS97/18999
一 —

D(T_，1)，

D(T_，1),
D(T .1),
D(T_,1),

D(T_，1),
D(T_，1)I
D(T9|1), "ΙΝΤ2ΒΥΤΕ */
D(T9,1), /*INT2CHAR */
D(T_,1), /٠INT2SHORT */

D(T_，1)，

D(T_|1)i
D(T_，1)，

D(T_,1),
D(T：,1),

D(T2٠3), /*IFEQ */
D(T2٠3), /*IFNE */
D(T2,3)i /*IFLT */
D(T2|3), /*IFGE *'

D(T2,3), /* IFGT */
D(T2,3), /*IFLT */
D(T3,3), /*IFJCMPEQ */
D(T3,3), /*IF:ICMPNE */
D(T3,3), 1* IF」CMPLT */
D(T3,3)，

/* IF:ICMPGE */
D(T3,3), /*IFJCMPGT */
D(T3|3), /*IFJCMPLE */
D(T3,3)i /٠IF_ACMPEQ */
D(T3,3), /*IF=ACMPNE */
D(T4,3), /*GOTO */
D(T_٠3), /*JSR */
D(T_,2), /٠ RET */
D(T2,0), /*TABLESWITCH */
D(T2,٥), /* LOOKUPSWITCH*/
D(T2,1), /*!RETURN ٠/
D(T_，”，

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 - 69/15 - PCT/US97/18999

D(T_J), 
D(T_,1), 
D(T8,1), 
D(T4,1), 
D( 丁15,3), 
D(T15,3), 
D(T15|3), 
D(T5,3), 
D(T14,3), 
D(T14,3), 
D(T14,3), 
D(T14,5), 

D(T_,1), 
D(T11,3)٠ 
D(T16٠2), 
D(T_٠3), 
D(T12,1), 
D(T8,”i 
D(T16,3), 
D(T12,3), 

D(T_，”， 
D(T_,1), 

D(T_,D٠ 
D(T-，4), 
D(T8٠3), 
D(T8,3), 
D(T_,5), 
D(T-,5)， 

D(T_,1), 
D(T-,1), 

D(T-，1), 
D(T_٠1), 
D(T_,1)٠ 

D(T_J), 
D(T_,1),

/* ARETURN *I 
/*RETURN */

*I 
/*PUTSTATIC ٠/
/* GETFIELD /٠
٠/ PUTFIELD *I
/*INVOKEVIRTUAL */ 
/*INVOKESPECIAL */ 
/*INVOKESTATIC*/ 
/*INVOKEINTERFACE*/

l*١٦BN *1
广사湖서识^ Ί

/*ARRAYLENGTH */ 
/*ATHROW *I 
/*CHECKCAST */ 
/*INSTANCEOF ٠/

/*IFNULL */
/*IFNONNULL 기

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999wo 98/19237 -69/16 -

D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 

D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_
D(T_٠1), 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 

D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_ 
D(T_
D(T_,1),

,1), 
，1)1

，(٠1 

).1， 
),1, 

，)1， 
，)1| 

),1， 
，(٠1 

,《٠1 
，)1， 
，)1. 
，)1， 

),1， 
),1,

，1),
，1),

٠”,
(,1，

٠)٠1
，(1，

，(1，

，(1，

٠)٠1
，1)， 
I”,
,1)1

D(T_,1),
D(T_٠1),
D(T_J)٠
D(T：,1),

D(T_,1)٠
D(T_,1)٠

SUBSTITUTE SHEET (RUIE 26》



PCT/US97/18999wo 98/19237
-69/17 -

D(T_J)٠
D(T：,1), 

D(T .1).

D(T_,1)，

D(T_,1),
D(T .1).
D(T_٠1), 
D(T ,1).
D(٢_|1)٠
D(T_٠1),
D(T：,D٠

D(T-，1)，

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999WO98^9237
-69/18

APPENDIXH

Checks Done On Java Byte Codes By Type

Decoding the instruction. This gives US the length to generate the next PC, and the 
instruction type:

pcargl = _GET_ILENGTH؛decodeinfo[insn]);
¡type = _GET_ITYPECdecodeinfo[insn]);

Implement some pre-execution checks based on this:

/* Check the input stack state based on the instuction type *!
if (¡type <= ΙΤΥΡΕ9){

if (itype <= ΙΤΥΡΕ1){
check_stack_int(1):

} 7

check_stack」nt(o);

