(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) ## (19) World Intellectual Property Organization International Bureau (10) International Publication Number WO 2015/023623 A1 (43) International Publication Date 19 February 2015 (19.02.2015) (51) International Patent Classification: C08F 210/16 (2006.01) C08F 4/6592 (2006.01) C08F 110/02 (2006.01) C08F 4/02 (2006.01) (21) International Application Number: PCT/US2014/050622 (22) International Filing Date: 12 August 2014 (12.08.2014) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 13/966,369 14 14 August 2013 (14.08.2013) US - (71) Applicant: CHEVRON PHILLIPS CHEMICAL COM-PANY LP [US/US]; 10001 Six Pines Drive, The Woodlands, Texas 77380 (US). - (72) Inventors: PRAETORIUS, Jeremy M.; 2514 Waterford Court, Bartlesville, Oklahoma 74006 (US). CRUZ, Carlos; 1028 Taylor Drive, Bartlesville, Oklahoma 74006 (US). YANG, Qing; 2917 Montrose Drive, Bartlesville, Oklahoma 74006 (US). MCDANIEL, Max P; 1601 Melmart Drive, Bartlesville, Oklahoma 74006 (US). BARR, Jared L; 3801 Mountain Road, Bartlesville, Oklahoma 74003 (US). - (74) Agent: HUSEMAN, Cheryl L (45392); Chevron Phillips Chemical Company LP, 10001 Six Pines Drive, The Woodlands, Texas 77380 (US). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). #### Published: — with international search report (Art. 21(3)) ### (54) Title: CYCLOBUTYLIDENE-BRIDGED METALLOCENES AND CATALYST SYSTEMS CONTAINING THE SAME (57) Abstract: Disclosed herein are catalyst compositions containing cyclobutylidene-bridged metallocene compounds. These catalyst compositions can be used for the polymerization of olefins. # CYCLOBUTYLIDENE-BRIDGED METALLOCENES AND CATALYST SYSTEMS CONTAINING THE SAME ### BACKGROUND OF THE INVENTION 5 10 15 20 25 Polyolefins such as high density polyethylene (HDPE) homopolymer and linear low density polyethylene (LLDPE) copolymer can be produced using various combinations of catalyst systems and polymerization processes. In some end-use applications, it can be beneficial for the polymer to have a combination of lower density and low levels of long chain branching. Moreover, it can be beneficial for the catalyst system employed to have a high catalytic activity for olefin polymerization, particularly in the presence of a comonomer. Accordingly, it is to these ends that the present invention is directed. #### SUMMARY OF THE INVENTION This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify required or essential features of the claimed subject matter. Nor is this summary intended to be used to limit the scope of the claimed subject matter. The present invention generally relates to new catalyst compositions, methods for preparing catalyst compositions, methods for using the catalyst compositions to polymerize olefins, the polymer resins produced using such catalyst compositions, and articles produced using these polymer resins. In particular, the present invention relates to cyclobutylidene-bridged metallocene compounds, and to catalyst compositions employing such bridged metallocene compounds. Catalyst compositions of the present invention which contain these cyclobutylidene-bridged metallocene compounds can be used to produce, for example, ethylene-based homopolymers and copolymers. In accordance with an aspect of the present invention, disclosed and described herein are cyclobutylidene-bridged metallocene compounds having the formula: $$R^{X}$$ R^{Y} Cp X^{2} (I) . 2 In formula (I), M can be Ti, Zr, or Hf; X^1 and X^2 independently can be a monoanionic ligand; Cp can be a cyclopentadienyl group with an alkyl and/or an alkenyl substituent; and R^X and R^Y independently can be any substituent disclosed herein. Catalyst compositions containing the cyclobutylidene-bridged metallocene compounds of formula (I) also are provided by the present invention. In one aspect, a catalyst composition is disclosed which comprises a cyclobutylidene-bridged metallocene compound of formula (I) and an activator. Optionally, this catalyst composition can further comprise a co-catalyst, such as an organoaluminum compound. In some aspects, the activator can comprise an activator-support, while in other aspects, the activator can comprise an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or combinations thereof. The present invention also contemplates and encompasses olefin polymerization processes. Such processes can comprise contacting a catalyst composition with an olefin monomer and optionally an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer. Generally, the catalyst composition employed can comprise any of the cyclobutylidene-bridged metallocene compounds disclosed herein and any of the activators disclosed herein. Further, organoaluminum compounds or other co-catalysts also can be utilized in the catalyst compositions and/or polymerization processes. Polymers produced from the polymerization of olefins, resulting in homopolymers, copolymers, terpolymers, etc., can be used to produce various articles of manufacture. Both the foregoing summary and the following detailed description provide examples and are explanatory only. Accordingly, the foregoing summary and the following detailed description should not be considered to be restrictive. Further, features or variations may be provided in addition to those set forth herein. For example, certain aspects and embodiments may be directed to various feature combinations and sub-combinations described in the detailed description. 5 10 15 20 25 WO 2015/023623 5 10 15 20 25 PCT/US2014/050622 3 ## BRIEF DESCRIPTION OF THE FIGURES FIG. 1 presents a plot of the homopolymer catalyst activity and the copolymer catalyst activity for the catalyst systems of Examples 1-32, containing metallocene MET-A, MET-B, MET-C, MET-D, or MET-E. FIG. 2 presents a plot of zero-shear viscosity versus weight-average molecular weight (η_0 versus Mw) for the copolymers of Examples 4-7, 11-13, 17-19, 23-26, and 30-32. ### **DEFINITIONS** To define more clearly the terms used herein, the following definitions are provided. Unless otherwise indicated, the following definitions are applicable to this disclosure. If a term is used in this disclosure but is not specifically defined herein, the definition from the IUPAC Compendium of Chemical Terminology, 2nd Ed (1997) can be applied, as long as that definition does not conflict with any other disclosure or definition applied herein, or render indefinite or non-enabled any claim to which that definition is applied. To the extent that any definition or usage provided by any document incorporated herein by reference conflicts with the definition or usage provided herein, the definition or usage provided herein controls. While compositions and methods are described herein in terms of "comprising" various components or steps, the compositions and methods can also "consist essentially of" or "consist of" the various components or steps, unless stated otherwise. For example, a catalyst composition consistent with aspects of the present invention can comprise; alternatively, can consist essentially of; or alternatively, can consist of; (i) a cyclobutylidene-bridged metallocene compound, (ii) an activator, and (iii) optionally, a co-catalyst. The terms "a," "an," "the," etc., are intended to include plural alternatives, e.g., at least one, unless otherwise specified. For instance, the disclosure of "an activator-support" or "a metallocene compound" is meant to encompass one, or mixtures or combinations of more than one, activator-support or metallocene compound, respectively, unless otherwise specified. Generally, groups of elements are indicated using the numbering scheme indicated in the version of the periodic table of elements published in *Chemical and Engineering News*, 63(5), 27, 1985. In some instances, a group of elements can be 4 indicated using a common name assigned to the group; for example, alkali metals for Group 1 elements, alkaline earth metals for Group 2 elements, transition metals for Group 3-12 elements, and halogens or halides for Group 17 elements. 5 10 15 20 25 30 For any particular compound disclosed herein, the general structure or name presented is also intended to encompass all structural isomers, conformational isomers, and stereoisomers that can arise from a particular set of substituents, unless indicated otherwise. Thus, a general reference to a compound includes all structural isomers unless explicitly indicated otherwise; e.g., a general reference to pentane includes n-pentane, 2-methyl-butane, and 2,2-dimethylpropane, while a general reference to a butyl group includes an n-butyl group, a sec-butyl group, an iso-butyl group, and a tert-butyl group.
Additionally, the reference to a general structure or name encompasses all enantiomers, diastereomers, and other optical isomers whether in enantiomeric or racemic forms, as well as mixtures of stereoisomers, as the context permits or requires. For any particular formula or name that is presented, any general formula or name presented also encompasses all conformational isomers, regioisomers, and stereoisomers that can arise from a particular set of substituents. The term "substituted" when used to describe a group, for example, when referring to a substituted analog of a particular group, is intended to describe any non-hydrogen moiety that formally replaces a hydrogen in that group, and is intended to be non-limiting. A group or groups can also be referred to herein as "unsubstituted" or by equivalent terms such as "non-substituted," which refers to the original group in which a non-hydrogen moiety does not replace a hydrogen within that group. Unless otherwise specified, "substituted" is intended to be non-limiting and include inorganic substituents or organic substituents as understood by one of ordinary skill in the art. The term "hydrocarbon" whenever used in this specification and claims refers to a compound containing only carbon and hydrogen. Other identifiers can be utilized to indicate the presence of particular groups in the hydrocarbon (e.g., halogenated hydrocarbon indicates the presence of one or more halogen atoms replacing an equivalent number of hydrogen atoms in the hydrocarbon). The term "hydrocarbyl group" is used herein in accordance with the definition specified by IUPAC: a univalent group formed by removing a hydrogen atom from a hydrocarbon (that is, a 5 group containing only carbon and hydrogen). Non-limiting examples of hydrocarbyl groups include alkyl, alkenyl, aryl, and aralkyl groups, amongst other groups. The term "polymer" is used herein generically to include olefin homopolymers, copolymers, terpolymers, and so forth. A copolymer is derived from an olefin monomer and one olefin comonomer, while a terpolymer is derived from an olefin monomer and two olefin comonomers. Accordingly, "polymer" encompasses copolymers, terpolymers, etc., derived from any olefin monomer and comonomer(s) disclosed herein. Similarly, an ethylene polymer would include ethylene homopolymers, ethylene copolymers, ethylene terpolymers, and the like. As an example, an olefin copolymer, such as an ethylene copolymer, can be derived from ethylene and a comonomer, such as 1-butene, 1-hexene, or 1-octene. If the monomer and comonomer were ethylene and 1-hexene, respectively, the resulting polymer can be categorized an as ethylene/1-hexene copolymer. 5 10 15 20 25 30 In like manner, the scope of the term "polymerization" includes homopolymerization, copolymerization, terpolymerization, etc. Therefore, a copolymerization process can involve contacting one olefin monomer (e.g., ethylene) and one olefin comonomer (e.g., 1-hexene) to produce a copolymer. The term "co-catalyst" is used generally herein to refer to compounds such as aluminoxane compounds, organoboron or organoborate compounds, ionizing ionic compounds, organoaluminum compounds, organozine compounds, organomagnesium compounds, organolithium compounds, and the like, that can constitute one component of a catalyst composition, when used, for example, in addition to an activator-support. The term "co-catalyst" is used regardless of the actual function of the compound or any chemical mechanism by which the compound may operate. The terms "chemically-treated solid oxide," "treated solid oxide compound," and the like, are used herein to indicate a solid, inorganic oxide of relatively high porosity, which can exhibit Lewis acidic or Brønsted acidic behavior, and which has been treated with an electron-withdrawing component, typically an anion, and which is calcined. The electron-withdrawing component is typically an electron-withdrawing anion source compound. Thus, the chemically-treated solid oxide can comprise a calcined contact product of at least one solid oxide with at least one electron-withdrawing anion source compound. Typically, the chemically-treated solid oxide 6 comprises at least one acidic solid oxide compound. The "activator-support" of the present invention can be a chemically-treated solid oxide. The terms "support" and "activator-support" are not used to imply these components are inert, and such components should not be construed as an inert component of the catalyst composition. The term "activator," as used herein, refers generally to a substance that is capable of converting a metallocene component into a catalyst that can polymerize olefins, or converting a contact product of a metallocene component and a component that provides an activatable ligand (e.g., an alkyl, a hydride) to the metallocene, when the metallocene compound does not already comprise such a ligand, into a catalyst that can polymerize olefins. This term is used regardless of the actual activating mechanism. Illustrative activators include activator-supports, aluminoxanes, organoboron or organoborate compounds, ionizing ionic compounds, and the like. Aluminoxanes, organoboron or organoborate compounds, and ionizing ionic compounds generally are referred to as activators if used in a catalyst composition in which an activator-support is not present. If the catalyst composition contains an activator-support, then the aluminoxane, organoboron or organoborate, and ionizing ionic materials are typically referred to as co-catalysts. 5 10 15 20 25 30 The term "metallocene" as used herein describes compounds comprising at least one η^3 to η^5 -cycloalkadienyl-type moiety, wherein η^3 to η^5 -cycloalkadienyl moieties include cyclopentadienyl ligands, indenyl ligands, fluorenyl ligands, and the like, including partially saturated or substituted derivatives or analogs of any of these. Possible substituents on these ligands may include H, therefore this invention comprises ligands such as tetrahydroindenyl, tetrahydrofluorenyl, octahydrofluorenyl, partially saturated indenyl, partially saturated fluorenyl, substituted partially saturated indenyl, substituted partially saturated fluorenyl, and the like. In some contexts, the metallocene is referred to simply as the "catalyst," in much the same way the term "cocatalyst" is used herein to refer to, for example, an organoaluminum compound. The terms "catalyst composition," "catalyst mixture," "catalyst system," and the like, do not depend upon the actual product or composition resulting from the contact or reaction of the initial components of the disclosed or claimed catalyst composition/mixture/system, the nature of the active catalytic site, or the fate of the co-catalyst, the metallocene compound, any olefin monomer used to prepare a precontacted mixture, or the activator (e.g., activator-support), after combining these components. Therefore, the terms "catalyst composition," "catalyst mixture," "catalyst system," and the like, encompass the initial starting components of the composition, as well as whatever product(s) may result from contacting these initial starting components, and this is inclusive of both heterogeneous and homogeneous catalyst systems or compositions. The terms "catalyst composition," "catalyst mixture," "catalyst system," and the like, can be used interchangeably throughout this disclosure. The term "contact product" is used herein to describe compositions wherein the components are contacted together in any order, in any manner, and for any length of time. For example, the components can be contacted by blending or mixing. Further, contacting of any component can occur in the presence or absence of any other component of the compositions described herein. Combining additional materials or components can be done by any suitable method. Further, the term "contact product" includes mixtures, blends, solutions, slurries, reaction products, and the like, or combinations thereof. Although "contact product" can include reaction products, it is not required for the respective components to react with one another. Similarly, the term "contacting" is used herein to refer to materials which can be blended, mixed, slurried, dissolved, reacted, treated, or otherwise contacted in some other manner. The term "precontacted" mixture is used herein to describe a first mixture of catalyst components that are contacted for a first period of time prior to the first mixture being used to form a "postcontacted" or second mixture of catalyst components that are contacted for a second period of time. Typically, the precontacted mixture can describe a mixture of a metallocene compound (one or more than one), olefin monomer (or monomers), and organoaluminum compound (or compounds), before this mixture is contacted with an activator-support(s) and optional additional organoaluminum compound. Thus, precontacted describes components that are used to contact each other, but prior to contacting the components in the second, postcontacted mixture. Accordingly, this invention can occasionally distinguish between a component used to prepare the precontacted mixture and that component after the mixture has been prepared. For example, according to this description, it is possible for the precontacted organoaluminum compound, once it is contacted with the metallocene compound and the olefin monomer, to have reacted to form at least one chemical compound, 8 formulation, or structure different from the distinct organoaluminum compound used to prepare the precontacted mixture. In this case, the precontacted organoaluminum compound or component is described as comprising an organoaluminum compound that was used to prepare the precontacted mixture. Additionally, the precontacted mixture can describe a mixture of metallocene compound(s) and organoaluminum compound(s), prior to contacting this mixture with an activator-support(s).
This precontacted mixture also can describe a mixture of metallocene compound(s), olefin monomer(s), and activator-support(s), before this mixture is contacted with an organoaluminum co-catalyst compound or compounds. 5 10 15 20 25 30 Similarly, the term "postcontacted" mixture is used herein to describe a second mixture of catalyst components that are contacted for a second period of time, and one constituent of which is the "precontacted" or first mixture of catalyst components that were contacted for a first period of time. Typically, the term "postcontacted" mixture is used herein to describe the mixture of metallocene compound(s), olefin monomer(s), organoaluminum compound(s), and activator-support(s) formed from contacting the precontacted mixture of a portion of these components with any additional components added to make up the postcontacted mixture. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the typical methods, devices and materials are herein described. All publications and patents mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the constructs and methodologies that are described in the publications, which might be used in connection with the presently described invention. The publications discussed throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention. Applicants disclose several types of ranges in the present invention. When Applicants disclose or claim a range of any type, Applicants' intent is to disclose or claim individually each possible number that such a range could reasonably encompass, including end points of the range as well as any sub-ranges and combinations of sub-ranges encompassed therein. For example, when the Applicants disclose or claim a chemical moiety having a certain number of carbon atoms, Applicants' intent is to disclose or claim individually every possible number that such a range could encompass, consistent with the disclosure herein. For example, the disclosure that a moiety is a C_1 to C_{18} hydrocarbyl group, or in alternative language, a hydrocarbyl group having from 1 to 18 carbon atoms, as used herein, refers to a moiety that can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms, as well as any range between these two numbers (for example, a C_1 to C_8 hydrocarbyl group), and also including any combination of ranges between these two numbers (for example, a C_2 to C_4 and a C_{12} to C_{16} hydrocarbyl group). Similarly, another representative example follows for the weight-average molecular weight (Mw) of an olefin polymer produced in an aspect of this invention. By a disclosure that the Mw can be in a range from about 150,000 to about 400,000 g/mol, Applicants intend to recite that the Mw can be any molecular weight in the range and, for example, can be equal to about 150,000, about 175,000, about 200,000, about 225,000, about 250,000, about 275,000, about 300,000, about 325,000, about 350,000, about 375,000, or about 400,000 g/mol. Additionally, the Mw can be within any range from about 150,000 to about 400,000 (for example, from about 200,000 to about 300,000), and this also includes any combination of ranges between about 150,000 and about 400,000 (for example, the Mw can be in a range from about 175,000 to about 225,000, or from about 300,000 to about 350,000). Likewise, all other ranges disclosed herein should be interpreted in a manner similar to these two examples. Applicants reserve the right to proviso out or exclude any individual members of any such group, including any sub-ranges or combinations of sub-ranges within the group, that can be claimed according to a range or in any similar manner, if for any reason Applicants choose to claim less than the full measure of the disclosure, for example, to account for a reference that Applicants may be unaware of at the time of the filing of the application. Further, Applicants reserve the right to proviso out or exclude any individual substituents, analogs, compounds, ligands, structures, or groups thereof, or any members of a claimed group, if for any reason Applicants choose to claim less than the full measure of the disclosure, for example, to account for a reference that Applicants may be unaware of at the time of the filing of the application. ## DETAILED DESCRIPTION OF THE INVENTION The present invention is directed generally to new catalyst compositions, methods for preparing catalyst compositions, methods for using the catalyst compositions to polymerize olefins, the polymer resins produced using such catalyst compositions, and articles produced using these polymer resins. In particular, the present invention relates to cyclobutylidene-bridged metallocene complexes, and to catalyst compositions employing these bridged metallocene complexes. ## CYCLOBUTYLIDENE-BRIDGED METALLOCENES 5 10 15 20 The present invention discloses novel cyclobutylidene-bridged metallocene complexes or compounds, and methods of making these complexes or compounds. In an aspect of this invention, the cyclobutylidene-bridged metallocene compound can have the formula: $$R^{X}$$ R^{Y} Cp X^{2} (I) Within formula (I), M, X^1 , X^2 , Cp, R^X , and R^Y are independent elements of the metallocene compound. Accordingly, the metallocene compound having formula (I) may be described using any combination of M, X^1 , X^2 , Cp, R^X , and R^Y disclosed herein. Unless otherwise specified, formula (I) above, any other structural formulas disclosed herein, and any metallocene complex, compound, or species disclosed herein are not designed to show stereochemistry or isomeric positioning of the different moieties (e.g., these formulas are not intended to display cis or trans isomers, or R or S diastereoisomers), although such compounds are contemplated and encompassed by these formulas and/or structures. In accordance with aspects of this invention, the metal in formula (I), M, can be 25 Ti, Zr, or Hf. In one aspect, for instance, M can be Zr or Hf, while in another aspect, M can be Ti; alternatively, M can be Zr; or alternatively, M can be Hf. WO 2015/023623 5 10 15 20 25 30 X^1 and X^2 in formula (I) independently can be a monoanionic ligand. In some aspects, suitable monoanionic ligands can include, but are not limited to, H (hydride), BH₄, a halide, a C₁ to C₃₆ hydrocarbyl group, a C₁ to C₃₆ hydrocarbylaminyl group, a C₁ to C₃₆ hydrocarbylsilyl group, a C₁ to C₃₆ hydrocarbylaminylsilyl group, —OBR¹₂, or —OSO₂R¹, wherein R¹ is a C₁ to C₃₆ hydrocarbyl group. It is contemplated that X¹ and X² can be either the same or a different monoanionic ligand. In one aspect, X¹ and X² independently can be H, BH₄, a halide (e.g., F, Cl, Br, etc.), a C₁ to C₁₈ hydrocarbyl group, a C₁ to C₁₈ hydrocarboxy group, a C₁ to C₁₈ hydrocarbylaminyl group, a C_1 to C_{18} hydrocarbylsilyl group, or a C_1 to C_{18} hydrocarbylaminylsilyl group. Alternatively, X¹ and X² independently can be H, BH₄, a halide, OBR¹₂, or OSO₂R¹, wherein R¹ is a C₁ to C₁₈ hydrocarbyl group. In another aspect, X¹ and X² independently can be H, BH₄, a halide, a C₁ to C₁₂ hydrocarbyl group, a C₁ to C₁₂ hydrocarboxy group, a C₁ to C₁₂ hydrocarbylaminyl group, a C₁ to C₁₂ hydrocarbylsilyl group, a C₁ to C₁₂ hydrocarbylaminylsilyl group, OBR¹₂, or OSO₂R¹, wherein R¹ is a C₁ to C₁₂ hydrocarbyl group. In another aspect, X¹ and X² independently can be H, BH₄, a halide, a C₁ to C₁₀ hydrocarbyl group, a C₁ to C₁₀ hydrocarboxy group, a C₁ to C₁₀ hydrocarbylaminyl group, a C₁ to C₁₀ hydrocarbylsilyl group, a C₁ to C₁₀ hydrocarbylaminylsilyl group, OBR¹₂, or OSO₂R¹, wherein R¹ is a C_1 to C_{10} hydrocarbyl group. In yet another aspect, X^1 and X^2 independently can be H. BH₄, a halide, a C₁ to C₈ hydrocarbyl group, a C₁ to C₈ hydrocarboxy group, a C₁ to C₈ hydrocarbylaminyl group, a C₁ to C₈ hydrocarbylsilyl group, a C₁ to C₈ hydrocarbylaminylsilyl group, OBR¹₂, or OSO₂R¹, wherein R¹ is a C₁ to C₈ hydrocarbyl group. In still another aspect, X¹ and X² independently can be a halide or a C_1 to C_{18} hydrocarbyl group. For example, X^1 and X^2 can be Cl. The hydrocarbyl group which can be X^1 and/or X^2 in formula (I) can be a C_1 to C_{36} hydrocarbyl group, including, but not limited to, a C_1 to C_{36} alkyl group, a C_2 to C_{36} alkenyl group, a C_4 to C_{36} cycloalkyl group, a C_6 to C_{36} aryl group, or a C_7 to C_{36} aralkyl group. For instance, X^1 and X^2 independently can be a C_1 to C_{18} alkyl group, a C_2 to C_{18} alkenyl group, a C_4 to C_{18} cycloalkyl group, a C_6 to C_{18} aryl group, or a C_7 to C_{18} aralkyl group; alternatively, X^1 and X^2 independently can be a C_1 to C_{12} alkyl group, a C_2 to C_{12} alkenyl group, a C_4 to C_{12} cycloalkyl group, a C_6 to C_{12} aryl group, or a C_7 to C_{12} aralkyl group; alternatively, X^1 and X^2 independently can be a C_1 to C_{10} alkyl group, a C_2 to C_{10} alkenyl group, a C_4 to C_{10} cycloalkyl group, a C_6 to C_{10} aryl group, or a C_7 to C_{10} aralkyl group; or alternatively, X^1 and X^2 independently can be a C_1 to C_5 alkyl group, a C_2 to C_5 alkenyl group, a C_5 to C_8 cycloalkyl group, a C_6 to C_8 aryl group, or a C_7 to C_8 aralkyl group. Accordingly, in some aspects, the alkyl group which can be X^1 and/or X^2 in formula (I) can be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a undecyl group, a dodecyl group,
