Abstract: The machine (M) comprises a hydraulic circuit including a brewing assembly (1), a water tank (4), a pump (3) with the inlet connected to the tank (4) and the outlet connected to the brewing assembly (1), a normally closed one-way valve (10) positioned between the pump (3) and the brewing assembly (1), a heater (9) for heating the water outputted by the pump (3), and a normally open discharge valve (12) having an inlet (12a) connected between the one-way valve (10) and the outlet of the pump (3) and the brewing assembly (1), designed to adopt an open condition and a closed condition, in which it allows and prevents, respectively, a flow of fluid from the inlet (12a) towards a discharge environment (11). The discharge valve (12) is a three-way, two-position valve with differential hydraulic control, having a main inlet (12a) coupled between the one-way valve (10) and the brewing assembly (1), first and second control inlets (12b; 12d) connected between the outlet of the pump (3) and the one-way valve (10) and, respectively, between the one-way valve (10) and the brewing assembly (1), and an outlet (12c) communicating with said discharge environment (11).
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))
— of inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))
Machine for preparing beverages, in particular espresso coffee, and valve assembly useable in such a machine

This invention relates to a machine for preparing beverages, in particular espresso coffee.

More specifically, the invention relates to a machine having a hydraulic circuit including a brewing assembly, a water tank, a pump having an inlet connected to said tank and an outlet connected to the brewing assembly, a normally closed, one-way, hydraulic valve interposed between the pump and the brewing assembly to allow a flow of water to the brewing assembly when the pressure of the water outputted from the pump exceeds a predetermined threshold, electric heating means for heating the water outputted by the pump, and a normally open discharge valve having an inlet connected between the one-way hydraulic valve and the brewing assembly, and designed to adopt an open condition and a closed condition, in which it allows and prevents, respectively, a flow of fluid from the brewing assembly towards a discharge environment.

A machine of this type is described in Italian patent application TO2014A001002, filed on 18 December 2014.

In this existing machine, the discharge valve is a normally open two-way, two-position solenoid valve. When in operation, once the beverage has been dispensed, the hydraulic circuit of the machine is emptied through said solenoid valve, which is excited by the control unit of the machine and opens a discharge passage that enables the pressurized water between the brewing assembly and the one-way valve to flow into a collecting recipient, such as a drip tray.

The known solution described above works very well, but is somewhat expensive because the discharge valve is a solenoid valve, which has to be connected to the control unit of the machine by means of a suitable electrical control line.
The cost of the solenoid for controlling a hydraulic plug depends on the quality of the copper required to make same, which in turn depends on the intensity of the force same is required to supply. To reduce the cost of this component, it is known to reduce the hydraulic shapes inside the valve, but this has the drawback of potential fouling and blocking of the valve during the service life of same.

One objective of the present invention is to make such a machine for preparing beverages that is cheap and incorporates simplified electrical wiring.

This and other objectives are achieved according to the invention with a machine of the type specified above, characterized in that the discharge valve is a three-way, two-position valve with differential hydraulic control, having a main inlet coupled with said hydraulic circuit between the one-way valve and the brewing assembly, first and second control inlets connected between the outlet of the pump and said one-way valve and, respectively, between the one-way valve (10) and the brewing assembly (1) and an outlet communicating with said discharge environment;

the arrangement being such that after the pump is activated for preparing a beverage, the discharge valve switches from the open condition to the closed condition before said one-way valve opens, and when the pump is deactivated after the beverage has been dispensed, the discharge valve switches back to the open condition.

In one embodiment, the one-way valve and the discharge valve are suitably built into a single three-way valve assembly.

In particular, the one-way valve may be suitably built into the hydraulic-control discharge valve.

The present invention also relates to a valve assembly for use in a machine for preparing beverages of the type described above.

Further characteristics and advantages of the invention are set out in the detailed description below, provided purely as a non limiting example, with reference to the attached drawings,
in which:
- Figure 1 is a schematic view of a machine for preparing beverages according to the prior art,
- Figure 2 is a schematic view of a machine for preparing beverages according to the present invention,
- Figure 3 is an axial cross section of a hydraulic-control discharge valve useable in accordance with the present invention,
- Figure 4 is a schematic view of an alternative embodiment of a machine for preparing beverages according to the invention, and
- Figure 5 is an axial cross section of an embodiment of an integrated valve assembly useable in a machine according to the present invention.

In Figure 1, reference sign M is used to indicate, as a whole, a machine for preparing beverages according to the prior art. Said machine M includes a hydraulic circuit including a brewing assembly 1 that is hydraulically substantially equivalent to a choke for dispensing a beverage into a collecting container 2, such as a cup.