}
else if (itype <= ΙΤΥΡΕ12){

check_stack_ref(o):

}
else if (¡type<lïïPE11){

push(”；

}

Finally，implement some post execution checks:

I* Set the output state *I
¡"¡type <= ΙΤΥΡΕ8){

if (itype <= ΙΤΥΡΕ6){
if (itype >= ΙΤΥΡΕ6){

p٥p(1)；

}

SUBSTITUTE SHEET (RULE 26)



PCT/US97/18999-69/19 -
wo 9819237

ρ٥ρ(υ；
}
рор(1);

}
else ¡f (¡type <= ΙΤΥΡΕ1Ο){

set_stack」nt(o):

else if (¡type >= IÏÏPE11 && ¡type <= ΙΊΓΥΡΕ16) { 
set_stack_ref(o):

}

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 -69/20 - PCT/US97/18999

APPENDIX ا

Checks Done On Renumbered Java Byte Codes

Get the instruction. The numeric value of the instruction implicitly contains the 
instruction type:

¡nsn = getpc(-1):

Implement some pre-execution checks based on this:

I*
* Check input stack state. By renumbering the byte codes we can
* perform the necessary security checks by testing if the value of the
* byte code (and hence the byte code) belongs to the correct group
Ί
¡f (insn <= ٦٢YPE9_END){

if (insn <= TYPeT_END) {

check_stack_int(1):

}
check_stack」nt(o):

}
else if (insn <= TYPE12_END) {

check_stack_ref(o):

}
else if (insn <= ΤΥΡΕ11_END) {

push(1)

}

Finally, implement some post execution checks: 

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999
-69/21 -

* Set output stack state.
*I
¡f (insn <= TYPE8_END){
if (insn <= ΤΥΡΕ6__ΕΝϋ) {
if (insn >= ÏÏPE6_START) {

pop(1)；

}

ρορ(1)；

}
ρορ(υ；

}
else if (insn <= ÏÏPE10_END) {

set_stack_¡nt(٥):

else if (insn >= ÏÏPE11_START && insn <= ÏÏPE16_END) { 
set_stack_ref(o);

SUBSTITUTE SHEET (RUIE 26)



wo 98/19237 PCT/US97/18999
—69/22ذ _

Reordering of supported Java byte codes by type

م٠ق?لاا٦٠ًا

1
2
3
4
5
6

7
8

.ΡΟΡ2 0 
IFJCMPEQ 
IF:ICMPNE 

IFJCMPLT 
IFJCMPGE 
IFJCMPGT 
IF:ICMPLE 
IF:ACMPEQ 

IF：ACMPNE

#define s. 
*define s 
#define s 
*define s 
*define s 
*define s 
*define s 
*define s 
*define s

/*TYPE 6*/ 

#defineTYPE6_START 9

#defines_SASTORE 9
#defines=AASTORE 10
#defines=BASTORE 11

#defineTYPE6_END 12

/*ÏÏPE1*/

#defines_IADD 13
#defines]SUB 14

*define sJMUL 15
#define s_IDIV 16
#defines]REM 17

*define sJSHL 18
#defines:ISHR 19
#defines]USHR 20 

#define sJAND 21

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97^8999-69/23 -

#define s」0R 22
#defines=IXOR 23

#defineTYPE1_END 23

/٠ TYPE 2*/

#defines」STORE 24
#define S__POP 25
#define sJFEQ 26
#defines=IFNE 27
#defines=IFLT 28
*define sJFGE 29
#defines=IFGT 30
#define sJFLE 31
#defines_TABLESWITCH 32
#defines:LOOKUPSWITCH 33

#defines」RETURN 34

1٠٦ΎΡΕ7Ί

#define s_SALOAD 35
#defines:AALOAD 36
#defines=BALOAD 37 

/*TYPE 9*/ 

#define s」NEG 39
#defines:INT2BYTE 40
#defines=INT2CHAR 41

#defíne"「YPE9_END 41

1٠٠٢ХРЕг٠1

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97^8999-69/24 -

#defines_ASTORE 42 
#defines:ARETURN 43 
#defines:ATHROW 44 
#defines]FNULL 45 
#defines]FNONNULL 46

