发明名称
紫外光固化的水基喷墨墨水

摘要
一种UV固化的水基喷墨墨水，重量百分比至少有组分：纳米颜料、水溶性染料1-12%，分散剂1-5%，UV固化的改性聚氨酯树脂乳液（固含量1-15%），光引发剂1-10%，活性稀释剂20-50%，保湿剂5-25%，渗透剂5-15%，表面活性剂0-2%，pH调节剂0-2%，杀菌防腐剂0.1-0.5%，余量去离子水；其特征是墨水具有优良的保存稳定性和打印流畅性，墨水具有耐水耐牢度耐擦划耐老化耐高低温抗高亮、粘接力好、固化速度快等优异性能；适合各种打印机；打印各种无涂层和非打印涂层介质、疏水性和油性介质；应用领域宽广。
1. 一种 UV 固化的水基喷墨墨水，重量百分比计至少有组分：纳米颜料/水溶性染料 1-12%，分散剂 1-5%，UV 固化的改性聚氨酯树脂乳液（固含量）1-15%，光引发剂 1-10%，活性稀释剂 20-50%，保湿剂 5-25%，渗透剂 5-15%，表面活性剂 0-2%，PH 调节剂 0-2%，杀菌防腐剂 0.1-0.5%，余量去离子水；其特征是墨水具有优良的保存稳定性和打印流畅性；墨水具有耐水耐光耐溶剂耐擦划耐老化高光亮、粘接力好、固化速度快等优异性能，适合多种打印机，打印各种无涂层和非打印涂层介质、疏水性和油性介质，应用领域宽广。

其中，所述 UV 固化的改性聚氨酯树脂乳液选自：环氧树脂-聚氨酯树脂乳液、环氧树脂-丙烯酸酯-聚氨酯树脂乳液、乙烯基树脂-聚氨酯树脂乳液、丙烯酸酯-聚氨酯树脂乳液、有机硅-丙烯酸酯-聚氨酯树脂乳液、有机硅-聚氨酯树脂乳液、聚酯-丙烯酸酯树脂乳液等中的至少一种，粒径＜100 纳米，成膜后 24 小时吸水率 ≤10%。

所述的纳米颜料粒径＜100 纳米，包含金属光泽颜料、无机颜料、有机颜料；色相有金、银、黑、白、红、黄、兰、橙、绿、紫等。

所述的分散剂是有机高分子聚合物。

2. 权利要求 1 所述的所述的 UV 固化的水基喷墨墨水，其特征是：所述的水溶性染料，优选耐光牢度 6-7 级以上的水溶性染料，用水溶性染料作色剂时使用分散剂。

3. 权利要求 1 所述的 UV 固化的水基喷墨墨水，其特征是：所述有机高分子聚合物是布鲁克的 BYK-2163，BYK-2164，BYK-180，BYK184，BYK-190，BYK2012，BYK-2020 分散剂中的至少一种。

4. 权利要求 1 所述的 UV 固化的水基喷墨墨水，其特征是：光引发剂是苯偶姻及衍生物，苯偶姻类、烷基苯酮类、酚基酯氧化物、苯硫酸酯类、壬基甲酯类、水杨酸酯类、取代丙烯腈类、三嗪类、受阻胺类、联苯甲酯等任意两种或两种以上光引发剂复配。

5. 权利要求 1 所述的 UV 固化的水基喷墨墨水，其特征是：活性稀释剂经丙烯酸、丙烯酸十二醇酯、丙烯酸十八醇酯、己二醇二丙烯酸酯、三乙二醇二丙烯酸酯、邻苯二甲酸二乙二醇二丙烯酸酯、二乙醇二丙烯酸酯、新戊二醇二丙烯酸酯、三丙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯等，单、双、多官能度活性稀释剂以 3-6：0-4：0-1 复配。

6. 权利要求 1 所述的 UV 固化的水基喷墨墨水，其特征是：UV 固化的改性聚氨酯树脂乳液中复配有 UV 固化的环氧树脂-丙烯酸树脂乳液、有机硅改性丙烯酸树脂乳液、有机氟改性丙烯酸树脂乳液、有机硅氟改性丙烯酸树脂乳液等中的至少一种。

7. 权利要求 1 所述的 UV 固化的水基喷墨墨水，其特征是：可以添加改善墨水性能的助剂，如粘度调节剂、电导率调节剂、稳定剂、螯合剂、消泡剂、偶联剂、流平剂、稀释剂等。