a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptyl group, a propyl group, a butyl group, a pentyl group, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, or a decyl group. In some aspects, the alkyl group which can be X^1 and/or X^2 in formula (I) can be a methyl group, an ethyl group, a n-propyl group, an iso-propyl group, an iso-pentyl group, a sec-butyl group, a tert-butyl group, a n-pentyl group, an iso-pentyl group, a reopentyl group, a tert-butyl group; alternatively, a methyl group; alternatively, a n-propyl group; alternatively, a n-propyl group; alternatively, an iso-propyl group; alternatively, a tert-butyl group; or alternatively, a neopentyl group. Suitable alkenyl groups which can be X^1 and/or X^2 in formula (I) can include, but are not limited to, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a undecenyl group, a dedecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, or an octadecenyl group. Such alkenyl groups can be linear or branched, and the double bond can be located anywhere in the chain. In one aspect, X^1 and X^2 in formula (I) independently can be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, or a decenyl group, while in another aspect, X^1 and X^2 in formula (I) independently can be an ethenyl group, a propenyl group, a butenyl group, or a hexenyl group. For example, X^1 and/or X^2 can be an ethenyl group; alternatively, a propenyl group; 13 alternatively, a butenyl group; alternatively, a pentenyl group; or alternatively, a hexenyl group. In yet another aspect, X^1 and/or X^2 can be a terminal alkenyl group, such as a C_3 to C_{18} terminal alkenyl group, a C_3 to C_{12} terminal alkenyl group, or a C_3 to C_8 terminal alkenyl group. Illustrative terminal alkenyl groups can include, but are not limited to, a prop-2-en-1-yl group, a bute-3-en-1-yl group, a pent-4-en-1-yl group, a hex-5-en-1-yl group, a hept-6-en-1-yl group, an octe-7-en-1-yl group, a non-8-en-1-yl group, a dece-9-en-1-yl group, and so forth. 5 10 15 20 25 30 X¹ and X² in formula (I) independently can be a cycloalkyl group, including, but not limited to, a cyclobutyl group, a substituted cyclobutyl group, a cyclopentyl group, a substituted cyclopentyl group, a cyclohexyl group, a substituted cyclohexyl group, a cycloheptyl group, a substituted cycloheptyl group, a cyclooctyl group, or a substituted cyclooctyl group. For example, X1 and/or X2 in formula (I) can be a cyclopentyl group, a substituted cyclopentyl group, a cyclohexyl group, or a substituted cyclohexyl group. Moreover, X1 and X2 in formula (I) independently can be a cyclobutyl group or a substituted cyclobutyl group; alternatively, a cyclopentyl group or a substituted cyclopentyl group; alternatively, a cyclohexyl group or a substituted cyclohexyl group; alternatively, a cycloheptyl group or a substituted cycloheptyl group; alternatively, a cyclooctyl group or a substituted cyclooctyl group; alternatively, a cyclopentyl group; alternatively, a substituted cyclopentyl group; alternatively, a evelohexyl group; or alternatively, a substituted cyclohexyl group. Substituents which can be utilized for the substituted cycloalkyl group are independently disclosed herein and can be utilized without limitation to further describe the substituted cycloalkyl group which can be X^1 and/or X^2 in formula (I). In some aspects, the aryl group which can be X^1 and/or X^2 in formula (I) can be a phenyl group, a substituted phenyl group, a naphthyl group, or a substituted naphthyl group. In an aspect, the aryl group can be a phenyl group or a substituted phenyl group; alternatively, a naphthyl group or a substituted naphthyl group; alternatively, a phenyl group or a naphthyl group; alternatively, a substituted phenyl group or a substituted naphthyl group; alternatively, a phenyl group; or alternatively, a naphthyl group. Substituents which can be utilized for the substituted phenyl groups or substituted naphthyl groups are independently disclosed herein and can be utilized 14 without limitation to further describe the substituted phenyl groups or substituted naphthyl groups which can be X^1 and/or X^2 in formula (I). 5 10 15 20 25 30 In an aspect, the substituted phenyl group which can be X^1 and/or X^2 in formula (I) can be a 2-substituted phenyl group, a 3-substituted phenyl group, a 4-substituted phenyl group, a 2,4-disubstituted phenyl group, a 2,6-disubstituted phenyl group, a 3,5-disubstituted phenyl group, or a 2,4,6-trisubstituted phenyl group. In other aspects, the substituted phenyl group can be a 2-substituted phenyl group, a 4-substituted phenyl group, a 2,4-disubstituted phenyl group, or a 2,6-disubstituted phenyl group; alternatively, a 3-substituted phenyl group or a 3,5-disubstituted phenyl group; alternatively, a 2-substituted phenyl group or a 4-substituted phenyl group; alternatively, a 2,4-disubstituted phenyl group or a 2,6-disubstituted phenyl group; alternatively, a 2-substituted phenyl group; alternatively, a 3-substituted phenyl group; alternatively, a 4-substituted phenyl group; alternatively, a 2,4-disubstituted phenyl group; alternatively, a 2,6-disubstituted phenyl group; alternatively, a 3,5-disubstituted phenyl group; or alternatively, a 2,4,6-trisubstituted phenyl group. Substituents which can be utilized for these specific substituted phenyl groups are independently disclosed herein and can be utilized without limitation to further describe these substituted phenyl groups which can be X^1 and/or X^2 in formula (I). In some aspects, the aralkyl group which can be X^1 and/or X^2 in formula (I) can be a benzyl group or a substituted benzyl group. In an aspect, the aralkyl group can be a benzyl group or, alternatively, a substituted benzyl group. Substituents which can be utilized for the substituted aralkyl group are independently disclosed herein and can be utilized without limitation to further describe the substituted aralkyl group which can be an X^1 and/or X^2 in formula (I). In an aspect, each non-hydrogen substituent(s) for the substituted cycloalkyl group, substituted aryl group, or substituted aralkyl group which can be X^1 and/or X^2 in formula (I) independently can be a C_1 to C_{18} hydrocarbyl group; alternatively, a C_1 to C_8 hydrocarbyl group; or alternatively, a C_1 to C_5 hydrocarbyl group. Specific hydrocarbyl groups are independently disclosed herein and can be utilized without limitation to further describe the substituents of the substituted cycloalkyl groups, substituted aryl groups, or substituted aralkyl groups which can be X^1 and/or X^2 in formula (I). For instance, the hydrocarbyl substituent can be an alkyl group, such as a 15 methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, a n-pentyl group, a 2-pentyl group, a 3-pentyl group, a 2-methyl-1-butyl group, a tert-pentyl group, a 3-methyl-1-butyl group, a 3-methyl-2-butyl group, or a neo-pentyl group, and the like. Furthermore, the hydrocarbyl substituent can be a benzyl group, a phenyl group, a tolyl group, or a xylyl group, and the like. 5 10 15 20 25 30 A hydrocarboxy group is used generically herein to include, for instance, alkoxy, aryloxy, aralkoxy, -(alkyl, aryl, or aralkyl)-O-(alkyl, aryl, or aralkyl) groups, and -O(CO)-(hydrogen or hydrocarbyl) groups, and these groups can comprise up to about 36 carbon atoms (e.g., C₁ to C₃₆, C₁ to C₁₈, C₁ to C₁₀, or C₁ to C₈ hydrocarboxy groups). Illustrative and non-limiting examples of hydrocarboxy groups which can be X¹ and/or X² in formula (I) can include, but are not limited to, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a secbutoxy group, an isobutoxy group, a tert-butoxy group, an n-pentoxy group, a 2pentoxy group, a 3-pentoxy group, a 2-methyl-1-butoxy group, a tert-pentoxy group, a 3-methyl-1-butoxy group, a 3-methyl-2-butoxy group, a neo-pentoxy group, a phenoxy group, a toloxy group, a xyloxy group, a 2,4,6-trimethylphenoxy group, a benzoxy group, an acetylacetonate group (acac), a formate group, an acetate group, a stearate group, an oleate group, a benzoate group, and the like. In an aspect, the hydrocarboxy group which can be X¹ and/or X² in formula (I) can be a methoxy group; alternatively, an ethoxy group; alternatively, an n-propoxy group; alternatively, an isopropoxy group; alternatively, an n-butoxy group; alternatively, a sec-butoxy group; alternatively, an isobutoxy group; alternatively, a tert-butoxy group; alternatively, an n-pentoxy group; alternatively, a 2-pentoxy group; alternatively, a 3-pentoxy group; alternatively, a 2methyl-1-butoxy group; alternatively, a tert-pentoxy group; alternatively, a 3-methyl-1butoxy group, alternatively, a 3-methyl-2-butoxy group; alternatively, a neo-pentoxy group; alternatively, a phenoxy group; alternatively, a toloxy group; alternatively, a xyloxy group; alternatively, a 2.4,6-trimethylphenoxy group; alternatively, a benzoxy group; alternatively, an acetylacetonate group; alternatively, a formate group; alternatively, an acetate group; alternatively, a stearate group; alternatively, an oleate group; or alternatively, a benzoate group. 5 10 15 20 25 30 The term hydrocarbylaminyl group is used generically herein to refer collectively to, for instance, alkylaminyl, arylaminyl, aralkylaminyl, dialkylaminyl, diarylaminyl, diaralkylaminyl, and –(alkyl, aryl, or aralkyl)-N-(alkyl, aryl, or aralkyl) groups, and unless otherwise specified, the
hydrocarbylaminyl groups which can be X¹ and/or X2 in formula (I) can comprise up to about 36 carbon atoms (e.g., C1 to C36, C1 to C_{18} , C_1 to C_{10} , or C_1 to C_8 hydrocarbylaminyl groups). Accordingly, hydrocarbylaminyl is intended to cover both (mono)hydrocarbylaminyl and dihydrocarbylaminyl groups. In some aspects, the hydrocarbylaminyl group which can be X¹ and/or X² in formula (I) can be, for instance, a methylaminyl group (-NHCH₃), an ethylaminyl group (-NHCH2CH3), an n-propylaminyl group (-NHCH2CH3CH3), an iso-propylaminyl group $(-NHCH(CH_3)_2)$, an n-butylaminyl NHCH₂CH₂CH₂CH₃), a t-butylaminyl group (-NHC(CH₃)₃), an n-pentylaminyl group (-NHCH₂CH₂CH₂CH₂CH₃), a neo-pentylaminyl group (-NHCH₂C(CH₃)₃), a phenylaminyl group (-NHC₆H₅), a tolylaminyl group (-NHC₆H₄CH₃), or a xylylaminyl group (-NHC₆H₃(CH₃)₂); alternatively, a methylaminyl group; alternatively, an ethylaminyl group; alternatively, a propylaminyl group; or alternatively, a phenylaminyl group. In other aspects, the hydrocarbylaminyl group which can be X¹ and X^2 in formula (I) can be, for instance, a dimethylaminyl group ($-N(CH_3)_2$), a diethylaminyl group (-N(CH₂CH₃)₂), a di-n-propylaminyl group (-N(CH₂CH₂CH₃)₂), a di-iso-propylaminyl group (-N(CH(CH₃)₂)₂), a di-n-butylaminyl group (-N(CH₂CH₂CH₃CH₃)₂), a di-t-butylaminyl group (-N(C(CH₃)₃)₂), a di-n-pentylaminyl group (-N(CH₂CH₂CH₂CH₃)₂), a di-neo-pentylaminyl group (-N(CH₂C(CH₃)₃)₂), a di-phenylaminyl group (-N(C₆H₅)₂), a di-tolylaminyl group (-N(C₆H₄CH₃)₂), or a dixylylaminyl group $(-N(C_6H_3(CH_3)_2)_2)$; alternatively, a dimethylaminyl group; alternatively, a di-ethylaminyl group; alternatively, a di-n-propylaminyl group; or alternatively, a di-phenylaminyl group. In accordance with some aspects disclosed herein, X^1 and X^2 independently can be a C_1 to C_{36} hydrocarbylsilyl group; alternatively, a C_1 to C_{24} hydrocarbylsilyl group; alternatively, a C_1 to C_{18} hydrocarbylsilyl group; or alternatively, a C_1 to C_8 hydrocarbylsilyl group. In an aspect, each hydrocarbyl (one or more) of the hydrocarbylsilyl group can be any hydrocarbyl group disclosed herein (e.g., a C_1 to C_5 alkeyl group, a C_5 to C_8 cycloalkyl group, a C_6 to C_8 aryl group, a C_7 to C_8 aralkyl group, etc.). As used herein, hydrocarbylsilyl is intended to cover (mono)hydrocarbylsilyl ($-SiH_2R$), dihydrocarbylsilyl ($-SiHR_2$), and trihydrocarbylsilyl ($-SiR_3$) groups, with R being a hydrocarbyl group. In one aspect, the hydrocarbylsilyl group can be a C_3 to C_{36} or a C_3 to C_{18} trihydrocarbylsilyl group, such as, for example, a trialkylsilyl group or a triphenylsilyl group. Illustrative and non-limiting examples of hydrocarbylsilyl groups which can be X^1 and/or X^2 in formula (I) can include, but are not limited to, trimethylsilyl, triethylsilyl, tripropylsilyl (e.g., triisopropylsilyl), tributylsilyl, tripentylsilyl, triphenylsilyl, allyldimethylsilyl, and the like. 5 10 15 20 25 30 A hydrocarbylaminylsilyl group is used herein to refer to groups containing at least one hydrocarbon moiety, at least one N atom, and at least one Si atom. Illustrative and non-limiting examples of hydrocarbylaminylsilyl groups which can be X¹ and/or X² include, but are not limited to $-N(SiMe_3)_2$, $-N(SiEt_3)_2$, and the like. Unless otherwise specified, the hydrocarbylaminylsilyl groups which can be X¹ and/or X² can comprise up to about 36 carbon atoms (e.g., C₁ to C₃₆, C₁ to C₁₈, C₁ to C₁₂, or C₁ to C₈ hydrocarbylaminylsilyl groups). In an aspect, each hydrocarbyl (one or more) of the hydrocarbylaminylsilyl group can be any hydrocarbyl group disclosed herein (e.g., a C₁ to C₅ alkyl group, a C₂ to C₅ alkenyl group, a C₅ to C₈ cycloalkyl group, a C₆ to C₈ aryl group, a C₇ to C₈ aralkyl group, etc.). Moreover, hydrocarbylaminylsilyl is intended to cover $-NH(SiH_2R)$, $-NH(SiH_2)$, $-NH(SiR_3)$, $-N(SiH_2R)_2$, $-N(SiH_2R)_2$, and $-N(SiR_3)_2$ groups, among others, with R being a hydrocarbyl group. In an aspect, X¹ and X² independently can be $-OBR^1_2$ or $-OSO_2R^1$, wherein R¹ is a C₁ to C₃₆ hydrocarbyl group, or alternatively, a C₁ to C₁₈ hydrocarbyl group. The hydrocarbyl group in OBR^1_2 and/or OSO_2R^1 independently can be any hydrocarbyl group disclosed herein, such as, for instance, a C₁ to C₁₈ alkyl group, a C₂ to C₁₈ alkenyl group, a C₄ to C₁₈ cycloalkyl group, a C₆ to C₁₈ aryl group, or a C₇ to C₁₈ aralkyl group; alternatively, a C₁ to C₁₂ alkyl group, a C₂ to C₁₂ alkenyl group, a C₄ to C₁₂ cycloalkyl group, a C₆ to C₁₂ aryl group, or a C₇ to C₁₂ aralkyl group; or alternatively, a C₁ to C₈ alkyl group, a C₂ to C₈ alkenyl group, a C₅ to C₈ cycloalkyl group, a C₆ to C₈ aryl group, or a C₇ to C₈ aralkyl group. In one aspect, X¹ and X² independently can be H, BH₄, a halide, or a C₁ to C₃₆ hydrocarbyl group, hydrocarboxy group, hydrocarbylaminyl group, hydrocarbylsilyl group, or hydrocarbylaminylsilyl group, while in another aspect, X^1 and X^2 independently can be H, BH₄, or a C_1 to C_{18} hydrocarboxy group, hydrocarbylaminyl group, hydrocarbylsilyl group, or hydrocarbylaminylsilyl group. In yet another aspect, X^1 and X^2 independently can be a halide; alternatively, a C_1 to C_{18} hydrocarbyl group; alternatively, a C_1 to C_{18} hydrocarbylaminyl group; alternatively, a C_1 to C_{18} hydrocarbylaminyl group; or alternatively, a C_1 to C_{18} hydrocarbylaminylsilyl group. In still another aspect, X^1 and X^2 can be H; alternatively, F; alternatively, Cl; alternatively, Br; alternatively, I; alternatively, BH₄; alternatively, a C_1 to C_{18} hydrocarbylaminyl group; alternatively, a C_1 to C_{18} hydrocarboxy group; alternatively, a C_1 to C_{18} hydrocarbylaminyl group; alternatively, a C_1 to C_{18} hydrocarbylaminyl group; alternatively, a C_1 to C_{18} hydrocarbylaminyl group; alternatively, a C_1 to C_{18} hydrocarbylaminylsilyl group. 5 10 15 20 25 30 X¹ and X² independently can be, in some aspects, H, a halide, methyl, phenyl, benzyl, an alkoxy, an aryloxy, acetylacetonate, formate, acetate, stearate, oleate, alkylaminyl, a dialkylaminyl, a trihydrocarbylsilyl, benzoate. an hydrocarbylaminylsilyl; alternatively, H, a halide, methyl, phenyl, or benzyl; alternatively, an alkoxy, an aryloxy, or acetylacetonate; alternatively, an alkylaminyl or a dialkylaminyl; alternatively, a trihydrocarbylsilyl or hydrocarbylaminylsilyl; alternatively. H or a halide; alternatively, methyl, phenyl, benzyl, an alkoxy, an aryloxy, acetylacetonate, an alkylaminyl, or a dialkylaminyl; alternatively, H; alternatively, a halide: alternatively, methyl; alternatively, phenyl; alternatively, benzyl; alternatively, an alkoxy; alternatively, an aryloxy; alternatively, acetylacetonate; alternatively, an alkylaminyl; alternatively, a dialkylaminyl; alternatively, a trihydrocarbylsilyl; or alternatively, a hydrocarbylaminylsilyl. In these and other aspects, the alkoxy, aryloxy, alkylaminyl, dialkylaminyl, trihydrocarbylsilyl, and hydrocarbylaminylsilyl can be a C_1 to C_{36} , a C_1 to C_{18} , a C_1 to C_{12} , or a C_1 to C_8 alkoxy, arvloxy, alkylaminyl, dialkylaminyl, trihydrocarbylsilyl, and hydrocarbylaminylsilyl. Moreover, X^1 and X^2 independently can be, in certain aspects, a halide or a C_1 to C_{18} hydrocarbyl group; alternatively, a halide or a C_1 to C_8 hydrocarbyl group; alternatively, F, Cl, Br, I, methyl, benzyl, or phenyl; alternatively, Cl, methyl, benzyl, or phenyl; alternatively, a C_1 to C_{18} alkoxy, aryloxy, alkylaminyl, dialkylaminyl, trihydrocarbylsilyl, or hydrocarbylaminylsilyl group; alternatively, a C_1 to C_8 alkoxy, WO 2015/023623 5 10 15 20 25 30 19 PCT/US2014/050622 aryloxy, alkylaminyl, dialkylaminyl, trihydrocarbylsilyl, or hydrocarbylaminylsilyl group; or alternatively, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, phenyl, tolyl, benzyl, naphthyl, trimethylsilyl, triisopropylsilyl, triphenylsilyl, or allyldimethylsilyl. In formula (I), Cp can be a substituted cyclopentadienyl group, for example, with an alkyl and/or an alkenyl substituent, at any suitable position(s) on the Cp that conforms to the rules of chemical valence. Thus, Cp can have an alkyl substituent, or an alkenyl substituent, or both an alkyl and an alkenyl substituent. In some aspects, Cp can have only one substituent, i.e., only one alkyl or only one alkenyl substituent. In one aspect, the substituent can be a C_1 to C_{18} alkyl group, i.e., any C_1 to C_{18} alkyl group disclosed herein. In another aspect, the substituent on Cp can be a C_2 to C_{18} alkenyl group, i.e., any C_2 to C_{18} alkenyl group disclosed herein. In yet another aspect, the substituent can be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, or a decyl group, while in still another aspect, the substituent can be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, or a decenyl group. In other aspects, the alkyl substituent on Cp can be a C_1 to C_{12} linear or branched alkyl group; alternatively, a C_1 to C_8 linear or branched alkyl group; alternatively, a C_1 to C_6 linear or branched alkyl group; alternatively, a C_1 to C_6 linear alkyl group; alternatively, a C_1 to C_8 linear alkyl group; or alternatively, a C_1 to C_6 linear alkyl group. In other aspects, the alkenyl substituent on Cp can be a C_2 to C_{12} linear or branched alkenyl group; alternatively, a C_2 to C_8 linear or branched alkenyl group; alternatively, a C_2 to C_8 linear alkenyl group; alternatively, a C_2 to C_8 linear alkenyl group; alternatively, a C_2
to C_8 linear alkenyl group; or alternatively, a C_3 to C_6 terminal alkenyl group. R^X and R^Y in formula (I) independently can be H, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} halogenated hydrocarbyl group, a C_1 to C_{36} hydrocarboxy group, or a C_1 to C_{36} hydrocarbylsilyl group. In some aspects, R^X and R^Y independently can be H; alternatively, a halide; alternatively, a C_1 to C_{18} hydrocarbyl group; alternatively, a C_1 to C_{18} halogenated hydrocarbyl group; alternatively, a C_1 to C_{18} hydrocarboxy group; alternatively, a C_1 to C_{18} hydrocarbylsilyl group; alternatively, a C_1 to C_{12} hydrocarbyl group or a C_1 to C_{12} hydrocarbylsilyl group; or alternatively, a C_1 to C_8 alkyl group or a C_3 to C_8 alkenyl group. The halide, C_1 to C_{36} hydrocarbyl group, C_1 to C_{36} hydrocarbylsilyl group which can be R^X and/or R^Y in formula (I) can be any halide, C_1 to C_{36} hydrocarbyl group, C_1 to C_{36} hydrocarboxy group, and C_1 to C_{36} hydrocarbylsilyl group described herein (e.g., as pertaining to X^1 and X^2 in formula (I)). R^X and/or R^Y in formula (I) independently can be, in certain aspects, a C_1 to C_{36} halogenated hydrocarbyl group, where the halogenated hydrocarbyl group indicates the presence of one or more halogen atoms replacing an equivalent number of hydrogen atoms in the hydrocarbyl group. The halogenated hydrocarbyl group often can be a halogenated alkyl group, a halogenated alkenyl group, a halogenated cycloalkyl group, a halogenated aryl group, or a halogenated aralkyl group. Representative and non-limiting halogenated hydrocarbyl groups include pentafluorophenyl, trifluoromethyl (CF_3), and the like. 5 10 15 20 25 30 As a non-limiting example, R^X and R^Y independently can be H, Cl, CF₃, a methyl group, an ethyl group, a propyl group, a butyl group (e.g., t-Bu), a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a phenyl group, a tolyl group (or other substituted aryl group), a benzyl group, a naphthyl group, a trimethylsilyl group, a triisopropylsilyl group, a triphenylsilyl group, an allyldimethylsilyl group, or a 1-methylcyclohexyl group; alternatively, H; alternatively, Cl; alternatively, CF₃; alternatively, a methyl group; alternatively, an ethyl group; alternatively, a propyl group; alternatively, a butyl group; alternatively, a pentyl group; alternatively, a hexyl group; alternatively, a heptyl group; alternatively, an octyl group, a nonyl group; alternatively, a decyl group; alternatively, an ethenyl group; alternatively, a propenyl group; alternatively, a butenyl group; alternatively, a pentenyl group; alternatively, a hexenyl group; alternatively, a heptenyl group; alternatively, an octenyl group; alternatively, a nonenyl group; alternatively, a decenyl group; alternatively, a phenyl group; alternatively, a tolyl group; alternatively, a benzyl group; alternatively, a naphthyl group; alternatively, a trimethylsilyl group; alternatively, a triisopropylsilyl group; alternatively, a triphenylsilyl group; alternatively, an allyldimethylsilyl group; or alternatively, a 1-methylcyclohexyl group. 5 10 15 20 25 In one aspect, for example, R^X and R^Y independently can be H or a C₁ to C₁₈ hydrocarbyl group. In another aspect, R^X and R^Y independently can be a C₁ to C₁₀ hydrocarbyl group. In yet another aspect, R^X and R^Y independently can be H. Cl. CF₃. a methyl group, an ethyl group, a propyl group, a butyl group (e.g., t-Bu), a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a phenyl group, a tolyl group, a benzyl group, a naphthyl group, a trimethylsilyl group, a triisopropylsilyl group, a triphenylsilyl group, an allyldimethylsilyl group, or a 1-methylcyclohexyl group, and the like. In still another aspect, RX and RY independently can be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a phenyl group, a tolyl group, or a benzyl group; alternatively, R^X and R^Y independently can be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group; alternatively, a methyl group; alternatively, an ethyl group; alternatively, a propyl group; alternatively, a butyl group; or alternatively, a tert-butyl group. Moreover, R^X and R^Y can be H in some aspects consistent with this invention. Illustrative and non-limiting examples of cyclobutylidene-bridged metallocene compounds can include the following compounds (^tBu = tert-butyl): 5 10 15 Methods of making cyclobutylidene-bridged metallocene complexes of the present invention also are encompassed herein. These metallocene complexes can be synthesized by various suitable procedures (e.g., using an appropriate fulvene compound), such as those described in U.S. Patent No. 7,799,721, the disclosure of which is incorporated herein by reference in its entirety. Using analogous synthesis schemes, complexes with monoanionic ligands other than Cl (e.g., hydrocarbyl, hydrocarbylaminyl, hydrocarbylsilyl, etc.) can be derived, complexes with substituents on the fluorenyl group other than t-Bu (e.g., H, other hydrocarbyl substituents, etc.) can be derived, complexes with various transition metals can be derived, and complexes with cyclopentadienyl groups with various alkyl and/or alkenyl substituents can be derived. Also encompassed herein are ligand compounds which can be used to form metallocene compounds having formula (I). Such ligand compounds can have the formula: $$R^X$$ Cp (A) . 