#defineTYPE8_END 46

/*TYPE 12 ٠/

#defines_ARRAYLENGTH 47 
*define s:INSTANCEOF 48

#defineTYPE12_END 48

/٠ TYPE 10 ٠/

#defines_SIPUSH 49

#defineTYPE1O_END 49

م

#defines」しOAD 50
#define S_ALOAD 51

/*TYPE 11*/

#defineTYPE11_START 52

define s_ACONST_NULL 52 
#defines=LDC2 53

#define s_JSR 54 
#defines：NEW 55

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999
-69/25 -

#defineTYPE1_END 55

/*ÏÏPE16*/

#defines_NEWARRAY 56
#defínes=CHECKCAST 57

#defineTYPE16_END 57

/٠ TYPE 13*/ 

#defines_DUP 58
#defines=DUP_X1 59 
#defínes=DUP=X2 60 

#defines：DUP2 61 
#deñnes=DUP2_X1 62 
#defínes:DUP2:X2 63 

#defines：SWAP 64

ハ TYPE 14 ٠/

#define sJNVOKEVIRTUAL 65 /* 01000001 */ 
#defines]NVOKENONVIRTUAL 66 "이000010 */ 
#defíne s]NVOKESTATIC 67 /* 01000011 *I 

#defines_INVOKEINTERFACE 68 /*01000100 */

广 TYPE 15*/ 

#define s_GETSTATIC 69 
#defines=PUTSTATIC 70 

#defines_GETFIELD 71 
#defines：PUTFIELD 72

/*TYPE 4*/

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999-69/26 -

#define s_N0P 73
#defines=IINC 74
#defines=GOTO 75 

#äef٦nes：RET 76
#defines=RETURN 77

SUBSTITUTE SHEET (RULE 26》



PCT/US97/18999WO 98/19237
—70 —

5

10

15

20

What is claimed is:
1. An integrated circuit card for use with a 

terminal, comprising:
a communicator configured to communicate with 

the terminal;
a memory storing:

an application having a high level 
programming language format, and

an interpreter; and
a processor coupled to the memory, the 

processor configured to use the interpreter to interpret 
the application for execution and to use the communicator 
t◦ communicate with the terminal.

2. The integrated circuit card of claim 1, 
wherein the high level programming language format 
comprises a class file format.

3. The integrated circuit card of claim 1
wherein the processor comprises a microcontroller.

4. The integrated circuit card of claim 1 
wherein at least a portion of the memory is located in 
the processor.

5. The integrated circuit card of claim 1 
wherein the high level programming language format 
comprises a Java programming language format.



WO 98/19237 PCT/US97/18999
i ٦١ i

5

10

15

20

25

6. The integrated circuit card ◦f claim 1, 
wherein

the application has been processed from a 
second application having a string of characters, and

the string of characters is represented in 
the first application by an identifier.

7. The integrated circuit card ◦f claim 6, 
wherein the identifier comprises an integer.

8. The integrated circuit card of claim 1 
wherein the processor is further configured to:

receive a request from a requester to access 
an element of the card;

after receipt of the request, interact with 
the requester to authenticate an identity ◦f the 
requester; and

based on the identity, selectively grant 
access to the element.

9. The integrated circuit card of claim 8,
wherein the requester comprises the processor.

10. The integrated circuit card of claim 8,
wherein the requester comprises the terminal.

11.
wherein

The integrated circuit card ◦f claim 8,

the element comprises the application stored
in the memory, and

once access is allowed, the requester is 
configured to use the application.

12. The integrated circuit card of claim 8,
wherein



PCT/US97/18999wo 98/19237
-٠٦2

the element comprises another application 
stored in the memory.

13. The integrated circuit card of claim 8,
wherein the element includes data stored in the memory.

5 14. The integrated circuit card of claim 8
wherein the element comprises the communicator.

15. The integrated circuit card ◦f claim 8, 
wherein the memory also stores an access control list for 
the element, the access control list furnishing an

10 indication of types of access t◦ be granted to the 
identity, the processor further configured to: 

based on the access control list, 
selectively grant specific types ◦f access to the
requester.

15 16.
wherein the

The integrated circuit card of claim 15 
types of access include reading data..

20

17.
wherein the

The integrated circuit card of claim 15 
types of access include writing data.

18٠

wherein the
The integrated circuit card of claim 15 
types of access include appending data.

19.
wherein the

20.
wherein the

The integrated circuit card of claim 15 
types of access include creating data.
The integrated circuit card of claim 15 
types of access include deleting data.

The integrated circuit card of claim 15 
types of access include executing an 

application.

