(54) Title: METHOD FOR IMPROVING MEMORY OF A SUBJECT USING A COMPOSITION COMPRISING CISTANCEH AND GINKGO EXTRACTS

(57) Abstract: A method and composition useful for improving memory of a subject are disclosed. The method comprises the step of administering the composition to the subject. The composition consists essentially of Cistanche extract and Ginkgo extract (e.g. as actives). In a first general embodiment, the extracts are present in a weight ratio (Cistanche to Ginkgo; or “C:G”) that is >2:5:1. In a second general embodiment, the extracts are present in a weight ratio that is <2:5:1. In embodiments of the first general embodiment, the composition comprises about 72-99 weight percent (wt.%) Cistanche tubulosa extract and about 1-28 wt.% Ginkgo biloba extract. In embodiments of the second general embodiment, the composition comprises about 50-70 wt.% Cistanche tubulosa extract and about 30-50 wt.% Ginkgo biloba extract. The Cistanche tubulosa extract is generally obtained from root material and the Ginkgo biloba extract is generally obtained from leaf material. The composition may also include inactives.
METHOD FOR IMPROVING MEMORY OF A SUBJECT USING
A COMPOSITION COMPRISING CISTANCHE AND GINKGO EXTRACTS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and all advantages of US Pat. App. No. 61/990,200 filed on May 8, 2014 and US Pat. App. No. 62/081,104 filed on November 18, 2014, the content of which is hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to a method and composition for improving memory of a subject. The method comprises the step of administering the composition to the subject. The composition consists essentially of Cistanche and Ginkgo extracts.

DESCRIPTION OF THE RELATED ART

[0003] Short-term memory is supported by transient patterns of neuronal communication, dependent on regions of the frontal and parietal lobes. On the other hand, long-term memory is maintained by more stable and permanent changes in neural connections widely spread throughout the brain. It is believed that the hippocampus is essential to the consolidation of information from short- to long-term memory, although it does not seem to store information itself.

[0004] A number of efforts have been made to improve short- and long-term memories. For example, dietary supplements have been provided in an effort to improve brain health and mental performance. A specific example of such is the "Memory Builder™ with Ginkgo” dietary supplement from NUTRILITE® of Buena Park, California, US. This dietary supplement is in the form of a tablet consisting of the following active ingredients: 300 mg Cistanche tubulosa extract (root) and 120 mg Ginkgo biloba extract (leaves).

[0005] While various efforts have been made, there remains an opportunity to provide additional methods and compositions for improving brain health, memory formation, and/or memory retention. Moreover, there remains an opportunity to reverse, slow, or prevent memory loss.

BRIEF SUMMARY OF THE INVENTION

[0006] A method and a composition are disclosed. The method and composition are useful for improving memory of a subject. The method comprises the step of administering the composition to the subject. The composition consists essentially of Cistanche extract and Ginkgo extract. In a first general embodiment, the extracts are present in a weight ratio (Cistanche to Ginkgo; or “C:G”) that is >2.5:1. In a second general embodiment, the extracts are present in a weight ratio (C:G) that is <2.5:1.

[0007] In various embodiments of the first general embodiment of this disclosure, the composition comprises about 72-99 weight percent (wt.%) Cistanche tubulosa extract and
about 1-28 wt.% *Ginkgo biloba* extract. In these embodiments, the *Cistanche tubulosa* and *Ginkgo biloba* extracts are present in a weight ratio (C:G) that is from 2.6:1 to 20:1. In various embodiments of the second general embodiment of this disclosure, the composition comprises about 50-70 wt.% *Cistanche tubulosa* extract and about 30-50 wt.% *Ginkgo biloba* extract. In these embodiments, the *Cistanche tubulosa* and *Ginkgo biloba* extracts are present in a weight ratio (C:G) that is from 1:1 to 2.4:1. The *Cistanche tubulosa* extract is generally obtained from root material and the *Ginkgo biloba* extract is generally obtained from leaf material.

Without being bound or limited by any particular theory, it is thought that the method and composition of this disclosure are useful for improving brain health, memory formation, and/or memory retention. Moreover, it is thought that the method and composition of this disclosure are useful for reversing, slowing, or preventing memory loss.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Other advantages of the disclosure will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

[0010] Figure 1A depicts bar charts of acute application examples;

[0011] Figure 1B depicts bar charts of further acute application examples;

[0012] Figure 1C depicts bar charts of further acute application examples;

[0013] Figure 1D depicts bar charts of further acute application examples;

[0014] Figure 2 depicts bar charts of chronic application examples;

[0015] Figure 3 depicts line graphs of chronic application examples;

[0016] Figure 4 depicts bar charts of chronic application examples;

[0017] Figure 5A is an image associated with semi-automatic quantification of examples;

[0018] Figure 5B is an image corresponding to synapse channel for examples;

[0019] Figure 6 illustrates examples of an acute study to assess mixtures of *Cistanche* and *Ginkgo* and effective concentration range;

[0020] Figure 7A is a bar chart of examples of a study to assess combinatorial effects of *Cistanche* and *Ginkgo*;

[0021] Figure 7B is a line graph of examples further illustrating the study to assess combinatorial effects of *Cistanche* and *Ginkgo*;

[0022] Figure 7C is a line graph of examples further illustrating the study to assess combinatorial effects of *Cistanche* and *Ginkgo*;

[0023] Figure 8 illustrates examples of a study to assess chronic effects of *Cistanche tubulosa* extract on maturation of a neuronal network;

[0024] Figure 9 illustrates examples of a study directed at immuno-histochemical analysis;
[0025] Figure 10 illustrates a *Cistanche tubulosa* fingerprint;
[0026] Figure 11 illustrates a *Ginkgo biloba* fingerprint;
[0027] Figure 12 illustrates steps of a phenotypic screening process;
[0028] Figure 13 depicts various neuron/glia co-cultures;
[0029] Figure 14 illustrates multi-parametric characterization of neuronal network activity;
[0030] Figure 15 depicts line graphs of acute application of *Ginkgo biloba* examples;
[0031] Figure 16 depicts line graphs of acute application of *Cistanche tubulosa* examples;
[0032] Figure 17 depicts *Ginkgo* and *Cistanche* mixture and concentration matrices;
[0033] Figure 18A depicts bar charts illustrating chronic effects of examples;
[0034] Figure 18B depicts additional bar charts illustrating chronic effects of examples;
[0035] Figure 19A is a first portion of a heat map;
[0036] Figure 19B is second portion of the heat map of Figure 19A;
[0037] Figure 20A is a bar chart illustrating chronic application effects on hippocampal network morphology of examples;
[0038] Figure 20B is a bar chart illustrating chronic application effects on hippocampal network morphology of examples;
[0039] Figure 20C is a bar chart illustrating chronic application effects on hippocampal network morphology of examples;
[0040] Figure 20D is a bar chart illustrating chronic application effects on hippocampal network morphology of examples; and
[0041] Figure 21 are images associated with semi-automatic quantification of examples.

DETAILED DESCRIPTION OF THE INVENTION

[0042] A method and a composition are disclosed. The method and composition are useful for improving memory of a subject. The method comprises the step of administering the composition to the subject. Without being bound or limited by any particular theory, it is thought that the method and composition of this disclosure are useful for improving brain health, memory formation, and/or memory retention. Moreover, it is thought that the method and composition of this disclosure are useful for reversing, slowing, or preventing memory loss. Other potential non-limiting benefits are described herein.

[0043] The composition consists essentially of *Cistanche* extract and *Ginkgo* extract. As used herein, the phrase "consisting essentially of" generally encompasses the specifically recited elements/components for a particular embodiment. Further, the phrase "consisting essentially of" generally encompasses and allows for the presence of additional or optional elements/components that do not materially impact the basic and/or novel characteristics of that particular embodiment. In certain embodiments, "consisting essentially of" allows for the presence of ≤ 10, ≤ 5, or ≤ 1, weight percent (wt.%) of additional or optional components.
based on the total weight of the composition. In other embodiments, the composition consists of Cistanche extract and Ginkgo extract as described herein. The aforementioned extracts may be referred to herein as the extracts, actives, or active ingredients. In various embodiments, actives of the composition consist of the Cistanche (or "Herba Cistanche") and Ginkgo (or "Yin Xing Ye") extracts.

[0044] Components that would generally materially impact the method/composition of this disclosure include active ingredients that are different from Cistanche extract and Ginkgo extract. In certain embodiments, the composition of this disclosure is free of other active ingredients. By "other active ingredients", it is generally meant that the composition is free of other types of Traditional Chinese Medicines ("TCMs"; or "Chinese medicines") that are different from Cistanche extract and Ginkgo extract. Other types of TCMs are understood in the art. Examples of other types of TCMs are generally described as "bioactive substances" in International Pub. No. WO01/22934A2, the content of which is incorporated by reference in its entirety.

[0045] In certain embodiments, the composition of this disclosure can comprise inactive ingredients as described below. If utilized, the inactive ingredients are different from Cistanche, Ginkgo, and other active ingredients.