8. 权利要求 1 所述的 UV 固化的水基喷墨墨水，其特征是：制备方法

（1）准备墨水的各组分，充分搅拌均匀，研磨机械高速研磨（500-3000 转/分钟）1-3 小时，測得墨水混合物中微粒 D90 ≤120 纳米，得墨水混合物；

（2）墨水混合物静置 12 小时-7 天熟化；

（3）按照 QB/T2730.1-2005、QB/T 2730.1-2005 检测墨水混合物各项理化指标；

（4）用 1 微米、0.45 微米、0.22 微米滤膜过滤，得成品。

9. 权利要求 1-8 所述的 UV 固化的水基喷墨墨水的应用，其特征是：打印在各种无涂层
介质和非打印涂层介质、疏水性和油性介质上。
紫外光固化的水基喷墨墨水

技术领域
[0001] 本发明涉及一种喷墨墨水，具体涉及一种UV固化的水基喷墨墨水。

背景技术
[0002] 喷墨打印由于其优势，通过近三十年的发展，有了显著的进步，运用在了数码印刷、数码印花、数码图像、办公室文稿、户外喷绘、表面装饰等领域，对人类生产和生活提供了便利。水基喷墨墨水以环保，适用范围广，受到人们青睐。
[0003] 随着使用范围和区域的扩大，发现水基喷墨墨水的缺点。例如打印机停用时间稍久，容易堵塞喷头；纸件上墨水不耐擦划，没有光泽，色泽暗淡；不能打印铜版纸、塑料、玻璃等，不能打印水性和油性介质；普通纸需要专门涂层以适应；打印件放在水和酸碱试剂中一段时间，印迹出现模糊；打印在牛奶盒上印迹经高温蒸煮脱落。现在很多喷印可以用喷墨打印由于喷墨墨水性能所限，例如办公室文稿人们选用激光打印，包装、塑料、玻璃等选用印刷形式。因此特别需要改进水基喷墨墨水的性能以适应人们生产和生活的需要。具体地说：①喷墨墨水的保存稳定性和打印流畅性；②提高喷墨墨水的耐水性耐光性耐擦划性高亮性耐老化性粘接性等综合性能；③干燥快速，提高打印速度；④扩大喷墨墨水的使用范围，例如打印无涂层和非打印涂层介质，疏水性和油性介质。
[0004] 传统的喷墨墨水干燥有渗透干燥、挥发干燥、交联固化干燥、UV辐射固化干燥等，在疏水性和油性介质上渗透干燥难进行，选择交联固化干燥、UV辐射固化干燥形式使喷墨墨水快速干燥。传统的UV辐射固化干燥，由于墨水中加入了大量的活性稀释剂和光敏预聚物，喷墨墨水的粘度较高，不能适应某些打印机，例如办公和家用打印机。

发明内容
[0005] 本发明的目的是提供一种喷墨墨水，具有优异的保存稳定性和打印流畅性，具有耐水性耐光性耐擦划性高亮性耐老化性耐高低温粘接性好等综合性能，干燥快速，打印无涂层和非打印涂层介质，疏水性和油性介质。
[0006] 本发明的另一目的是提供本发明喷墨墨水的制备方法。
[0007] 本发明的技术方案为：一种UV固化的水基喷墨墨水，重量百分比计至少有组分：
纳米颜料水溶性染料1-12%，
分散剂1-5%，
UV固化的改性聚氨酯树脂乳液（固含量）1-15%，
光引发剂1-10%，
活性稀释剂20-50%，
保湿剂5-25%，
渗透剂5-15%，
表面活性剂0-2%。
PH调节剂0~2%。
杀菌防腐剂0.1~0.5%。
余量去离子水。

【0008】作为优选：所述UV固化用的改性聚氨酯树脂乳液选自环氧树脂-聚氨酯树脂乳液、环氧树脂-丙烯酸酯-聚氨酯树脂乳液、有机硅-丙烯酸酯-聚氨酯树脂乳液、聚酯-聚氨酯树脂乳液等其中的一种；粒径＜100纳米，成膜后24小时吸水率≤10%；乳液外观清澈透明，无色或淡黄半透明的液体，玻璃化温度-50~120°C，粘度＜800厘沲甚至低至50厘沲，软硬度可调节，保存期长达2年，成膜后全透明。同时，这些树脂乳液还有可反应的不饱和的反应性基团，能够被UV辐射能量激发发生反应，适合作为UV固化水基喷墨墨水的组分。