An electric pump 3 has an inlet connected to a water tank 4 via an aspiration pipe 5 which may be fitted with a flow meter 6, for example a turbine flow meter, to provide electrical signals (pulses) indicating the flow rate of the water aspirated by the pump.

The pump 3 may be a vibrating electric pump or a pump driven by an electric motor 8 of a known type.

The pressurized water outputted by the pump 3 then reaches an electric heating device or boiler 9, and therefrom continues towards the brewing assembly 1.

A one-way hydraulic valve 10 designed to enable water to flow towards said brewing assembly when the pressure of the water coming from the pump 3 exceeds a predetermined threshold value, such as 2 bar, is positioned between the heating device 9 and the brewing assembly 1.
Reference sign 12 is used to indicate a discharge valve, in the form of a two-way, two-position solenoid valve, with the inlet connected between the outlet of the one-way valve 10 and the inlet of the brewing assembly 1, and the outlet connected to a drainage recipient 11, such as the drip tray or box usually supplied with a coffee machine.

In the machine according to the prior art described above, the discharge solenoid valve 12 is a somewhat costly component. Said valve includes an excitation solenoid 12a that has to be connected to a control unit (not shown) of the machine M using a suitable electrical line.

A substantial saving can be made with a solution according to the present invention, a first embodiment of which is described below with reference to Figure 2. The parts and elements in said figure that have already been described are indicated using the same reference signs as used previously.

In the machine M according to Figure 2, the discharge valve 12 is a three-way, two-position valve with differential hydraulic control. Said valve 12 has a main inlet 12a connected to the hydraulic circuit of the machine M between the one-way valve 10 and the brewing assembly 1, a first control inlet 12b connected between the outlet of the pump 3 and the one-way valve 10 and an outlet 12c communicating with the drainage or discharge recipient 11. As described more clearly below, when in operation, the main inlet 12a can also act as a second control inlet 12d.

The arrangement is such that, once the pump 3 has been activated to prepare a beverage, the hydraulic-control discharge valve 12 switches from the open condition to the closed condition before the one-way valve 10 opens.

The discharge valve 12 works on the basis of control by pressure difference. This was developed on the basis of experimental observations of the ratio between the pressure in the outlet branch of the pump and the pressure in the brewing chamber: this ratio differs substantially between operational and non-operational conditions. It has also been observed that said ratio does not however vary significantly while beverages are being dispensed and
therefore remains approximately unchanged as the back pressure exerted by the precursors of said beverages varies.

Once the beverage has been dispensed, the pump 3 is deactivated and the discharge valve 12 switches back to the open condition.

The hydraulic-control valve 12 has a simplified structure, and requires neither a solenoid nor a dedicated electrical line to be controlled.

Figure 3 shows an embodiment of the hydraulic-control discharge valve 12 useable in the machine M in Figure 2.

The valve 12 according to Figure 3 includes a hollow body that, in the example embodiment shown, is formed by two elements 13 and 14 that are joined together using a threaded coupling.

The element 13 has an essentially tubular wall 13a, one extremity of which is screwed to the element 14. At the opposite extremity, the tubular wall 13a is connected to a transverse end wall 13b.

There is an opening 15 in the intermediate portion of the tubular wall 13a, into which an inlet connection 16 is fitted in a fluid-tight manner, the central passage of same being the main inlet 12a and the second control inlet 12d of the valve 12.

There is a through hole 17 in the central portion of the end wall 13b, into which a connection 18 is fitted in a fluid-tight manner, the central passage of same being the first control inlet 12b of the valve 12.

The element 14 has an axial central passage 19, and a connection 20 is fitted to one extremity of same in a fluid-tight manner, the central passage of which is the outlet 12c of the discharge valve.
A valve seat 21 is formed in the element 14 at the extremity of the passage 19 opposite the connection 20.

There is a chamber, indicated as a whole with reference sign 22, between the elements 13 and 14. A piston 23 is mounted axially moveably and in a fluid-tight manner inside said chamber, dividing same into two chamber portions 22a and 22b, same being sealingly separated from one another and in communication with the main and control inlet 12a, 12d and, respectively, with the control inlet 12b.

In the portion oriented towards the element 14, the piston 23 bears a plug 24 designed to cooperate with the valve seat 21 to control communication between the main inlet 12a and the outlet 12c.