[0046] Components that would not generally impact the method/composition of this disclosure include inactive ingredients. Inactive ingredients are understood in the art and are different from active ingredients, such as those described above. Examples of inactive ingredients include, but are not limited to, flavorings; carob; corn syrups, such as hydrolyzed corn syrup solids; cellulose, such as methyl cellulose, hydroxypropyl methyl cellulose, carboxy methyl cellulose, microcrystalline cellulose, and powdered cellulose; fructose; maltodextrin and maltol, such as natural maitol; sorbitol; preservatives; alcohols, such as ethanol, propyl alcohol and benzyl alcohol; glycerin; potassium sorbate; sodium benzoate; binders; flow agents; stearates, such as calcium stearate, magnesium stearate, and sodium magnesium stearate; dicalcium phosphate; glyceryl triacetate; vegetable oils, such as hydrogenated vegetable oils; mineral oils; water; silicones, such as silicone oils; silicon dioxide; stearic acid; waxes, such as carnauba wax and beeswax; starches, such as corn starch and potato starch; fatty esters and fatty alcohols; glycols and polyglycois; and combinations thereof. If utilized to form the composition, the inactive ingredient(s) can be used in various amounts. Further, it is to be appreciated that the amounts of actives described herein can be normalized with respect to 100 parts by weight of the composition to account for the presence of inactive ingredients (if utilized). This disclosure is not limited to a particular inactive ingredient or amount thereof.
The composition includes *Cistanche* extract. The *Cistanche* extract is obtained from plant material from the genus *Cistanche*. *Cistanche* is a worldwide genus of holoparasitic desert plants in the order Lamiales, family Orobanchaceae. Notable species of this genus include *Cistanche* (C.) *ambigua*, *C. deserticoa*, *C. phelypaea*, *C. salsa*, *C. sinensis*, and *C. tubulosa*. These species can be found in the arid lands of China and Pakistan and other parts of the world. In certain embodiments, *C. deserticoa* is not utilized based on scarcity.

In many embodiments, the *Cistanche* extract is an extract from the species *Cistanche tubulosa* (Shrenk.) Wight (also known simply as *Cistanche tubulosa*). *Cistanche* (root) may also be referred to as “Herba Cistanche” according to the Chinese Pharmacopoeia. Herba Cistanche may also be referred to as Rou Cong Rong, 大芸, Desertliving Cistanche, Cong Rong, 角芸, 角芸, or 大芸.

As used herein, reference to “*Cistanche* extract” generally refers to an extract containing material from the genus *Cistanche* including from the species *Cistanche tubulosa*. Optionally, other *Cistanche* species may be used in addition or alternate to *Cistanche tubulosa*; however, inclusion of *Cistanche tubulosa* extract is generally preferred. The *Cistanche* extract may be commercially obtained from various resources. In addition, suitable *Cistanche* extracts can be obtained by using any conventional extraction technique including, but not limited to, one or more techniques described further below.

Any part of the *Cistanche* plant may be used to obtain the extract used in the composition including, but not limited to, the root, stem, rhizome, leaf, flower, fruit, and/or extracts of these parts. *Cistanche* actives are generally found in the root of *Cistanche* plants and as such, root extraction (or root extract) is generally most useful for purposes of this disclosure. The *Cistanche* may be used in raw form, suspended form, dehydrated form, concentrated form, or extract form. In specific embodiments, the *Cistanche* extract is obtained from root material of a plant in the genus *Cistanche*, e.g. from root material of one or more *Cistanche tubulosa* plants.

Extracts of *Cistanche* roots may contain various actives (or phytochemicals), such as phenylethanoid glycosides. Without being bound or limited by any particular theory, it is thought that active components of *Cistanche* have positive effects on neuronal health, specifically as an anti-oxidant neuroprotective and as an endothelium-dependent relaxant to help promote optimal blood flow to the brain. Further, the mechanisms by which *Cistanche* supports neuronal strength are posited to be via increasing neuronal growth factors and inhibiting neurotransmitter breakdown.

In various embodiments, the *Cistanche* extract comprises at least one phenylethanoid glycoside, or mixtures thereof, in an amount of at least about 10, at least about 20, at least about 30, at least about 40, at least about 50, at least about 60, or at
least about 70%, Moreover, the *Cistanche* extract comprises at least one acteoside, cistanoside, echinacoside, or isoacteoside, or mixtures thereof, in an amount of at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, or at least about 40, %. In all of these embodiments, an upper boundary is 100%. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0053] The composition also includes *Ginkgo* extract (which may also be referred to as "*Gingko* extract" or "maidenhair tree" extract). The *Ginkgo* extract is obtained from plant (or tree) material from the genus *Ginkgo*. *Ginkgo* is a worldwide genus of plants in the order Ginkgoaæ, family Ginkgoaceae. Notable species of this genus include *Ginkgo* (G.) adiantoides, G. apodes, G. biloba, G. cranei, G. digitata, G. dissecta, G. gardneri, G. ginkgoidea, G. huolinhensis, G. huttonii, and G. yimaensis. These species can be found in China and other parts of the world.

[0054] In many embodiments, the *Ginkgo* extract is an extract from the species *Ginkgo biloba*. *Ginkgo* (leaf) may also be referred to as "Yin Xing Ye" according to the Chinese Pharmacopoeia. Yin Xing Ye is also referred to as 銀杏叶, *Ginkgo* Leaf, 銀杏葉, 銀杏葉, 銀杏葉, or Folium *Ginkgo*. *Ginkgo* (nut) may also be referred to as Bai Guo, although Yin Xing Ye is generally preferred over Bai Guo.

[0055] As used herein, reference to "*Ginkgo* extract" generally refers to an extract containing material from the genus *Ginkgo* including from the species *Ginkgo biloba*. Optionally, other *Ginkgo* species may be used in addition or alternate to *Ginkgo biloba*; however, inclusion of *Ginkgo biloba* extract is generally preferred. The *Ginkgo* extract may be commercially obtained from various resources. In addition, suitable *Ginkgo* extracts can be obtained by using any conventional extraction technique including, but not limited to, one or more techniques described further below.

[0056] Any part of the *Ginkgo* plant may be used to obtain the extract used in the composition including, but not limited to, the root, stem, rhizome, leaf, flower, fruit, and/or extracts of these parts. *Ginkgo* actives are generally found in the leaves of *Ginkgo* plants and as such, leaf extraction (or leaf extract) is generally most useful for purposes of this disclosure. The *Ginkgo* may be used in raw form, suspended form, dehydrated form, concentrated form, or extract form. In specific embodiments, the *Ginkgo* extract is obtained from leaf material of a plant in the genus *Ginkgo*, e.g. from leaf material of one or more *Ginkgo biloba* plants (i.e., *Ginkgo biloba* L).

[0057] Extracts of *Ginkgo* leaves may contain various actives (or phytochemicals), such as flavonoid glycosides (e.g. myricetin and quercetin) and terpenoids (e.g. ginkgoioides and
bilobalides). *Ginkgo* plant material may also contain terpene trilactones (e.g. ginkgolides A, B, C, J and bilobalide), flavonol glycosides, biflavones, proanthocyanidins, alkylphenols, simple phenolic acids, 6-hydroxykynurenic acid, 4-O-methylpyridoxine, and polyprenols. Without being bound or limited by any particular theory, it is thought that active components of *Ginkgo* improve blood flow to the brain and act as antioxidants. Further, it is thought that memory and cognitive speed may also be improved.

[0058] In various embodiments, the *Ginkgo* extract comprises at least one flavonoid, or mixtures thereof, in an amount of at least about 1, at least about 5, at least about 10, at least about 15, at least about 20, at least about 22, at least about 24, at least about 25, at least about 30, at least about 35, or at least about 40, %. Moreover, the *Ginkgo* extract comprises at least one terpenoid, or mixtures thereof, in an amount of at least about 0.1 , at least about 0.5, at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 15, or at least about 20, %. In all of these embodiments, an upper boundary is 100%. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0059] In a first general embodiment of this disclosure ("first embodiment"), the extracts are present in a weight ratio (*Cistanche* to *Ginkgo*; or "C:G") that is >2.5:1. In other words, the *Cistanche* extract is present in an amount more than 2.5 times that of the *Ginkgo* extract. Typically, the weight ratio is from 2.6:1 to 20:1 , 2.8:1 to 15:1, 3:1 to 9:1, 3:1 to 8:1, 3:1 to 7:1, 3:1 to 6:1, 3:1 to 5:1, 3:1 to 4:1, or 3:1. Alternatively, the weight ratio is from 2.6:1 to 20:1, 2.8:1 to 15:1, 3:1 to 9:1, 4:1 to 9:1, 5:1 to 9:1, 6:1 to 9:1, 7:1 to 9:1, 8:1 to 9:1, or 9:1. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0060] In various embodiments of the first embodiment, the *Cistanche* extract is present in an amount of from about 72-99, about 73-98, about 74-97, about 75-96, about 75-95, or about 75-90, wt.% based on 100 parts by weight of the composition. In specific embodiments, the *Cistanche* extract is present in an amount of from about 72-99, about 75-95, about 75-90, about 80-97, about 85-96, about 90-95, or about 90, wt.% based on 100 parts by weight of the composition. In other specific embodiments, the *Cistanche* extract is present in an amount of from about 72-99, about 73-95, about 74-90, about 75-85, about 75-80, or about 75, wt.% based on 100 parts by weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0061] Moreover, the *Ginkgo* extract is present in an amount of from about 1-28, about 2-27, about 3-28, about 4-27, about 5-26, about 6-25, about 7-25, about 8-25, about 9-25, or
about 10-25, wt.% based on 100 parts by weight of the composition. In specific embodiments, the Ginkgo extract is present in an amount of from about 1-28, about 2-25, about 3-20, about 4-15, about 5-10, or about 10, wt.% based on 100 parts by weight of the composition. In other specific embodiments, the Ginkgo extract is present in an amount of from about 1-28, about 5-27, about 10-26, about 15-25, about 20-25, or about 25, wt.% based on 100 parts by weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