【0009】作为优选：所述的分散剂是有机高分子聚合物。所述有机高分子聚合物是丙烯酸化的BYK-2163、BYK-2164、BYK-180、BYK184、BYK-190、BYK2012、BYK-2020分散剂中的至少一种。

【0010】作为优选：纳米颜料选自纳米金属氧化颜料（金属铜、金属铝、金属锌、金属锡等）；无机颜料选择氧化铁红、氧化铁黄、群蓝、炭黑、金红石型钛白粉等；有机颜料选择：红色C.I.颜料红111、122、188、184、179；黄色C.I.颜料黄85、133、14等；蓝色C.I.颜料蓝15:3、56、60、63等；橙色C.T.颜料橙13；绿色C.I.颜料绿7；紫色C.I.颜料紫1、23等中的至少一种。


【0012】作为优选：所述光引发剂是苯偶姻及衍生物（安息香、安息香香甲醚、安息香乙醚、安息香异丙醚、安息香丁醚）、苯偶酰类（二苯基酮类、a-a-甲基酮、a-a-苯基苯甲酮）、烷基酮类（a-a-乙基苯酮、a-a-环烷基苯酮、a-a-苯基苯甲酮）、酰基磷氧化物（芳基磷氧化物、芳基苯基苯氧基磷、二苯甲酰类（二苯甲酰、2,4-二羟基苯甲酰、二苯甲酰、苯甲酰）、硫杂环酮类（硫代丙基二硫杂环酮、异丙基甲基二硫杂环酮）、联苯甲酰、水杨酸酯类、取代丙烯基类、三嗪类、受阻胺类等任意两种或两种以上光引发剂复配。

【0013】作为优选：活性稀释剂是环氧基甲基丙烯酸、丙烯酸十二醇酯、丙烯酸十八醇酯、乙二醇二丙烯酸酯、三乙醇二丙烯酸酯、邻苯二甲酸二乙醇二丙烯酸酯、二乙二醇二丙烯酸酯、新戊二醇二丙烯酸酯、三丙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯等，单、双、多官能度活性稀释剂以3~6:0~4:0~1复配。

【0014】作为优选：UV固化用的改性聚氨酯树脂乳液中还复配有UV固化用的环氧树脂-丙烯酸树脂乳液、有机硅改性丙烯酸树脂乳液、有机氟改性丙烯酸树脂乳液、有机硅改性丙烯酸树脂乳液中的至少一种。
【0015】作为优选:保湿剂可选用安全无毒的原料。例如异丙醇、乙醇、异丁醇等醇类;二甘醇、丙二醇、丁二醇、丙三醇、丙四醇、聚乙二醇、聚丙二醇、甘油;1,2-丙二醇;1,4-丁二醇;1,3-丙二醇;1,4-丁二醇;1,3-丙二醇;1,2-己二醇等多元醇类。
【0016】作为优选:渗透剂选自:二甘醇单甲醚、二甘醇单丁醚、丙二醇单甲醚、丙二醇单丁醚、丙三醇单乙醚、二乙二醇单丁醚、二乙二醇单甲醚、二乙二醇单乙醇、三乙二醇、三乙二醇单甲醚、三乙二醇单乙醚、三乙二醇单丙醚、三乙二醇单丁醚;三乙二醇二甲醚、三乙二醇二乙醚、三乙二醇二丙醚、四乙二醇二甲醚、四乙二醇二乙醚、单乙醇和聚乙二醇苯基醚、单丙二醇和聚丙二醇苯基醚、2-吡咯烷酮、N-甲基-2-吡咯烷酮等。
【0017】作为优选:表面活性剂选择毕克化学公司的BYK-345、BYK-348。
【0018】作为优选:上述PH调节剂,选择安全无毒的原料。PH调节剂选自柠檬酸、柠檬酸钠、乳酸、苹果酸、柠檬酸钠、盐酸、邻苯二甲酸氢钾、氢氧化钾、氢氧化钠、氢氧化铝、氢氧化镁、氢氧化硅、氢氧化铝;例如四甲基铵、碳酸盐;例如碳酸钾、碳酸钠、碳酸锂;磷酸盐;N-甲基-2-吡咯烷酮;乙胺、二乙醇胺、三乙醇胺、氨水等。
【0019】作为优选:防腐杀菌剂选择安全环保的原料。例如山梨酸钠、山梨酸钾、异噻唑啉酮、苯并异噻唑啉酮类等。
【0020】作为优选:可以添加改性剂改善墨水性能的助剂,如粘度调节剂、电导率调节剂、稳定剂、分散剂、消泡剂、偶联剂、流平剂、稀释剂等。
【0021】本发明的制备方法:
(1)准备墨水的各种原料,充分搅拌均匀,研磨机械高速研磨(500-3000转/分钟)1-3小时,测得墨水混合物中微粒D90≤120纳米,得墨水混合物。
【0022】(2)墨水混合物静置12小时-7天熟化。
【0023】(3)按照QB/T2730.1-2005、QB/T2730.2-2005检测墨水混合物各项理化指标。
【0024】(4)用1微米、0.45微米、0.22微米滤膜过滤,得成品。
【0025】UV固化水基喷墨墨水的应用,打印在各种无涂层介质和非打印涂层介质、疏水性和油性介质上,打印的同时用UV固化。
【0026】本发明的有益效果和优势在于:
1.墨水储存稳定性好,打印流畅性好。
【0027】2.墨水色谱齐全,纳米级微粒。
【0028】3.提高了墨水耐光性耐水性耐化学性耐高低温性耐擦拭划性耐光亮性耐老化性等综合性能。
【0029】4.适应无涂层和非打印涂层介质,疏水性和油性介质,应用于数码印刷、数码印花、数码图像、办公室文档、户外喷绘、瓷砖墙纸、玻璃塑料、表面装饰等领域。
【0030】5.选用紫外光(UV)固化,扩大了墨水应用范围,加快了墨水的干燥时间和打印速度。
【0031】6.墨水原料无毒,可制备和使用具环保保护性。在打印时无毒无味。