21.
wherein the

25



WO 98/19237 PCT/US97/18999
-73 -

5

10

15

20

25

30

22. The integrated circuit card ◦f claim 1, 
wherein the application is one of a plurality of 
applications stored in the memory, the processor is 
further configured to:

receive a request from لأ requester to access 
one of the plurality of applications لم

after receipt of the request, determine 
whether said one of the plurality of applications 
complies with a predetermined set of rules لم and

based on the determination, selectively grant 
access to the requester to said one of the plurality of 
applications.

23٠ The integrated circuit card of claim 22, 
wherein the predetermined rules provide a guide for 
determining whether said one of the plurality of 
applications accesses a predetermined region ◦f the 
memory.

24. The integrated circuit card of claim 22, 
wherein the processor is further configured to:

authenticate an identity ◦f the requester^ and 
grant access to said one of ths plurality of 

applications based on the identity.

25. The integrated circuit card ◦f claim 1, 
wherein the processor is further configured to:

interact with the terminal via the 
communicator t◦ authenticate an identity^ and

determine if the identity has been 
authenticated^ and

based on the determination, selectively allow 
communication between the terminal and the integrated 
circuit card.



PCT/US97/18999WO 98/19237
세

5

10

15

20

25

26. The integrated circuit card of claim 25, 
wherein the communicator and the terminal communicate via 
communication channels, the processor further configured 
to assign one of the communication channels to the 
identity when the processor allows the communication 
between the terminal and the integrated circuit card.

27. The integrated circuit card of claim 26, 
wherein the processor is further configured to:

assign a session key to said one of the 
communication channels, and

use the session key when the processor and the 
terminal communicate via said one of the communication 
channels.

28. The integrated circuit card ◦f claim 1, 
wherein the terminal has a card reader and the 
communicator comprises a contact for communicating with 
the card reader.

29. The integrated circuit card of claim 1, 
wherein the terminal has a wireless communication device 
and the communictor a wireless transceiver for 
communicating with the wireless communication device.

30. The integrated circuit card of claim 1, 
wherein the terminal has a wireless communication device 
and the communicator comprises a wireless transmitter for 
communicating with the wireless communication device.



PCT/US97/18999WO 98/19237
-75 -

5

10

15

20

25

31. A method for use with an integrated circuit 
card and a terminal, comprising:

storing an interpreter and an application 
having a high level programming language format in a 
memory of the integrated circuit card; and

using a processor of the integrated circuit 
card to use the interpreter to interpret the application 
for execution; and

using a communicator of the card when 
communicating between the processor and the terminal.

32٠ The method of claim 31, wherein the high 
level programming language format comprises a class rile 
format.

33. The method of claim 31, wherein the processor 
comprises a microcontroller.

34. The method of claim 31, wherein at least a. 
portion of the memory is located in the processor.

35. The method of claim 31, wherein the high 
level programming language format comprises a Java 
programming language format.

36. The method of claim 1, wherein
the application has been processed from a 

second application having a string of characters, further 
comprising:

representing the string of characters in the 
first application by an identifier.

37. The method of claim 36, wherein the 
identifier includes an integer.



PCT/US97/18999WO 98/19237
-76 -

5

10

15

20

38. The method of claim 31, further comprising: 
receiving a request from a requester to

access an element of the card;
after receipt of the request, interacting 

with the requester to authenticate an identity of the 
requester; and

based on the identity, selectively granting 
access to the element.

39. The method of claim 38, wherein the requester 
comprises the processor.

40. The method ◦f claim 38, wherein the requester 
comprises the terminal.

41. The method of claim 38, wherein the element 
comprises the application stored in the memory, further 
comprising:

once access is allowed, using the application 
with the requester.

42. The method of claim 38, wherein the element 
comprises another application stored in the memory.

43. The method of claim 38, wherein the element 
includes data stored in the memory.

44. The method of claim 38, wherein the element 
comprises the communicator.



wo 98/19237 PCT/US97/18999
-η -

45. The method of claim 38, wherein the memory 
also stores an access control list for the element, the 
access control list furnishing an indication of types of 
access tQ be granted to the identity, further comprising:

5 based on the access control list, using the
processor to selectively grant specific types of access 
to the requester.

46. The method of claim 45, 
access include reading data.

10 47. The method ◦f claim 45,
access include writing data.

wherein the types of

wherein the types of

15

48. The method of claim 45 
access include appending data.

49. The method of claim 45
access include creating data.

50. The method ◦f claim 45, 
access include deleting data.

51. The method of claim 45,

wherein the types

wherein the

wherein the

of

types of

types of

wherein the types of
access including executing an application.