In certain embodiments of the first embodiment, the composition comprises about 72-99 wt.% Cistanche tubulosa extract and about 1-28 wt.% Ginkgo biloba extract. The Cistanche tubulosa and Ginkgo biloba extracts are present in a weight ratio (C:G) that is from 2.6:1 to 20:1. Moreover, the Cistanche tubulosa extract is obtained from root material and the Ginkgo biloba extract is obtained from leaf material. In specific embodiments, the Cistanche tubulosa extract is present in an amount of about 90 wt.% and the Ginkgo biloba extract is present in an amount of about 10 wt.%, each based on 100 parts by weight of the composition. In other specific embodiments, the Cistanche tubulosa extract is present in an amount of about 75 wt.% and the Ginkgo biloba extract is present in an amount of about 25 wt.% each based on 100 parts by weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

In a second general embodiment of this disclosure ("second embodiment"), the extracts are present in a weight ratio (C:G) that is <2.5:1. In other words, the Cistanche extract is present in an amount less than 2.5 times that of the Ginkgo extract. Typically, the Cistanche extract is present in an amount equal to or greater than, more typically greater than, that of the Ginkgo extract. Typically, the weight ratio is from 1:1 to 2.4:1, 3:2 to 7:3, 2:1 to 7:3, 2.1:1 to 7:3, 2.2:1 to 7:3; 2.3:1 to 7:3; or 7:3. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

In various embodiments of the second embodiment, the Cistanche extract is present in an amount of from about 50-70, about 55-70, about 60-70, about 65-70, or about 70, wt.% based on 100 parts by weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

Moreover, the Ginkgo extract is present in an amount of from about 30-50, about 30-45, about 30-40, about 30-35, or about 30, wt.% based on 100 parts by weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

In certain embodiments of the second embodiment, the composition comprises about 50-70 wt.% Cistanche tubulosa extract and about 30-50 wt.% Ginkgo biloba extract. The Cistanche tubulosa and Ginkgo biloba extracts are present in a weight ratio (C:G) that
is from 1:1 to 2.4:1. Moreover, the *Cistanche tubulosa* extract is obtained from root material and the *Ginkgo biloba* extract is obtained from leaf material. In specific embodiments, the *Cistanche tubulosa* extract is present in an amount of about 70 wt.% and the *Ginkgo biloba* extract is present in an amount of about 30 wt.%, each based on 100 parts by weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0067] In various embodiments, the *Cistanche* extract is present in an amount of at least about 1, at least about 5, at least about 10, at least about 15, at least about 20, at least about 25, at least about 50, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, or at least about 500, mg based on the total weight of the composition. In these embodiments, an upper boundary is generally <5,000, <4,000, <3,000, <2,500, <2,000, <1,500, <1,000, <750, or <500, mg of *Cistanche* extract based on the total weight of the composition. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0068] Surprisingly, it was discovered that a greater amount of *Cistanche* extract relative to *Ginkgo* extract provides synergistic benefits. Specifically, it was discovered that the extract combinations/mixtures described herein provide beneficial effects on neuronal cell signaling. Moreover, it was discovered, unexpectedly, that an excess of *Ginkgo* extract relative to *Cistanche* extract (e.g. 50% or greater) can actually have deleterious effects, specifically, by acting as an inhibitor of desired neuronal cell signaling. Other findings are described in the EXAMPLES section below.

[0069] The extracts can be obtained via conventional extraction methods understood in the art, such as by water (e.g. steam) extraction or by solvent (e.g. alcohol) extraction. The composition of this disclosure is not limited to a particular extraction method, nor is extraction required since suitable extracts (e.g. standardized extracts) are readily available from a number of commercial suppliers, such as from Sinphar Tian-Li Pharmaceutical, of Hongzhou, China and from Beijing Gingko group of Beijing, China. Exemplarily extraction methods are described below.

[0070] In order to obtain an extract, a polar solvent such as an alcohol (e.g. methanol, ethanol, butylene glycol), an ether (e.g. ethyl ether), a ketone (e.g. acetone), an ester (e.g. ethyl acetate), water, or mixtures thereof, can be used as a solvent. Certain extracts can be also obtained by further extracting the extract from the polar solvent with a non-polar solvent. Suitable non-polar solvents include, but are not limited to, ethyl acetate, hexane, dichloromethane, chloroform, or mixtures thereof.

9
There are a variety of extraction methods that may be used to produce extracts suitable for the composition. These methods include, but are not limited to, the extraction methods disclosed in US Pat. No. 7,897,184, which is hereby incorporated by reference in its entirety and partially reproduced below with respect to some extraction methods. While extraction solvents described specifically mention ethanol, it should be understood that other alcohols such as, but not limited to, isopropyl alcohol, ethyl alcohol, and/or methyl alcohol may be used in addition to or as an alternative to ethanol. Exemplary alcoholic solvents include, but are not limited to, C1-C4 alcohols, such as methanol, ethanol, propanol, isopropanol, and butanol; hydro-alcohols or mixtures of alcohol and water, including hydro-ethanol; polyhydric alcohols, such as propylene glycol and butylene glycol; and fatty alcohols. Any of these alcoholic solvents may be used. Other solvents such as, but not limited to, acetone may also be used as an extraction solvent. Solvent-water blends, e.g. alcohol-water and/or acetone-water blends, of any ratio, may also be used.

In one example, the extracts can be obtained using an organic solvent extraction technique. In another example, solvent sequential fractionation can be used to obtain the extracts. Total hydro-ethanolic extraction techniques can also be used to obtain the extracts. Generally, this is referred to as a lump-sum extraction. Extracts generated in the process will contain a broad variety of phytochemicals present in the extracted material including fat and water soluble phytochemicals. Following collection of the extract solution, the solvent will be evaporated, resulting in the extract.

Total ethanol extraction may also be used. This technique uses ethanol as the solvent. This extraction technique generates an extract that may include fat soluble and/or lipophilic compounds in addition to water soluble compounds. Total methanol extraction may also be used in a similar manner with similar results.

Another example of an extraction technique that can be used to obtain the extracts is supercritical carbon dioxide supercritical fluid extraction ("SFE"). In this extraction procedure, the material to be extracted is not exposed to any organic solvents. Rather, the extraction solvent is carbon dioxide (CO2), with or without a modifier, in super-critical conditions (e.g. >31.3°C and >73.8 bar). Those of skill in the art will appreciate that temperature and pressure conditions can be varied to obtain the best yield of extract. This technique generates an extract of fat soluble and/or lipophilic compounds, similar to total hexane and ethyl acetate extraction techniques, which may also be used.

The composition can be prepared using various methods understood in the art. For example, actives of the composition, and optionally one or more inactives, can be mixed or blended and compressed or compounded utilizing various techniques understood in the
art. The composition of this disclosure is not limited to a particular order of manufacturing steps or method of manufacture.

[0076] Typically, the composition is administered (or ingested) orally, e.g. via the mouth (or "per os"). More typically, at least a portion of the composition is administered (or digested) externally, e.g. via the gastrointestinal (GI) track (or "enteros"). The subject is typically a human, and can include men and women of various ages. The method/composition of this disclosure is not limited to a particular subject.

[0077] The composition can be in various forms. Examples of suitable forms include solids, gels and liquids. Typically, the composition is solid. For example, the composition can be in the form of a pill, including tablets, capsules, and caplets. In general, each of these terms can be used interchangeable in the art, e.g. tablet for pill or vice versa. Other than the Cistanche and Ginkgo extracts (i.e., the "actives" or "active ingredients"), the composition can include inactives (or "inactive ingredients") including, but not limited to, excipients, such as diluents and binders; granulating agents; glidants (or flow aids); fillers; lubricants; preservatives; stabilizers; coatings; disintegrants; sweeteners or flavors; and pigments. Further examples of inactive ingredients are described above. In general, a number and quantity of excipients should be kept at a minimum as long as active ingredients are properly delivered. This is because subjects/consumers tend to prefer smaller tablets for easier consumption.

[0078] The composition can be in powder form, or pressed or compacted from a powder into a solid dose. A coating, e.g. polymer coating, may be used to make the tablet smoother and easier to swallow, to control release rate of the actives, to increase resiliency (or shelf life), and/or to enhance appearance. Other suitable oral forms of the composition include syrups, elixirs, suspensions, and emulsions. Further non-limiting embodiments of the composition of this disclosure are described hereafter.