23 The selections for Cp, R^X , and R^Y in formula (A) are the same as those described herein above for formula (I). Hence, in formula (A), Cp can be a cyclopentadienyl group with any alkyl and/or any alkenyl substituent disclosed herein; and R^X and R^Y independently can be H, any halide, any C_1 to C_{36} hydrocarbyl group, any C_1 to C_{36} hydrocarbyl group, or any C_1 to C_{36} hydrocarbylsilyl group disclosed herein. ## **ACTIVATOR-SUPPORTS** 5 10 15 20 25 30 The present invention encompasses various catalyst compositions containing an activator, such as activator-support. In one aspect, the activator-support can comprise a chemically-treated solid oxide, e.g., a solid oxide treated with an electron-withdrawing anion. Alternatively, in another aspect, the activator-support can comprise a clay mineral, a pillared clay, an exfoliated clay, an exfoliated clay gelled into another oxide matrix, a layered silicate mineral, a non-layered silicate mineral, a layered aluminosilicate mineral, a non-layered aluminosilicate mineral, or combinations thereof. Generally, chemically-treated solid oxides exhibit enhanced acidity as compared to the corresponding untreated solid oxide. The chemically-treated solid oxide also can function as a catalyst activator as compared to the corresponding untreated solid oxide. While the chemically-treated solid oxide can activate a metallocene complex in the absence of co-catalysts, it is not necessary to eliminate co-catalysts from the catalyst composition. The activation function of the activator-support can enhance the activity of catalyst composition as a whole, as compared to a catalyst composition containing the corresponding untreated solid oxide. However, it is believed that the chemically-treated solid oxide can function as an activator, even in the absence of organoaluminum compounds, aluminoxanes, organoboron or organoborate compounds, ionizing ionic compounds, and the like. The chemically-treated solid oxide can comprise a solid oxide treated with an electron-withdrawing anion. While not intending to be bound by the following statements, it is believed that treatment of the solid oxide with an electron-withdrawing component augments or enhances the acidity of the oxide. Thus, either the activator-support exhibits Lewis or Brønsted acidity that is typically greater than the Lewis or Brønsted acid strength of the untreated solid oxide, or the activator-support has a greater number of acid sites than the untreated solid oxide, or both. One method to quantify the acidity of the chemically-treated and untreated solid oxide materials can be to compare the polymerization activities of the treated and untreated oxides in acid catalyzed reactions. Chemically-treated solid oxides of this invention generally can be formed from an inorganic solid oxide that exhibits Lewis acidic or Brønsted acidic behavior and has a relatively high porosity. The solid oxide can be chemically-treated with an electron-withdrawing component, typically an electron-withdrawing anion, to form an activator-support. 5 10 15 20 25 30 According to one aspect of the present invention, the solid oxide used to prepare the chemically-treated solid oxide can have a pore volume greater than about 0.1 cc/g. According to another aspect of the present invention, the solid oxide can have a pore volume greater than about 0.5 cc/g. According to yet another aspect of the present invention, the solid oxide can have a pore volume greater than about 1.0 cc/g. In another aspect, the solid oxide can have a surface area of from about $100 \, \text{m}^2/\text{g}$. In yet another aspect, the solid oxide can have a surface area of from about $200 \, \text{to}$ about $800 \, \text{m}^2/\text{g}$. In still another aspect of the present
invention, the solid oxide can have a surface area of from about $250 \, \text{to}$ about $600 \, \text{m}^2/\text{g}$. The chemically-treated solid oxide can comprise a solid inorganic oxide comprising oxygen and one or more elements selected from Group 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 of the periodic table, or comprising oxygen and one or more elements selected from the lanthanide or actinide elements (See: Hawley's Condensed Chemical Dictionary, 11th Ed., John Wiley & Sons, 1995; Cotton, F.A., Wilkinson, G., Murillo, C. A., and Bochmann, M., Advanced Inorganic Chemistry, 6th Ed., Wiley-Interscience, 1999). For example, the inorganic oxide can comprise oxygen and an element, or elements, selected from Al, B, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Mo, Ni, Sb, Si, Sn, Sr, Th, Ti, V, W, P, Y, Zn, and Zr. Suitable examples of solid oxide materials or compounds that can be used to form the chemically-treated solid oxide can include, but are not limited to, Al₂O₃, B₂O₃, BeO, Bi₂O₃, CdO, Co₃O₄, Cr₂O₃, CuO, Fe₂O₃, Ga₂O₃, La₂O₃, Mn₂O₃, MoO₃, NiO, P₂O₅, Sb₂O₅, SiO₂, SnO₂, SrO, ThO₂, TiO₂, V₂O₅, WO₃, Y₂O₃, ZnO, ZrO₂, and the like, including mixed oxides thereof, and combinations thereof. For example, the solid 25 oxide can comprise silica, alumina, silica-alumina, silica-coated alumina, aluminum phosphate, aluminophosphate, heteropolytungstate, titania, zirconia, magnesia, boria, zinc oxide, mixed oxides thereof, or any combination thereof. 5 10 15 20 25 30 The solid oxide of this invention encompasses oxide materials such as alumina, "mixed oxides" thereof such as silica-alumina, materials where one oxide is coated with another, as well as any combinations and mixtures thereof. The mixed oxide compounds such as silica-alumina can be single or multiple chemical phases with more than one metal combined with oxygen to form a solid oxide compound. Examples of mixed oxides that can be used in the activator-support of the present invention, either singly or in combination, can include, but are not limited to, silica-alumina, silica-titania, silica-zirconia, zeolites, various clay minerals, alumina-titania, alumina-zirconia, zinc-aluminate, alumina-boria, silica-boria, aluminophosphate-silica, titania-zirconia, and the like. The solid oxide of this invention also encompasses oxide materials such as silica-coated alumina, as described in U.S. Patent No. 7,884,163, the disclosure of which is incorporated herein by reference in its entirety. The electron-withdrawing component used to treat the solid oxide can be any component that increases the Lewis or Brønsted acidity of the solid oxide upon treatment (as compared to the solid oxide that is not treated with at least one electronwithdrawing anion). According to one aspect of the present invention, the electronwithdrawing component can be an electron-withdrawing anion derived from a salt, an acid, or other compound, such as a volatile organic compound, that serves as a source or precursor for that anion. Examples of electron-withdrawing anions can include, but are not limited to, sulfate, bisulfate, fluoride, chloride, bromide, iodide, fluorosulfate, fluoroborate, phosphate, fluorophosphate, trifluoroacetate, triflate, fluorozirconate, fluorotitanate, phospho-tungstate, and the like, including mixtures and combinations thereof. In addition, other ionic or non-ionic compounds that serve as sources for these electron-withdrawing anions also can be employed in the present invention. It is contemplated that the electron-withdrawing anion can be, or can comprise, fluoride, chloride, bromide, phosphate, triflate, bisulfate, or sulfate, and the like, or any combination thereof, in some aspects of this invention. In other aspects, the electronwithdrawing anion can comprise sulfate, bisulfate, fluoride, chloride, bromide, iodide, 26 fluorosulfate, fluoroborate, phosphate, fluorophosphate, trifluoroacetate, triflate, fluorozirconate, fluorotitanate, and the like, or combinations thereof. 5 10 15 20 25 Thus, for example, the activator-support (e.g., chemically-treated solid oxide) used in the catalyst compositions of the present invention can be, or can comprise, fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silicaalumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, fluorided silica-titania, fluorided silica-coated alumina, sulfated silica-coated alumina, phosphated silica-coated alumina, and the like, or combinations thereof. In one aspect, the activator-support can be, or can comprise, fluorided alumina, sulfated alumina, fluorided silica-alumina, sulfated silica-alumina, fluorided silica-coated alumina, sulfated silica-coated alumina, phosphated silica-coated alumina, and the like, or any combination thereof. In another aspect, the activator-support can comprise fluorided alumina; alternatively, chlorided alumina; alternatively, sulfated alumina; alternatively, fluorided silica-alumina; alternatively, sulfated silica-alumina; alternatively, fluorided silica-zirconia; alternatively, chlorided silica-zirconia; or alternatively, fluorided silica-coated alumina. In yet another aspect, the activatorsupport can comprise a fluorided solid oxide and/or a sulfated solid oxide. When the electron-withdrawing component comprises a salt of an electron-withdrawing anion, the counterion or cation of that salt can be selected from any cation that allows the salt to revert or decompose back to the acid before and/or during calcining. Factors that dictate the suitability of the particular salt to serve as a source for the electron-withdrawing anion can include, but are not limited to, the solubility of the salt in the desired solvent, the lack of adverse reactivity of the cation, ion-pairing effects between the cation and anion, hygroscopic properties imparted to the salt by the cation, and the like, and thermal stability of the anion. Examples of suitable cations in the salt of the electron-withdrawing anion can include, but are not limited to, ammonium, trialkyl ammonium, tetraalkyl ammonium, tetraalkyl phosphonium, H⁺, [H(OEt₂)₂]⁺, and the like. Further, combinations of two or more different electron-withdrawing anions, in varying proportions, can be used to tailor the specific acidity of the activator-support to the desired level. Combinations of electron-withdrawing components can be contacted 27 with the oxide material simultaneously or individually, and in any order that affords the desired chemically-treated solid oxide acidity. For example, one aspect of this invention can employ two or more electron-withdrawing anion source compounds in two or more separate contacting steps. 5 10 15 20 25 30 Thus, a process by which a chemically-treated solid oxide can be prepared is as follows: a selected solid oxide, or combination of solid oxides, can be contacted with a first electron-withdrawing anion source compound to form a first mixture; this first mixture can be calcined and then contacted with a second electron-withdrawing anion source compound to form a second mixture; the second mixture then can be calcined to form a treated solid oxide. In such a process, the first and second electron-withdrawing anion source compounds can be either the same or different compounds. According to another aspect of the present invention, the chemically-treated solid oxide can comprise a solid inorganic oxide material, a mixed oxide material, or a combination of inorganic oxide materials, that is chemically-treated with an electron-withdrawing component, and optionally treated with a metal source, including metal salts, metal ions, or other metal-containing compounds. Non-limiting examples of the metal or metal ion can include zinc, nickel, vanadium, titanium, silver, copper, gallium, tin, tungsten, molybdenum, zirconium, and the like, or combinations thereof. Examples of chemically-treated solid oxides that contain a metal or metal ion can include, but are not limited to, chlorided zinc-impregnated alumina, fluorided titanium-impregnated alumina, fluorided zinc-impregnated alumina, chlorided zinc-impregnated silica-alumina, sulfated zinc-impregnated alumina, chlorided zinc aluminate, fluorided zinc aluminate, sulfated zinc aluminate, silica-coated alumina treated with hexafluorotitanic acid, silica-coated alumina treated with zinc and then fluorided, and the like, or any combination thereof. Any method of impregnating the solid oxide material with a metal can be used. The method by which the oxide is contacted with a metal source, typically a salt or metal-containing compound, can include, but is not limited to, gelling, co-gelling, impregnation of one compound onto another, and the like. If desired, the metal-containing compound can be added to or impregnated into the solid oxide in solution form, and subsequently converted into the supported metal upon calcining. Accordingly, the solid inorganic oxide can further comprise a metal selected from zinc, 28 titanium, nickel, vanadium, silver, copper, gallium, tin, tungsten, molybdenum, and the like, or combinations of these metals. For example, zinc often can be used to impregnate the solid oxide because it can provide improved catalyst activity at a low cost. The solid oxide can be treated with metal salts or metal-containing compounds before, after, or at the same time that the solid oxide is treated with the electron-withdrawing anion. Following any contacting method, the contacted mixture of solid compound, electron-withdrawing anion, and the metal ion can be calcined. Alternatively, a solid oxide material, an electron-withdrawing anion source, and the metal salt or metal-containing compound can be contacted and calcined simultaneously. 5 10 15 20 25 30 Various processes can be used to form the chemically-treated solid oxide useful in the present invention. The
chemically-treated solid oxide can comprise the contact product of one or more solid oxides with one or more electron-withdrawing anion sources. It is not required that the solid oxide be calcined prior to contacting the electron-withdrawing anion source. Typically, the contact product can be calcined either during or after the solid oxide is contacted with the electron-withdrawing anion source. The solid oxide can be calcined or uncalcined. Various processes to prepare solid oxide activator-supports that can be employed in this invention have been reported. For example, such methods are described in U.S. Patent Nos. 6,107,230, 6,165,929, 6,294,494, 6,300,271, 6,316,553, 6,355,594, 6,376,415, 6,388,017, 6,391,816, 6,395,666, 6,524,987, 6,548,441, 6,548,442, 6,576,583, 6,613,712, 6,632,894, 6,667,274, and 6,750,302, the disclosures of which are incorporated herein by reference in their entirety. According to one aspect of the present invention, the solid oxide material can be chemically-treated by contacting it with an electron-withdrawing component, typically an electron-withdrawing anion source. Further, the solid oxide material optionally can be treated with a metal ion, and then calcined to form a metal-containing or metal-impregnated chemically-treated solid oxide. According to another aspect of the present invention, the solid oxide material and electron-withdrawing anion source can be contacted and calcined simultaneously. The method by which the oxide is contacted with the electron-withdrawing component, typically a salt or an acid of an electron-withdrawing anion, can include, 29 but is not limited to, gelling, co-gelling, impregnation of one compound onto another, and the like. Thus, following any contacting method, the contacted mixture of the solid oxide, electron-withdrawing anion, and optional metal ion, can be calcined. The solid oxide activator-support (i.e., chemically-treated solid oxide) thus can be produced by a process comprising: 5 10 20 25 30 - 1) contacting a solid oxide (or solid oxides) with an electron-withdrawing anion source compound (or compounds) to form a first mixture; and - 2) calcining the first mixture to form the solid oxide activator-support. According to another aspect of the present invention, the solid oxide activatorsupport (chemically-treated solid oxide) can be produced by a process comprising: - 1) contacting a solid oxide (or solid oxides) with a first electronwithdrawing anion source compound to form a first mixture; - 2) calcining the first mixture to produce a calcined first mixture; - contacting the calcined first mixture with a second electron-withdrawing anion source compound to form a second mixture; and - 4) calcining the second mixture to form the solid oxide activator-support. According to yet another aspect of the present invention, the chemically-treated solid oxide can be produced or formed by contacting the solid oxide with the electron-withdrawing anion source compound, where the solid oxide compound is calcined before, during, or after contacting the electron-withdrawing anion source, and where there is a substantial absence of aluminoxanes, organoboron or organoborate compounds, and ionizing ionic compounds. Calcining of the treated solid oxide generally can be conducted in an ambient atmosphere, typically in a dry ambient atmosphere, at a temperature from about 200 °C to about 900 °C, and for a time of about 1 minute to about 100 hours. Calcining can be conducted at a temperature of from about 300 °C to about 800 °C, or alternatively, at a temperature of from about 400 °C to about 700 °C. Calcining can be conducted for about 30 minutes to about 50 hours, or for about 1 hour to about 15 hours. Thus, for example, calcining can be carried out for about 1 to about 10 hours at a temperature of from about 350 °C to about 550 °C. Any suitable ambient atmosphere can be employed during calcining. Generally, calcining can be conducted in an oxidizing atmosphere, such as air. Alternatively, an inert atmosphere, such as nitrogen or argon, or a reducing atmosphere, such as hydrogen or carbon monoxide, can be used. 5 10 15 20 25 30 According to one aspect of the present invention, the solid oxide material can be treated with a source of halide ion, sulfate ion, or a combination of anions, optionally treated with a metal ion, and then calcined to provide the chemically-treated solid oxide in the form of a particulate solid. For example, the solid oxide material can be treated with a source of sulfate (termed a "sulfating agent"), a source of bromide ion (termed a "bromiding agent"), a source of chloride ion (termed a "chloriding agent"), a source of fluoride ion (termed a "fluoriding agent"), or a combination thereof, and calcined to provide the solid oxide activator. Useful acidic activator-supports can include, but are not limited to, bromided alumina, chlorided alumina, fluorided alumina, sulfated alumina, bromided silica-alumina, chlorided silica-alumina, fluorided silica-alumina, sulfated silica-alumina, bromided silica-zirconia, chlorided silica-zirconia, fluorided silica-zirconia, sulfated silica-zirconia, fluorided silica-titania, alumina treated with hexafluorotitanic acid, silica-coated alumina treated with hexafluorotitanic acid, silicaalumina treated with hexafluorozirconic acid, silica-alumina treated with trifluoroacetic acid, fluorided boria-alumina, silica treated with tetrafluoroboric acid, alumina treated with tetrafluoroboric acid, alumina treated with hexafluorophosphoric acid, a pillared clay, such as a pillared montmorillonite, optionally treated with fluoride, chloride, or sulfate; phosphated alumina or other aluminophosphates optionally treated with sulfate, fluoride, or chloride; or any combination of the above. Further, any of these activatorsupports optionally can be treated or impregnated with a metal ion. In an aspect, the chemically-treated solid oxide can comprise a fluorided solid oxide in the form of a particulate solid. The fluorided solid oxide can be formed by contacting a solid oxide with a fluoriding agent. The fluoride ion can be added to the oxide by forming a slurry of the oxide in a suitable solvent such as alcohol or water including, but not limited to, the one to three carbon alcohols because of their volatility and low surface tension. Examples of suitable fluoriding agents can include, but are not limited to, hydrofluoric acid (HF), ammonium fluoride (NH₄F), ammonium bifluoride (NH₄HF₂), ammonium tetrafluoroborate (NH₄BF₄), ammonium silicofluoride (hexafluorosilicate) ((NH₄)₂SiF₆), ammonium hexafluorophosphate (NH₄PF₆), hexafluorotitanic acid ((NH₄)₂TiF₆), ammonium hexafluorotitanic acid ((NH₄)₂TiF₆), hexafluorozirconic acid (H₂ZrF₆), AlF₃, NH₄AlF₄, analogs thereof, and combinations thereof. Triflic acid and ammonium triflate also can be employed. For example, ammonium bifluoride (NH₄HF₂) can be used as the fluoriding agent, due to its ease of use and availability. 5 10 15 20 25 30 If desired, the solid oxide can be treated with a fluoriding agent during the calcining step. Any fluoriding agent capable of thoroughly contacting the solid oxide during the calcining step can be used. For example, in addition to those fluoriding agents described previously, volatile organic fluoriding agents can be used. Examples of volatile organic fluoriding agents useful in this aspect of the invention can include, but are not limited to, freons, perfluorohexane, perfluorobenzene, fluoromethane, trifluoroethanol, and the like, and combinations thereof. Calcining temperatures generally must be high enough to decompose the compound and release fluoride. Gaseous hydrogen fluoride (HF) or fluorine (F2) itself also can be used with the solid oxide if fluorided while calcining. Silicon tetrafluoride (SiF₄) and compounds containing tetrafluoroborate (BF₄) also can be employed. One convenient method of contacting the solid oxide with the fluoriding agent can be to vaporize a fluoriding agent into a gas stream used to fluidize the solid oxide during calcination. Other suitable fluoriding agents and procedures for preparing fluorided solid oxides are well known to those of skill in the art. Similarly, in another aspect of this invention, the chemically-treated solid oxide can comprise a chlorided solid oxide in the form of a particulate solid. The chlorided solid oxide can be formed by contacting a solid oxide with a chloriding agent. The chloride ion can be added to the oxide by forming a slurry of the oxide in a suitable solvent. The solid oxide can be treated with a chloriding agent during the calcining step. Any chloriding agent capable of serving as a source of chloride and thoroughly contacting the oxide during the calcining step can be used, such as SiCl₄, SiMe₂Cl₂, TiCl₄, BCl₃, and the like, including mixtures thereof. Volatile organic chloriding agents can include, but are not limited to, certain freons, perchlorobenzene, chloromethane, dichloromethane, chloroform, carbon tetrachloride, trichloroethanol, and the like, or any combination thereof. Gaseous hydrogen chloride or chlorine itself also can be used with the solid oxide during calcining. One convenient method of contacting the oxide with the chloriding agent can be to vaporize a chloriding agent into a gas stream used to fluidize the solid oxide during calcination. Other suitable chloriding agents and procedures for preparing chlorided solid oxides are well known to those of skill in the art. 5 10 15 20 25 30 The amount of fluoride or chloride ion present before calcining the solid oxide generally can be from about 1 to about 50% by weight, where the weight percent is based on the weight of the solid oxide, for example, silica-alumina, before calcining. According to another aspect of this invention, the amount of fluoride or chloride ion present before calcining the solid oxide can be from about 1 to about 25% by weight, and according to another aspect of this invention, from