WO 98/19237 PCT/US97/18999
-78 -

5

10

15

20

25

52. The method of claim 31, wherein the 
application is one ◦f ة plurality of applications stored 
in the memory, further comprising:

receiving a request from a requester to access one 
of the applications stored in the memory;

upon receipt of the request, determining whether 
said one of the plurality of applications complies with a 
predetermined set of rules; and

based on the determining, selectively 
granting access to the said one of the plurality of 
applications.

53. The method of claim 52, wherein the 
predetermined rules provide a guide for determining 
whether said one of the plurality of applications 
accesses a predetermined region of the memory.

54. The method of claim 52, further comprising: 
authenticating an indentity of the requester; and 
based on the indentity, granting access to said

one of the plurality of applications.

55. The method of claim 31, further comprising: 
communicating with the terminal to

authenticate an identity^
determining if the identity has been 

authenticated; and
based on the determining, selectively 

allowing communication between the terminal and the 
integrated circuit card.



PCT/US97/18999wo 98/19237
—ول —

56. The method of claim 55, further comprising: 
communicating between the terminal and the

processor via communication channels; and 
assigning one of the communication channels

5 to the identity when the allowing allows communication 
between the card reader and the integrated circuit card.

57. The method of claim 56, further comprising: 
assigning a session key to said one ◦f the

communication channels; and
10 using the session key when the processor and

the terminal communicate via said one ◦f the 
communication channels.



PCT/US97/18999WO 98/19237
د 80 -

5

10

15

20

25

58. A smart card comprising:
a memory storing a Java interpreter； and
a processor configured to use the interpreter 

to interpret a Java application for execution.

59٠ A microcontroller comprising:
a semiconductor substrate;
a memory located in the substrate;
a programming language interpreter stored in 

the memory and configured to implement security checks; 
and

a central processing unit located in the 
substrate and coupled to the memory.

60. The microcontroller of claim 59, wherein the 
interpreter comprises a Java byte code interpreter.

61. The microcontroller of claim 59, wherein the 
security checks comprise establishing firewalls.

62. The microcontroller of claim 59, wherein the 
security checks comprise enforcing a sandbox security 
model.

63. A smart card comprising:
a memory;
a programming language interpreter stored in 

the memory and configured to implement security checks; 
and

a central processing unit coupled to the 
memory.

64. The smart card of claim 63, wherein the 
interpreter comprises a Java byte code interpreter.



PCT/US97/18999WO 98/19237
-81

5

10

15

20

25

65. The smart card of claim 63/ wherein the 
security checks comprise establishing firewalls.

66. The smart card of claim 63/ wherein the 
security checks comprise enforcing a sandbox security 
model.

67. An integrated circuit card for use with a 
terminal, comprising:

a communicator/
a memory storing an interpreter and first 

instructions of a first application, the first 
instructions having been converted from second 
instructions ◦f a second application; and

a processor coupled t◦ the memory and 
configured to use the interpreter to execute the first 
instructions and to communicate with the terminal via the 
communicator.

68. The integrated circuit card of claim 67/
wherein the first application has a class file format.

69. The integrated circuit card of claim 67/
wherein the second application has a class file format.

70. The integrated circuit card of claim 67,
wherein the first instructions comprise byte codes.

71. The integrated circuit card of claim 67,
wherein the second instructions comprise byte codes.

٩٠2،ι The integrated circuit card of claim 67,
wherein the first instructions comprise Java byte codes.



PCT/US97/18999WO 98/19237 -82

5

10

15

20

25

wherein

Ί3٠ The integrated circuit card of claim 67,
wherein the second instructions comprise Java byte codes.

74. The integrated circuit card ◦f claim 67,
wherein the first instructions comprise generalized
versions of the second instructions.

75. The integrated circuit card of claim 67,
wherein the first instructions comprise renumbered
versions of the second instructions.

76. The integrated circuit card of claim 67,

instructions.

the second instructions include constant
references,

the
and
first instructions include constants that

replace the constant references of the second

77. The integrated circuit card of claim 67, 
wherein

the second instructions include references, the 
references shifting location during the conversion of the 
second instructions to the first instructions, and

the first instructions are relinked to the 
references after the shifting.

78. The integrated circuit card of claim 67, 
wherein

the first instructions comprise byte codes for a 
first type of virtual machine, and

the second instructions comprise byte codes for a 
second type of virtual machine, the first type being 
different from the second type.