[0079] In general, tablets provide a solid dosage form of delivery by oral route. Typically, the main purpose of a tablet formulation is to deliver active ingredients to a subject/consumer. Inactive ingredients are inactive substances that are generally used as carriers and formulation support for delivery of active ingredients. Inactive ingredients can be used for a variety of reasons, including handling small quantities (low mg and mg doses) of active ingredients, accurate dosing, stabilizing unstable active ingredients, degradation of active ingredients in the stomach, diluting active ingredients to prevent potential GI tract injury, and/or masking unpleasant organoleptic properties (taste and smell) of active ingredients.

[0080] Active ingredients must become biologically available to the subject/consumer. For this purpose, active ingredients must first be dissolved and released into the body. For in
vitro dissolution, the US Pharmacopeia ("USP") uses the following terms for determination of in vitro dissolution profile of dosage forms: immediate release, extended release and delayed release.

[0081] The in vivo release profile of active ingredients may be a conventional (unmodified) release, or a controlled release/sustained release (CR/SR), time release, targeted release or extended release. For CR/SR, zero-order kinetics is the ideal release profile. CR/SR profile may generally be achieved in two ways: (1) matrix, where active ingredients are dispersed within a polymer (Example: 71G NF Carbopol® polymer, Lubrizol Advanced Material Inc.) or (2) reservoir, where active and inactive ingredients form the core, which is encapsulated by membrane(s). Sometimes, a combination of different mechanisms is used (for example: CDT® controlled delivery technology, from SCOLR Pharma, which uses matrix erosion, changes in gel thickness, electrolyte ionization, and ionic interactions mechanisms).

[0082] The in vivo release can also be enhanced for bioavailability. Several factors can influence the bioavailability of active ingredients, including release rate from the delivery system, active ingredient degradation in the GI tract and poor permeability across gut mucosa. Some natural compounds have been shown to enhance the bioavailability of a number of dietary ingredients in clinical trials, for example, BioPerine® from Sabinsa.

[0083] The composition can be administered in various amounts. In certain embodiments, the composition is administered in an amount to provide at least about 1, at least about 5, at least about 10, at least about 15, at least about 20, at least about 25, at least about 50, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, or at least about 500, mg of the Cistanche extract to the subject. In these embodiments, an upper boundary of administration is generally ≤5,000, ≤4,000, ≤3,000, ≤2,500, ≤2,000, ≤1,500, ≤1,000, <750, or ≤500, mg of Cistanche extract to the subject. It is contemplated that any and all values or ranges of values between those described above may also be utilized.

[0084] The composition may be administered as needed, daily, several times per day or in any suitable regimen such that the desired outcome is achieved. In the method of this disclosure, the frequency of administration (e.g. of ingestion and/or digestion) can depend on several factors, including the desired level of memory improvement. Generally, a regimen includes administration of the composition once or twice daily to include an administration in the morning and/or an administration in the evening. The amount of composition administered may depend on several factors, including level of desired results and the specific composition.
The composition can be used for improving memory of a subject. In various embodiments, the composition is administered to the subject on a periodic basis, alternatively a daily basis, as part of a nutritional supplement regime for improving memory of the subject. In these embodiments, one or more tablets of the composition, for example, may be taken per day. Typically, ingestion of the composition (e.g. in tablet form) coincides with a meal. Without being bound or limited by any particular theory, it is thought that ingestion of *Ginkgo (biloba)* provides quick support for mental performance, generally 4-6 hours after taking, while *Cistanche (tubulosa)* can improve memory, focus and/or recall over a longer period of time, or a period of weeks, after taking.

The following examples, illustrating the compositions and methods of this disclosure, are intended to illustrate and not to limit the invention. The *Cistanche* extract may simply be indicated as "C", "CHE", or "CT" in various examples or Figures. Moreover, the *Ginkgo* extract may simply be indicated as "G" or "GB" in various examples or Figures.

EXAMPLES

A number of compositions representative of this disclosure are formulated and analyzed. Moreover, a number of comparative compounds are analyzed and compared against the aforementioned compositions. Various findings/results and testing methodologies are generally illustrated in the drawings, which are described in greater detail below.

Microelectrode array (MEA) neurochips were utilized to analyze various examples. Specifically, use of MEA neurochips enabled stimulation and recording of bioelectricity with high spatial and temporal resolution, to glean neuroactivity of the *Cistanche* and *Ginkgo* extracts, alone and in combination, and with neuronal growth factors.

MEA neurochips are available from NeuroProof GmbH of Rostock, Germany. The electrophysiological properties of compounds can be evaluated using their ability for induction of activity changes in neuronal networks grown on MEA neurochips. Routine monitoring of internal dynamics of mammalian neuronal networks is possible. The growth of neuronal networks on high-density MEA neurochips yields a hybrid test platform that allows the continuous and simultaneous monitoring of spike activity from a large number of cells for weeks or even months. The advantage of extracellular MEA-neurochip recording is the possibility of long-term recording from multiple sites *in vitro* and the monitoring of signal transmission between several hundred cells. Therefore, MEA neurochips enable a real time analysis of action potential patterns at both the single cell and the whole network level while providing optical access for the observation of network architecture and growth.

Data from two major areas of experimentation show: 1) ACUTE application of *Ginkgo* and *Cistanche* extracts together at specific ratios exhibit synergistic effects on
neuronal cell signaling; and 2) CHRONIC treatment of *Cistanche* altered neuronal responses to Neuron Growth Factor ("NGF") over NGF alone.

Results: Acute Application

[0091] Figure 1A depicts acute application examples, specifically bar charts from an isobolographic analysis of *Ginkgo*, *Cistanche*, and five mixtures thereof. It was found that a higher proportion of *Ginkgo* in the mixture increased the potency of the inhibitory action shown by effects at a lower total concentration of the mixture (e.g. 20–50 µg/ml).

[0092] Figure 1B further depicts acute application examples, specifically bar charts showing that a higher proportion of *Cistanche* in a mixture resulted in a higher effect size. First activity enhancing effects were observed for mixtures containing 100%, 90%, and 75% *Cistanche* at concentrations of 100 µg/ml. These effects were characterized by an increased general activity, a strengthening in burst structure and a strengthening in the synchronicity.

[0093] Figure 1C further depicts acute application examples, specifically bar charts showing that the enhancing effects increased with rising *Cistanche* concentrations up to 250 µg/ml.

[0094] Figure 1D further depicts acute application examples, specifically bar charts from the isobolographic analysis of *Ginkgo* ("G"), *Cistanche* ("C"), and the five mixtures thereof showing that the 25%/75% (G:C) and even more so the 10%/90% (G:C) mixtures of *Ginkgo Cistanche* appear to have potentiating effects of the network simulation at concentrations of 100 pg/ml, 150 pg/ml, and 250 µg/ml.

Results: Chronic Application

[0095] Figure 2 depicts chronic application examples, specifically bar charts that show that the chronic treatment of hippocampal cultures with 300 nM Donepezil ("DPZ") or 30 pg/ml *Cistanche* ("CHE") during 4-28 days *in vitro* enhanced the spontaneous network activity in both treatment groups. However, *Cistanche* induced stronger activity changes than Donepezil.

[0096] Figure 3 further depicts chronic application examples, specifically line graphs that show that chronic treatment of hippocampal cultures with 300 nM Donepezil or 30 pg/ml *Cistanche* during 4-28 days *in vitro* compensated the inhibitory acute NGF response. However, *Cistanche* induced a stronger acute compensation of NGF effects than Donepezil.

[0097] Figure 4 further depicts chronic application examples, specifically bar charts that show that the chronic treatment of hippocampal cultures with 300 nM Donepezil or 30 µg/ml *Cistanche* during 4-28 days *in vitro* induced an increase in global synapse numbers. However, only *Cistanche* relatively increased the number of synapses per neurite.
Figure 5A is an example image associated with semi-automatic quantification of neurons/image, neurites/image, synapses/image, and synapse/neurite ratio. The image depicts color-merge of synapse (green), neurites (red), nuclei (blue), bar = 50 μm.

Figure 5B is an example image corresponding to synapse channel: color-inverted and analyzed for synapse particles (red labeled after automatic threshold, particle separation and size filter).

Methods

Research focused on the enhancement of neuronal network activity suggestive of memory enhancement, through the evaluation of herbal extracts (i.e., *Ginkgo* and *Cistanche*). The method generally included the four steps outlined below.

Step 1: Acute study to assess effective concentration range

Primary mixed neuron/glia cultures from frontal cortex and hippocampus are plated onto MEA neurochips and cultured for at least four weeks. Acute application: effects of interaction between *Cistanche* and *Ginkgo* are analyzed for mixtures with different percentages of *Cistanche* (10-90%) and *Ginkgo* (the remainder) in addition to each alone.

Figure 6 illustrates examples of the acute study to assess effective concentration range. Seven different concentration response series (vertical) were performed, all with the same five concentrations (horizontal).

Step 2: Assess combinatorial effects of *Ginkgo* and *Cistanche*

Figure 7A illustrates examples of the study to assess combinatorial effects of *Ginkgo* and *Cistanche*, specifically a bar chart based on data points from all mixtures for one concentration at a time (native = 100%). This Figure generally shows statistics versus “native”.

Figure 7B further illustrates examples of the study to assess combinatorial effects, specifically a line graph based on data points from all mixtures for one concentration and a hypothetical linear trend between *Ginkgo* and *Cistanche* (Native = 0%). This Figure generally shows statistics versus linear trend.