about 2 to about 20% by weight. According to yet another aspect of this invention, the amount of fluoride or chloride ion present before calcining the solid oxide can be from about 4 to about 10% by weight. Once impregnated with a halide, the halided oxide can be dried by any suitable method including, but not limited to, suction filtration followed by evaporation, drying under vacuum, spray drying, and the like, although it is also possible to initiate the calcining step immediately without drying the impregnated solid oxide. The silica-alumina used to prepare the treated silica-alumina typically can have a pore volume greater than about 0.5 cc/g. According to one aspect of the present invention, the pore volume can be greater than about 0.8 cc/g, and according to another aspect of the present invention, greater than about 1.0 cc/g. Further, the silica-alumina generally can have a surface area greater than about 100 m²/g. According to another aspect of this invention, the surface area can be greater than about 250 m²/g. Yet, in another aspect, the surface area can be greater than about 350 m²/g. The silica-alumina utilized in the present invention typically can have an alumina content from about 5 to about 95% by weight. According to one aspect of this invention, the alumina content of the silica-alumina can be from about 5 to about 50%, or from about 8% to about 30%, alumina by weight. In another aspect, high alumina content silica-alumina compounds can be employed, in which the alumina content of these silica-alumina compounds typically ranges from about 60% to about 90%, or from about 65% to about 80%, alumina by weight. According to yet another aspect of this invention, the solid oxide component can comprise alumina without silica, and according to another aspect of this invention, the solid oxide component can comprise silica without alumina. The sulfated solid oxide can comprise sulfate and a solid oxide component, such as alumina or silica-alumina, in the form of a particulate solid. Optionally, the sulfated oxide can be treated further with a metal ion such that the calcined sulfated oxide comprises a metal. According to one aspect of the present invention, the sulfated solid oxide can comprise sulfate and alumina. In some instances, the sulfated alumina can be formed by a process wherein the alumina is treated with a sulfate source, for example, sulfuric acid or a sulfate salt such as ammonium sulfate. This process generally can be performed by forming a slurry of the alumina in a suitable solvent, such as alcohol or water, in which the desired concentration of the sulfating agent has been added. Suitable organic solvents can include, but are not limited to, the one to three carbon alcohols because of their volatility and low surface tension. 5 10 15 20 25 30 According to one aspect of this invention, the amount of sulfate ion present before calcining can be from about 0.5 to about 100 parts by weight sulfate ion to about 100 parts by weight solid oxide. According to another aspect of this invention, the amount of sulfate ion present before calcining can be from about 1 to about 50 parts by weight sulfate ion to about 100 parts by weight solid oxide, and according to still another aspect of this invention, from about 5 to about 30 parts by weight sulfate ion to about 100 parts by weight solid oxide. These weight ratios are based on the weight of the solid oxide before calcining. Once impregnated with sulfate, the sulfated oxide can be dried by any suitable method including, but not limited to, suction filtration followed by evaporation, drying under vacuum, spray drying, and the like, although it is also possible to initiate the calcining step immediately. According to another aspect of the present invention, the activator-support used in preparing the catalyst compositions of this invention can comprise an ion-exchangeable activator-support including, but not limited to, silicate and aluminosilicate compounds or minerals, either with layered or non-layered structures, and combinations thereof. In another aspect of this invention, ion-exchangeable, layered aluminosilicates such as pillared clays can be used as activator-supports. When the acidic activator-support comprises an ion-exchangeable activator-support, it can optionally be treated with at least one electron-withdrawing anion such as those 34 disclosed herein, though typically the ion-exchangeable activator-support is not treated with an electron-withdrawing anion. According to another aspect of the present invention, the activator-support of this invention can comprise clay minerals having exchangeable cations and layers capable of expanding. Typical clay mineral activator-supports can include, but are not limited to, ion-exchangeable, layered aluminosilicates such as pillared clays. Although the term "support" is used, it is not meant to be construed as an inert component of the catalyst composition, but rather can be considered an active part of the catalyst composition, because of its intimate association with the metallocene component. 5 10 15 20 25 30 According to another aspect of the present invention, the clay materials of this invention can encompass materials either in their natural state or that have been treated with various ions by wetting, ion exchange, or pillaring. Typically, the clay material activator-support of this invention can comprise clays that have been ion exchanged with large cations, including polynuclear, highly charged metal complex cations. However, the clay material activator-supports of this invention also can encompass clays that have been ion exchanged with simple salts, including, but not limited to, salts of Al(III), Fe(II), Fe(III), and Zn(II) with ligands such as halide, acetate, sulfate, nitrate, or nitrite. According to another aspect of the present invention, the activator-support can comprise a pillared clay. The term "pillared clay" is used to refer to clay materials that have been ion exchanged with large, typically polynuclear, highly charged metal complex cations. Examples of such ions can include, but are not limited to, Keggin ions which can have charges such as 7+, various polyoxometallates, and other large ions. Thus, the term pillaring can refer to a simple exchange reaction in which the exchangeable cations of a clay material are replaced with large, highly charged ions, such as Keggin ions. These polymeric cations then can be immobilized within the interlayers of the clay and when calcined are converted to metal oxide "pillars," effectively supporting the clay layers as column-like structures. Thus, once the clay is dried and calcined to produce the supporting pillars between clay layers, the expanded lattice structure can be maintained and the porosity can be enhanced. The resulting pores can vary in shape and size as a function of the pillaring material and the parent clay material used. Examples of pillaring and pillared clays are found in: T.J. Pinnavaia, *Science* 220 (4595), 365-371 (1983); J.M. Thomas, Intercalation Chemistry, (S. Whittington and A. Jacobson, eds.) Ch. 3, pp. 55-99, Academic Press, Inc., (1972); U.S. Patent No. 4,452,910; U.S. Patent No. 5,376,611; and U.S. Patent No. 4,060,480; the disclosures of which are incorporated herein by reference in their entirety. 5 10 15 20 25 30 The pillaring process can utilize clay minerals having exchangeable cations and layers capable of expanding. Any pillared clay that can enhance the polymerization of olefins in the catalyst composition of the present invention can be used. Therefore, suitable clay minerals for pillaring can include, but are not limited to, allophanes; smectites, both dioctahedral (Al) and tri-octahedral (Mg) and derivatives thereof such as montmorillonites (bentonites), nontronites, hectorites, or laponites; halloysites; vermiculites; micas; fluoromicas; chlorites; mixed-layer clays; the fibrous clays including but not limited to sepiolites, attapulgites, and palygorskites; a serpentine clay; illite; laponite; saponite; and any combination thereof. In one aspect, the pillared clay activator-support can comprise bentonite or montmorillonite. The principal component of bentonite is montmorillonite. The pillared clay can be pretreated if desired. For example, a pillared bentonite can be pretreated by drying at about 300 °C under an inert atmosphere, typically dry nitrogen, for about 3 hours, before being added to the polymerization reactor. Although an exemplary pretreatment is described herein, it should be understood that the preheating can be carried out at many other temperatures and times, including any combination of temperature and time steps, all of which are encompassed by this invention. The activator-support used to prepare the catalyst compositions of the present invention can be combined with other inorganic support materials, including, but not limited to, zeolites, inorganic oxides, and the like. In one aspect, typical support materials that can be used include, but are not limited to, silica, silica-alumina, alumina, titania, zirconia, magnesia, boria, thoria, aluminophosphate, aluminum phosphate, silica-titania, coprecipitated silica/titania, mixtures thereof, or any combination thereof. According to another aspect of the present invention, the metallocene compound can be precontacted with an olefin monomer and an organoaluminum compound for a first period of time prior to contacting this mixture with the activator-support. Once the precontacted mixture of metallocene complex, olefin monomer, and organoaluminum compound is contacted with the activator-support, the composition further comprising the activator-support can be termed a "postcontacted" mixture. The postcontacted mixture can be allowed to remain in further contact for a second period of time prior to being charged into the reactor in which the polymerization process will be carried out. According to yet another aspect of the present
invention, the metallocene compound can be precontacted with an olefin monomer and an activator-support for a first period of time prior to contacting this mixture with the organoaluminum compound. Once the precontacted mixture of the metallocene complex, olefin monomer, and activator-support is contacted with the organoaluminum compound, the composition further comprising the organoaluminum can be termed a "postcontacted" mixture. The postcontacted mixture can be allowed to remain in further contact for a second period of time prior to being introduced into the polymerization reactor. ## CO-CATALYSTS 5 10 15 20 25 30 In certain aspects directed to catalyst compositions containing a co-catalyst, the co-catalyst can comprise a metal hydrocarbyl compound, examples of which include non-halide metal hydrocarbyl compounds, metal hydrocarbyl halide compounds, nonhalide metal alkyl compounds, metal alkyl halide compounds, and so forth. The hydrocarbyl group (or alkyl group) can be any hydrocarbyl (or alkyl) group disclosed herein. Moreover, in some aspects, the metal of the metal hydrocarbyl can be a group 1, 2, 11, 12, 13, or 14 metal; alternatively, a group 13 or 14 metal; or alternatively, a group 13 metal. Hence, in some aspects, the metal of the metal hydrocarbyl (nonhalide metal hydrocarbyl or metal hydrocarbyl halide) can be lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, zinc, cadmium, boron, aluminum, or tin; alternatively, lithium, sodium, potassium, magnesium, calcium, zinc, boron, aluminum, or tin; alternatively, lithium, sodium, or potassium; alternatively, magnesium or calcium; alternatively, lithium; alternatively, sodium; alternatively, potassium; alternatively, magnesium; alternatively, calcium; alternatively, zinc; alternatively, boron; alternatively, aluminum; or alternatively, tin. In some aspects, the metal hydrocarbyl or metal alkyl, with or without a halide, can comprise a lithium hydrocarbyl or alkyl, a magnesium hydrocarbyl or alkyl, a boron hydrocarbyl or alkyl, a zinc hydrocarbyl or alkyl, or an aluminum hydrocarbyl or alkyl. In particular aspects directed to catalyst compositions containing a co-catalyst (e.g., the activator can comprise a solid oxide treated with an electron-withdrawing anion), the co-catalyst can comprise an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, an organoaluminum compound, an organozine compound, an organomagnesium compound, or an organolithium compound, and this includes any combinations of these materials. In one aspect, the co-catalyst can comprise an organoaluminum compound. In another aspect, the cocatalyst can comprise an aluminoxane compound, an organoboron or organoborate ionizing ionic compound, an organozinc compound, compound, an organomagnesium compound, an organolithium compound, or any combination thereof. In yet another aspect, the co-catalyst can comprise an aluminoxane compound; alternatively, an organoboron or organoborate compound; alternatively, an ionizing ionic compound; alternatively, an organozine compound; alternatively, an organomagnesium compound; or alternatively, an organolithium compound. ### 15 ORGANOALUMINUM COMPOUNDS 5 10 30 In some aspects, catalyst compositions of the present invention can comprise one or more organoaluminum compounds. Such compounds can include, but are not limited to, compounds having the formula: $$(R^Z)_3A1;$$ wherein each R^Z independently can be an aliphatic group having from 1 to 10 carbon atoms. For example, each R^Z independently can be methyl, ethyl, propyl, butyl, hexyl, or isobutyl. Other organoaluminum compounds which can be used in catalyst compositions disclosed herein can include, but are not limited to, compounds having the formula: 25 $$Al(X^7)_m(X^8)_{3-m}$$ wherein each X^7 independently can be a hydrocarbyl; each X^8 independently can be an alkoxide or an aryloxide, a halide, or a hydride; and m can be from 1 to 3, inclusive. Hydrocarbyl is used herein to specify a hydrocarbon radical group and includes, for instance, aryl, alkyl, cycloalkyl, alkenyl, cycloalkenyl, cycloalkadienyl, alkynyl, aralkyl, aralkenyl, and aralkynyl groups. In one aspect, each X^7 independently can be any hydrocarbyl having from 1 to about 18 carbon atoms disclosed herein. In another aspect of the present invention, each X^7 independently can be any alkyl having from 1 to 10 carbon atoms disclosed herein. For example, each X^7 independently can be methyl, ethyl, propyl, n-butyl, secbutyl, isobutyl, or hexyl, and the like, in yet another aspect of the present invention. According to one aspect of the present invention, each X^8 independently can be an alkoxide or an aryloxide, any one of which has from 1 to 18 carbon atoms, a halide, or a hydride. In another aspect of the present invention, each X^8 can be selected independently from fluorine and chlorine. Yet, in another aspect, X^8 can be chlorine. 5 10 15 20 25 30 In the formula, $Al(X^7)_m(X^8)_{3-m}$, m can be a number from 1 to 3, inclusive, and typically, m can be 3. The value of m is not restricted to be an integer; therefore, this formula can include sesquihalide compounds or other organoaluminum cluster compounds. Examples of organoaluminum compounds suitable for use in accordance with the present invention can include, but are not limited to, trialkylaluminum compounds, dialkylaluminum halide compounds, dialkylaluminum alkoxide compounds, dialkylaluminum hydride compounds, and combinations thereof. Specific non-limiting examples of suitable organoaluminum compounds can include trimethylaluminum (TMA), triethylaluminum (TEA), tri-n-propylaluminum (TNPA), tri-n-butylaluminum (TNBA), triisobutylaluminum (TIBA), tri-n-hexylaluminum, tri-n-octylaluminum, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum chloride, and the like, or combinations thereof. The present invention contemplates a method of precontacting a metallocene compound (or compounds) with an organoaluminum compound and an optional olefin monomer to form a precontacted mixture, prior to contacting this precontacted mixture with an activator-support to form a catalyst composition. When the catalyst composition is prepared in this manner, typically, though not necessarily, a portion of the organoaluminum compound can be added to the precontacted mixture and another portion of the organoaluminum compound can be added to the postcontacted mixture prepared when the precontacted mixture is contacted with the solid oxide activator-support. However, the entire organoaluminum compound can be used to prepare the catalyst composition in either the precontacting or postcontacting step. Alternatively, all the catalyst components can be contacted in a single step. Further, more than one organoaluminum compound can be used in either the precontacting or the postcontacting step. When an organoaluminum compound is added in multiple steps, the amounts of organoaluminum compound disclosed herein include the total amount of organoaluminum compound used in both the precontacted and postcontacted mixtures, and any additional organoaluminum compound added to the polymerization reactor. Therefore, total amounts of organoaluminum compounds are disclosed regardless of whether a single organoaluminum compound or more than one organoaluminum compound is used. ### **ALUMINOXANE COMPOUNDS** 5 10 15 20 25 Certain aspects of the present invention provide a catalyst composition which can comprise an aluminoxane compound. As used herein, the terms "aluminoxane" and "aluminoxane compound" refer to aluminoxane compounds, compositions, mixtures, or discrete species, regardless of how such aluminoxanes are prepared, formed or otherwise provided. For example, a catalyst composition comprising an aluminoxane compound can be prepared in which aluminoxane is provided as the poly(hydrocarbyl aluminum oxide), or in which aluminoxane is provided as the combination of an aluminum alkyl compound and a source of active protons such as water. Aluminoxanes also can be referred to as poly(hydrocarbyl aluminum oxides) or organoaluminoxanes. The other catalyst components typically can be contacted with the aluminoxane in a saturated hydrocarbon compound solvent, though any solvent that is substantially inert to the reactants, intermediates, and products of the activation step can be used. The catalyst composition formed in this manner can be collected by any suitable method, for example, by filtration. Alternatively, the catalyst composition can be introduced into the polymerization reactor without being isolated. The aluminoxane compound of this invention can be an oligomeric aluminum compound comprising linear structures, cyclic structures, or cage structures, or mixtures of all three. Cyclic aluminoxane compounds having the formula: $$\frac{AI-O}{R}$$ wherein each R in this formula independently can be a linear or branched alkyl having from 1 to 10 carbon atoms, and p in this formula can be an integer from 3 to 20, are encompassed by this invention. The AlRO moiety shown here also can constitute the repeating unit in a linear aluminoxane. Thus, linear aluminoxanes having the formula: $$R + \left(AI - O\right) - AI$$ $$R$$ 5 10 15 20 25 wherein each R in this formula independently can be a linear or branched alkyl having from 1 to 10 carbon atoms, and q in this formula can be an integer from 1 to 50, are also encompassed by this invention. Further, aluminoxanes can have cage structures of the formula $R^t_{5r+\alpha}R^b_{r-\alpha}Al_{4r}O_{3r}$, wherein each R^t independently can be a terminal linear or branched alkyl group having from 1 to 10 carbon atoms; each R^b independently can be a bridging linear or branched alkyl group having from 1 to 10 carbon atoms; r can be 3 or 4; and α can be equal to $n_{Al(3)}$ - $n_{O(2)}$ + $n_{O(4)}$, wherein $n_{Al(3)}$ is the number of three coordinate aluminum
atoms, $n_{O(2)}$ is the number of two coordinate oxygen atoms, and $n_{O(4)}$ is the number of 4 coordinate oxygen atoms. Thus, aluminoxanes which can be employed in the catalyst compositions of the present invention can be represented generally by formulas such as (R-Al-O)_p, R(R-Al-O)_qAlR₂, and the like. In these formulas, each R group independently can be a linear or branched C₁-C₆ alkyl, such as methyl, ethyl, propyl, butyl, pentyl, or hexyl. Examples of aluminoxane compounds that can be used in accordance with the present invention can include, but are not limited to, methylaluminoxane, modified methylaluminoxane, ethylaluminoxane, n-propylaluminoxane, iso-propylaluminoxane, n-butylaluminoxane, t-butylaluminoxane. sec-butylaluminoxane. iso-butylaluminoxane, 2-pentylaluminoxane, 3-pentylaluminoxane, isopentylaluminoxane, neopentylaluminoxane, and the like, or any combination thereof. Methylaluminoxane, ethylaluminoxane, and iso-butylaluminoxane can be prepared from trimethylaluminum. triethylaluminum, and triisobutylaluminum, respectively, and sometimes are referred to as poly(methyl aluminum oxide), poly(ethyl aluminum oxide), and poly(isobutyl aluminum oxide), respectively. It is also within the scope of the invention to use an aluminoxane in combination with a trialkylaluminum, such as that disclosed in U.S. Patent No. 4,794,096, incorporated herein by reference in its entirety. The present invention contemplates many values of p and q in the aluminoxane formulas (R-Al-O)_p and R(R-Al-O)_qAlR₂, respectively. In some aspects, p and q can be at least 3. However, depending upon how the organoaluminoxane is prepared, stored, and used, the value of p and q can vary within a single sample of aluminoxane, and such combinations of organoaluminoxanes are contemplated herein. 5 10 15 20 25 30 In preparing a catalyst composition containing an aluminoxane, the molar ratio of the total moles of aluminum in the aluminoxane (or aluminoxanes) to the total moles of metallocene complex(es) in the composition generally can be between about 1:10 and about 100,000:1. In another aspect, the molar ratio can be in a range from about 5:1 to about 15,000:1. Optionally, aluminoxane can be added to a polymerization zone in ranges from about 0.01 mg/L to about 1000 mg/L, from about 0.1 mg/L to about 100 mg/L, or from about 1 mg/L to about 50 mg/L. Organoaluminoxanes can be prepared by various procedures. Examples of organoaluminoxane preparations are disclosed in U.S. Patent Nos. 3,242,099 and 4,808,561, the disclosures of which are incorporated herein by reference in their entirety. For example, water in an inert organic solvent can be reacted with an aluminum alkyl compound, such as (R^Z)₃Al, to form the desired organoaluminoxane compound. While not intending to be bound by this statement, it is believed that this synthetic method can afford a mixture of both linear and cyclic R-Al-O aluminoxane species, both of which are encompassed by this invention. Alternatively, organoaluminoxanes can be prepared by reacting an aluminum alkyl compound, such as (R^Z)₃Al, with a hydrated salt, such as hydrated copper sulfate, in an inert organic solvent. #### ORGANOBORON & ORGANOBORATE COMPOUNDS According to another aspect of the present invention, the catalyst composition can comprise an organoboron or organoborate compound. Such compounds can include neutral boron compounds, borate salts, and the like, or combinations thereof. For example, fluoroorgano boron compounds and fluoroorgano borate compounds are contemplated. 5 10 15 20 25 30 PCT/US2014/050622 Any fluoroorgano boron or fluoroorgano borate compound can be utilized with the present invention. Examples of fluoroorgano borate compounds that can be used in the present invention can include, but are not limited to, fluorinated aryl borates such as tetrakis(pentafluorophenyl)borate, N.N-dimethylanilinium triphenylcarbenium tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate, N,Ndimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, triphenylcarbenium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, and the like, or mixtures thereof. Examples of fluoroorgano boron compounds that can be used as co-catalysts in the present invention can include, but are not limited to, tris(pentafluorophenyl)boron, tris[3,5-bis(trifluoromethyl)phenyl]boron, and the like, or mixtures thereof. Although not intending to be bound by the following theory, these examples of fluoroorgano borate and fluoroorgano boron compounds, and related compounds, can form "weaklycoordinating" anions when combined with a transition metal complex (see e.g., U.S. Patent 5,919,983, the disclosure of which is incorporated herein by reference in its entirety). Applicants also contemplate the use of diboron, or bis-boron, compounds or other bifunctional compounds containing two or more boron atoms in the chemical structure, such as disclosed in J. Am. Chem. Soc., 2005, 127, pp. 14756-14768, the content of which is incorporated herein by reference in its entirety. Generally, any amount of organoboron compound can be used. According to one aspect of this invention, the molar ratio of the total moles of organoboron or organoborate compound (or compounds) to the total moles of metallocene compound(s) in the catalyst composition can be in a range from about 0.1:1 to about 15:1. Typically, the amount of the fluoroorgano boron or fluoroorgano borate compound used can be from about 0.5 moles to about 10 moles of boron/borate compound per mole of metallocene complex(es). According to another aspect of this invention, the amount of fluoroorgano boron or fluoroorgano borate compound can be from about 0.8 moles to about 5 moles of boron/borate compound per mole of metallocene complex(es). ## IONIZING IONIC COMPOUNDS In another aspect, catalyst compositions disclosed herein can comprise an ionizing ionic compound. An ionizing ionic compound is an ionic compound that can function as a co-catalyst to enhance the activity of the catalyst composition. While not intending to be bound by theory, it is believed that the ionizing ionic compound can be capable of reacting with a metallocene complex and converting the metallocene complex into one or more cationic metallocene complexes, or incipient cationic metallocene complexes. Again, while not intending to be bound by theory, it is believed that the ionizing ionic compound can function as an ionizing compound by completely or partially extracting an anionic ligand, such as monoanionic ligand X^1 and/or X^2 , from the metallocene complex. However, the ionizing ionic compound can be a co-catalyst regardless of whether it is ionizes the metallocene compound, abstracts a X^1 and/or X^2 ligand in a fashion as to form an ion pair, weakens the metal- X^1 and/or X^2 bond in the metallocene, simply coordinates to a X^1 and/or X^2 ligand, or activates the metallocene by some other mechanism. 5 10 15 20 25 30 Further, it is not necessary that the ionizing ionic compound activate the metallocene compound only. The activation function of the ionizing ionic compound can be evident in the enhanced activity of catalyst composition as a whole, as compared to a catalyst composition that does not contain an ionizing ionic compound. Examples of ionizing ionic compounds can include, but are not limited to, the following compounds: tri(n-butyl)ammonium tetrakis(p-tolyl)borate, tri(n-butyl) tetrakis(m-tolyl)borate, tri(n-butyl)ammonium tetrakis(2,4ammonium dimethylphenyl)borate, tri(n-butyl)ammonium tetrakis(3,5-dimethylphenyl)borate, tri(n-butyl)ammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, butyl)ammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(ptolyl)borate, N,N-dimethylanilinium tetrakis(m-tolyl)borate, N,N-dimethylanilinium tetrakis(2,4-dimethylphenyl)borate, N,N-dimethylanilinium tetrakis(3,5-dimethylphenyl)borate, N,N-dimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis(p-tolyl)borate, triphenylcarbenium tetrakis(m-tolyl)borate, triphenylcarbenium tetrakis(2,4-dimethylphenyl)borate, triphenylcarbenium tetrakis(3.5dimethylphenyl)borate, triphenylcarbenium tetrakis[3.5-bis(trifluoromethyl)phenyl] borate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, tropylium tetrakis(ptolyl)borate, tropylium tetrakis(m-tolyl)borate, tropylium tetrakis(2,4dimethylphenyl)borate, tropylium tetrakis(3,5-dimethylphenyl)borate, tropylium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, tropylium tetrakis(pentafluorophenyl) borate, lithium tetrakis(pentafluorophenyl)borate, lithium tetraphenylborate, lithium 5 10 15 20 25 30 tetrakis(p-tolyl)borate, lithium tetrakis(m-tolyl)borate, lithium tetrakis(2,4dimethylphenyl)borate, lithium tetrakis(3,5-dimethylphenyl)borate, lithium tetrafluoroborate, sodium tetrakis(pentafluorophenyl)borate, sodium tetraphenylborate, sodium tetrakis(p-tolyl)borate, sodium tetrakis(m-tolyl)borate, sodium tetrakis(2,4dimethylphenyl)borate. tetrakis(3,5-dimethylphenyl)borate, sodium sodium tetrafluoroborate, potassium tetrakis(pentafluorophenyl)borate, potassium tetraphenylborate, potassium tetrakis(p-tolyl)borate, potassium tetrakis(m-tolyl)borate, tetrakis(2,4-dimethylphenyl)borate, potassium potassium tetrakis(3,5dimethylphenyl)borate, tetrafluoroborate, potassium lithium tetrakis(pentafluorophenyl)aluminate, lithium tetraphenylaluminate, lithium tetrakis(ptolyl)aluminate, lithium tetrakis(m-tolyl)aluminate, lithium tetrakis(2,4dimethylphenyl)aluminate, lithium tetrakis(3,5-dimethylphenyl)aluminate, lithium sodium tetrakis(pentafluorophenyl)aluminate, tetrafluoroaluminate, sodium tetraphenylaluminate, sodium tetrakis(p-tolyl)aluminate, sodium tetrakis(mtolyl)aluminate, sodium tetrakis(2,4-dimethylphenyl)aluminate, sodium tetrakis(3,5dimethylphenyl)aluminate. sodium tetrafluoroaluminate, potassium
