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(57) Abstract: The present invention discloses a method for developing a diagnostic method for CSR. The method comprises the
steps of performing overnight oximetry recordings in patients suspected of OSA who have been identified as having or not having
CSR by clinical studies. Spectral analysis is performed on the oximetry recordings from which a classification tree is generated. The
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the steps of performing spectral analysis of overnight oximetry recordings. The key features are then input into a classification tree

to determine the presence or absence of CSR.
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METHOD FOR DETECTING CHEYNE-STOKES RESPIRATION IN
PATIENTS WITH CONGESTIVE HEART FAILURE

This application claims the priority of U.S.
provisional application serial no. 60/195,804 filed on
April 10, 2000, the disclosure of which is incorporated
herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to the
field of sleeping disordered breathing. More
particularly, the present invention provides a
diagnostic method for the detection of Cheyne-Stokes
respiration (CSR), and a method for developing such a
diagnostic method. '

DISCUSSION OF RELATED ART

Sleep disordered breathing (SDB) is estimated to
occur in about 60% of patients suffering from congestive
heart failure (CHF; Rechtschaffen A, Kales A, eds. A

Manual of Standardized Technology, Techniques and
Scoring System for Sleep Stages of Human Subjects. Los

Angeles: UCLA Brain Information Service/Brain Research
Institute, 1968). Cheyne-Stokes respiration (CSR) is by
far the most common form of SDB encountered with an

estimated prevalence of 40% (Javaheri et al., 1995, Ann
Intern Med., 122:487-92; Findley et al., 1985, South
Med. J., 78:11-5). It is characterized by rhythmic

rises and falls in tidal volume and breathing frequency
that lead to oxygen desaturation, increased arousals,
poor sleep quality, and altered sleep architecture.
These features result in complaints of daytime
somnolence, fatigue, and insomnia.

The pathophysiology of CSR is not completely
understood, but it has become more apparent that the
effect of altered breathing patterns may extend beyond
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the deterioration in psycho-cognitive function. The
increase in urinary and plasma norepinephrine levels in
patients with left ventricular failure (LVF) and CSR
compared to those with CSR alone has been implicated in
an accelerated loss of cardiac function, and an
increased risk of death and cardiac transplantation
(Naughton et al., 1995, Am J. Respir Crit Care Med,

152:473-79; Hanly et al., 1996, Am J Respir Crit Care
Med, 153:272-76). Nasal continuous positive airway

pressure (CPAP) has been advocated as an effective
nonpharmacological treatment for patients with
congestive heart failure and CSR. Recent studies have
shown that CPAP can abolish CSR, improve respiratory
muscle strength (Granton et al., 1996, Am J Respir Crit

Care Med, 153:277-82), and increase left ventricular
ejection fraction (Naughton et al., 1993, Am Rev Respir
Dis, 148:330-38), and may increase transplant-free

survival.

In the absence of a good and accurate screening
test, overnight polysomnography remains the gold
standard test for the diagnosis of CSR. However,
overnight polysomnography is an expensive, labor
intensive and time-consuming procedure. Home pulse
oximetry has been proposed as an alternative tool for
identification CSR, but relies on visual inspection of
the oximetry signal by a trained observer (Staniforth et
al., 1998, Heart, 79:394-99).

The presence of CSR has been implicated in the
increased mortality up to 56% over a 3 year-period
compared to 11% in those patients without CSR despite
similar cardiac functional status and left ventricular
function (Hanly et al., 1996, supra). Since nasal CPAP
therapy was found to have a beneficial acute and chronic
cardiovascular effect, early implementation might well
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be translated into improved cardiac function, reduced
hospitalization and potentially reduced mortality.

Thus, there is an ongoing need for more accurate methods
in the detection of Cheyne-Stokes respiration.

SUMMARY OF THE INVENTION

The present invention provides a diagnostic method
for the identification of CSR, and a method for
developing the diagnostic method.