Figure 7C further illustrates examples of the study to assess combinatorial effects, specifically a line graph directed toward detrending data, yielding the difference relative to the trend, and overlaying all mixtures.

Step 3: Assess chronic effects of *Cistanche tubulosa* extract on maturation of a neuronal network

Figure 8 illustrates examples of the study to assess chronic effects of *Cistanche tubulosa* extract on maturation of a neuronal network. Hippocampal cultures on MEA neurochips were treated with 30 μg/ml *Cistanche*, 300 nM Donepezil, or a dimethyl sulfoxide (“DMSO”) vehicle control. At 28 days after repeated dose chronic treatment,
spontaneous activity was measured, followed by recording of activity to acute NGF concentration-response curve.

Step 4: Immuno-histochemical analysis

[00107] Figure 9 illustrates examples of the study directed at immuno-histochemical analysis. Recorded cultures are further analyzed by immunocytochemistry, fluorescence microscopy and semi-automatic quantitative image analysis. Images are quantified per image for: cell number, neuronal number, neurite number, synapse number, %neurons, neurites per neuron, and synapses per neuron.

HPLC Fingerprinting

[00108] Figure 10 illustrates a *Cistanche tubulosa* fingerprint. Specifically, standardization of *Cistanche tubulosa* using high-performance liquid chromatography ("HPLC"). The extract is standardized to 70% phenylethanoid glycosides (composed of at least 25% echinacoside, acetoside, isoacetoside, and verbacoside).

[00109] Figure 11 illustrates a *Ginkgo biloba* fingerprint. Specifically, standardization of *Ginkgo biloba* using HPLC. The extract is standardized to 24% flavone glycoside and 6% terpene lactones.

Phenotypic Screening with MEA Neurochips

[00110] MEA neurochip recordings were used to evaluate activity changes in hippocampal networks elicited by various concentrations and combinations of two cultivated, standardized extracts of CT and GB, with and without acute application of NGF.

[00111] Figure 12 illustrates steps of a phenotypic screening process utilizing MEA neurochips. The steps include: 1) neuronal cell culture; 2) phenotypic multichannel recording; 3) multi-parametric data analysis; and 4) pattern recognition. Each of these steps/aspects of Figure 12 is detailed below.

[00112] 1) Primary murine cell culture: Frontal Cortex, Hippocampus, and Hypothalamus.

[00114] 3) 200 activity parameters: General Activity; Burst Structure; Synchronization/Connectivity; and Oscillation. Specific *in vitro* assays with compound or disease related parameter selection.

[00115] 4) Database with functional fingerprints of over 100 basic and clinically compounds. Similarity and differentiation from known compound effects. Combination effects.

[00116] Figure 13 depicts neuron/glia co-cultures on MEA neurochips. The leftmost image depicts GABAA receptor (alphal, red), Neurons (TuJ, green), and nucei (blue); the second
image from left depicts Neurons, neuronal somata (HuCD, red), and nuclei; the second image from right depicts Oligodendrocytes (04, red), Neurons, and nuclei; and the rightmost image depicts Astrocytes (GFAP, red), microglia (Lectin, green), and nuclei.

Characterization: Co-cultures of neurons and glial cells in serum-containing media e.g. cell populations in frontal cortex cultures on MEA neurochips (28 div): neurons (~20%), astrocytes (~70-80%), microglia (~1-2%), oligodendrocytes (present, neglectable).

Figure 14 illustrates multi-parametric characterization of neuronal network activity.

Read out: Extracellular action potentials on single neuron and network activity level; spatio-temporal network activity changes in time scales of spikes and bursts. Spike train is described by 200 activity parameters in four categories: 1. General Activity, e.g. spike rate, burst rate, burst period, and percent of spikes in burst; 2. Burst Structure, e.g. number, frequency and ISI of spikes in bursts, burst duration, amplitude, area, plateau position, and plateau duration; 3. Oscillation, e.g. variation over time as an indicator for the strength of the oscillation; Gabor function fitted to autocorrelograms; and 4. Synchronicity/Connectivity, e.g. variation within the network as an indicator for the strength of the synchronization, simplex synchronization, and percent of units in synchronized burst.

Acute Application of Ginkgo biloba and Cistanche tubulosa

Comparison of the acute concentration-dependent effects induced by A) GB and B) CT and their respective DMSO control concentrations on hippocampus network activity in vitro. Displayed are six activity describing parameters in four categories (general activity, burst structure, oscillation, and synchronization) for treatment of nine concentrations from 10 pg/ml to 100 μg/ml. (mean ± standard error, Ginkgo: n=5, Cistanche: n=8, DMSO: n=5. Student's unpaired t-test: *p <0.05; **p ≤0.01; ***p ≤0.001).

Figure 15 depicts line graphs illustrating that acute application of Ginkgo biloba induces a mild concentration dependent activity change in burst structure. Figure 16 depicts line graphs illustrating that acute application of Cistanche tubulosa induces a mild concentration dependent bi-phasic activity change in burst structure.

Isobolographic Analysis

Figure 17 depicts Ginkgo and Cistanche mixture and concentration matrices associated with general activity ("GA"), burst structure ("BS"), oscillation ("OS"), and synchronicity ("SY").

To make the matrices, data from concentration response curves are color coded as increased or decreased relative to native. Next, results from all mixtures and all concentrations are combined into a matrix. Next, out of 200, the relevant activity features describing GA, BS, OS, and SY are compared to a reference fingerprint.
Higher % of GB induces changes at lower concentrations of total compound. Increasing amounts of GB (>50%) elicited an inhibition of general activity and when GB:CT is 75%/25%, surprisingly the inhibition potency increased five-fold over GB alone. Mixtures with increasing CT potentiated network stimulation, most apparent at 10%/90% GB:CT and 100 ng/ml, 150 µg/ml, and 250 µg/ml.

Chronic Effects

Figure 18A depicts bar charts illustrating chronic effects. Specifically, chronic effects on native activity of 30 µg/ml Cistanche tubulosa ("CT"), two CT and Ginkgo biloba ("GB") mixtures in a ratio of 90%/10% or 70%/30% (each at 10 µg/ml or 30 µg/ml), or 0.021% DMSO vehicle control.

Figure 18B depicts additional bar charts illustrating the chronic effects. In all of the bar charts, the leftmost bar is 0.021% DMSO, second bar from left is 10 µg/ml at GB1:0:CT90, third bar from left is 30 µg/ml at GB1:0:CT90, third bar from right is 10 µg/ml at GB30:CT70, second bar from right is 30 µg/ml at GB30:CT70, and rightmost bar is 30 µg/ml at 100% CT. (mean ± standard error, student's t-test: *p < 0.05; **p < 0.01; *** p < 0.001).

CT alone resulted in an enhancement of spontaneous activity through strengthened bursting activity, particularly increase of burst surprise and increase of percentage of total spikes grouped in bursts. Chronic treatment of 10 µg/ml of the 70:30 mixture (CT:GB) caused network activity changes, notably an increase in spike rate, decrease in event rate and loosening of burst structure.

Heat Mapping

Figure 19A is a first portion of a heat map and Figure 19B is a second portion of the heat map. The heat map illustrates concentration dependent effects of acute mouse nerve growth factor (mNGF) on network activity of chronically treated hippocampal cultures with the mixtures or components described above for Figure 18.

The heat map illustrates significant changes on the 60 most representative parameters for each mNGF concentration, from 3 ng/ml to 1 µg/ml. The color code changes in activity parameters according to the percent changes (%): no change = 100, increase = yellow/red, and decrease = green/blue.

NGF alone induced an inhibition of general activity. Chronic CT alone compensated for the inhibition seen after NGF. The mixture of GB30:CT70 at both concentrations evoked the opposite effect from CT alone, as it enhanced the acute mNGF effect.
Effect of Chronic Application

[00131] Figure 20A is a bar chart illustrating chronic application effects on hippocampal network morphology with respect to total number of cells/field. Figure 20B is a bar chart illustrating chronic application effects on hippocampal network morphology with respect to percentage of neurons. Figure 20C is a bar chart illustrating chronic application effects on hippocampal network morphology with respect to neuritic density. Figure 20D is a bar chart illustrating chronic application effects on hippocampal network morphology with respect to synaptic number/field. The mixtures or components for Figure 20 are as described above for Figure 18.

[00132] Recorded cultures were further analyzed by immunocytochemistry, fluorescent microscopy and quantitative image analysis for morphological findings. Semi-automatic quantification (mean ± SEM, student's t-test: *p <0.05; n=3 with 10-20 images each.)

[00133] Figure 21 are images associated with semi-automatic quantification of total cells/field, percentage of neurons, neuritic density, and synaptic number/field. The leftmost images correspond to color-merge of synapse (green), neuritis (red), and nuclei (blue). The rightmost images correspond to synapse channel: color inverted and analyzed for synapse particles. After analysis, a higher number or synapses are qualitatively observed in CT 30 μg/ml treated cultures.

[00134] CT alone did not increase neuronal cell number, but did increase the number of global synapses as well as the number of synapses per neurite. CT70:GB30 at 30 pg/ml also induced morphological effects shown by an increased percentage of neurons (+27%), and increased number of synapses in relation to the neuritic density increased by 31%.