tetrakis(pentafluorophenyl)aluminate, potassium tetraphenylaluminate, potassium tetrakis(p-tolyl)aluminate, potassium tetrakis(m-tolyl)aluminate, potassium tetrakis(2,4dimethylphenyl)aluminate, potassium tetrakis (3,5-dimethylphenyl)aluminate. potassium tetrafluoroaluminate, and the like, or combinations thereof. Ionizing ionic compounds useful in this invention are not limited to these; other examples of ionizing ionic compounds are disclosed in U.S. Patent Nos. 5,576,259 and 5,807,938, the disclosures of which are incorporated herein by reference in their entirety. # ORGANOZINC, ORGANOMAGNESIUM, & ORGANOLITHIUM COMPOUNDS Other aspects are directed to catalyst compositions which can include an organozine compound, an organomagnesium compound, an organolithium compound, or a combination thereof. In some aspects, these compounds have the following general formulas: $$Zn(X^{10})(X^{11});$$ $Mg(X^{12})(X^{13});$ and $Li(X^{14}).$ 5 10 15 20 25 30 In these formulas, X^{10} , X^{12} , and X^{14} independently can be a C_1 to C_{18} hydrocarbyl group, and X^{11} and X^{13} independently can be H, a halide, or a C_1 to C_{18} hydrocarbyl or C_1 to C_{18} hydrocarboxy group. It is contemplated X^{10} and X^{11} (or X^{12} and X^{13}) can be the same, or that X^{10} and X^{11} (or X^{12} and X^{13}) can be different. In one aspect, X¹⁰, X¹¹, X¹², X¹³, and X¹⁴ independently can be any C₁ to C₁₈ hydrocarbyl group, C₁ to C₁₂ hydrocarbyl group, C₁ to C₈ hydrocarbyl group, or C₁ to C₅ hydrocarbyl group disclosed herein. In another aspect, X¹⁰, X¹¹, X¹², X¹³, and X¹⁴ independently can be any C1 to C18 alkyl group, C2 to C18 alkenyl group, C6 to C18 aryl group, or C₇ to C₁₈ aralkyl group disclosed herein; alternatively, any C₁ to C₁₂ alkyl group, C2 to C12 alkenyl group, C6 to C12 aryl group, or C7 to C12 aralkyl group disclosed herein; or alternatively, any C₁ to C₅ alkyl group, C₂ to C₅ alkenyl group, C₆ to C₈ aryl group, or C₇ to C₈ aralkyl group disclosed herein. Thus, X¹⁰, X¹¹, X¹², X¹³, and X¹⁴ independently can be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a phenyl group, a naphthyl group, a benzyl group, or a tolyl group, and the like. In yet another aspect, X¹⁰, X¹¹, X¹², X¹³, and X¹⁴ independently can be methyl, ethyl, propyl, butyl, or pentyl (e.g., neopentyl), or both X¹⁰ and X¹¹ (or both X¹² and X¹³) can be methyl, or ethyl, or propyl, or butyl, or pentyl (e.g., neopentyl). X¹¹ and X¹³ independently can be H, a halide, or a C₁ to C₁₈ hydrocarbyl or C₁ to C₁₈ hydrocarboxy group (e.g., any C₁ to C₁₈, C₁ to C₁₂, C₁ to C₁₀, or C₁ to C₈ hydrocarboxy group disclosed herein). In some aspects, X¹¹ and X¹³ independently can be H, a halide (e.g., Cl), or a C₁ to C₁₈ hydrocarbyl or C₁ to C₁₈ hydrocarboxy group; alternatively, H, a halide, or a C₁ to C₈ hydrocarbyl or C₁ to C₈ hydrocarboxy group; or alternatively, H, Br, Cl, F, I, methyl, ethyl, propyl, butyl, pentyl (e.g., neopentyl), hexyl, heptyl, octyl, nonyl, decyl, ethenyl, propenyl, butenyl, pentenyl, hexenyl, 5 10 15 20 25 30 PCT/US2014/050622 heptenyl, octenyl, nonenyl, decenyl, phenyl, benzyl, tolyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, toloxy, xyloxy, or benzoxy. In other aspects, the organozine and/or the organomagnesium compound can have one or two hydrocarbylsilyl moieties. Each hydrocarbyl of the hydrocarbylsilyl group can be any hydrocarbyl group disclosed herein (e.g., a C_1 to C_{18} alkyl group, a C_2 to C_{18} alkenyl group, a C_6 to C_{18} aryl group, a C_7 to C_{18} aralkyl group, etc.). Illustrative and non-limiting examples of hydrocarbylsilyl groups can include, but are not limited to, trimethylsilyl, triethylsilyl, tripropylsilyl (e.g., triisopropylsilyl), tributylsilyl, tripentylsilyl, triphenylsilyl, allyldimethylsilyl, trimethylsilylmethyl, and the like. Exemplary organozine compounds which can be used as co-catalysts can include, but are not limited to, dimethylzine, diethylzine, dipropylzine, dibutylzine, dineopentylzine, di(trimethylsilyl)zine, di(triethylsilyl)zine, di(trimethylsilyl)zine, di(trimethylsilyl)zine, di(trimethylsilyl)zine, and the like, or combinations thereof. Similarly, exemplary organomagnesium compounds can include, but are not limited to, dimethylmagnesium, diethylmagnesium, dipropylmagnesium, dibutylmagnesium, dineopentylmagnesium, di(trimethylsilylmethyl)magnesium, methylmagnesium chloride, ethylmagnesium chloride, propylmagnesium chloride, butylmagnesium chloride. neopentylmagnesium chloride. trimethylsilylmethylmagnesium chloride, methylmagnesium bromide, ethylmagnesium bromide, propylmagnesium bromide, butylmagnesium bromide, neopentylmagnesium trimethylsilylmethylmagnesium bromide, bromide, methylmagnesium iodide, ethylmagnesium iodide, propylmagnesium butylmagnesium iodide, iodide, neopentylmagnesium iodide. trimethylsilylmethylmagnesium iodide, methylmagnesium ethoxide, ethylmagnesium ethoxide, propylmagnesium ethoxide, butylmagnesium ethoxide. neopentylmagnesium ethoxide. trimethylsilylmethylmagnesium ethoxide, methylmagnesium propoxide, ethylmagnesium propoxide, propylmagnesium propoxide, butylmagnesium propoxide, neopentylmagnesium trimethylsilylmethylmagnesium propoxide, propoxide, methylmagnesium phenoxide, ethylmagnesium phenoxide, propylmagnesium butylmagnesium phenoxide, neopentylmagnesium phenoxide. phenoxide, trimethylsilylmethylmagnesium phenoxide, and the like, or any combinations thereof. 47 Likewise, exemplary organolithium compounds can include, but are not limited to, methyllithium, ethyllithium, propyllithium, butyllithium (e.g., t-butyllithium), neopentyllithium, trimethylsilylmethyllithium, phenyllithium, tolyllithium, xylyllithium, benzyllithium, (dimethylphenyl)methyllithium, allyllithium, and the like, or combinations thereof. ## **OLEFIN MONOMERS** 5 10 15 20 25 30 Unsaturated reactants that can be employed with catalyst compositions and polymerization processes of this invention typically can include olefin compounds having from 2 to 30 carbon atoms per molecule and having at least one olefinic double bond. This invention encompasses homopolymerization processes using a single olefin such as ethylene or propylene, as well as copolymerization, terpolymerization, etc., reactions using an olefin monomer with at least one different olefinic compound. For example, the resultant ethylene copolymers, terpolymers, etc., generally can contain a major amount of ethylene (>50 mole percent) and a minor amount of comonomer (<50 mole percent), though this is not a requirement. Comonomers that can be copolymerized with ethylene often can have from 3 to 20 carbon atoms, or from 3 to 10 carbon atoms, in their molecular chain. Acyclic, cyclic, polycyclic, terminal (a), internal, linear, branched, substituted, unsubstituted, functionalized, and non-functionalized olefins can be employed in this invention. For example, typical unsaturated compounds that can be polymerized with the catalyst compositions of this invention can include, but are not limited to, ethylene, propylene, 1-butene, 2-butene, 3-methyl-1-butene, isobutylene, 1-pentene, 2-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 2-hexene, 3-hexene, 3-ethyl-1-hexene, 1-heptene, 2-heptene, 3-heptene, the four normal octenes (e.g., 1-octene), the four normal nonenes, the five normal decenes, and the like, or mixtures of two or more of these compounds. Cyclic and bicyclic olefins, including but not limited to, cyclopentene, cyclohexene, norbornylene, norbornadiene, and the like, also can be polymerized as described herein. Styrene can also be employed as a monomer in the present invention. In an aspect, the olefin monomer can comprise a C_2 - C_{20} olefin; alternatively, a C_2 - C_{10} alpha-olefin; alternatively, the olefin monomer can comprise ethylene; or alternatively, the olefin monomer can comprise ethylene; or alternatively, the olefin monomer can comprise ethylene; or 48 When a copolymer (or alternatively, a terpolymer) is desired, the olefin monomer and the olefin comonomer independently can comprise, for example, a C2-C₂₀ alpha-olefin. In some aspects, the olefin monomer can comprise ethylene or propylene, which is copolymerized with at least one comonomer (e.g., a C₂-C₂₀ alphaolefin, a C₃-C₂₀ alpha-olefin, etc.). According to one aspect of this invention, the olefin monomer used in the polymerization process can comprise ethylene. In this aspect, examples of suitable olefin comonomers can include, but are not limited to, propylene, 1-butene, 2-butene, 3-methyl-1-butene, isobutylene, 1-pentene, 2-pentene, 3-methyl-1pentene, 4-methyl-1-pentene, 1-hexene, 2-hexene, 3-ethyl-1-hexene, 1-heptene, 2heptene, 3-heptene, 1-octene, 1-decene, styrene, and the like, or combinations thereof. According to another aspect of the present invention, the olefin monomer can comprise ethylene, and the comonomer can comprise a C₃-C₁₀ alpha-olefin; alternatively, the comonomer can comprise 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, styrene, or any combination thereof; alternatively, the comonomer can comprise 1-butene, 1hexene, 1-octene, or any combination thereof; alternatively, the comonomer can comprise 1-butene; alternatively, the comonomer can comprise 1-hexene; or alternatively, the comonomer can comprise 1-octene. 5 10 15 20 25 30 Generally, the amount of comonomer introduced into a
polymerization reactor system to produce a copolymer can be from about 0.01 to about 50 weight percent of the comonomer based on the total weight of the monomer and comonomer. According to another aspect of the present invention, the amount of comonomer introduced into a polymerization reactor system can be from about 0.01 to about 40 weight percent comonomer based on the total weight of the monomer and comonomer. In still another aspect, the amount of comonomer introduced into a polymerization reactor system can be from about 0.1 to about 35 weight percent comonomer based on the total weight of the monomer and comonomer. Yet, in another aspect, the amount of comonomer introduced into a polymerization reactor system can be from about 0.5 to about 20 weight percent comonomer based on the total weight of the monomer and comonomer. While not intending to be bound by this theory, where branched, substituted, or functionalized olefins are used as reactants, it is believed that a steric hindrance can impede and/or slow the polymerization process. Thus, branched and/or cyclic portion(s) of the olefin removed somewhat from the carbon-carbon double bond would not be expected to hinder the reaction in the way that the same olefin substituents situated more proximate to the carbon-carbon double bond might. According to one aspect of the present invention, at least one monomer/reactant can be ethylene (or propylene), so the polymerization reaction can be a homopolymerization involving only ethylene (or propylene), or a copolymerization with a different acyclic, cyclic, terminal, internal, linear, branched, substituted, or unsubstituted olefin. In addition, the catalyst compositions of this invention can be used in the polymerization of diolefin compounds including, but not limited to, 1,3-butadiene, isoprene, 1,4-pentadiene, and 1,5-hexadiene. ### 10 CATALYST COMPOSITIONS 5 15 20 25 30 In some aspects, the present invention employs catalyst compositions containing a cyclobutylidene-bridged metallocene compound and an activator (one or more than one). These catalyst compositions can be utilized to produce polyolefins – homopolymers, copolymers, and the like – for a variety of end-use applications. Cyclobutylidene-bridged metallocene compounds are discussed hereinabove. In aspects of the present invention, it is contemplated that the catalyst composition can contain more than one cyclobutylidene-bridged metallocene compound. Further, additional catalytic compounds – other than those specified as a cyclobutylidene-bridged metallocene compound – can be employed in the catalyst compositions and/or the polymerization processes, provided that the additional catalytic compound does not detract from the advantages disclosed herein. Additionally, more than one activator also may be utilized. Generally, catalyst compositions of the present invention comprise a cyclobutylidene-bridged metallocene compound having formula (I) and an activator. In aspects of the invention, the activator can comprise an activator-support (e.g., an activator-support comprising a solid oxide treated with an electron-withdrawing anion). Activator-supports useful in the present invention are disclosed above. Optionally, such catalyst compositions can further comprise one or more than one co-catalyst compound or compounds (suitable co-catalysts, such as organoaluminum compounds, also are discussed above). Thus, a catalyst composition of this invention can comprise a cyclobutylidene-bridged metallocene compound, an activator-support, and an organoaluminum compound. For instance, the activator-support can comprise (or consist essentially of, or consist of) fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, fluorided silica-titania, fluorided silica-coated alumina, sulfated silica-coated alumina, phosphated silica-coated alumina, and the like, or combinations thereof; or alternatively, a fluorided solid oxide and/or a sulfated solid oxide. Additionally, the organoaluminum compound can comprise (or consist essentially of, or consist of) trimethylaluminum, triethylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum chloride, and the like, or combinations thereof. Accordingly, a catalyst composition consistent with aspects of the invention can comprise (or consist essentially of, or consist of) a cyclobutylidene-bridged metallocene compound; sulfated alumina (or fluorided silica-alumina, or fluorided silica-coated alumina); and triethylaluminum (or triisobutylaluminum). 5 10 15 20 25 In another aspect of the present invention, a catalyst composition is provided which comprises a cyclobutylidene-bridged metallocene compound, an activator-support, and an organoaluminum compound, wherein this catalyst composition is substantially free of aluminoxanes, organoboron or organoborate compounds, ionizing ionic compounds, and/or other similar materials; alternatively, substantially free of aluminoxanes; alternatively, substantially free or organoboron or organoborate compounds; or alternatively, substantially free of ionizing ionic compounds. In these aspects, the catalyst composition has catalyst activity, discussed below, in the absence of these additional materials. For example, a catalyst composition of the present invention can consist essentially a cyclobutylidene-bridged metallocene compound, an activator-support, and an organoaluminum compound, wherein no other materials are present in the catalyst composition which would increase/decrease the activity of the catalyst composition by more than about 10% from the catalyst activity of the catalyst composition in the absence of said materials. However, in other aspects of this invention, these activators/co-catalysts can be employed. For example, a catalyst composition comprising a cyclobutylidene-bridged metallocene compound and an activator-support can further comprise an optional co- 51 catalyst. Suitable co-catalysts in this aspect can include, but are not limited to, aluminoxane compounds, organoboron or organoborate compounds, ionizing ionic compounds, organoaluminum compounds, organozinc compounds, organomagnesium compounds, organolithium compounds, and the like, or any combination thereof; or alternatively, organoaluminum compounds, organozinc compounds, organomagnesium compounds, organolithium compounds, or any combination thereof. More than one co-catalyst can be present in the catalyst composition. 5 10 15 20 25 30 In a different aspect, a catalyst composition is provided which does not require an activator-support. Such a catalyst composition can comprise a cyclobutylidenebridged metallocene compound and an activator, wherein the activator can comprise an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or combinations thereof; alternatively, an aluminoxane compound; alternatively, an organoboron or organoborate compound; or alternatively, an ionizing ionic compound. In a particular aspect contemplated herein, the catalyst composition is a catalyst composition comprising an activator (one or more than one) and only one cyclobutylidene-bridged metallocene compound having formula (I). In these and other aspects, the catalyst composition can comprise an activator (e.g., an activator-support comprising a solid oxide treated with an electron-withdrawing anion), only one cyclobutylidene-bridged metallocene compound, and a co-catalyst (one or more than one), such as an organoaluminum compound. This invention further encompasses methods of making these catalyst compositions, such as, for example, contacting the respective catalyst components in any order or sequence. In one aspect, the catalyst composition can be produced by a process comprising contacting the metallocene compound and the activator, while in another aspect, the catalyst composition can be produced by a process comprising contacting, in any order, the metallocene compound, the activator, and the co-catalyst. The cyclobutylidene-bridged metallocene compound can be precontacted with an olefinic monomer if desired, not necessarily the olefin monomer to be polymerized, and an organoaluminum compound for a first period of time prior to contacting this precontacted mixture with an activator-support. The first period of time for contact, the precontact time, between the metallocene compound, the olefinic monomer, and the 52 organoaluminum compound typically ranges from a time period of about 1 minute to about 24 hours, for example, from about 3 minutes to about 1 hour. Precontact times from about 10 minutes to about 30 minutes also can be employed. Alternatively, the precontacting process can be carried out in multiple steps, rather than a single step, in which multiple mixtures can be prepared, each comprising a different set of catalyst components. For example, at least two catalyst components can be contacted forming a first mixture, followed by contacting the first mixture with at least one other catalyst component forming a second mixture, and so forth. 5 10 15 20 25 30 Multiple precontacting steps can be carried out in a single vessel or in multiple vessels. Further, multiple precontacting steps can be carried out in series (sequentially), in parallel, or a combination thereof. For example, a first mixture of two catalyst components can be formed in a first vessel, a second mixture comprising the first mixture plus one additional catalyst component can be formed in the first vessel or in a second vessel, which is typically placed downstream of the first vessel. In another aspect, one or more of the catalyst components can be split and used in different precontacting