The method for developing the diagnostic method
comprises the steps of performing clinical studies on
patients suspected of having obstructive sleep apnea.
Based on the clinical studies, patients are identified
as having or not having CSR. Overnight pulse oximetry
recordings are obtained from these individuals following
which spectral analysis is performed on the oximetry
recordings. From the spectra, a set of parameters or
key features are determined and used to build a
classification tree that enables the prediction of CSR.
The tree is tested by cross validation.

The diagnostic method for detecting the presence or
absence of CSR in an individual comprises the steps of
obtaining overnight oximetry recordings from the
individual, performing spectral analysis of the
recordings, obtaining a set of parameters or key
features from the spectra and inputting the parameters
into a classification tree.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representation of the steps for
developing a diagnostic method according to the present
invention.

Figure 2 is a representation of a power spectra of
pulse oximetry in two representative patients, one with
severe obstructive sleep apnea (OSA; AHI>40/hr) and
another without OSA (AHI<5/hr). Magnitude is plotted on
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the ordinate against frequency on the abscissa. The
continuous line is the spectrum of a patient with an
apnea-hyponea index less than 5/h and the interrupted
line is the spectrum of a patient with an apnea-hyponea
index greater than 40/h.

Figure 3 is a representation of a power spectrum of
pulse oximetry in a representative patient with Cheynes-
Stokes respiration. Magnitude is plotted on the
ordinate against frequency on the abscissa. The
ordinate is expanded seven fold compared with Figure 2.

Figure 4 is a representation of a classification
tree to identify patients with Cheyne Stokes respiration
(CSR) from the characteristics of the power spectrum of
pulse oximetry. M1l and M2 are the magnitudes of the
highest and next highest local maximum normalized by the
overall variance, ml is the magnitude of the highest
local maximum in absolute terms, nl is the number of CSR
patients and n2 is the number of non CSR patients in a
category.

Figure 5 is a representation of the receiver
operator characteristic curve indicating the diagnostic
accuracy of the regression tree for identifying patients
with Cheyne Stokes respiration from patients suspected
of obstructive sleep apnea. Sensitivity is plotted on
the ordinate against (1 - specificity) on the abscissa.

Figure 6 is a representation of the steps for the
diagnosis of CSR in an individual according to the

present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method for
developing a classification tree that can used to
identify CSR and a method for using the classification
tree to diagnose the presence or absence of CSR in an
individual. The method is based on the observation
that when oxygen saturation levels over selected time
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intervals are transformed to frequency distribution
spectra, the spectral indices for those patients with
CSR display characteristic features with distinctive
discriminative attributes compared to other sleep
disordered breathing. While the power frequency
distribution (a plot of variance versus frequency) of

normal subjects was shown to have no apparent peak, and
of OSA patients to have broad-band peaks, the patients
with congestive heart failure having CSR often had a
unique distribution of spectral peaks conforming to a
long-period oscillating output.

For developing the classification tree, individuals
with suspected sleep apnea are identified from clinical
sleep studies. Overnight oximetry recordings are
obtained from individuals suspected of having OSA.

Power spectra are generated from the oximetry
recordings. A set of key features or parameters are
obtained from the power spectra. These parameters are
then used as input data to construct a classification
tree.

The present invention also provides a diagnostic
method for identification of CSR. The method of the
diagnostic method comprises performing spectral analysis
of overnight pulse oximetry data. The spectral data is
then analyzed using a classification tree to obtain a
predictive value that is indicative of the likelihood
that an individual has CSR.

The present invention is also directed to a storage
device, such as a floppy disk or hard drive, having
thereon computer readable code for causing a computer to
execute all or a substantial portion of diagnostic
method.

In one embodiment of the invention, a method for
developing the diagnostic method is illustrated by the
steps shown in Figure 1 and is also illustrated by way
of an example described below to construct a
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classification tree.

For developing a classification tree, patients
suspected of obstructive sleep apnea were identified
(Step 10). An analysis of sleep studies (Step 12) was
performed in 248 patients at the Sleep Laboratory at the
Veterans Affairs (VA) Medical Center in Buffalo, NY
(n=45) and at the National Sleep Technologies Laboratory
in Syracuse, NY. Patients with left ventricular failure
had been studied in the sleep laboratory in Buffalo as
part on another study on sleep disordered breathing in
patients with left venticular failure. All patients in
Syracuse sleep laboratory were suspected of obstructive
sleep apnea syndrome.