Summary of Non-Limiting Theories, Examples/Analysis, and Conclusions

[00135] Prior to this disclosure, effects of Cistanche and Ginkgo extracts on neural activity were not clearly elucidated. As described above, MEA neurochip recordings were used to evaluate activity changes in hippocampal networks elicited by various concentrations and combinations of two cultivated, standardized extracts of CT and GB. After acute application to four week old primary hippocampus cultures, multi-parametric analysis revealed both CT and GB induced mild but measurable activity changes within four functional activity categories: GA, BS, OS, and SY.

[00136] The isobolographic approach revealed interaction between GB and CT at specific concentrations becoming most apparent at 100 μg/ml when the GB/CT combination is composed of 10-25% GB (remainder CT), with the effects of 10% GB being most pronounced. This concentration and combination increased the spike organization into bursts, induced a stronger BS and increased bursting regularity and SY. Increasing
amounts of GB (>50%) elicited an inhibition of GA. Further, when GB:CT is 75/25% potency of GB increased five-fold over GB alone. Mixtures with increasing CT potentiated network stimulation, most apparent at 10%/90% (GB:CT) and 100 Mg/ml, 1.50 µg/ml, and 250 µg/ml.

[00137] Chronic CT treatment (30 µ/ml) of hippocampal cultures on MEA neurochips from 4-28 days in vitro resulted in an enhancement of spontaneous activity through strengthened bursting activity. NGF applied acutely to CT treated cultures further increased the response over that of NGF applied to vehicle-treated cultures, notably increasing GA, lengthening burst duration, increasing pattern regularity, and improving SY within the networks.

[00138] Recorded cultures were further analyzed by immunocytochemistry, fluorescent microscopy and quantitative image analysis for morphological findings. Chronically treating hippocampal networks with CT did not increase neuronal cell number, but did increase the number of global synapses as well as the number of synapses per neurite. These findings support the notion that CT and GB are neuro-active and interact with endogenous growth factors within neural systems. Further, it has been shown that chronic repeated-dose treatment with CT induced morphological alterations and increased hippocampal network activity in vitro.

Synergistic Effects of Ginkgo and Cistanche extracts on Neuronal Activation

[00139] The examples above provide scientific evidence to support synergistic interaction between Ginkgo and Cistanche on neuronal network activity in vitro, and scientifically support the positioning of Ginkgo and Cistanche combination in humans. Further, the examples above illustrate a mechanism of action for memory improvement for Cistanche.

[00140] A surprising and profound discovery was that Ginkgo supports the action of Cistanche in a synergistic way and that chronic treatment with Cistanche in vitro induced an increase in the global number of synapses and the number of synapses per neurite. This allows for spatial and temporal consolidation of neuronal signal which is known to play a key role in long term potentiation (LTP); the neural correlate of memory.

[00141] The results found were equal or better than the results from the positive control pharmaceutical compound (i.e., Donepezil; trade name Aricept) which is widely marketed for enhancement of cognition as an acetylcholinesterase (AChE or acetylhydrolase) inhibitor.

Neuronal Data Gathering and Analysis

[00142] Multichannel recording delivered single neuron spike data and spike identification and separation were accomplished with a template-matching algorithm in real time, to allow the extracellular recording of action potentials from 256 neurons simultaneously. The action
potentials or “spikes” were recorded in spike trains and clustered in bursts, which can be quantitatively described via direct spike train analysis. High content analysis of the network activity patterns provides a multi-parametric description characterizing the activity in four categories: GA, BS, SY and OS. From the spike trains generated by this analysis, a total of 200 activity-describing spike train parameters were determined for each of these four categories.

Predominant Findings Using these Methods - Acute Application to Cell Cultures

Both Cistancha and Ginkgo extracts applied acutely to neuronal cultures affects network activity, Cistancha more so than Ginkgo with Cistancha changing GA and BS but Ginkgo only changing BS mildly. Further, a similarity was observed between the actions of a pharmaceutical drug marketed for cognitive improvement (i.e., Donepezil) and Cistancha in terms of the direction of parameter shifts, but this parameter shifting was not seen after acute application of Ginkgo.

Activity enhancing effects were observed for mixtures of Cistancha and Ginkgo as follows: 10% and 25% Ginkgo (remainder Cistancha) made neurons more sensitive to the actions of Cistancha in that GA, strengthening of the BS and stronger SY was induced at a lower overall concentration. Further, at this dilution (10-25% Ginkgo and 90-75% Cistancha) network stimulation was potentiated with a higher effect size.

Predominant Findings Using these Methods - Chronic Application to Cell Cultures

24 days of Cistancha treatment of hippocampal eel cultures in vitro enhanced spontaneous network activity, similar to that seen with chronic application of Donepezil, except that Cistancha effects were more pronounced than those of the pharmaceutical. Both Donepezil and Cistancha Induced an increase in global synapse numbers, but only Cistancha increased the number of synapses per neurite.

By using MEA neurochips to capture the neuronal activation patterns of the Cistancha and Ginkgo extracts on hippocampal cell cultures, synergistic activity has been shown when the Cistancha extract is diluted to 75-90% with 25-10% of Ginkgo extract. It has also been shown that chronic treatment of Cistancha can induce neuronal morphology changes that are indicative of improved synaptic connectivity to support long term potentiation and memory.

Ratios of Ginkgo and Cistancha have been identified that produce synergistic effects on neuronal activity patterns, including making neurons more sensitive to the actions of Cistancha; GA, strengthening of the BS and stronger SY between the firing of individual neurons. Further, at various dilutions, the combination of Cistancha and Ginkgo potentiated network stimulation with a higher effect size. In general a high level of Ginkgo (>50%) in combination with Cistancha will reduce the synergistic effect of the combination.
Moreover, the examples of this disclosure show that *Cistanche* can work alongside the natural neuronal strengthening effects of endogenous NGF. NGF is known to augment neuronal survival and to modify synaptic efficacy and neuronal plasticity. Staying mentally active, pursuing activities that bring mental satisfaction, and staying active through exercise, are positive behaviors for mental health. Each of these behaviors also increases endogenous production of NGFs in the brain. Thus, the combination of such behaviors and the compositions of this disclosure make a natural pairing with one another as complementary ways to strengthen and protect the longevity and robustness of cognitive abilities as a subject ages.

The terms "comprising" or "comprise" are used herein in their broadest sense to mean and encompass the notions of "including", "include", "consist(ing) essentially of", and "consist(ing) of". The use of "for example", "e.g.", "such as", and "including" to list illustrative examples does not limit to only the listed examples. Thus, "for example" or "such as" means "for example, but not limited to" or "such as, but not limited to" and encompasses other similar or equivalent examples. The term "about" as used herein serves to reasonably encompass or describe minor variations in numerical values measured by instrumental analysis or as a result of sample handling. Such minor variations may be in the order of ±0-10, ±0-5, or ±0-2.5, % of the numerical values. Further, The term "about" applies to both numerical values when associated with a range of values. Moreover, the term "about" may apply to numerical values even when not explicitly stated.

Generally, as used herein a hyphen "-" or dash "-" in a range of values is "to" or "through"; a "->" is "above" or "greater-than"; a "≥" is "at least" or "greater-than or equal to"; a "<" is "below" or "less-than"; and a "≤" is "at most" or "less-than or equal to". On an individual basis, each of the aforementioned applications for patent, patents, and/or patent application publications, is expressly incorporated herein by reference in its entirety in one or more non-limiting embodiments.

It is to be understood that the appended claims are not limited to express and particular compounds, compositions, or methods described in the detailed description, which may vary between particular embodiments which fall within the scope of the appended claims. With respect to any Markush groups relied upon herein for describing particular features or aspects of various embodiments, it is to be appreciated that different, special, and/or unexpected results may be obtained from each member of the respective Markush group independent from all other Markush members. Each member of a Markush group may be relied upon individually and or in combination and provides adequate support for specific embodiments within the scope of the appended claims.
[00152] It is also to be understood that any ranges and subranges relied upon in describing various embodiments of the present invention independently and collectively fall within the scope of the appended claims, and are understood to describe and contemplate all ranges including whole and/or fractional values therein, even if such values are not expressly written herein. One of skill in the art readily recognizes that the enumerated ranges and subranges sufficiently describe and enable various embodiments of the present invention, and such ranges and subranges may be further delineated into relevant halves, thirds, quarters, fifths, and so on. As just one example, a range "of from 0.1 to 0.9" may be further delineated into a lower third, i.e., from 0.1 to 0.3, a middle third, i.e., from 0.4 to 0.6, and an upper third, i.e., from 0.7 to 0.9, which individually and collectively are within the scope of the appended claims, and may be relied upon individually and/or collectively and provide adequate support for specific embodiments within the scope of the appended claims. In addition, with respect to the language which defines or modifies a range, such as "at least," "greater than," "less than," "no more than," and the like, it is to be understood that such language includes subranges and/or an upper or lower limit. As another example, a range of "at least 10" inherently includes a subrange of from at least 10 to 35, a subrange of from at least 10 to 25, a subrange of from 25 to 35, and so on, and each subrange may be relied upon individually and/or collectively and provides adequate support for specific embodiments within the scope of the appended claims. Finally, an individual number within a disclosed range may be relied upon and provides adequate support for specific embodiments within the scope of the appended claims. For example, a range "of from 1 to 9" includes various individual integers, such as 3, as well as individual numbers including a decimal point (or fraction), such as 4.1, which may be relied upon and provide adequate support for specific embodiments within the scope of the appended claims.