treatments. For example, part of a catalyst component can be fed into a first precontacting vessel for precontacting with at least one other catalyst component, while the remainder of that same catalyst component can be fed into a second precontacting vessel for precontacting with at least one other catalyst component, or can be fed directly into the reactor, or a combination thereof. The precontacting can be carried out in any suitable equipment, such as tanks, stirred mix tanks, various static mixing devices, a flask, a vessel of any type, or combinations of these apparatus. In another aspect of this invention, the various catalyst components (for example, a cyclobutylidene-bridged metallocene, an activator-support, an organoaluminum co-catalyst, and optionally an unsaturated hydrocarbon) can be contacted in the polymerization reactor simultaneously while the polymerization reaction is proceeding. Alternatively, any two or more of these catalyst components can be precontacted in a vessel prior to entering the reaction zone. This precontacting step can be continuous, in which the precontacted product can be fed continuously to the reactor, or it can be a stepwise or batchwise process in which a batch of precontacted product can be added to make a catalyst composition. This precontacting 53 step can be carried out over a time period that can range from a few seconds to as much as several days, or longer. In this aspect, the continuous precontacting step generally can last from about 1 second to about 1 hour. In another aspect, the continuous precontacting step can last from about 10 seconds to about 45 minutes, or from about 1 minute to about 30 minutes. 5 10 15 20 25 30 In an aspect, once the precontacted mixture of a cyclobutylidene-bridged metallocene compound, an olefin monomer (if used), and an organoaluminum co-catalyst is contacted with an activator-support, this composition (with the addition of the activator-support) can be termed the "postcontacted mixture." The postcontacted mixture optionally can remain in contact for a second period of time, the postcontact time, prior to initiating the polymerization process. Postcontact times between the precontacted mixture and the activator-support generally range from about 1 minute to about 24 hours. In a further aspect, the postcontact time can be in a range from about 3 minutes to about 1 hour. The precontacting step, the postcontacting step, or both, can increase the productivity of the polymer as compared to the same catalyst composition that is prepared without precontacting or postcontacting. However, neither a precontacting step nor a postcontacting step is required. The postcontacted mixture can be heated at a temperature and for a time period sufficient to allow adsorption, impregnation, or interaction of the precontacted mixture and the activator-support, such that a portion of the components of the precontacted mixture can be immobilized, adsorbed, or deposited thereon. Where heating is employed, the postcontacted mixture generally can be heated to a temperature of from between about 0 °F to about 150 °F, or from about 40 °F to about 95 °F. When an olefin precontacting step is used, the molar ratio of the total moles of olefin monomer to total moles of metallocene(s) in the precontacted mixture typically can be in a range from about 1:10 to about 100,000:1. Total moles of each component are used in this ratio to account for aspects of this invention where more than one olefin monomer and/or more than one metallocene compound is employed in a precontacting step. Further, this molar ratio can be in a range from about 10:1 to about 1,000:1 in another aspect of the invention. Generally, the weight ratio of organoaluminum compound to activator-support can be in a range from about 10:1 to about 1:1000. If more than one organoaluminum 54 compound and/or more than one activator-support is employed, this ratio is based on the total weight of each respective component. In another aspect, the weight ratio of the organoaluminum compound to the activator-support can be in a range from about 3:1 to about 1:100, or from about 1:1 to about 1:50. 5 10 15 20 25 30 In some aspects of this invention, the weight ratio of metallocene compound to activator-support can be in a range from about 1:1 to about 1:1,000,000. If more than one metallocene compound and/or more than activator-support is/are employed, this ratio is based on the total weights of the respective components. In another aspect, this weight ratio can be in a range from about 1:5 to about 1:100,000, or from about 1:10 to about 1:10,000. Yet, in another aspect, the weight ratio of the metallocene compound to the activator-support can be in a range from about 1:20 to about 1:1000. Catalyst compositions of the present invention generally have a catalyst activity greater than about 100,000 grams of ethylene homopolymer per millimole of the cyclobutylidene-bridged metallocene compound per hour (abbreviated g/mmol/h). In another aspect, the homopolymer catalyst activity (activity in an ethylene homopolymerization) can be greater than about 150,000, greater than about 200,000, or greater than about 300,000 g/mmol/h. In still another aspect, catalyst compositions of this invention can be characterized by having a homopolymer catalyst activity greater than about 350,000, greater than about 450,000, or greater than about 500,000 g/mmol/h, and often can range up to 750,000-1,250,000 g/mmol/h. These activities are measured under slurry polymerization conditions, with a triisobutylaluminum co-catalyst, using isobutane as the diluent, at a polymerization temperature of 80 °C and a reactor pressure of about 340 psig. Additionally, in some aspects, the activator can comprise an activator-support, such as sulfated alumina, fluorided silica-alumina, or fluorided silica-coated alumina, although not limited thereto. Unexpectedly, catalyst compositions of the present invention can have a relatively high copolymer catalyst activity (activity in an ethylene/α-olefin polymerization), typically greater than about 1,000,000 grams of ethylene copolymer per millimole of the cyclobutylidene-bridged metallocene compound per hour (abbreviated g/mmol/h). In some aspects, the copolymer catalyst activity can be greater than about 1,250,000, greater than about 1,400,000, or greater than about 1,500,000 g/mmol/h. In other aspects, catalyst compositions of this invention can be characterized by having a copolymer catalyst activity greater than about 1,600,000, greater than about 1,750,000, or greater than about 2,000,000 g/mmol/h, and often can range up to 3,500,000-4,000,000 g/mmol/h. These activities are measured under slurry polymerization conditions, with a triisobutylaluminum co-catalyst, using isobutane as the diluent, at a polymerization temperature of 80 °C and a reactor pressure of about 340 psig. The ethylene copolymer is an ethylene/ α -olefin copolymer, such as an ethylene/1-hexene copolymer. Typical comonomer wt. % (based on monomer) can be about 7.5-10 wt. %, and typical comonomer mole % (based on monomer) can be about 2.6-3.6%. Additionally, in some aspects, the activator can comprise an activator-support, such as sulfated alumina, fluorided silica-alumina, or fluorided silica-coated alumina, although not limited thereto. Moreover, in some aspects, catalyst activity can be determined using approximately 16-17 grams of 1-hexene per liter of isobutane, a metallocene/activator-support ratio of < 0.01 g/g, and final metallocene productivity between 300,000 and 650,000 g polymer/g metallocene. 5 10 15 20 25 30 In some aspects, catalyst compositions disclosed herein can have an unexpectedly high catalyst activity for producing copolymers (e.g., ethylene/α-olefin copolymers, such as ethylene/1-hexene copolymers), as compared to its catalyst activity for producing homopolymers (e.g., ethylene homopolymers). For example, the catalyst composition can have a copolymer:homopolymer catalyst activity ratio, under the same polymerization conditions, in a range from about 2.5:1 to about 5:1, from about 2.75:1 to about 4.5:1, from about 3:1 to about 4:1, from about 3.2:1 to about 5:1, from about 3.4:1 to about 5:1, from about 3.5:1, from about 3.5:1 to about 4.5:1, Moreover, catalyst compositions of the present invention (containing a metallocene compound with a cyclobutyl bridging group) can have copolymer catalyst activities (activities in ethylene/ α -olefin polymerizations) greater than similar catalyst systems containing other cycloalkyl bridging groups, such as cyclopentyl, cyclohexyl, and cycloheptyl. In some aspects, the catalyst activity can be at least 2% greater, at least 5% greater, at least 7% greater, at least 10% greater, at least 12%, at least 15% greater, or at least 20% greater, and the like. For the catalyst activity comparison, the copolymer catalyst activity of the catalyst composition (in grams of an ethylene/ α -olefin copolymer, e.g., an ethylene/1-hexene copolymer, per millimole of the metallocene compound per hour), all other components used to prepare the catalyst systems are held constant (e.g., same amount/type of metallocene compound, same amount/type of co-catalyst, same amount/type of activator, such as fluorided silicacoated alumina, etc.) and all polymerization conditions are held constant (e.g., same polymerization temperature, same copolymer productivity, etc.). Hence, the only difference is the cyclobutyl bridging group as compared to a cyclopentyl, cyclohexyl, or cycloheptyl bridging group. Likewise, catalyst compositions of the present invention (containing a metallocene compound with a cyclobutyl bridging group) can have copolymer:homopolymer activity ratios greater than similar catalyst systems containing other cycloalkyl bridging groups, such as cyclopentyl, cyclohexyl, and cycloheptyl. In some aspects, the copolymer:homopolymer activity ratio can be at least 2% greater, at least
5% greater, at least 10% greater, at least 12% greater, at least 15%, at least 20% greater, or at least 25% greater, and the like. As above, all other components used to prepare the catalyst systems are held constant, and all polymerization conditions are held constant. Hence, the only difference is the cyclobutyl bridging group as compared to a cyclopentyl, cyclohexyl, or cycloheptyl bridging group. As discussed herein, any combination of a cyclobutylidene-bridged metallocene compound, an activator-support, an organoaluminum compound, and an olefin monomer (if used), can be precontacted in some aspects of this invention. When any precontacting occurs with an olefinic monomer, it is not necessary that the olefin monomer used in the precontacting step be the same as the olefin to be polymerized. Further, when a precontacting step among any combination of the catalyst components is employed for a first period of time, this precontacted mixture can be used in a subsequent postcontacting step between any other combination of catalyst components for a second period of time. For example, the metallocene compound, the organoaluminum compound, and optionally 1-hexene can be used in a precontacting step for a first period of time, and this precontacted mixture then can be contacted with the activator-support to form a postcontacted mixture that can be contacted for a second period of time prior to initiating the polymerization reaction. For example, the first period of time for contact, the precontact time, between any combination of the metallocene compound, the olefinic monomer (if used), the activator-support, and the 57 organoaluminum compound can be from about 1 minute to about 24 hours, from about 3 minutes to about 1 hour, or from about 10 minutes to about 30 minutes. The postcontacted mixture optionally can be allowed to remain in contact for a second period of time, the postcontact time, prior to initiating the polymerization process. According to one aspect of this invention, postcontact times between the precontacted mixture and any remaining catalyst components can be from about 1 minute to about 24 hours, or from about 5 minutes to about 1 hour. ### POLYMERIZATION PROCESSES 5 10 15 20 25 30 Catalyst compositions of the present invention can be used to polymerize olefins to form homopolymers, copolymers, terpolymers, and the like. One such process for polymerizing olefins in the presence of a catalyst composition of the present invention can comprise contacting the catalyst composition with an olefin monomer and optionally an olefin comonomer (one or more) in a polymerization reactor system under polymerization conditions to produce an olefin polymer, wherein the catalyst composition can comprise a cyclobutylidene-bridged metallocene compound, an activator, and an optional co-catalyst. Suitable cyclobutylidene-bridged metallocene compounds, activators, and co-catalysts are discussed herein. In accordance with one aspect of the invention, the polymerization process can employ a catalyst composition comprising a cyclobutylidene-bridged metallocene compound having formula (I) and an activator, wherein the activator comprises an activator-support. The catalyst composition, optionally, can further comprise one or more than one organoaluminum compound or compounds (or other suitable cocatalyst). Thus, a process for polymerizing olefins in the presence of a catalyst composition can employ a catalyst composition comprising a cyclobutylidene-bridged metallocene compound, an activator-support, and an organoaluminum compound. In some aspects, the activator-support can comprise (or consist essentially of, or consist of) fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-zirconia, fluorided silica-zirconia, fluorided silica-coated alumina, fluorided silica-coated alumina, phosphated silica-coated alumina, and the like, or combinations thereof; or alternatively, a fluorided solid oxide and/or a sulfated solid oxide. In some aspects, the organoaluminum compound can comprise (or consist essentially of, or consist of) trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum chloride, and the like, or combinations thereof. 5 10 15 20 25 In accordance with another aspect of the invention, the polymerization process can employ a catalyst composition comprising a cyclobutylidene-bridged metallocene, an activator-support, and an optional co-catalyst, wherein the co-catalyst can comprise an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, an organoaluminum compound, an organozine compound, an organomagnesium compound, or an organolithium compound, or any combination thereof. Hence, aspects of this invention are directed to a process for polymerizing olefins in the presence of a catalyst composition, the processes comprising contacting a catalyst composition with an olefin monomer and optionally an olefin comonomer (one or more) under polymerization conditions to produce an olefin polymer, and the catalyst composition can comprise a cyclobutylidene-bridged metallocene compound, an activator-support, and an aluminoxane compound; alternatively, a cyclobutylidenebridged metallocene compound, an activator-support, and an organoboron or organoborate compound; alternatively, a cyclobutylidene-bridged metallocene compound, an activator-support, and an ionizing ionic compound; alternatively, a cyclobutylidene-bridged metallocene compound, an activator-support, and an organoaluminum compound; alternatively, a cyclobutylidene-bridged metallocene compound, an activator-support, and an organozinc compound; alternatively, a cyclobutylidene-bridged metallocene compound, an activator-support, and an organomagnesium compound; or alternatively, a cyclobutylidene-bridged metallocene compound, an activator-support, and an organolithium compound. Furthermore, more than one co-catalyst can be employed, e.g., an organoaluminum compound and an aluminoxane compound, an organoaluminum compound and an ionizing ionic compound, etc. In accordance with another aspect of the invention, the polymerization process can employ a catalyst composition comprising only one cyclobutylidene-bridged metallocene compound, an activator-support, and an organoaluminum compound. In accordance with yet another aspect of the invention, the polymerization process can employ a catalyst composition comprising a cyclobutylidene-bridged metallocene compound and an activator, wherein the activator comprises an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or combinations thereof. The catalyst compositions of the present invention are intended for any olefin polymerization method using various types of polymerization reactor systems and reactors. The polymerization reactor system can include any polymerization reactor capable of polymerizing olefin monomers and comonomers (one or more than one comonomer) to produce homopolymers, copolymers, terpolymers, and the like. The various types of reactors include those that can be referred to as a batch reactor, slurry reactor, gas-phase reactor, solution reactor, high pressure reactor, tubular reactor, autoclave reactor, and the like, or combinations thereof. Suitable polymerization conditions are used for the various reactor types. Gas phase reactors can comprise fluidized bed reactors or staged horizontal reactors. Slurry reactors can comprise vertical or horizontal loops. High pressure reactors can comprise autoclave or tubular reactors. Reactor types can include batch or continuous processes. Continuous processes can use intermittent or continuous product discharge. Processes can also include partial or full direct recycle of unreacted monomer, unreacted comonomer, and/or diluent. Polymerization reactor systems of the present invention can comprise one type of reactor in a system or multiple reactors of the same or different type (e.g., a single reactor, dual reactor, more than two reactors). Production of polymers in multiple reactors can include several stages in at least two separate polymerization reactors interconnected by a transfer device making it possible to transfer the polymers resulting from the first polymerization reactor into the second reactor. The desired polymerization conditions in one of the reactors can be different from the operating conditions of the other reactor(s). Alternatively, polymerization in multiple reactors can include the manual transfer of polymer from one reactor to subsequent reactors for continued polymerization. Multiple reactor systems can include any combination including, but not limited to, multiple loop reactors, multiple gas phase reactors, a combination of loop and gas phase reactors, multiple high pressure reactors, or a 5 10 15 20 25 30 60 PCT/US2014/050622 combination of high pressure with loop and/or gas phase reactors. The multiple reactors can be operated in series, in parallel, or both. Accordingly, the present invention encompasses polymerization reactor systems comprising a single reactor, comprising two reactors, and comprising more than two reactors. The polymerization reactor system can comprise a slurry reactor, a gas-phase reactor, a solution reactor, in certain aspects of this invention, as well as multi-reactor combinations thereof. According to one aspect of the invention, the polymerization reactor system can comprise at least one loop slurry reactor comprising vertical or horizontal loops. Monomer, diluent, catalyst, and comonomer can be continuously fed to a loop reactor where polymerization occurs. Generally, continuous processes can comprise the continuous introduction of monomer/comonomer, a catalyst, and a diluent
into a polymerization reactor and the continuous removal from this reactor of a suspension comprising polymer particles and the diluent. Reactor effluent can be flashed to remove the solid polymer from the liquids that comprise the diluent, monomer and/or comonomer. Various technologies can be used for this separation step including, but not limited to, flashing that can include any combination of heat addition and pressure reduction, separation by cyclonic action in either a cyclone or hydrocyclone, or separation by centrifugation. A typical slurry polymerization process (also known as the particle form process) is disclosed, for example, in U.S. Patent Nos. 3,248,179, 4,501,885, 5,565,175, 5,575,979, 6,239,235, 6,262,191, and 6,833,415, each of which is incorporated herein by reference in its entirety. Suitable diluents used in slurry polymerization include, but are not limited to, the monomer being polymerized and hydrocarbons that are liquids under polymerization conditions. Examples of suitable diluents include, but are not limited to, hydrocarbons such as propane, cyclohexane, isobutane, n-butane, n-pentane, isopentane, neopentane, and n-hexane. Some loop polymerization reactions can occur under bulk conditions where no diluent is used. An example is polymerization of propylene monomer as disclosed in U.S. Patent Nos. 5,455,314, which is incorporated by reference herein in its entirety. According to yet another aspect of this invention, the polymerization reactor system can comprise at least one gas phase reactor. Such systems can employ a 5 10 15 20 25 30 61 PCT/US2014/050622 continuous recycle stream containing one or more monomers continuously cycled through a fluidized bed in the presence of the catalyst under polymerization conditions. A recycle stream can be withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product can be withdrawn from the reactor and new or fresh monomer can be added to replace the polymerized monomer. Such gas phase reactors can comprise a process for multi-step gas-phase polymerization of olefins, in which olefins are polymerized in the gaseous phase in at least two independent gas-phase polymerization zones while feeding a catalyst-containing polymer formed in a first polymerization zone to a second polymerization zone. One type of gas phase reactor is disclosed in U.S. Patent Nos. 5,352,749, 4,588,790, and 5,436,304, each of which is incorporated by reference in its entirety herein. According to still another aspect of the invention, a high pressure polymerization reactor can comprise a tubular reactor or an autoclave reactor. Tubular reactors can have several zones where fresh monomer, initiators, or catalysts are added. Monomer can be entrained in an inert gaseous stream and introduced at one zone of the reactor. Initiators, catalysts, and/or catalyst components can be entrained in a gaseous stream and introduced at another zone of the reactor. The gas streams can be intermixed for polymerization. Heat and pressure can be employed appropriately to obtain optimal polymerization reaction conditions. According to yet another aspect of the invention, the polymerization reactor system can comprise a solution polymerization reactor wherein the monomer (and comonomer, if used) are contacted with the catalyst composition by suitable stirring or other means. A carrier comprising an inert organic diluent or excess monomer can be employed. If desired, the monomer/comonomer can be brought in the vapor phase into contact with the catalytic reaction product, in the presence or absence of liquid material. The polymerization zone is maintained at temperatures and pressures that will result in the formation of a solution of the polymer in a reaction medium. Agitation can be employed to obtain better temperature control and to maintain uniform polymerization mixtures throughout the polymerization zone. Adequate means are utilized for dissipating the exothermic heat of polymerization. Polymerization reactor systems suitable for the present invention can further comprise any combination of at least one raw material feed system, at least one feed 62 system for catalyst or catalyst components, and/or at least one polymer recovery system. Suitable reactor systems for the present invention can further comprise systems for feedstock purification, catalyst storage and preparation, extrusion, reactor cooling, polymer recovery, fractionation, recycle, storage, loadout, laboratory analysis, and process control. 5 10 15 20 25 30 Polymerization conditions that are controlled for efficiency and to provide desired polymer properties can include temperature, pressure, and the concentrations of various reactants. Polymerization temperature can affect catalyst productivity, polymer molecular weight, and molecular weight distribution. A suitable polymerization temperature can be any temperature below the de-polymerization temperature according to the Gibbs Free energy equation. Typically, this includes from about 60 °C to about 280 °C, for example, or from about 60 °C to about 120 °C, depending upon the type of polymerization reactor(s). In some reactor systems, the polymerization temperature generally can fall within a range from about 70 °C to about 100 °C, or from about 75 °C to about 95 °C. Various polymerization conditions can be held substantially constant, for example, for the production of a particular grade of olefin polymer. Suitable pressures will also vary according to the reactor and polymerization type. The pressure for liquid phase polymerizations in a loop reactor is typically less than 1000 psig (6.9 MPa). Pressure for gas phase polymerization is usually at about 200 to 500 psig (1.4 MPa to 3.4 MPa). High pressure polymerization in tubular or autoclave reactors is generally run at about 20,000 to 75,000 psig (138 to 517 MPa). Polymerization reactors can also be operated in a supercritical region occurring at generally higher temperatures and pressures. Operation above the critical point of a pressure/temperature diagram (supercritical phase) may offer advantages. Aspects of this invention are directed to olefin polymerization processes comprising contacting a catalyst composition with an olefin monomer and, optionally, an olefin comonomer under polymerization conditions to produce an olefin polymer. The olefin polymer (e.g., ethylene homopolymer, ethylene copolymer, etc.) produced by the process can have any of the polymer properties disclosed herein, for example, a ratio of Mw/Mn from about 2 to about 5, and/or a Mw from about 100,000 to about 500,000 g/mol, and/or a melt index less than about 5 g/10 min, and/or a HLMI less than 63 about 25 g/10 min, and/or a density from about 0.89 to about 0.96 g/cm³, and/or less than about 0.005 long chain branches (LCB) per 1000 total carbon atoms. 5 10 15 20 25 30 Aspects of this invention also are directed to olefin polymerization processes conducted in the absence of added hydrogen. An olefin polymerization process of this invention can comprise contacting a catalyst composition with an olefin monomer and optionally an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer, wherein the catalyst composition can comprise a cyclobutylidene-bridged metallocene, an activator, and an optional co-catalyst, and wherein the polymerization process is conducted in the absence of added hydrogen (no hydrogen is added to the polymerization reactor system). As one of ordinary skill in the art would recognize, hydrogen can be generated in-situ by metallocene catalyst compositions in various olefin polymerization processes, and the amount generated can vary depending upon the specific catalyst composition and metallocene compound employed, the type of polymerization process used, the polymerization reaction conditions utilized, and so forth. In other aspects, it may be desirable to conduct the polymerization process in the presence of a certain amount of added hydrogen. Accordingly, an olefin polymerization process of this invention can comprise contacting a catalyst composition with an olefin monomer and optionally an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer, wherein the catalyst composition comprises a cyclobutylidene-bridged metallocene, an activator, and an optional co-catalyst, and wherein the polymerization process is conducted in the presence of added hydrogen (hydrogen is added to the polymerization reactor system). For example, the ratio of hydrogen to the olefin monomer in the polymerization process can be controlled, often by the feed ratio of hydrogen to the olefin monomer ratio in the process can be controlled at a weight ratio which falls within a range from about 25 ppm to about 1500 ppm, from about 50 to about 1000 ppm, or from about 100 ppm to about 750 ppm. In some aspects of this invention, the feed or reactant ratio of hydrogen to olefin monomer can be maintained substantially constant during the polymerization run for a particular polymer grade. That is, the hydrogen:olefin monomer ratio can be selected at a particular ratio within a range from about 5 ppm up to about 1000 ppm or so, and maintained at the ratio to within about +/- 25% during the polymerization run. For instance, if the target ratio is 100 ppm, then maintaining the hydrogen:olefin monomer ratio substantially constant would entail maintaining the feed ratio between about 75 ppm and about 125 ppm. Further, the addition of comonomer (or comonomers) can be, and generally is, substantially constant throughout the polymerization run for a particular polymer grade. However, in other aspects, it is contemplated that monomer, comonomer (or comonomers), and/or hydrogen can be periodically pulsed to the reactor, for instance, in a manner similar to that employed in U.S. Patent No. 5,739,220 and U.S. Patent Publication No.