All the sleep studies were performed between
February 1998 and June of 1999. Continuous
electroencephalogram, electrooculogram,
electrocardiogram, and submental electromyogram were
recorded on a 1l6-channel polygraph using standard
techniques, and digitized on a computerized system. The
sleep data collection system was Aquetron 1000P at the
Buffalo VA and Healthdyne in Syracuse (Healthdyne 930,
Pittsburgh, PA). Airflow was measured qualitatively by
the sum of an oral-nasal thermistor (Graphic Control;
Buffalo, NY). Thoracoabdominal movements were recorded
with an inductive plethysmograph in Buffalo (Respitrace,
Ambulatory Monitoring, Ardsley, NY) and with
peizoelectric method in Syracuse.

Sleep stages were scored in 30-sec epochs using the
Rechtschaffen and Kales sleep scoring criteria (1968, A

Manual of Standardized Technology, Techniques and
Scoring System for Sleep Stages of Human Subjects. Los

Angeles: UCLA Brain Information Service/Brain Research
Institute). Each epoch was analyzed for the number of
apneas, hypopneas, arousals, oxyhemoglobin desaturation,
and disturbances in cardiac rate and rhythm. Apnea was
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defined as the absence of airflow for more than 10
seconds. Hypopnea was defined as a visible 20%
reduction in the airflow lasting more than 10 seconds
associated with either 4% oxygen decrease in arterial
oxyhemoglobin saturation or an electroencephalographic
arousal, or both. Central apneas were defined by the
cessation of airflow for 10 seconds accompanied by an
absence of chest wall movement. The apnea-hypopnea
index (AHI) was defined as the number of apneas and
hypopneas per hour of sleep. The presence of CSR was
defined as a central apnea index of >> 5 per hour of
sleep, in combination with the characteristic pattern of
crescendo-decrescendo pattern of hyperpnea alternating
with hypopneas. An arousal was defined as recommended by
the American Sleep Disorders Association's position
paper as a changevin electroencephalogram rhythmn for
greater than 3 sec. (Guilleminault et al., 1992, Sleep,

15:173-84) .

The frequency spectra of SpO, from the 23 patients
with CSR was compared with the spectra of 203 patients
suspected of obstructive sleep apnea, and a validated
model to identify the patients with CSR was developed.
The model was tested by determining its specificity in
patients with left ventricular failure who did not have
CSR (n=22).

Gated *’Tc equilibrium radionuclide angiography
obtained within 6 month of the diagnostic sleep study
was used as an objective measurement of cardiac function
in those with documented CSR on overnight
polysomnography. The quantitation and reporting of left
ventricular function were preformed by trained
technicians and a nuclear medicine physician blinded to
the patient's sleep study findings.

Of the 248 patients, 221 (89%) were men and 26
(11%) were female. Forty four patients had congestive
heart failure with a mean left ventricular ejection
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fraction (LVEF)

patients was in NYHA class 2
were in NYHA class 3

class 4.

of 24.9+ 9.1%. The
(57%)
(34%), while

PCT/US01/11680

largest proportion of
. Fifteen patients
4 (9%) were in NYHA

The causes of LVF were attributed to ischemic

heart disease in 82% of the cases, nonischemic dilated

cardiomyopathy in 16%, and others in 2%.
body mass index,

Baseline age,

and LVEF were similar between those who

met the criteria for central sleep apnea and those who

did not (Table

Table 1.

1).

Characteristics of left ventricular failure

patients with and without central gsleep apnea.

Central sleep

No central sleep

fraction (%)

apnea apnea
(n=22) (n=22)
Age (years) 71 + 4 68 + 9
Body mass 24.2 + 3.8 26.9 +4.1
index* (kg/m%)
Left 23 + 5.7 27 + 6.2
ventricular
ejection

* Body mass index is the weight in kilograms divided by

the square of the height in meters.