[00153] The present invention has been described herein in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. The present invention may be practiced otherwise than as specifically described within the scope of the appended claims. The subject matter of all combinations of independent and dependent claims, both single and multiple dependent, is herein expressly contemplated.
CLAIMS

What is claimed is:

1. A method for improving memory of a subject, said method comprising the step of:
 administering a composition to the subject;
 wherein the composition consists essentially of Cistanche extract and Ginkgo extract in a weight ratio (C:G) that is >2.5:1 or <2.5:1.

2. The method as set forth in claim 1, wherein the weight ratio is from 2.6:1 to 20:1, alternatively 3:1 to 9:1.

3. The method as set forth in claim 1 or 2, wherein:
 i) the Cistanche extract is present in an amount of from about 72-99 wt.%, alternatively about 75-90 wt.%, based on 100 parts by weight of the composition;
 ii) the Ginkgo extract is present in an amount of from about 1.28 wt.%, alternatively about 10-25 wt.%, based on 100 parts by weight of the composition; or
 iii) both i) and ii).

4. The method as set forth in claim 1, wherein the weight ratio is from 1:1 to 2.4:1, alternatively 3:2 to 7:3.

5. The method as set forth in claim 1 or 4, wherein:
 i) the Cistanche extract is present in an amount of from about 50-70 wt.%, alternatively about 60-70 wt.%, based on 100 parts by weight of the composition;
 ii) the Ginkgo extract is present in an amount of from about 30-50 wt.%, alternatively about 30-40 wt.%, based on 100 parts by weight of the composition; or
 iii) both i) and ii).

6. The method as set forth in any one of the preceding claims, wherein:
 i) the Cistanche extract is further defined as Cistanche tubulosa extract;
 ii) the Cistanche extract is obtained from root material of a plant in the genus Cistanche; or
 iii) both i) and ii).

7. The method as set forth in any one of the preceding claims, wherein:
 i) the Ginkgo extract is further defined as Ginkgo biloba extract;
 ii) the Ginkgo extract is obtained from leaf material of a plant in the genus Ginkgo; or
 iii) both i) and ii).
8. The method as set forth in any one of the preceding claims, wherein:
 i) the composition is administered orally;
 ii) the composition is in the form of a tablet; or
 iii) both i) and ii).

9. The method as set forth in any one of the preceding claims, wherein the composition is administered in an amount to provide at least about 250 mg, alternatively at least about 300 mg, of the Cistanche extract to the subject.

10. The method as set forth in any one of the preceding claims, wherein the composition is administered to the subject on a periodic basis, alternatively a daily basis, as part of a nutritional supplement regime for improving memory of the subject.

11. A composition for administration to a subject for improving memory of the subject, said composition consisting essentially of Cistanche extract and Ginkgo extract in a weight ratio (C:G) that is >2.5:1 or <2.5:1.

12. The composition as set forth in claim 11, wherein the weight ratio is from 2.6:1 to 20:1, alternatively 3:1 to 9:1.

13. The composition as set forth in claim 11 or 12, wherein:
 i) the Cistanche extract is present in an amount of from about 72-99 wt.%, alternatively about 75-90 wt.%, based on 100 parts by weight of the composition;
 ii) the Ginkgo extract is present in an amount of from about 1-28 wt.%, alternatively about 10-25 wt.%, based on 100 parts by weight of the composition; or
 iii) both i) and ii).

14. The composition as set forth in claim 11, wherein the weight ratio is from 1:1 to 2.4:1, alternatively 3:2 to 7:3.

15. The composition as set forth in claim 11 or 14, wherein:
 i) the Cistanche extract is present in an amount of from about 50-70 wt.%, alternatively about 60-70 wt.%, based on 100 parts by weight of the composition;
 ii) the Ginkgo extract is present in an amount of from about 30-50 wt.%, alternatively about 30-40 wt.%, based on 100 parts by weight of the composition; or
 iii) both i) and ii).
16. The composition as set forth in any one of claims 11-15, wherein:
i) the Cistanche extract is further defined as Cistanche tubulosa extract;
ii) the Cistanche extract is obtained from root material of a plant in the genus Cistanche; or
iii) both i) and ii).

17. The composition as set forth in any one of claims 11-16, wherein:
i) the Ginkgo extract is further defined as Ginkgo biloba extract;
ii) the Ginkgo extract is obtained from leaf material of a plant in the genus Ginkgo; or
iii) both i) and ii).

18. The composition as set forth in any one of claims 11-17, wherein the Cistanche extract is present in an amount of at least about 250 mg, alternatively at least about 300 mg, based on the total weight of the composition.

19. The composition as set forth in any one of claims 11-18, wherein:
i) the Cistanche extract comprises at least one phenylethanoid glycoside;
ii) the Ginkgo extract comprises at least one flavonoid and at least one terpenoid; or
iii) both i) and ii).

20. Use of the composition as set forth in any one of claims 11-19 for improving memory of a subject.
FIG. 1A(i)

General Activity

% spikes in bursts

Mean ± SEM [%]

% Cistanche (+Ginkgo), 10 µg/ml

FIG. 1A(ii)

Burst Structure

Burst spike number

Mean ± SEM [%]

% Cistanche (+Ginkgo), 10 µg/ml
FIG. 1A(iii)

Oscillation

Interburst interval SD

![Graph showing interburst interval SD with different concentrations of Cistanche (+Ginkgo) and 10 μg/ml.]

Mean ± SEM [%]

N 0 10 25 50 75 90 100

% Cistanche (+Ginkgo), 10 μg/ml

![Statistical significance indicated by asterisks.]

FIG. 1A(iv)

Synchronicity

Simplex synchronicity

![Graph showing simplex synchronicity with different concentrations of Cistanche (+Ginkgo) and 10 μg/ml.]

Mean ± SEM [%]

N 0 10 25 50 75 90 100

% Cistanche (+Ginkgo), 10 μg/ml

![Statistical significance indicated by asterisks.]

SUBSTITUTE SHEET (RULE 26)
FIG. 1A(vii)

Oscillation

Interburst interval SD

![Bar chart showing the effect of Cistanche (+Ginkgo) on interburst interval SD.]

FIG. 1A(viii)

Synchronicity

Simplex synchronicity

![Bar chart showing the effect of Cistanche (+Ginkgo) on simplex synchronicity.]

% Cistanche (+Ginkgo), 20 µg/ml
FIG. 1B(i)

General Activity

% spikes in bursts

Mean ± SEM [%]

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Cistanche (+Ginkgo), 50 µg/ml

FIG. 1B(ii)

Burst Structure

Burst spike number

Mean ± SEM [%]

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Cistanche (+Ginkgo), 50 µg/ml
FIG. 1B(iii)

Oscillation

Interburst interval SD

Mean ± SEM [%]

N 0 10 25 50 75 90 100

% Cistanche (+Ginkgo), 50 µg/ml

FIG. 1B(iv)

Synchronicity

Simplex synchronicity

Mean ± SEM [%]

N 0 10 25 50 75 90 100

% Cistanche (+Ginkgo), 50 µg/ml
FIG. 1B(v)

General Activity

% spikes in bursts

```
<table>
<thead>
<tr>
<th>% Cistanche (+Ginkgo), 100 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean ± SEM [%]</td>
</tr>
<tr>
<td>140</td>
</tr>
</tbody>
</table>
```

* FIG. 1B(vi)

Burst Structure

Burst spike number

```
<table>
<thead>
<tr>
<th>% Cistanche (+Ginkgo), 100 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean ± SEM [%]</td>
</tr>
<tr>
<td>140</td>
</tr>
</tbody>
</table>
```

* * *
FIG. 1C(i)

General Activity

% spikes in bursts

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SEM [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

* Cistanche (+Ginkgo), 150 µg/ml

FIG. 1C(ii)

Burst Structure

Burst spike number

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SEM [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

* Cistanche (+Ginkgo), 150 µg/ml
FIG. 1D(i)

General Activity – Mixture (N=10)

% spikes in bursts

![Bar chart showing % spikes in bursts for different concentrations of C75+G25 (Hc) [g/ml].](chart1)

Significance levels indicate statistical differences.