A helical spring 25 is arranged in the portion 22a of the chamber 22, between the piston 23 and the element 14 of the body of the discharge valve. This spring 25 acts on the piston 23, tending to move said piston and the plug 24 away from the valve seat 21.

As indicated above, the discharge valve 12 is normally open, i.e. it normally adopts the arrangement shown in Figure 3, in which the plug 24 is removed from the valve seat 21 and consequently the main inlet 12a is in communication with the outlet 12c.

Once the pump 3 has been activated, to prepare a beverage, pressurized water reaches the control inlet 12b of the discharge valve 12, causing the piston 23 to move towards the element 14 of the body of the discharge valve 12. This is possible because the intervention pressure required to move the piston 23 is less than the threshold pressure of the one-way hydraulic valve 10, which is for example 1.5 bar. The plug 24 then closes the valve seat 21, disconnecting the main inlet 12a from the outlet 12c, before the one-way valve 10 opens.

The sequential closure of the discharge valve 12 followed by the one-way valve 10 can be ensured by properly dimensioning the spring 25 of the discharge valve.
Once the discharge valve 12 has been closed and the one-way valve 10 has been opened, the water flow generated by the pump 3 and heated by the device 9 reaches the brewing assembly 1, in which a quantity of a substance used to prepare the beverage has been placed in a known manner, potentially pre-packaged in a capsule or similar. The beverage is then gradually dispensed into the collecting recipient 2.

Once the beverage has been dispensed and the pump 3 has been deactivated, the one-way valve 10 remains open, enabling the hydraulic circuit to be emptied upstream of same, and the beverage continues to flow from the brewing assembly 1 towards the cup 2. The pressures in the chambers 22b and 22a of the discharge valve 12 (upstream and downstream of the one-way valve 10) fall until the pressure of the spring 25 combined with the pressure in the chamber 22 matches the pressure in the chamber 22b, enabling the valve to reopen. This operating mode is typical of a differential-pressure control valve.

Once opening has been completed, the plug 4 is no longer in contact with the seat 21, and the water contained in the hydraulic circuit of the machine between the brewing assembly 1 and the one-way valve 10 can then be discharged through the differential valve 12 into the drain or drip tray 11.

Advantageously, as shown schematically in Figure 4, the one-way valve 10 and the hydraulic-control discharge valve 12 can be built into a single valve assembly, indicated using reference sign 30 in Figures 4 and 5. The parts and elements in said figures that have already been described are indicated using the same reference signs as used previously.

With reference to Figure 4, the valve assembly 30 has an inlet 30a that is connected externally to the hydraulic circuit of the machine M between the outlet of the pump 3 and the brewing assembly 1, communicating inside said assembly with the inlet of the one-way valve 10 and with the control inlet 12b of the discharge valve 12. The valve assembly 30 also has an inlet/outlet 30b connected externally to the brewing assembly 1, and communicating internally with the outlet of the one-way valve 10 and with the main and control inlet 12a, 12d of the discharge valve 12.
Finally, the valve assembly 30 has an outlet 30c that communicates with the discharge recipient 11 and that, inside said assembly 30, communicates with the outlet 12c of the discharge valve 12.

Figure 5 shows an embodiment of the valve assembly 30 shown schematically in Figure 4. In said embodiment, the one-way valve 10 is in fact built into the discharge valve 12.

In the embodiment shown in Figure 5, the piston 23 is formed by two hollow bodies 26 and 27, which are joined together, for example by means of a threaded coupling.

An axial passage 26a is formed in the body 26, which is oriented towards the control inlet 12b of the discharge valve 12 or the inlet 30a of the valve assembly 30, said axial passage 26a being in communication with said inlet 12b (30a) and being able to be brought into communication with an adjacent cavity 26b controlled by a plug 28 cooperating with an associated seat 29 formed between the passage 26a and the cavity 26b.

The plug 28 is associated with a helical spring 31 that tends to press same towards the seat 29.

The plug 28, the related seat 29 and the spring 31 together form the one-way valve indicated using reference sign 10 in Figure 4.

The cavity 26b communicates permanently with the portion 22a of the chamber 22 through one or more passages 32 formed in the body 27.

The operating mode of the valve assembly 30 in Figure 5 can be immediately understood from the above description.

The valve assembly 30 in Figure 5 is shown in the condition in which the discharge valve 12 (21, 24) has already been closed, but the non-return valve 10 has not yet been opened, this phase immediately preceding the triggering of the flow of pressurized hot water to the
brewing assembly 1 of the machine.

In the embodiments shown in Figures 4 and 5, the valve assembly 30 makes it possible to significantly simplify the necessary hydraulic connections.