WO 98/19237 PCT/US97/18999

—83 -

5

10

15

20

25

79. A method for use with an integrated circuit 
card, comprising:

converting second instructions of a second 
application to first instructions of a first application;

storing the first instructions in a memory of 
the integrated circuit card; and

using an interpreter of the integrated
circuit card to execute the first instructions.

80. The method of claim 79/ wherein the first
application has a class file format.

81. The method of claim 79, wherein the second
application has a class file format.

82. The method of claim 79/ 
instructions comprise byte codes.

wherein the first

83. The method of claim 79 
instructions comprise byte codes.

wherein the second

84. The method ◦f claim 79 wherein the first
instructions comprise Java byte codes.

85. The method of claim 79, wherein the second 
instructions comprise Java byte codes.

86. The method of claim 79, wherein the first 
instructions are generalized versions ◦f the second 
instructions.

87. The method ◦f claim 79, wherein the 
converting includes renumbering the second instructions 
to form first instructions.



PCT/US97/18999wo 98/19237
—84 -

88. The method of claim 79/ wherein the second 
instructions include constant references, and

the converting includes replacing the constant 
references of the second instructions with constants.

5 89. The method of claim 79, wherein the second
instructions include references and the converting 
includes shifting location of the references, further 
comprising:

relinking the first instructions to the references 
10 after the converting.

90. The method of claim 79, wherein
the first instructions comprise byte codes for a 

first type of virtual machine, and
the second instructions comprise byte codes for a

15 second type ◦f virtual machine, the first type being 
different from the second type.



PCT/US97/18999WO 98/19237
一 85 -

5

10

15

20

25

91٠ An integrated circuit for use with a 
terminal, comprising:

a communicator configured to communicate with the 
terminal;

a memory storing a first application that has been 
processed from a second application hsving ة string of 
characters, the string of characters being represented in 
the first application by an identifier; and

a processor coupled to the memory, the 
processor configured to use the interpreter to interpret 
the first application for execution and to use the 
communicator to communicate with the terminal.

921 The integrated circuit card of claim 91, 
wherein the identifier comprises an integer.

93. A method for use with an integrated circuit 
card and a terminal comprising:

processing a second application to create a first 
application, the second application having a string of 
characters；

representing the string ◦f characters of the first 
application by an identifier in the second application;

storing an interpreter and the first application 
in a memory ٠f the integrated circuit card; and

using a processor ◦f the integrated circuit card 
to use an interpreter to interpret the first application 
for execution.

94. The method of claim 93, wherein the 
indentirier includes an integer.



WO 98/19237 PCT/US97/18999
- 86 —

5

10

15

20

25

95. A microcontroller comprising:
a memory storing:

an application having a class file 
format, and

an interpreter/ and
a processor coupled to the memory, the 

processor configured to use the interpreter to interpret 
the application for execution.

96. The microcontroller of claim 95, further 
comprising:

a communicator configured t◦ communicate with a 
terminal.

97. The microcontroller of claim 96, wherein" the 
terminal has a card reader and the communicator comprises 
a contact for communicating with the card reader.

98. The microcontroller ◦f claim 96, wherein the 
terminal has a wireless communication device and the 
communictor ة wireless transceiver for communicating with 
the wireless communication device.

99. The microcontroller of claim 96, wherein the 
terminal has a wireless communication device and the 
communicator comprises a wireless transmitter for 
communicating with the wireless communication device·

10◦. The microcontroller of claim 95, wherein the 
class file format comprises a Java class rile format■



WO 98/19237 PCT/US97/18999
-87 —

5

10

15

20

101. A method for use with an integrated circuit 
card, comprising:

storing ة first application in a memory of the 
integrated circuit card;

storing a second application in the memory of the 
integrated circuit card; and

creating a firewall that isolates the first and 
second applications so that the second application cannot 
access either the first application or data associated 
with the first application.