Table 2

disordered breathing events and oxyhemoglobin saturation

lists

during sleep in those patients.

the characteristics

of

Table 2. Sleep studies characteristics of patients with

left ventricular faijlure

Central No Central p value

Apnea Apnea

(n=22) (n=22)
Total recording 417 + 48 453 + 62 0.6
time (min)
Total sleeping 282 + 98.5 307 + 54 0.4
time (min)
Sleep efficiency 66 + 19 68 + 32 0.7
(%)

sleep and
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Arousal index (/h) 23 + 19 12 + 8 0.04
Apnea-hypopnea 32 + 13 3.6 + 2 <0.01
index (/h)
Central apnea 22.7 + 0.7 + 1.6 <0.01
index (/h) 14.6
SpO, baseline 92 + 2 94 + 4 0.4
value (%)
SpO, lowest value 77 + 9 89 + 2 <0.01
(%)
% time SpO, < 90% 34 + 31 14 + 6 <0.01

SpO, 1is the oxygen saturation by pulse oximetry

Among patients with CSR, the mean central sleep
index was 22.7 + 14.6. Arousal index was significantly
higher, and arterial oxyhemoglobin desaturation was
significantly lower in CSA patients compared to those
without CSA, but the differences in total sleeping time,
and sleeping efficiency were not statistically
significant.

Of the 203 remaining patients referred for
evaluation of sleep disorders, 152 had polysomnographic
evidence of obstructive sleep apnea (OSA). Thirty seven
(18%) had severe OSA with AHI > 40/hr, 47 (23%) had
moderate OSA with AHI ranging between 20 and 40/hr, and
68 (33%) had mild OSA with AHI between 5 and 20/hr.

Based on the clinical studies, individuals were
classified as having or not having CSR (step 14). 1In
the next step 16, measurement of arterial oxyhemoglobin
saturation was performed with a pulse oximeter with the
probe placed on the patient's finger. In Syracuse,
oximetry data were recorded with two seconds sampling
interval with the oximetry sampling rate of 300 Hz and
the data smoothed with a moving average of 4 seconds.
In Buffalo, the oximetry (Ohmeda 3720, Louisville,
Colorado) data was sampled at 400 Hz and the data
smoothed with a moving average of 3 sec.

The raw data was processed to remove any artifacts
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by eliminating all changes of oxygen saturation between
consecutive sampling intervals of greater than 4% per
second, and any oxygen saturation less than 20%. The
lowest value of the oxygen saturation by pulse oximetry
(Sp0,) over 4 seconds intervals was determined (Step 18)
and used for spectral analysis. Only the longest
section of data free of artifacts on each subject was
used for spectral analysis. In the next step 20, a
power spectral was generated using the maximum entropy
method. This approach is well known to those skilled in
the art. It differs from Fourier transform methods and
is explained in detail in Press et al. (1989, Numerical

recipes NY, Cambridge University Press Chapter 12,

Fourier transform spectral methods, 381-453). The power
spectrum provides a measure of the variability of oxygen
saturation that occurs over a range of frequencies. The
magnitude of that power is related to the variance
(square of the standard deviation). To determine
optimal model size that minimizes the tradeoff between
increased accuracy and increasing the variance of the
estimated spectrum, the Bayesian information criterion
was used. (Hurvich et al., 1989, Biometrika, 76:297-

307).

The next step (step 22) was to determine a set of
parameters from the power spectra. The spectrum covered
frequencies between 0.00125 and 0.125 Hz. The key
features of the power spectrum that identified to
characterize the spectra of CSRs were the frequency and
the magnitude of the power attained at the highest local
maximum (£f1, ml), and the frequency and the magnitude of
the power attained at the next highest local maximum
(£2, m2). A local maxima of magnitude in the spectrum
was identified when there were lower magnitudes at
frequencies immediately above and below the particular
frequency. The spectrum generated between 0.00125 and
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0.125 Hz at 100 frequencies equispaced on a log scale.
The absolute magnitude (ml and m2) were also normalized
by the variance (M1 and M2) and ther values incorporated
into the model. The spectra were also characterized by
the amount of entropy (randomness) in the data.