Naturally, notwithstanding the principle of the invention, the means of implementation and the specific embodiments may vary greatly from that described and illustrated purely by way of a non-limiting example, without thereby moving outside the scope of the invention as defined in the attached claims.
CLAIMS

1. Machine (M) for preparing beverages, in particular espresso coffee, comprising a hydraulic circuit including
 a brewing assembly (1),
 a water tank (4),
 a pump (3) having an inlet connected to said tank (4) and the outlet coupled with the brewing assembly (1),
 a normally closed, one-way hydraulic valve (10) interposed between the pump (3) and the brewing assembly (1) to allow a flow of water to the brewing assembly (1) when the pressure of the water outputted from the pump (3) exceeds a predetermined threshold,
 heating means (9) for heating the water outputted by the pump (3), and
 a normally open discharge valve (12) having an inlet (12a) connected between said one-way hydraulic valve (10) and the outlet of the pump (3) and the brewing assembly (1), designed to adopt an open condition and a closed condition, in which it allows and prevents, respectively, a flow of fluid from said inlet (12a) towards a discharge environment (11);
 the machine (M) being characterized in that
 the discharge valve (12) is a three-way, two-position valve with differential hydraulic control, having a main inlet (12a) coupled with said hydraulic circuit between the one-way valve (10) and the brewing assembly (1), first and second control inlets (12b; 12d, 12a) connected between the outlet of the pump (3) and the one-way valve (10) and, respectively, between the one-way valve (10) and the brewing assembly (1), and an outlet (12c) communicating with said discharge environment (11);
 the arrangement being such that after the pump (3) is activated for preparing the beverage, the discharge valve (12) switches from the open condition to the closed condition before the one-way valve (10) opens, and after the pump is deactivated when the beverage has been dispensed, the discharge valve (12) switches back to the open condition.

2. Machine according to Claim 1, wherein said one-way valve (10) and the discharge valve (12) are integrated in a single three-way valve assembly (30) having
 an inlet (30a) connected externally to said hydraulic circuit, between the outlet of the
pump (3) and the brewing assembly (1), and communicating internally with the inlet of the one-way valve (10) as well as with the first control inlet (12b) of the discharge valve (12), an inlet/outlet (30b) connected externally to the brewing assembly (1), and communicating internally with the outlet of the one-way valve (10) and the main inlet (12a) of the discharge valve (12), and an outlet (30c) communicating with said discharge environment (11).

3. Machine according to Claim 1 or 2, wherein the discharge valve (12) comprises a hollow body (13, 14) in which there are provided said main inlet (12a; 15, 16), the first control inlet (12b; 17, 18) and the outlet (12c; 20), and in which there is defined a chamber (22) communicating with the main inlet (12a; 15, 16) and the first control inlet (12b; 17, 18) and which is able to communicate with the outlet (12c; 20) through a valve seat (21); between the control inlet (12b; 17, 18) and the main inlet (12a; 15, 16) in said chamber (22) there being movably mounted, in a liquid-tight manner, a piston (23) carrying a plug (24) adapted to cooperate with said valve seat (21) for controlling the communication between the main inlet (12a; 15, 16) and the outlet (12c; 20); said piston (23) having associated resilient means (25) tending to displace the plug (24) away from said valve seat (21).

4. Machine according to Claims 2 and 3, wherein said one-way valve (10) is built into the discharge valve (12).

5. Machine according to Claim 4, wherein in said piston (23; 26, 27) there is defined a cavity (26b) communicating permanently with the main inlet (12a; 15, 16) of the discharge valve (12) and in which there is defined a further valve seat (29) through which said cavity (26b) can communicate with the control inlet (12b; 17, 18) of the discharge valve (12); in said cavity (26b) there being movably mounted a further plug (28) cooperating with said further valve seat (29) for controlling the communication between the first control inlet (12b) and the main inlet (12a) which in operation can perform the function of said inlet/outlet (30b) and second control inlet (12d); said further plug (28) being associated with further resilient means (31) tending to keep it in engagement against said further valve seat (29).
6. Valve assembly (30), particularly for use in a machine (M) according to one or more of the preceding claims, comprising a one-way valve (10) and a hydraulic-control discharge valve (12) integrated with each other.

7. Valve assembly according to Claim 6, having an inlet (30a) communicating with the inlet of the one-way valve (10) and with the first control inlet (12b) of the discharge valve (12), an inlet/outlet (30b) communicating with the outlet of the one-way valve (10) and with the main inlet (12a) of the discharge valve (12), and an outlet (30c) communicating with the outlet of the discharge valve (12).