2004/0059070, the disclosures of which are incorporated herein by reference in their entirety. The concentration of the reactants entering the polymerization reactor system can be controlled to produce resins with certain physical and mechanical properties. The proposed end-use product that will be formed by the polymer resin and the method of forming that product ultimately can determine the desired polymer properties and attributes. Mechanical properties include tensile, flexural, impact, creep, stress relaxation, and hardness tests. Physical properties include density, molecular weight, molecular weight distribution, melting temperature, glass transition temperature, temperature melt of crystallization, density, stereoregularity, crack growth, long chain branching, and rheological measurements. This invention is also directed to, and encompasses, the polymers produced by any of the polymerization processes disclosed herein. Articles of manufacture can be formed from, and/or can comprise, the polymers produced in accordance with this invention. #### POLYMERS AND ARTICLES 5 10 15 20 25 30 Olefin polymers encompassed herein can include any polymer produced from any olefin monomer and optional comonomer(s) described herein. For example, the olefin polymer can comprise an ethylene homopolymer, an ethylene copolymer (e.g., ethylene/ α -olefin, ethylene/1-butene, ethylene/1-hexene, ethylene/1-octene, etc.), a propylene homopolymer, a propylene copolymer, an ethylene terpolymer, a propylene terpolymer, and the like, including combinations thereof. In one aspect, the olefin 65 polymer can be an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer, while in another aspect, the olefin polymer can be an ethylene/1-hexene copolymer. If the resultant polymer produced in accordance with the present invention is, for example, an ethylene polymer, its properties can be characterized by various analytical techniques known and used in the polyolefin industry. Articles of manufacture can be formed from, and/or can comprise, the olefin polymers (e.g., ethylene polymers) of this invention, whose typical properties are provided below. 5 10 15 20 25 30 Polymers of ethylene (homopolymers, copolymers, terpolymers, etc.) produced in accordance with some aspects of this invention generally can have a melt index (MI) from 0 to about 10 g/10 min. Melt indices in the range from 0 to about 5 g/10 min, from 0 to about 2 g/10 min, or from 0 to about 1 g/10 min, are contemplated in other aspects of this invention. For example, a polymer of the present invention can have a melt index in a range from about 0.01 to about 10, from about 0.01 to about 5, from about 0.01 to about 2, from about 0.01 to about 1, from about 0.02 to about 1, from about 0.05 to about 2, or from about 0.1 to about 1.5 g/10 min. Ethylene polymers produced in accordance with this invention can have a high load melt index (HLMI) of less than about 50, less than about 25, less than about 20, less than about 15, less than about 10, or less than about 5 g/10 min. Suitable ranges for the HLMI can include, but are not limited to, from 0 to about 25, from 0 to about 15, from 0 to about 5, from about 0.01 to about 25, from about 0.1 to about 25, from about 0.1 to about 5, from about 0.1 to about 5, from about 0.25 to about 10, or from about 0.5 to about 5 g/10 min. The densities of ethylene-based polymers produced using the catalyst systems and processes disclosed herein often are greater than or equal to about 0.89 g/cm³. In one aspect of this invention, the density of the ethylene polymer can be in a range from about 0.89 to about 0.96 g/cm³. Yet, in another aspect, the density can be in a range from about 0.90 to about 0.96 g/cm³, such as, for example, from about 0.91 to about 0.95 g/cm³, from about 0.90 to about 0.94 g/cm³, or from about 0.91 to about 0.94 g/cm³. Unexpectedly, ethylene/α-olefin copolymers (e.g., ethylene/1-hexene copolymers) produced using the catalyst systems and polymerization processes described herein can improved comonomer incorporation, for example, having a 5 10 15 20 25 30 66 PCT/US2014/050622 density less (e.g., at least 0.001 g/cm³ less, at least 0.0015 g/cm³ less, at least 0.002 g/cm³ less, etc.) than that of an ethylene/α-olefin copolymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl). This comparison is conducted at the same polymerization conditions and with the same other catalyst system components (same amount of metallocene compound, same amount/type of cocatalyst, same amount/type of activator, same polymerization temperature, same copolymer productivity, etc.). Hence, the only difference is the cyclobutyl bridging group on the metallocene compound, as compared to a metallocene compound with a cyclopentyl, cyclohexyl, or cycloheptyl bridging group. Ethylene polymers, such as homopolymers, copolymers, etc., consistent with various aspects of the present invention generally can have weight-average molecular weights (Mw's), for instance, in a range from about 100,000 to about 500,000 g/mol, from about 100,000 to about 450,000 g/mol, from about 125,000 to about 350,000 g/mol, or from about 150,000 to about 400,000 g/mol. Surprisingly, olefin polymers (e.g., ethylene polymers) produced using the catalyst systems and polymerization processes described herein can have a Mw greater (e.g., at least 2% greater, at least 4% greater, at least 5% greater, etc.) than that of an olefin polymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl). As above, this comparison is conducted at the same polymerization conditions and with the same other catalyst system components and, therefore, the only difference is the cyclobutyl bridging group on the metallocene compound, as compared to metallocene compounds with a cyclopentyl, cyclohexyl, or cycloheptyl bridging group. The ratio of Mw/Mn, or the polydispersity index, for the polymers of this invention often can be in a range from about 2 to about 5. In some aspects disclosed herein, the ratio of Mw/Mn can be in a range from about 2 to about 4.8, from about 2.1 to about 4.8, or from about 2.2 to about 4.8. In other aspects, the ratio of Mw/Mn can be in a range from about 2.1 to about 4.5, from about 2.2 to about 4.5, from about 2.2 to about 4, from about 2.5 to about 4.5, or from about 2.4 to about 3.8. Unexpectedly, olefin polymers (e.g., ethylene polymers) produced using the catalyst systems and 5 10 15 20 25 30 polymerization processes described herein can have a Mw/Mn greater (e.g., at least 2% greater, at least 5% greater, at least 10% greater, at least 15% greater, etc.) than that of an olefin polymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl). As above, this comparison is conducted at the same polymerization conditions and with the same other catalyst system components and, therefore, the only difference is the cyclobutyl bridging group on the metallocene compound, as compared to metallocene compounds with a cyclopentyl, cyclohexyl, or cycloheptyl bridging group. Generally, polymers produced in aspects of the present invention have low levels of long chain branching, with typically less than about 0.01 long chain branches (LCB) per 1000 total carbon atoms, and more often, less than about 0.005 LCB per 1000 total carbon atoms. In some aspects, the number of LCB per 1000 total carbon atoms can be less than about 0.003, or less than about 0.002 LCB per 1000 total carbon atoms. Further, the olefin polymer can have less than about 0.001 LCB per 1000 total carbon atoms in particular aspects of this invention. Surprisingly, olefin polymers (e.g., ethylene polymers) produced using the catalyst systems and polymerization processes described herein can have less LCB than that of an olefin polymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl). As above, this comparison is conducted at the same polymerization conditions and with the same other catalyst system components and, therefore, the only difference is the cyclobutyl bridging group on the metallocene compound, as compared to metallocene compounds with a cyclopentyl, cyclohexyl, or cycloheptyl bridging group. Polymers of ethylene, whether homopolymers, copolymers, and so forth, can be formed into various articles of manufacture. Articles which can comprise polymers of this invention include, but are not limited to, an agricultural film, an automobile part, a bottle, a drum, a fiber or fabric, a food packaging film or container, a food service article, a fuel tank, a geomembrane, a household container, a liner, a molded product, a medical device or material, a pipe, a sheet or tape, a toy, and the like. Various processes can be employed to form these articles. Non-limiting examples of these processes include injection molding, blow molding, rotational molding, film extrusion, 5 10 15 20 25 30 sheet extrusion, profile extrusion, thermoforming, and the like. Additionally, additives and modifiers are often added to these polymers in order to provide beneficial polymer processing or end-use product attributes. Such processes and materials are described in *Modern Plastics Encyclopedia*, Mid-November 1995 Issue, Vol. 72, No. 12; and *Film Extrusion Manual – Process, Materials, Properties*, TAPPI Press, 1992; the disclosures of which are incorporated herein by reference in their entirety. Applicants also contemplate a method for forming or preparing an article of manufacture comprising a polymer produced by any of the polymerization processes
disclosed herein. For instance, a method can comprise (i) contacting a catalyst composition with an olefin monomer and an optional olefin comonomer under polymerization conditions in a polymerization reactor system to produce an olefin polymer, wherein the catalyst composition can comprise a cyclobutylidene-bridged metallocene, an activator (e.g., an activator-support comprising a solid oxide treated with an electron-withdrawing anion), and an optional co-catalyst (e.g., an organoaluminum compound); and (ii) forming an article of manufacture comprising the olefin polymer. The forming step can comprise blending, melt processing, extruding, molding, or thermoforming, and the like, including combinations thereof. ### **EXAMPLES** The invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations to the scope of this invention. Various other aspects, embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to one of ordinary skill in the art without departing from the spirit of the present invention or the scope of the appended claims. Melt index (MI, g/10 min) was determined in accordance with ASTM D1238 at 190 °C with a 2,160 gram weight. High load melt index (HLMI, g/10 min) was determined in accordance with ASTM D1238 at 190 °C with a 21,600 gram weight. Polymer density was determined in grams per cubic centimeter (g/cm³) on a compression molded sample, cooled at about 15 °C per hour, and conditioned for about 40 hours at room temperature in accordance with ASTM D1505 and ASTM D1928, procedure C. 5 10 15 20 25 Molecular weights and molecular weight distributions were obtained using a PL-GPC 220 (Polymer Labs, an Agilent Company) system equipped with a IR4 detector (Polymer Char, Spain) and three Styragel HMW-6E GPC columns (Waters, MA) running at 145 °C. The flow rate of the mobile phase 1,2,4-trichlorobenzene (TCB) containing 0.5 g/L 2,6-di-t-butyl-4-methylphenol (BHT) was set at 1 mL/min, and polymer solution concentrations were in the range of 1.0-1.5 mg/mL, depending on the molecular weight. Sample preparation was conducted at 150 °C for nominally 4 hr with occasional and gentle agitation, before the solutions were transferred to sample vials for injection. The integral calibration method was used to deduce molecular weights and molecular weight distributions using a Chevron Phillips Chemicals Company's HDPE polyethylene resin, MARLEX® BHB5003, as the broad standard. The integral table of the broad standard was pre-determined in a separate experiment with SEC-MALS. Mn is the number-average molecular weight, and Mw is the weight-average molecular weight. Melt rheological characterizations were performed as follows. Small-strain (10%) oscillatory shear measurements were performed on a Rheometrics Scientific, Inc. ARES rheometer using parallel-plate geometry. All rheological tests were performed at 190 °C. The complex viscosity $|\eta^*|$ versus frequency (ω) data were then curve fitted using the modified three parameter Carreau-Yasuda (CY) empirical model to obtain the zero shear viscosity $-\eta_0$, characteristic viscous relaxation time $-\tau_\eta$, and the breadth parameter -a. The simplified Carreau-Yasuda (CY) empirical model is as follows. $$|\eta^*(\omega)| = \frac{\eta_0}{\left[1 + (\tau_{\eta}\omega)^a\right]^{(1-n)/a}},$$ wherein: $|\eta^*(\omega)| = \text{magnitude of complex shear viscosity};$ η_0 = zero shear viscosity; τ_n = viscous relaxation time; a = "breadth" parameter (CY-a parameter); n = fixes the final power law slope, fixed at 2/11; and ω = angular frequency of oscillatory shearing deformation. 5 10 15 20 25 30 Details of the significance and interpretation of the CY model and derived parameters may be found in: C. A. Hieber and H. H. Chiang, *Rheol. Acta*, 28, 321 (1989); C.A. Hieber and H.H. Chiang, *Polym. Eng. Sci.*, 32, 931 (1992); and R. B. Bird, R. C. Armstrong and O. Hasseger, *Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics*, 2nd Edition, John Wiley & Sons (1987); each of which is incorporated herein by reference in its entirety. The long chain branches (LCB) per 1000 total carbon atoms were calculated using the method of Janzen and Colby (*J. Mol. Struct.*, 485/486, 569-584 (1999)), from values of zero shear viscosity, η₀ (estimated from the Carreau-Yasuda model fitted to dynamic shear viscosity data), and measured values of Mw obtained using a Dawn EOS multiangle light scattering detector (Wyatt). See Y. Yu, D. C. Rohlfing, G. R Hawley, and P. J. DesLauriers, *Polymer Preprint*, 44, 50, (2003), and U.S. Patent No. 8,114,946 and J. Phys. Chem. 1980, 84, 649, the disclosures of which are incorporated herein by reference in their entirety. Fluorided silica-coated aluminas were prepared as follows. Bohemite was obtained from W.R. Grace & Company under the designation "Alumina A" and having a surface area of about 300 m²/g, a pore volume of about 1.3 mL/g, and an average particle size of about 100 microns. The alumina was first calcined in dry air at about 600 °C for approximately 6 hours, cooled to ambient temperature, and then contacted with tetraethylorthosilicate in isopropanol to equal 25 wt. % SiO₂. After drying, the silica-coated alumina was calcined at 600 °C for 3 hours. Fluorided silica-coated alumina (7 wt. % F) was prepared by impregnating the calcined silica-coated alumina with an ammonium bifluoride solution in methanol, drying, and then calcining for 3 hours at 600 °C in dry air. Afterward, the fluorided silica-coated alumina was collected and stored under dry nitrogen, and was used without exposure to the atmosphere. #### **EXAMPLES 1-32** Examples 1-32 were produced using the following polymerization procedure. All polymerization runs were conducted in a half-gallon stainless steel reactor. Isobutane (1.2 L) was used in all runs. Metallocene solutions were prepared at about 1 mg/mL in toluene. Approximately 100-150 mg of fluorided silica-coated alumina (the exact amount was not critical, as long as the activator-support was in sufficient excess, so the activity was dependent upon the metallocene compound), 0.5 mmol of alkyl 5 10 aluminum (triisobutylaluminum), and the metallocene solution of the specific compound were added in that order through a charge port while slowly venting isobutane vapor. The charge port was closed and isobutane was added. The contents of the reactor were stirred and heated to the desired run temperature of about 80 °C, and ethylene was then introduced into the reactor with 20 g of 1-hexene (if used). Ethylene was fed on demand to maintain the target pressure of 340 psig pressure for the length of the polymerization run, which was varied to produce substantially the same amount of polymer (about 150 g). The reactor was maintained at the desired run temperature throughout the run by an automated heating-cooling system. The following metallocene compounds were used in Examples 1-32: 15 20 Table I summarizes certain experimental conditions and properties of the polymers of Examples 1-32. In Table I, the metallocene activity is the catalyst activity based on the metallocene compound, in units of grams of polymer per mmol of the metallocene compound per hour. FIG. 1 summarizes the average homopolymer catalyst activity and the average copolymer catalyst activity for the catalyst systems of Examples 1-32, containing metallocene MET-A, MET-B, MET-C, MET-D, or MET-E. Unexpectedly, the catalyst activity using MET-A (cyclobutyl bridging group) was the lowest for the production of ethylene homopolymer, but was the highest for the production of ethylene copolymer (ethylene/1-hexene). The copolymer;homopolymer 72 activity ratio for the catalyst system with MET-A, surprisingly, was about 3.5:1, much higher than catalyst systems using metallocene compounds with cyclopentyl and cycloheptyl bridging groups. Table II summarizes the average density and Mw for the hompolymers and copolymers produced using MET-A, MET-B, MET-C, and MET-D. The polymer produced using MET-A, unexpectedly, had both Mw and Mw/Mn values that were greater than that of polymers produced using MET-B or MET-C. Moreover, the density of the copolymers produced using MET-A was much lower than that of the copolymers produced using MET-B or MET-C, indicating superior comonomer incorporation with MET-A. FIG. 2 illustrates the unexpectedly low levels of long chain branches (LCB) in the copolymers produced using MET-A, e.g., less than 0.001 LCB per 1000 total carbon atoms. This LCB content is less than that of copolymers produced using MET-B or MET-C. 10 5 Table I. Examples 1-32. | Example Support (9) | س يا | 1.
hexene
(g) | Time
(min) | Polymer
Yield
(g) | Metallocene
Activity
(g/mmol/h) | MI
(g/10
min) | HLMI
(g/10
min) | Density
(g/cc) | Mw/1000
(g/mol) | Mw/Wn | no
(Pa-sec) | CV-a | |---------------------|------|---------------------|---------------|-------------------------|---------------------------------------|---------------------|-----------------------|-------------------|--------------------|-------|----------------|----------| | 0.1359 | ├ | 0 | 30 | 139 | 566,000 | 0.02 | 7.0 | 0.9380 | 364 | 89.8 | 3.03E+05 | 4.84E-01 | | 0.1336 | | 0 | 30 | 144 | 586,000 | 0.01 | 9.0 | 0.9381 | 366 | 3.80 | 2.64E+05 | 4.94E-01 | | 0.1308 | | 0 | 30 | 138 | 562,000 | 0.02 | 9'0 | 0.9375 | 382 | 3.06 | 3.21E+05 | 4.90E-01 | | 0.1321 | | 20 | 10 | 168 | 2,052,000 | 0.1 | 3.5 | 0.9133 | 233 | 3.16 | 4.73E+04 | 4.21E-01 | | 0.1304 | | 20 | Ō | 121 | 1,642,000 | 0.1 | 3.0 | 0.9126 | 226 | 3.47 | 4.79E+04 | 4.46E-01 | | 0.1216 | | 20 | တ | 169 | 2,294,000 | 60.0 | 3.4 | 0.9127 | 228 | 3.17 | 4.46E+04 | 4,49E-01 | | 0.1271 | | 20 | တ | 165 | 2,240,000 | 0.1 | 3.8 | 0.9132 | 222 | 2.72 | 4.02E+04 | 4.47E-01 | | 0.1250 | | 0 | 30 | 143 | 596,000 | 0 | 9.0 | 0.9388 | 350 | 2.55 | 3.21E+05 | 4.96E-01 | |
0.1355 | | 0 | 28 | 153 | 683,000 | 0 | 2.0 | 0.9394 | 341 | 2.60 | 2.45E+05 | 4.91E-01 | | 0.1283 | | 0 | 30 | 147 | 612,000 | 0 | 9.0 | 0.9391 | 347 | 2.61 | 2.90E+05 | 4.90E-01 | | 0.1423 | | 20 | 10 | 150 | 1,875,000 | 0.1 | 2.7 | 0.9151 | 200 | 2.18 | 4.98E+04 | 4.37E-01 | | 0.1247 | | 20 | 12 | 26 | 1,010,000 | 0.05 | 1,9 | 0.9161 | 234 | 2.33 | 8.66E+04 | 4.19E-01 | | 0.1291 | | 20 | 11 | 112 | 1,272,000 | 0.08 | 2.4 | 0.9152 | 211 | 2.24 | 6.89E+04 | 4.22E-01 | | 0.1380 | | 0 | 28 | 160 | 746,000 | 90.0 | 1.6 | 0.9408 | 260 | 3.20 | 1.18E+05 | 4.69E-01 | | 0.1342 | | 0 | 28 | 152 | 709,000 | 90.0 | 1.6 | 0.9409 | 264 | 3.43 | 1.40E+05 | 4.62E-01 | | 0.1183 | | 0 | 30 | 140 | 000,609 | 0.04 | 1.3 | 0.9400 | 281 | 3.54 | 1.51E+05 | 4.70E-01 | | 0.1591 | | 20 | 15 | 152 | 1,323,000 | 0.2 | 5.2 | 0.9192 | 178 | 2.36 | 3.02E+04 | 4.07E-01 | | 0.1374 | | 20 | 12 | 187 | 2,035,000 | 0.3 | 9.5 | 0.9181 | 163 | 2.24 | 2.17E+04 | 4.39E-01 | | 0.1335 | | 20 | 10 | 114 | 1,489,000 | 0.2 | 4,8 | 0.9167 | 176 | 2.21 | 3.34E+04 | 4.24E-01 | | | | | | | | | | | | | | | Table I. Examples 1-32 (continued). | Metallocene | | | | | | | | | | | | | | |-------------|---------|------------------------------|---------------------|---------------|-------------------------|---------------------------------------|---------------|-----------------------|-------------------|--------------------|-------|----------------|----------| | | Example | Activator-
Support
(g) | 1-
hexene
(g) | Time
(min) | Polymer
Yield
(g) | Metallocene
Activity
(g/mmol/h) | (g/10
min) | HLMI
(g/10
min) | Density
(g/cc) | Mw/1000
(g/mol) | Mw/Mn | no
(Pa-sec) | CY-a | | MET-D | 20 | 0.1476 | 0 | 27 | 144 | 624,000 | 0 | 0.15 | 0.9353 | 475 | 3.01 | 2.24E+06 | 3.85E-01 | | MET-D | 21 | 0.1267 | 0 | 27 | 138 | 598,000 | 0 | 0.14 | 0.9346 | 503 | 4.26 | 2.15E+06 | 4.40E-01 | | MET-D | 22 | 0.1284 | 0 | 27 | 137 | 593,000 | 0 | 0.12 | 0.9344 | 462 | 3.67 | 2.24E+06 | 4.13E-01 | | MET-D | 23 | 0.1265 | 20 | 23 | 122 | 620,000 | 0.02 | 6.0 | 0.9142 | 260 | 3.35 | 5.43E+05 | 2.86E-01 | | MET-D | 24 | 0.1257 | 20 | 20 | 155 | 000'906 | 0.02 | -:- | 0.9152 | 242 | 2.66 | 6.33E+05 | 2.44E-01 | | MET-D | 25 | 0.1271 | 20 | 17 | 188 | 1,293,000 | 0.03 | 1.6 | 0.9151 | 250 | 3.53 | 5.82E+05 | 2.21E-01 | | MET-D | 26 | 0.1105 | 20 | 15 | 133 | 1,037,000 | 0.02 | 1.2 | 0.9133 | 265 | 3.11 | 6.11E+05 | 2.60E-01 | | MET-E | 27 | 0.132 | 0 | 33 | 139 | 000'609 | 0 | 0 | 0.9329 | 773 | 2.78 | 4.35E+06 | 8.28E-01 | | MET-E | 28 | 0.1393 | 0 | 33 | 142 | 622,000 | 0 | 0 | 9886.0 | 759 | 2.66 | 4.11E+06 | 7.93E-01 | | MET-E | 29 | 0.1366 | 0 | 33 | 143 | 627,000 | 0 | 0 | 6886.0 | 759 | 2.67 | 4.32E+06 | 8.04E-01 | | MET-E | 30 | 0.1318 | 20 | 20 | 26 | 701,000 | 0 | 0.1 | 0.9126 | 518 | 2.34 | 1.24E+06 | 7.08E-01 | | MET-E | 31 | 0.1300 | 20 | 28 | 152 | 785,000 | 0 | 0.2 | 1116.0 | 452 | 2.22 | 7.98E+05 | 6.61E-01 | | MET-E | 32 | 0.1342 | 20 | 28 | 153 | 790,000 | 0 | 0.2 | 0.9132 | 455 | 2.20 | 8.56E+05 | 6.44E-01 | Table II. Density and Molecular Weight Comparison for MET-A, MET-B, MET-C, and MET-D | Metallocene | Polymer Type | Average Density | Average Mw | |-------------|--------------|-----------------|------------| | | | (33/5) | (g/mon) | | A TET A | Homopolymer | 0.9379 | 371,000 | | W-1 7W | Copolymer | 0.9130 | 227,100 | | NET D | Homopolymer | 0.9391 | 345,700 | | d-12M | Copolymer | 0.9155 | 215,000 | | O TOM | Homopolymer | 0.9406 | 269,000 | | V-1.21VI | Copolymer | 0.9180 | 172,000 | | ATTA | Homopolymer | 0.9348 | 480,000 | | WIE L-L | Copolymer | 0.9145 | 255,000 | 10 2 15 The invention is described above with reference to numerous aspects and embodiments, and specific examples. Many variations will suggest themselves to those skilled in the art in light of the above detailed description. All such obvious variations are within the full intended scope of the appended claims. Other embodiments of the invention can include, but are not limited to, the following (embodiments are described as "comprising" but, alternatively, can "consist essentially of" or "consist of"): Embodiment 1. A ligand compound having the formula: Cp is a cyclopentadienyl group with an alkyl and/or an alkenyl substituent; and R^X and R^Y independently are H, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} halogenated hydrocarbyl group, a C_1 to C_{36} hydrocarboxy group, or a C_1 to C_{36} hydrocarbylsilyl group. Embodiment 2. A metallocene compound having the formula: $$R^{X}$$ R^{Y} X^{2} Cp (I) ; wherein: M is Ti, Zr, or Hf; Cp is a cyclopentadienyl group with an alkyl and/or an alkenyl substituent; X¹ and X² independently are a monoanionic ligand; and R^X and R^Y independently are H, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} halogenated hydrocarbyl group, a C_1 to C_{36} hydrocarbylsilyl group. Embodiment 3. The compound defined in embodiment 1 or 2, wherein Cp is a cyclopentadienyl group with an alkyl substituent, e.g., any C_1 to C_{18} alkyl group disclosed herein. Embodiment 4. The compound defined in embodiment 3, wherein the alkyl substituent is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, or a decyl group. Embodiment 5. The compound defined in embodiment 3, wherein the alkyl substituent is a C_1 to C_6 linear or branched alkyl group. Embodiment 6. The compound defined in embodiment 1 or 2, wherein Cp is a cyclopentadienyl group with an alkenyl substituent, e.g., any C_2 to C_{18} alkenyl group disclosed herein. Embodiment 7. The compound defined in embodiment 6, wherein the alkenyl substituent is an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, or a decenyl group. Embodiment 8. The compound defined in embodiment 6, wherein the alkenyl substituent is a C_2 to C_{12} linear alkenyl group. Embodiment 9. The compound defined in embodiment 6, wherein the alkenyl substituent is a C_2 to C_8 terminal alkenyl group. Embodiment 10. The compound defined in embodiment 6, wherein the alkenyl substituent is a C_3 to C_6 terminal alkenyl group. Embodiment 11. The compound defined in any one of embodiments 1-10, wherein Cp contains only one alkyl or only one alkenyl substituent. Embodiment 12. The compound defined in embodiment 1 or 2, wherein Cp is a cyclopentadienyl group with an alkyl and an alkenyl substituent, e.g., any C_1 to C_{18} alkyl group and any C_2 to C_{18} alkenyl group disclosed herein. Embodiment 13. The compound defined in any one of embodiments 1-12, wherein R^X and R^Y independently are any substituent disclosed herein, e.g., H or a C_1 to C_{18} hydrocarbyl group. Embodiment 14. The compound defined in any one of embodiments 1-12, wherein R^X and R^Y independently are H, Cl, CF₃, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a phenyl group, a tolyl group, a benzyl group, a naphthyl group, a trimethylsilyl group, a triisopropylsilyl group, a triphenylsilyl group, an allyldimethylsilyl group, or a 1-methylcyclohexyl group. Embodiment 15. The compound defined in any one of embodiments 1-14, wherein R^X and R^Y independently are a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group. Embodiment 16. The compound defined in any one of embodiments 1-15, wherein R^X and R^Y are a tert-butyl group. Embodiment 17. The compound defined in any one of embodiments 1-14, wherein $R^{\rm X}$ and $R^{\rm Y}$ are H. Embodiment 18. The compound defined in any one of embodiments 2-17, wherein M is Ti. Embodiment 19. The compound defined in any one of embodiments 2-17, wherein M is Zr. Embodiment 20. The compound defined in any one of embodiments 2-17, wherein M is Hf. Embodiment 21. The compound defined in any one of embodiments 2-20, wherein X^1 and X^2 independently are any monoanionic ligand disclosed herein. Embodiment 22. The compound defined in any one of embodiments 2-21, wherein X^1 and X^2 independently are H, BH₄, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} hydrocarboxy group, a C_1 to C_{36} hydrocarbylaminyl group, a C_1 to C_{36} hydrocarbylsilyl group, a C_1 to C_{36} hydrocarbylaminylsilyl group, OBR¹₂, or OSO₂R¹, wherein R¹ is a C_1 to C_{36} hydrocarbyl group. Embodiment 23. The compound defined in any one of embodiments 2-22, wherein X^1 and X^2 independently are any halide or C_1 to C_{18} hydrocarbyl group disclosed herein. Embodiment 24. The compound defined in any one of embodiments 2-23, wherein X^1 and X^2 are Cl. Embodiment 25. A catalyst composition comprising the metallocene compound defined in any one of embodiments 2-24, an activator, and an optional co-catalyst. Embodiment 26. The composition defined in embodiment 25, wherein the activator comprises any activator disclosed herein. Embodiment 27. The composition defined in embodiment 25 or 26, wherein the activator comprises an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or any combination thereof. Embodiment 28. The composition defined in any one of embodiments 25-27, wherein the activator comprises an aluminoxane compound. Embodiment 29. The composition defined in any one of embodiments 25-27, wherein the activator comprises an organoboron or organoborate compound. Embodiment 30. The composition defined in any one of embodiments 25-27, wherein the activator comprises an ionizing ionic compound. Embodiment 31. The composition defined in embodiment 25