FIG. 1D(ii)

Burst Structure – Mixture (N=10)

Burst spike number

![Bar chart showing burst spike number for different concentrations of C75+G25 (Hc) [g/ml].](chart2)

Significance levels indicate statistical differences.
FIG. 1D(iii)

Oscillation – Mixture (N=10)

Interburst interval SD

Mean ± SEM [%]

native 1.00E-05 2.00E-05 5.00E-05 1.00E-04 1.50E-04 2.50E-04

C75+G25 (Hc) [g/ml]

FIG. 1D(iv)

Synchronicity – Mixture (N=10)

Simplex synchronicity

Mean ± SEM [%]

native 1.00E-05 2.00E-05 5.00E-05 1.00E-04 1.50E-04 2.50E-04

C75+G25 (Hc) [g/ml]
FIG. 1D(v)

General Activity – Mixture (N=9)

% spikes in bursts

Mean ± SEM [%]

native 1.00E-05 2.00E-05 5.00E-05 1.00E-04 1.50E-04 2.50E-04

C90+G10 (Hc) [g/l]

FIG. 1D(vi)

Burst Structure – Mixture (N=9)

Burst spike number

Mean ± SEM [%]

native 1.00E-05 2.00E-05 5.00E-05 1.00E-04 1.50E-04 2.50E-04

C90+G10 (Hc) [g/l]
FIG. 1D(vii)

Oscillation – Mixture (N=9)

Interburst interval SD

Mean ± SEM [%]

0 40 80 120 160 200

native 1.00E-05 2.00E-05 5.00E-05 1.00E-04 1.50E-04 2.50E-04

C90+G10 (Hc) [g/l]

**

FIG. 1D(viii)

Synchronicity – Mixture (N=9)

Simplex synchronicity

Mean ± SEM [%]

0 50 100 150 200 250

native 1.00E-05 2.00E-05 5.00E-05 1.00E-04 1.50E-04 2.50E-04

C90+G10 (Hc) [g/l]

*** **
FIG. 2(i)

General Activity – Cistanche (N=21)

% spikes in bursts

![Bar chart showing mean ± SEM for native, DMSO 0.021%, and CHE 30 µg/ml treatments.]

FIG. 2(ii)

Burst Structure – Cistanche (N=21)

Burst spike number

![Bar chart showing mean ± SEM for native, DMSO 0.021%, and CHE 30 µg/ml treatments.]
FIG. 2(iii)

Oscillation – Cistanche (N=21)

Interburst interval SD

![Graph showing interburst interval SD for native, 0.021% DMSO, and 30 µg/ml CHE samples.](image)

FIG. 2(iv)

Synchronicity – Cistanche (N=21)

Simplex synchronicity

![Graph showing simplex synchronicity for native, 0.021% DMSO, and 30 µg/ml CHE samples.](image)
FIG. 2(v)

General Activity – Donepezil (N=20) (*DMSO N=25)

% spikes in bursts

Mean ± SEM

native

chr 0.021 % DMSO ■ chr 300 nM DPZ

FIG. 2(vi)

Burst Structure – Donepezil (N=20) (*DMSO N=25)

Burst spike number

Mean ± SEM [Hz]

native

chr 0.021 % DMSO ■ chr 300 nM DPZ
FIG. 2(vii)

Oscillation – Donepezil (N=20) (*DMSO N=25)

Interburst interval SD

Mean ± SEM

native

chr 0.021 % DMSO ■ chr 300 nM DPZ

FIG. 2(viii)

Synchronicity – Donepezil (N=20) (*DMSO N=25)

Simplex synchronicity

Mean ± SEM

native

chr 0.021 % DMSO ■ chr 300 nM DPZ
FIG. 3(i)

General Activity – Cistanche (N=16)

% spikes in bursts

Spike rate

Mean ± SEM [%]

mNGF 7S (Hc) [g/ml]

DMSO – chr 30 μg/ml CHE

- chr 0.021 % DMSO – chr 30 μg/ml CHE
FIG. 3(ii)

Burst Structure – Cistanche (N=16)

![Graph showing burst spike number vs. mNGF 7S (Hc) concentration](image)

FIG. 3(iii)

Oscillation – Cistanche (N=16)

![Graph showing interburst interval SD vs. mNGF 7S (Hc) concentration](image)
FIG. 3(iv)

Synchronicity – Cistanche (N=16)

Simplex synchronicity

![Graph showing mean ± SEM against mNGF 7S (Hc) concentration (g/ml)].

- chr 0.021 % DMSO
- chr 30 μg/ml CHE
FIG. 3(vi)

Burst Structure – Donepezil (N=14) (*DMSO N=15)

FIG. 3(vii)

Oscillation – Donepezil (N=14) (*DMSO N=15)
FIG. 3(viii)

Synchronicity – Donepezil (N=14) (*DMSO N=15)

Simplex synchronicity

![Graph showing the relationship between mean ± SEM and mNGF 7S (Hc) concentration.](image)

- chr 0.021 % DMSO
- chr 300 nM DPZ
FIG. 12(i)

Neuronal Cell Culture
FIG. 12(ii)

Phenotypic Multichannel Recording
FIG. 12(iii)

Multiparametric Data Analysis

Clonazepam Diazepam Aripiprazole Clozapine Fluoxetine Me
FIG. 12(iv)

Pattern Recognition

<table>
<thead>
<tr>
<th></th>
<th>CBZ</th>
<th>CLO</th>
<th>DIA</th>
<th>GBP</th>
<th>LEV</th>
<th>PHB</th>
<th>PHT</th>
<th>TPM</th>
<th>VPA</th>
<th>BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBZ</td>
<td>0</td>
<td>98</td>
<td>87</td>
<td>64</td>
<td>74</td>
<td>78</td>
<td>91</td>
<td>57</td>
<td>63</td>
<td>79</td>
</tr>
<tr>
<td>CLO</td>
<td>98</td>
<td>0</td>
<td>46</td>
<td>100</td>
<td>85</td>
<td>90</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>47</td>
<td>0</td>
<td>100</td>
<td>85</td>
<td>90</td>
<td>90</td>
<td>85</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>99</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>88</td>
<td>71</td>
<td>79</td>
<td>91</td>
<td>30</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PHB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0</td>
<td>88</td>
<td>88</td>
<td>0</td>
<td>78</td>
<td>44</td>
<td>86</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>91</td>
<td>71</td>
<td>95</td>
<td>78</td>
<td>0</td>
<td>78</td>
<td>44</td>
<td>86</td>
<td>99</td>
</tr>
<tr>
<td>CLO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>57</td>
<td>87</td>
<td>79</td>
<td>73</td>
<td>44</td>
<td>86</td>
<td>52</td>
<td>68</td>
<td>94</td>
</tr>
<tr>
<td>DIACL</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VPA</td>
<td>63</td>
<td>90</td>
<td>85</td>
<td>91</td>
<td>74</td>
<td>86</td>
<td>68</td>
<td>0</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>96</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>99</td>
<td>75</td>
<td>94</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>BAC</td>
<td></td>
</tr>
</tbody>
</table>

The diagram illustrates the pattern recognition with various compounds represented by circles and their associated values.
FIG. 15(i)

Spike rate

Mean ± SEM [%]

[g/ml]

1E-12 1E-9 1E-6

DMSO Ginkgo Biloba

FIG. 15(ii)

Burst rate

Mean ± SEM [%]

[g/ml]

1E-12 1E-9 1E-6

DMSO Ginkgo Biloba
FIG. 15(iii)

% spikes in bursts

Mean ± SEM [%]

1E-12 1E-9 1E-6
[g/ml]

DMSO Ginkgo Biloba

FIG. 15(iv)

Burst amplitude

Mean ± SEM [%]

1E-12 1E-9 1E-6
[g/ml]

DMSO Ginkgo Biloba
FIG. 16(i)

Spike rate

Mean ± SEM [%]

[g/ml]

DMSO Cistanche

FIG. 16(ii)

Burst rate

Mean ± SEM [%]

[g/ml]

DMSO Cistanche
FIG. 16(iii)

% spikes in bursts

Mean ± SEM [%]

[g/ml]

DMSO Cistanche

FIG. 16(iv)

Burst amplitude

Mean ± SEM [%]

[g/ml]

DMSO Cistanche
FIG. 18A
FIG. 21

Vehicle control (0.021% DMSO)

CT (30 µg/ml)
INTERNATIONAL SEARCH REPORT

According to International Patent Classification (IPC) or to both national classification and IPC

Minimum documentation searched (classification system followed by classification symbols)

A23L A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, FSTA, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DAVID E. HARTLEY ET AL: "Effects on cognition and mood in postmenopausal women of 1-week treatment with Ginkgo biloba", PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, vol 75, no. 3, 1 June 2003 (2003-06-01), pages 711-720, XP055200918, ISSN: 0091-3057, DOI: 10.1016/S0091-3057(03)00123-0 Abstract: page 711 1 (Introduction); page 711 - page 712 2.2 (Supplement administration); page 712 4 (Discussion); page 717 - page 719 ---- / .</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
23 July 2015

Date of mailing of the international search report
31/07/2015

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Alevi sopoul os, S
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>page 652 (Introduction); page 653 (Preparation of Cistanches Herba extract and standardisation); page 653 (Animal and drug treatment); page 654-657 (Results) - 3.6 (Effects of CHE on learning and memory enhancement); page 657 (Discussion); figures</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>CN 101 314 001 A (UNIV QINGDAO [CN]), 3 December 2008 (2008-12-03)</td>
<td>1, 3, 7-11, 13, 17-20</td>
</tr>
<tr>
<td></td>
<td>page 4, line 1 - page 6, line 17; claim 6; examples 1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 1 - page 2</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CN 101314001 A</td>
<td>03-12-2008</td>
<td>NON E</td>
</tr>
</tbody>
</table>