具体实施方式
【0032】下面结合具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于下述实施例。
墨水的配方：

制备方法：见“发明内容”中“本发明的制备方法”；

表1：墨水的配方（一）

<table>
<thead>
<tr>
<th></th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>金属粉</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>金属铝</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>染料粉</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>染料黄</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>C.I.染料蓝15:3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>C.I.染料红122</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>C.I.染料黄17</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>C.I.染料紫13</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>C.I.染料紫23</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>BYK-2012</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>a. a-二甲氧基-α-苯基乙胺</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>乙二醇</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>乙醇</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>14</td>
<td>丙二醇</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>乙醇</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>水</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

表2：墨水的配方（二）
<table>
<thead>
<tr>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>对比例</th>
<th>对比例</th>
<th>对比例</th>
<th>对比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>黄黑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.颜料蓝 15:3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.颜料红 122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.颜料黄 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.直接黑 166</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.直接黄 106</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.酸性红 336</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.I.酸性黄 86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BYK-2012</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>α-α-二甲基苯酚-β-苯基苯乙醇</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-二硝基二苯甲醚</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-二羟基苯甲酸</td>
<td>15</td>
<td>24</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乙二醇二丙烯酰胺</td>
<td>7</td>
<td>10</td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三羟基丙烷三丙烯酸酯</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-丙烯酸-聚氨酯乳液 (固含量)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-丙烯酸-丙烯酸乳液 (固含量)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>岩二醇</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>丙烯酸丁酯</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>BYK-345</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>三羟基丙烷</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>山梨酸钠</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>去离子水</td>
<td>水量</td>
<td>水量</td>
<td>水量</td>
<td>水量</td>
<td>水量</td>
<td>水量</td>
</tr>
</tbody>
</table>

实施例 15- 实施例 22：实施例和对比例墨水稳定性和间歇打印效果、打印流畅性检测：
按照国家 QB/T2730.1-2005、QB/T 2730.2-2005 标准检测。
将制备的墨水装入 Epson me1+ 打印机墨盒中，打印在普通打印纸上。

[0034] 表 3：实施例和对比例墨水的稳定性和间歇打印效果、打印流畅性

<table>
<thead>
<tr>
<th>检测项目</th>
<th>实施例 15</th>
<th>实施例 16</th>
<th>实施例 17</th>
<th>实施例 18</th>
<th>实施例 19</th>
<th>实施例 20</th>
<th>实施例 21</th>
<th>实施例 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>墨水稳定性</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
</tr>
<tr>
<td>(40±1)℃，密闭 120h，不做质</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
</tr>
<tr>
<td>间歇打印效果</td>
<td>间歇 7 天能打印，效果与标样相同</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
</tr>
<tr>
<td>打印流畅性</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
<td>好</td>
</tr>
</tbody>
</table>