102. The method of claim 101, wherein the first 
and second applications comprise Java byte codes.

103. The method of claim 100, wherein the creating 
includes using a Java interpreter.

104. The method of claim 101, wherein
the storing of the first application is performed 

in association with manufacture of the integrated circuit 
card； and

the storing of the second application is performed 
at a later time after the manufacture is completed.



wo 98/19237 PCT/US97/18999
-88 —

105. An integrated circuit card for use with a 
terminal/ comprising:

a communicator configured to communicate with 
the terminal；

5 a memory storing:
applications, each application having a 

high level programming language format, and
an interpreter; and 

a processor coupled to the memory, the
10 processor configured to:

a. ) use the interpreter to interpret the 
applications for execution,

b. ) use the interpreter t◦ create a 
firewall to isolate the applications from each other, and

15 c.) use the communicator to communicate
with the terminal.



wo 98/19237 PCT/US97/18999

1/23

FIGUREI

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999

2/23

20

JAVA
CODE FOR
CLASSB

JAVA
CODE FOR
CLASSA
A.JAVA

٥ava
Application

20b
22

」ava 
Application 

Development 
Environment

20a

24

20cJAVA 
CODE FOR 
CLASSc 
(C.JAVA)

26

28 10

FIGURE 2

Card 
Loader

lnt۶g「a^d 
Circuit
Card

Card 
Class File 
Converter

COMPLED

CLASSA
A.CLASS

COMPLED
CODE FOR
CLASSB

Card
c ass F e

Casses

Application
Cl^ss Files 

24b

CODE FOR

B.CLASS

24a COMPILED 
CODE FOR 
CLASSc 

(C.CLASS)

(contains

A, B, and c)

27

24c

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999

24

COMPILED
CODE FOR

CLASSA

COMPLED
CODE FOR
CLASSB

COMPLED
CODE FOR
CLASSc

Applicaton 
Class Files

24b

A-CLASS B.CLASS

24a 24C

C.CLASS

FIGURE 3

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999

4/23

٧ 24a

FIGURE 4

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999

5/23

FIGURES

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999

6/23

FIGURE 6

SUBSTITUTE SHEET (RULE 26》



H
s
r
l
d
l
a

시

ιυΝ

ιι
—

〇<

〇||

0

0
<
-ل0

寸

о

(
ة9
ш٦
=

ос) н
ш
ш
х
м
ш

—n

l-l
f-s

CQn
s

ί١εζ6ΐ/86
٨ه
ظ



١٧٥98/19237

٢80

LDC
k

BIPUSH

35 (index)
戸

18

8/23

42 У

34 35 36 37
Integer 18٠

Class file Constant Pool

S
U
B
S
T
I
T
U
T
E

 S
H
E
E
T

 (
R
U
L
E
 2

6
)

٥

PCT/US97/18999

FIGURE 8



w
o
 98/19237

г 90 厂 94

INVOKESTATIC INVOKESTATIC

89 (index)
I 111.1...—. - ■ " F

13 (index)

PCT/US97/18999

9
/
2
3٥

Card Class file Constant Pool

ООО 13 14 15 16
ООО Method

Flâg٩ FOO1 FFF3

47ل

٥

o

0

42ل
Class file Constant Pool

o 89 90 92 o ٠ o

o Methoci
Flag٩

main
(ref) à ٠ o ٠

FIGURE 9

S
U
B
S
T
>
T
U

-,E

 S
H
E
E
T

 (
R
c
r
m
2
6
)



wo 98/19237 PCT/US97/18999

٢100

10/23

0:

1:

2:

3:

4:

5:

6:

ALOAD 43

0

ILOAD 21

1

IFNE 154 2:

BIPUSH16

5

厂置

0: ALOAD 51

1: 0

2: LLOAD50

3: 1

4: IFNE27 2:

5: BIPUSH49

6: 5

FIGURE 10

SUBSTITUTE SHEET (RUIE 26》



wo 98/19237 PCT/US97/18999

11/23

/：112 γ116

ILOAD
L

ILOAD_B

8
■■ 

8

ООО

114

0 
!〇

٠0
٠5

ООО

118

Word-Based Operand 
Stack

Byte-Ba^d Operand 
Stack

FIGURE 11

SUBSTITUTE SHEET (RULE 26》



10

١ν٥
98/19237

PCT/US97/18999

٨

1
2
/
2
3

FIGURE 12

Card 
Loader

S
U
B
S
T
I
T
U
T
E

 S
H
E
E
T

 (
R
c
r
m



14

S
U
B
S
T
I
T
U
T
E

 S
H
E
E
T

 (
R
U
L
E
 2
6
)