8. Valve assembly according to Claim 7, wherein the discharge valve (12) comprises a hollow body (13, 14) in which there are provided said main inlet (12a; 15, 16), the first control inlet (12b; 17, 18) and the outlet (12c; 20), and in which there is defined a chamber (22) communicating with the main inlet (12a; 15, 16) and the first control inlet (12b; 17, 18), and which can communicate with the outlet (12c; 20) through a valve seat (21); between the first control inlet (12b; 17, 18) and the main inlet (12a; 15, 16) of the discharge valve (12) in said chamber (22) there being movably mounted, in a liquid-tight manner, a piston (23) carrying a plug (24) designed to cooperate with said valve seat (21) for controlling the communication between said main inlet (12a; 15, 16) and the outlet (12c; 20); said piston (23) having associated resilient means (25) tending to displace the associated plug (24) away from said valve seat (21).

9. Valve assembly according to Claims 7 and 8, wherein said one-way valve (10) is built into the discharge valve (12).

10. Valve assembly according to Claim 9, wherein in said piston (23; 26, 27) there is defined a cavity (26b) communicating permanently with the main inlet (12a; 15, 16) of the discharge valve (12) and in which there is defined a further valve seat (29) through which said cavity (26b) can communicate with said first control input (12b; 17, 18) of the discharge valve (12); in said cavity (26b) there being movably mounted a further plug (28)
cooperating with said further valve seat (29) for controlling the communication between said first control inlet (12b) and the main inlet (12a) which in operation can perform the function of inlet/outlet (30b) and second control inlet (12d); said second plug (28) having associated further resilient means (31) tending to keep it in engagement against said further valve seat (29).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A47J31/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A47J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 201 719 674 U (XIONGFENG YING) 26 January 2011 (2011-01-26) paragraphs [0004] - [0012]; figures</td>
<td>6-10</td>
</tr>
<tr>
<td>Y</td>
<td>WO 02/058523 A1 (MONODOR SA [CH]; DENISART JEAN-PAUL [CH]) 1 August 2002 (2002-08-01) page 5, paragraph 6 - page 9, paragraph 3; figures 1-4</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>CN 102 599 819 A (NINGBO YAT ELECTRICAL APPLIANCE CO LTD) 25 July 2012 (2012-07-25) paragraphs [0019] - [0025]; figures</td>
<td>6-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 26 April 2016

Date of mailing of the international search report: 04/05/2016

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk, Tel. (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer: De Terlizzi, Marino
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| A | WO 2006/033049 A1 (KONINKL PHILIPS ELECTRONICS NV [NL]; KODDEN HANS J [NL])
30 March 2006 (2006-03-30)
page 4, line 24 - page 6, line 2; figures
----- | 5-10 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 201719074 U</td>
<td>26-01-2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002226007 B2</td>
<td>09-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0286612 A</td>
<td>17-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2435445 A</td>
<td>01-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 694265 A5</td>
<td>29-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1487804 A</td>
<td>07-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY 1100014 T1</td>
<td>04-09-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60218980 T2</td>
<td>29-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1353591 T3</td>
<td>16-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1353591 A1</td>
<td>22-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2284848 T3</td>
<td>16-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1059364 A1</td>
<td>21-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004534562 A</td>
<td>18-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1353591 E</td>
<td>31-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004079237 A1</td>
<td>29-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02058523 A1</td>
<td>01-08-2002</td>
</tr>
<tr>
<td>CN 102599819 A</td>
<td>25-07-2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 2397054 A1</td>
<td>21-12-2011</td>
<td>CA 290222 A1</td>
<td>22-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 10290508 A</td>
<td>13-03-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2397054 A1</td>
<td>21-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2562273 A1</td>
<td>24-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 117935 A1</td>
<td>01-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012147937 A</td>
<td>20-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011156513 A1</td>
<td>20-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011156929 A1</td>
<td>22-12-2011</td>
</tr>
<tr>
<td>WO 2006033049 A1</td>
<td>30-03-2006</td>
<td>AT 405199 T</td>
<td>15-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1011022753 A</td>
<td>22-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2313411 T3</td>
<td>01-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5198064 B2</td>
<td>15-05-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20081510085 A</td>
<td>01-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9259329 B2</td>
<td>16-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008314257 A1</td>
<td>25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 201610710 A1</td>
<td>14-04-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006033049 A1</td>
<td>30-03-2006</td>
</tr>
</tbody>
</table>