In the next step (Step 24) the entropy was measured

by
Entropy = - [(m(f) * log m(f).df

where [ is the summation of the magnitudes of the
spectrum at equidistant intervals of frequency on a
linear scale between 0.00005 and 0.05 Hz, and m(f)
represents the magnitude at specific frequency f.
Heuristically, the entropy has been interpreted as a
measure of uncertainty about the event f£. High
uncertainty (entropy) is due to a large number of
processes, whereas low entropy is due to a small number
of dominating processes which make up the time series.

Representative examples of the power spectra a
normal individual, a patient with with OSA, and a
patient with CSR are displayed in figures 2 and 3. The
power spectrum in CSR patients is characterized by a
sharp spectral peak with a large primary local maximum
displayed at low frequency (<0.02 Hz). 1In contrast, the
power spectrum in OSA consists of multiple, broad-band
spectral peaks, lower in magnitude with the highest
local maximum located at a frequency > 0.02 Hz. 1In
normal subjects, no apparent peak was detected. Table 3
shows the values (mean + SD) of the various indices of
the spectral analysis in CSR, OSA patients, and normal
controls.
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Table 3. Summary of the results of spectral analysis

LVF-CSR LVF-No CSR Suspected
n=23 n=22 OSA
n = 203
Magnitude at 19 (19.8) 3.1 (4.6) 2.18 (0.3)

primary local
maximum (ml)

Magnitude at 18 (18.9) 3.1 (4.6) 1.88 (0.29)
secondary local
maximum (m2)

Variance 8.39 (7.97) 4.5 (6.8) 4.82 (7.26)

Entropy 4.44 (0.77) | 4.3 (0.74) | 5.24 (0.77)

*The results are expressed in terms of means * SD. LVF
is left ventricular failure and CSR is Cheyne Stokes

respiration.

In the next step 26, a classification tree was
developed with binary recursive partitioning to identify
patients with CSR according to the method of Breiman et
al. (1984, Classification and Regression Trees, Belmont,

CA, Wadsworth International Group). In brief, the input
data consisted of magnitude and frequency values. The
output variable was coded as 1 for the presence of CSR
and 0 for the absence of CSR. Because of the
preponderance of patients with suspected obstructive
sleep apnea, the patients with CSR were weighted by a
factor of 10.

The root of the tree is determined by the
probability of CSR based on the prevalence in the data
set. Next, each variable is selected in turn to
determine the most accurate predictor of CSR. The data
at the first node is then separated into two branches.
At the end of each branch, a new node is developed and
the input variables are retested to determine which one
produces the most accurate classification into those



WO 01/76459 PCT/US01/11680

10

15

20

25

30

35

with CSR and those without. The optimal size of the
tree was found by five-fold cross validation.

A receiver operator characteristic (ROC) curve was
generated to assess the accuracy of the regression tree.
The c-index, which is equivalent to the area under the
curve, was used to estimate the diagnostic accuracy of
the model. The c-index and its standard error were
calculated by the bootstrap method that has been
described previously (El-Solh et al., 1996, Chest,

110:1299-1304) .

An example of the classification tree is presented
in Figure 4. The tree was grown by binary recursive
partitioning and was shrunk to determine its optimal
size using tenfold cross-validation. It was pruned
accordingly to avoid overfitting. The tree predicted
that CSR was unlikely to be present if the magnitude of
the power (ml) at the highest local maximum was less
than 8.0867 (%). For those with a local maximum greater
than 8.0867, an entropy greater than 5.202 is unlikely
to indicate CSR. Of those with a lower entropy, CSR is
likely to be present if the difference in the normalized
magnitudes between the highest and next highest local
maxima was greater than 4.688. Otherwise, CSR will be
present only in those with a highest local maximum less
than 17.645. When tested on the entire data set, the
tree achieved a sensitivity of 100% (95% CI 85%-100%)
and a specificity of 97% (95% CI 93%-99%). Seven
patients who did not have CSR were classified
erroneously as having CSR by the regression tree. The
accuracy of the regression tree was assessed with a ROC
curve shown in figure 5. The c-index, which is
equivalent to the area under the curve, was 0.997 (95%
CI 0.992-1.0%).