Card JVM

/-122

Card Operating System ه—► Communicator ◄

Integrated Circuit Card

10

Terminal

98/19237

PCT/US97/18999

1
3
/
2
3

FIGURE 13



جمه
 

98/19237

PCT/US97/18999

S
U
B
S
T
I
T
U
T
E

 S
H
E
E
T

 (
R
U
L
E
 2
6
)



wo 98/19237 PCT/US97/18999

15/23

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999

FIGURE 16

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999

١٦12٠ة

FIGURE 17

SUBSTITUTE SHEET (RULE 26)



wo 98/19237 PCT/US97/18999

18/23

SUBSTITUTE SHEET (RULE 26)



w
o

126χ١

Card 
Apptotion 

X

٦26y٦

Card 
Application 

Y

126Ζ]

Card 
Application 

z

S
U
B
S
T
I
T
U
T
E

 S
H
E
E
T

 (
R
U
L
E
 2

6
)

90

190ay ٦9Ob١

Identity 
A

Identity 
R

FIGURE 19

1900}

Identity 
c PCT/US97/18999

1
9
/
2
3



wo 98/19237 PCT/US97/18999

20/23

FIGURE 20

SUBSTITUTE SHEET (RULE 26》



wo 98/19237 PCT/US97/18999

21/23

SUBSTITUTE SHEET (RUIE 26》



wo 98/19237 PCT/US97/18999

22/23

240

SUBSTITUTE SHEET (RULE 26)



23123

صسص١



INTORNATIONAL SEARCH REPORT ٢ Int tional Application No

PCT/US 9"18999
A. CLASSIFICATION OF SUBJECT ΜΑπ^٩
IPC 6 GO6F9/46 GO7F7/1O

According to International Patent Classifjcation(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G06F G07F

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

c. DOCENTS CONSIDERED TO BE RELEVANT

Category ٥ Citation of document, with indication，where appropriate, of the relevant passages Relevant to claim No·

X FR 2 667 171 A (GEMPLUS CARD INT) 27 March 
1992

see page 1， line 25 - page 2， line 21
see page 8; line 20 - page 9; line 1
see page 6; line 9 - page 7， line 24

1-5，
8-26,28，
31-35,

38-56 ن
58-66 ن

95-97: 
100-1Ó5

|x| Further documents are listed in the continuation of box c. [y٦ Patent family members are listed in annex.

Special categories of cited documents : ٥ 
"T" later document published after the international filing date

L- L · ▲ or priority date and not in conflict with the application but د ٠. . .، ▲,٠ .د، ٠د، ,,.,,.
Q understand the principle or theory underlying the؛ the art which is not cited اه

but published on or afterthe International -χη document of particular relevance; the claimed invention umen؟؛١,E"e^^,®r 
tiling date cannot be considered novel or cannot be considered to

11L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone 
ich is cited to establish tne publicationdate of another 'T document。f particular relevance; the claimed^؛ 

crtation or other special reason (as specified) cannot be considered to involve an inventive step when the

"0" document referring to an oral disclosure, use, exhibition or document ¡S combined with one or more other such docu- 
other means ments, such combination being obvious to a person skilled

"p" document published prior to the international filing date but in the art· 

later than the priority date claimed "&11 document member of the same patent family

Date of the actual completion of theintern٠nal search

2 February 1998

Date of mailing of the international search report

06/02/1998

Name and mailing address of the ISA

European Patent Office，Ρ.Β. 5818 Patentlaan 2 
NL-228O HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 ôpo nl，
Fax: (+31-73016-340 <ة

Authorized officer

Brandt, ل
Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2



INTERNATIONAL SEARCH REPORT In iti٥nai ^plication No

PCT/US 97/18999
C.(Continuatlon) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ز Citation of document，with indication,where appropriate, of the relevant passages Relevant to claim No.

X wo 96 25724 A (EUROPAY INT SA ;HEYNS GUIDO 
(BE); JOHANNES PETER (BE)) 22 August 1996

see page 4， line 31 - page 8, line 18

8:S28，

31-35,
38-56 ن
,58-66

95-97:
100-1Ó5

Form PCT/ISA/210《continuation of second sheet) (July 1992》

page 2 of 2



INTERNATIONAL SEARCH REPORT ٢ Int tionai Application No
Infomiation on patent family members ΜΑ ٠|،٠ Α ▲ . م٠

PCT/US 9"18999

Publication Patent family
cited in search report member(s)

FR 2667171 A 27-03-92 NONE

09625724 A 22-08-96 AU 1802295 A 04-09-96
EP 0819287 A 21-01-98
FI 973352 A 15-08-97
N0 973693 A 12-08-97

Form PCT/ISA/210 (patent family annex) (July 1992)