or 26, wherein the activator comprises an activator-support, the activator-support comprising any solid oxide treated with an electron-withdrawing anion disclosed herein. Embodiment 32. The composition defined in embodiment 31, wherein the solid oxide comprises any solid oxide disclosed herein, e.g., silica, alumina, silica-alumina, silica-coated alumina, aluminum phosphate, aluminophosphate, heteropolytungstate, titania, zirconia, magnesia, boria, zinc oxide, a mixed oxide thereof, or any mixture thereof; and the electron-withdrawing anion comprises any electron-withdrawing anion disclosed herein, e.g., sulfate, bisulfate, fluoride, chloride, bromide, iodide, fluorosulfate, fluoroborate, phosphate, fluorophosphate, trifluoroacetate, triflate, fluorozirconate, fluorotitanate, phospho-tungstate, or any combination thereof. Embodiment 33. The composition defined in embodiment 31, wherein the activator-support comprises fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, fluorided silica-titania, fluorided silica-coated alumina, sulfated silica-coated alumina, phosphated silica-coated alumina, or any combination thereof. Embodiment 34. The composition defined in embodiment 31, wherein the activator-support comprises fluorided alumina, sulfated alumina, fluorided silica- alumina, sulfated silica-alumina, fluorided silica-coated alumina, sulfated silica-coated alumina, or any combination thereof. Embodiment 35. The composition defined in embodiment 31, wherein the activator-support further comprises any metal or metal ion disclosed herein, e.g., zinc, nickel, vanadium, titanium, silver, copper, gallium, tin, tungsten, molybdenum, zirconium, or any combination thereof. Embodiment 36. The composition defined in embodiment 25 or 26, wherein the activator comprises an activator-support, the activator-support comprising a clay mineral, a pillared clay, an exfoliated clay, an exfoliated clay gelled into another oxide matrix, a layered silicate mineral, a non-layered silicate mineral, a layered aluminosilicate mineral, a non-layered aluminosilicate mineral, or any combination thereof. Embodiment 37. The composition defined in any one of embodiments 25-36, wherein the catalyst composition comprises a co-catalyst, e.g., any co-catalyst disclosed herein. Embodiment 38. The composition defined in any one of embodiments 25-37, wherein the co-catalyst comprises an organoaluminum compound, an organozinc compound, an organomagnesium compound, an organolithium compound, or any combination thereof. Embodiment 39. The composition defined in any one of embodiments 25-38, wherein the co-catalyst comprises an organoaluminum compound. Embodiment 40. The composition defined in embodiment 39, wherein the organoaluminum compound comprises any organoaluminum compound disclosed herein, e.g., trimethylaluminum, triethylaluminum, triisobutylaluminum, etc., or combinations thereof. Embodiment 41. The composition defined in any one of embodiments 31-40, wherein the catalyst composition is substantially free of aluminoxane compounds, organoboron or organoborate compounds, ionizing ionic compounds, or combinations thereof. Embodiment 42. The composition defined in any one of embodiments 25-41, wherein the catalyst composition comprises any compound having formula (I) disclosed herein. WO 2015/023623 PCT/US2014/050622 Embodiment 43. The composition defined in any one of embodiments 25-42, wherein the catalyst composition comprises only one compound having formula (I). Embodiment 44. The composition defined in any one of embodiments 25-43, wherein the catalyst composition is produced by a process comprising contacting the metallocene compound and the activator. Embodiment 45. The composition defined in any one of embodiments 25-43, wherein the catalyst composition is produced by a process comprising contacting, in any order, the metallocene compound, the activator, and the co-catalyst. Embodiment 46. The composition defined in any one of embodiments 25-45, wherein a catalyst activity of the catalyst composition is in any range disclosed herein, e.g., greater than about 200,000 grams, greater than about 350,000 grams, greater than about 500,000 grams, etc., of ethylene homopolymer per millimole of the metallocene compound per hour, under slurry polymerization conditions, with a triisobutylaluminum co-catalyst, using isobutane as a diluent, and with a polymerization temperature of 80 °C and a reactor pressure of 340 psig. Embodiment 47. The composition defined in any one of embodiments 25-46, wherein a catalyst activity of the catalyst composition is in any range disclosed herein, e.g., greater than about 1,000,000 grams, greater than about 1,500,000 grams, greater than about 2,000,000 grams, etc., of ethylene/α-olefin copolymer (e.g., ethylene/1-hexene copolymer) per millimole of the metallocene compound per hour, under slurry polymerization conditions, with a triisobutylaluminum co-catalyst, using isobutane as a diluent, and with a polymerization temperature of 80 °C and a reactor pressure of 340 psig. Embodiment 48. The composition defined in any one of embodiments 25-47, wherein a catalyst activity of the catalyst composition has a copolymer:homopolymer activity ratio in any range disclosed herein, e.g., from about 2.5:1 to about 5:1, from about 2.75:1 to about 4.5:1, from about 3:1 to about 4:1, from about 3.4:1 to about 5:1, etc. Embodiment 49. The composition defined in any one of embodiments 25-48, wherein a copolymer catalyst activity of the catalyst composition (in grams of ethylene/1-hexene copolymer per millimole of the metallocene compound per hour) is greater (e.g., at least 5% greater, at least 10% greater, at least 15% greater, etc.) than that of a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl), under the same polymerization conditions. Embodiment 50. The composition defined in any one of embodiments 25-49, wherein a copolymer:homopolymer activity ratio of the catalyst composition is greater (e.g., at least 10% greater, at least 15% greater, at least 25% greater, etc.) than that of a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl), under the same polymerization conditions. Embodiment 51. An olefin polymerization process, the process comprising contacting the catalyst composition defined in any one of embodiments 25-50 with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer. Embodiment 52. The process defined in embodiment 51, wherein the olefin monomer comprises any olefin monomer disclosed herein, e.g., any C₂-C₂₀ olefin. Embodiment 53. The process defined in embodiment 51 or 52, wherein the olefin monomer and the optional olefin comonomer independently comprise a C_2 - C_{20} alpha-olefin. Embodiment 54. The process defined in any one of embodiments 51-53, wherein the olefin monomer comprises ethylene. Embodiment 55. The process defined in any one of embodiments 51-54, wherein the catalyst composition is contacted with ethylene and an olefin comonomer comprising a C_3 - C_{10} alpha-olefin. Embodiment 56. The process defined in any one of embodiments 51-55, wherein the catalyst composition is contacted with ethylene and an olefin comonomer comprising 1-butene, 1-hexene, 1-octene, or a mixture thereof. Embodiment 57. The process defined in any one of embodiments 51-53, wherein the olefin monomer comprises propylene. Embodiment 58. The process defined in any one of embodiments 51-57, wherein the polymerization reactor system comprises a batch reactor, a slurry reactor, a gas-phase reactor, a solution reactor, a high pressure reactor, a tubular reactor, an autoclave reactor, or a combination thereof. Embodiment 59. The process defined in any one of embodiments 51-58, wherein the polymerization reactor system comprises a slurry reactor, a gas-phase reactor, a solution reactor, or a combination thereof. Embodiment 60. The process defined in any one of embodiments 51-59, wherein the polymerization reactor system comprises a loop slurry reactor. Embodiment 61. The process defined in any one of embodiments 51-60, wherein the polymerization reactor system comprises a single reactor. Embodiment 62. The process defined in any one of embodiments 51-60, wherein the polymerization reactor system comprises 2 reactors. Embodiment 63. The process defined in any one of embodiments 51-60, wherein the polymerization reactor system comprises more than 2 reactors. Embodiment 64. The process defined in any one of embodiments 51-63, wherein the olefin polymer comprises any olefin polymer disclosed herein. Embodiment 65. The process defined in any one of embodiments 51-64, wherein the olefin polymer is an ethylene homopolymer, an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. Embodiment 66. The process defined in any one of embodiments 51-65, wherein the olefin polymer is an ethylene/1-hexene copolymer. Embodiment 67. The process defined in any one of embodiments 51-64, wherein the olefin polymer is a polypropylene homopolymer or a propylene-based copolymer. Embodiment 68. The process defined in any one of embodiments 51-67, wherein the polymerization conditions comprise a polymerization reaction temperature in a range from about 60 °C to about 120 °C and a reaction pressure in a range from about 200 to about 1000 psig (about 1.4 to about 6.9 MPa). Embodiment 69. The process defined in any one of embodiments 51-68, wherein the polymerization conditions are substantially constant, e.g., for a particular
polymer grade. Embodiment 70. The process defined in any one of embodiments 51-69, wherein no hydrogen is added to the polymerization reactor system. Embodiment 71. The process defined in any one of embodiments 51-69, wherein hydrogen is added to the polymerization reactor system. Embodiment 72. The process defined in any one of embodiments 51-71, wherein the olefin polymer has a ratio of Mw/Mn in any range disclosed herein, e.g., from about 2 to about 5, from about 2.2 to about 4, etc. Embodiment 73. The process defined in any one of embodiments 51-72, wherein the olefin polymer has a Mw/Mn greater (e.g., at least 2% greater, at least 5% greater, at least 15% greater, etc.) than that of an olefin polymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl), under the same polymerization conditions. Embodiment 74. The process defined in any one of embodiments 51-73, wherein the olefin polymer has a Mw in any range disclosed herein, e.g., from about 100,000 to about 500,000 g/mol, from about 150,000 to about 400,000 g/mol, etc. Embodiment 75. The process defined in any one of embodiments 51-74, wherein the olefin polymer has a Mw greater (e.g., at least 2% greater, at least 5% greater, etc.) than that of an olefin polymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl), under the same polymerization conditions. Embodiment 76. The process defined in any one of embodiments 51-75, wherein the olefin polymer has a melt index less than or equal to about 5 g/10 min or in any range disclosed herein, e.g., from about 0.01 to about 5 g/10 min, less than about 1 g/10 min, etc. Embodiment 77. The process defined in any one of embodiments 51-76, wherein the olefin polymer has a HLMI in any range disclosed herein, e.g., less than about 25, from about 0.1 to about 15, less than 5 g/10 min, etc. Embodiment 78. The process defined in any one of embodiments 51-77, wherein the olefin polymer has a density in any range disclosed herein, e.g., from about 0.89 to about 0.96, from about 0.90 to about 0.94, from about 0.91 to about 0.94 g/cm³, etc. Embodiment 79. The process defined in any one of embodiments 51-78, wherein the olefin polymer is an ethylene/ α -olefin copolymer, and the ethylene/ α -olefin copolymer (e.g., ethylene/1-hexene copolymer) has a density less (e.g., at least 0.001 g/cm³ less, at least 0.0015 g/cm³ less, at least 0.002 g/cm³ less, etc.) than that of an ethylene/ α -olefin copolymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl), under the same polymerization conditions. Embodiment 80. The process defined in any one of embodiments 51-79, wherein the olefin polymer has less than about 0.005 long chain branches (LCB) per 1000 total carbon atoms, e.g., less than about 0.002 LCB per 1000 total carbon atoms, less than about 0.001 LCB per 1000 total carbon atoms, etc. Embodiment 81. The process defined in any one of embodiments 51-80, wherein the olefin polymer has less LCB than that of an olefin polymer produced by a process using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group (e.g., cyclopentyl, cyclohexyl, cycloheptyl), under the same polymerization conditions. Embodiment 82. An olefin polymer produced by the olefin polymerization process defined in any one of embodiments 51-81. Embodiment 83. An article comprising the olefin polymer defined in embodiment 82. Embodiment 84. A method or forming or preparing an article of manufacture comprising an olefin polymer, the method comprising (i) performing the olefin polymerization process defined in any one of embodiments 51-81 to produce the olefin polymer, and (ii) forming the article of manufacture comprising the olefin polymer, e.g., via any technique disclosed herein. Embodiment 85. The article defined in embodiment 83 or 84, wherein the article is an agricultural film, an automobile part, a bottle, a drum, a fiber or fabric, a food packaging film or container, a food service article, a fuel tank, a geomembrane, a household container, a liner, a molded product, a medical device or material, a pipe, a sheet or tape, or a toy. #### **CLAIMS** 1. An olefin polymerization process, the process comprising: contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer, wherein the catalyst composition comprises a metallocene compound, an activator, and an optional co-catalyst, wherein the metallocene compound has the formula: $$R^{X}$$ R^{Y} X^{2} Cp (I); wherein: M is Ti, Zr, or Hf; Cp is a cyclopentadienyl group with an alkyl and/or an alkenyl substituent; X¹ and X² independently are a monoanionic ligand; and R^X and R^Y independently are H, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} halogenated hydrocarbyl group, a C_1 to C_{36} hydrocarboxy group, or a C_1 to C_{36} hydrocarbylsilyl group. 2. The process of claim 1, wherein: M is Zr or Hf; Cp is a cyclopentadienyl group with a C_3 to C_8 terminal alkenyl substituent; R^X and R^Y independently are H or a C_1 to C_{12} hydrocarbyl group. - 3. The process of claim 2, wherein X^1 and X^2 independently are a halide or a C_1 to C_{12} hydrocarbyl group. - 4. The process of claim 1, wherein the catalyst composition comprises an organoaluminum co-catalyst. - 5. The process of claim 4, wherein the organoaluminum co-catalyst comprises trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum chloride, or any combination thereof. - 6. The process of claim 4, wherein the activator comprises a fluorided solid oxide and/or a sulfated solid oxide. - 7. The process of claim 1, wherein the activator comprises an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or any combination thereof. - 8. The process of claim 1, wherein the activator comprises an activator-support, the activator-support comprising a solid oxide treated with an electron-withdrawing anion. - 9. The process of claim 1, wherein the polymerization reactor system comprises a slurry reactor, gas-phase reactor, solution reactor, or a combination thereof. - 10. The process of claim 1, wherein the olefin monomer comprises ethylene, and the olefin comonomer comprises 1-butene, 1-bexene, 1-octene, or a mixture thereof. - 11. The process of claim 1, wherein the olefin polymer is an ethylene polymer characterized by: - a ratio of Mw/Mn in a range from about 2 to about 5; - a Mw in a range from about 100,000 to about 500,000 g/mol; - a melt index of less than about 5 g/10 min; - a HLMI of less than about 25 g/10 min; - a density in a range from about 0.89 to about 0.96 g/cm³; or less than about 0.002 long chain branches (LCB) per 1000 total carbon atoms; or any combination thereof. - 12. The process of claim 1, wherein the olefin polymer is an ethylene/ α -olefin copolymer characterized by: - a Mw/Mn greater than that of an ethylene/ α -olefin copolymer obtained under the same polymerization conditions using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group; - a Mw greater than that of an ethylene/α-olefin copolymer obtained under the same polymerization conditions using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group; - a density less than that of an ethylene/ α -olefin copolymer obtained under the same polymerization conditions using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group; or less LCB than that of an ethylene/ α -olefin copolymer obtained under the same polymerization conditions using a catalyst system containing a metallocene compound with a different cycloalkyl bridging group. 13. A catalyst composition comprising a metallocene compound, an activator, and an optional co-catalyst, wherein the metallocene compound has the formula: $$R^{X}$$ R^{Y} X^{2} Cp (1); wherein: M is Ti, Zr, or Hf; Cp is a cyclopentadienyl group with an alkyl and/or an alkenyl substituent; X1 and X2 independently are a monoanionic ligand; and R^X and R^Y independently are H, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} halogenated hydrocarbyl group, a C_1 to C_{36} hydrocarbylsilyl group. - 14. The composition of claim 13, wherein the activator comprises an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or any combination thereof. - 15. The composition of claim 13, wherein the catalyst composition comprises a cocatalyst, and wherein the activator comprises an activator-support, the activator-support comprising a solid oxide treated with an electron-withdrawing anion. - 16. The composition of claim 13, wherein: a catalyst activity of the catalyst composition is greater than about 350,000 grams of ethylene homopolymer per millimole of the metallocene compound per hour, under slurry polymerization conditions, with a triisobutylaluminum co-catalyst, using isobutane as a diluent, and with a polymerization temperature of 80 °C and a reactor pressure of 340 psig; and a catalyst activity of the catalyst composition is greater than about 1,500,000 grams of ethylene/1-hexene copolymer per millimole of the metallocene compound per hour, under slurry polymerization conditions, with a triisobutylaluminum co-catalyst, using isobutane as a diluent, and with a
polymerization temperature of 80 °C and a reactor pressure of 340 psig. # 17. The composition of claim 13, wherein: a catalyst activity of the catalyst composition has a copolymer:homopolymer activity ratio in a range from about 2.5:1 to about 5:1; a copolymer:homopolymer activity ratio of the catalyst composition is greater than that of a catalyst system containing a metallocene compound with a different cycloalkyl bridging group; and a copolymer catalyst activity of the catalyst composition is greater than that of a catalyst system containing a metallocene compound with a different cycloalkyl bridging group. #### 18. A metallocene compound having the formula: M is Ti, Zr, or Hf; Cp is a cyclopentadienyl group with an alkyl and/or an alkenyl substituent; X^1 and X^2 independently are a monoanionic ligand; and R^X and R^Y independently are H, a halide, a C_1 to C_{36} hydrocarbyl group, a C_1 to C_{36} halogenated hydrocarbyl group, a C_1 to C_{36} hydrocarbylsilyl group. # 19. The compound of claim 18, wherein: M is Zr or Hf; Cp is a cyclopentadienyl group with a C_1 to C_8 alkyl substituent or a C_3 to C_8 terminal alkenyl substituent; R^X and R^Y independently are H or a C_1 to C_{12} hydrocarbyl group; and X^1 and X^2 independently are a halide or a C_1 to C_{12} hydrocarbyl group. 90 20. The compound of claim 19, wherein: $\boldsymbol{R}^{\boldsymbol{X}}$ and $\boldsymbol{R}^{\boldsymbol{Y}}$ independently are H or a tert-butyl group; and X^1 and X^2 independently are Cl, methyl, phenyl, or benzyl. FIG. 1 FIG. 2 #### INTERNATIONAL SEARCH REPORT International application No PCT/US2014/050622 A. CLASSIFICATION OF SUBJECT MATTER INV. C08F210/16 C08F110/02 INV. C08F4/6592 ADD. C08F4/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C08F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category' US 2003/139284 A1 (TSAI JING-CHERNG [TW] 1,3-5,7, Χ ET AL) 24 July 2003 (2003-07-24) 11-14, 16-20 claims 1,13,26 EP 1 548 018 A1 (MITSUI CHEMICALS INC 1-20 Α [JP]) 29 June 2005 (2005-06-29) the whole document X See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 22 October 2014 29/10/2014 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Thomas, Dominik # **INTERNATIONAL SEARCH REPORT** Information on patent family members International application No PCT/US2014/050622 | Patent document
cited in search report | | Publication
date | | Patent family member(s) | | Publication
date | |---|----|---------------------|--|--|--|--| | US 2003139284 | A1 | 24-07-2003 | US
US
US | 2003139284 A
2003212221 A
2003216249 A | ۱1 | 24-07-2003
13-11-2003
20-11-2003 | | EP 1548018 | A1 | 29-06-2005 | AU
CN
EP
EP
EP
KR
KR
MY
TW
US | 2003211542 A
1684968 A
1548018 A
2465878 A
2465879 A
2511305 A
20050025667 A
20070010086 A
141787 A
1252854 B
2006161013 A
2004029062 A | \ \1
\1
\1
\1
\1
\1
\
\
\
\
\
\
\
\
\
\ | 19-04-2004
19-10-2005
29-06-2005
20-06-2012
20-06-2012
17-10-2012
14-03-2005
19-01-2007
30-06-2010
11-04-2006
20-07-2006
08-04-2004 |