All results are expressed as mean + standard
deviation. Differences between patients were compared by
the Student's unpaired t test, and frequency events by
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chi-square test with Yates' correction. All tests of
statistical significance were two sided. A p value of
0.05 was considered to be statistically significant.
Commercially available software was used to develop the
regression tree (S-Plus; Statsci; Seattle, Wash), and
for confidence interval (CI) analysis (CIA; British

Medical Journal; London, England).

To determine the predictive value of the diagnostic
method developed as described above, the classification
tree constructed as in Figure 4 was tested on 22
patients with LVF who had no evidence of CSR by
overnight polysomnography. Of these 22 patients, two
patients were mis-classified as having CSR yielding a
specificity of 91 (95%CI:71-99%) and the positive and
negative predictive ratios were 92% (95%CI 74-95%) and
100% ( 95%CI: 83-100%).

In another embodiment of the invention, the
classification tree developed as described herein is
used in a diagnostic method to identify CSR in an
individual. The diagnostic method comprises the steps
shown in Figure 6. Blood oxyhemoglobin saturation
levels are obtained from a patient by pulse oximetry
recordings (Step 50). Oxygen saturation levels are
determined at selected intervals (Step 52).
Mathematical calculations are performed to generate a
power spectrum (Step 54) from the pulse oximetry
readings by plotting magnitude (variance) versus
frequency. From the power spectrum, a set of parameters
of magnitude and frequency are attained at the highest
local maximum (f1,ml) are determined (Step 56).
Similarly, the frequency and magnitude of the power
attained at the next highest local maxima (£f2, m2) are
determined. A local maxima of magnitude is identified
when there is lower magnitudes at frequencies
immediately above and below the particular frequency.

In the next step (step 58), entropy is calculated
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Entropy = - [(m(f) * log m(f).df

where [ is the summation of the magnitudes of the
spectrum at equidistant intervals of frequency on a
linear scale between 0.00005 and 0.05 Hz, and m(f)
represents the magnitude at specific frequency f.

In the next step (step 60), the set of parameters
and the entropy value determined are input into a
classification tree developed as described herein to

obtain a prediction of whether the individual has CSR or

not.

From the foregoing, it will be obvious to those
skilled in the art that various modifications in the
methods described herein can be made without departing
from the spirit and scope of the invention.
Accordingly, the invention may be embodied in other
specific forms without departing from the essential
characteristics thereof. The embodiments and examples
presented herein are therefore to be considered as
illustrative and not restrictive.
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What is claimed is:
1. A method for detecting Cheyne-Stokes
respiration in an individual comprising:
obtaining pulse oximetry recordings from the
individual;
determining oxygen saturation levels at selected
intervals;
generating a power spectrum from the oxygen
saturation levels;
determining a set of parameters from the power
spectrum comprising frequency and magnitude at
local maximas; and
inputting the set of parameters into a
classification tree to determine the presence

or absence of CSR.

2. The method of claim 1, wherein the pulse
oximetry readings are obtained overnight.

3. A storage device having stored thereon computer
readable code for causing a computer to execute the
method of claim 1.

4. A method for developing a classification tree
for identification of individuals with CSR comprising
the steps of:

performing clinical studies to identify patients

having obstructive sleep apnea;
performing further clinical studies on patients
identified as having obstructive sleep apnea
to determine the presence or absence of
Cheyne-Stokes respiration;

obtaining overnight pulse oximetry recordings from
the patients with or without Cheyne-Stokes
respiration;

determining oxygen saturation levels at selected



WO 01/76459 PCT/US01/11680

10

15

20

25

30

35

intervals;

generating power spectra from the oxygen saturation
levels;

determining a set of parameters from the power
spectra comprising frequency and magnitude of
local maximas; and

constructing a classification tree by inputting the
set of parameters.

5. The method of claim 4 further comprising the
step of cross-validating the classification tree.

6. The method of claim 4, wherein the further
clinical studies are other than pulse oximetry

recordings.
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