实施例 23- 实施例 30：实施例的墨水与对比例墨水性能的比较：
将制备的墨水装入 Epson me1+ 打印机墨盒中，打印在普通打印纸上。

耐水性检测：
检测方法：截取扩散度分级书写试纸一段，在去离子水中浸渍，观察墨水褪色和扩散时间，并记录下来。在去离子水中浸渍 24h 后，取出自然干燥，并与对比色标目测对比。

[0036] 耐盐酸性检测：
检测方法：截取扩散度分级书写试纸一段，在 10%（体积比）盐酸水溶液中浸渍 24h 后，在去离子水中浸渍 10min，取出自然干燥，并与对比色标目测对比。

[0037] 耐乙醇性检测：
检测方法：截取扩散度分级书写试纸一段，在 50%（体积比）乙醇水溶液中浸渍 10min 后，取出自然干燥，并与对比色标目测对比。

[0038] 耐氨水性检测：
检测方法：截取扩散度分级书写试纸一段，在 10%（质量百分比）氨水溶液中浸渍 24h 后，在去离子水中浸渍 10min，取出自然干燥，并与对比色标目测对比。

[0039] 墨水的耐光性检测：
检测方法：取喷绘专用高光相纸两张，用 720dpiX 720dpi 分辨率打印出 30m mX30 mm 各色色块，色块和蓝色羊皮标准同时安装悬挂在通风良好的测试箱中，在氨弧灯下曝晒（黑板温度不超过 45℃），44h 后取出，按照蓝色羊皮标准的变化级别，来评定试样。

[0040] 墨水的耐高温性检测：
检测方法：截取扩散度分级书写试纸一段，在煮沸的 100℃开水中，浸渍煮 5min 后取出，自然干燥，并与对比色标目测对比。

[0041] 墨水耐低温性检测：
检测方法：被测墨水倒入耐寒包装瓶中，放入（-20±1）℃低温恒温箱中至 24h 后取出，恢复到室温后，检测其打印性能。

[0042] 墨水的耐擦划性检测：
检测方法：待墨水干透了之后，用硬币在两种墨迹上摩擦相同次数，直到有一种字迹出现擦划痕迹，记录摩擦次数。用一般刮划的力量，使硬币与字表面 45 度的夹角在字的表面来回划划，直到有一种字迹表面出现刮划痕迹，记录刮划次数，确定并比较本发明墨水与市售的墨水耐擦划性。

[0043] 墨水的高光亮性、耐老化性检测：
检测方法：通过实施例和对比例墨水在相同实验环境下，通过目测，互相比较得出结论。

[0044] 表 4：本发明实施例墨水与对比例墨水性能比较表：
<table>
<thead>
<tr>
<th>检测项目</th>
<th>耐水性</th>
<th>耐化学性</th>
<th>耐光性</th>
<th>耐磨性</th>
<th>高光亮性</th>
<th>耐老化性</th>
<th>耐高温性</th>
<th>耐低温性</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 23</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 24</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 25</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 26</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 27</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 28</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 29</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
<tr>
<td>实施例 30</td>
<td>一般</td>
<td>一般</td>
<td>好</td>
<td>差</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
<td>一般</td>
</tr>
</tbody>
</table>

实施例31-实施例38：墨水在各种介质上打印性能检测
检测方法：将制备的实施例墨水和对比例墨水装入 Epson me1+打印机墨盒中，打印在
如下所述的各种介质上，观察打印效果。

[0045] 表中：A 代表印迹清晰，效果好。B：代表印迹模糊，效果差。C：代表严重模糊，不
能看清印迹。

[0046] 表5：墨水在各种涂层介质和非打印涂层介质上的打印效果

<table>
<thead>
<tr>
<th>介质</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 31</td>
<td>实施例 4 墨水</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>实施例 32</td>
<td>实施例 5 墨水</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>实施例 33</td>
<td>实施例 6 墨水</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>实施例 34</td>
<td>实施例 7 墨水</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>实施例 35</td>
<td>对比例 1 墨水</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>实施例 36</td>
<td>对比例 2 墨水</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>实施例 37</td>
<td>对比例 3 墨水</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>实施例 38</td>
<td>对比例 4 墨水</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

实施例39-实施例46：本发明实施例 UV 墨水和对比例墨水固化速度检测
检测方法：将制备的实施例4、5、6、7墨水装入罗兰 LED-330UV打印机墨盒中，打印在普通
打印纸上，打印时立即用 UV 灯照射。将制备的对比例 1、2、3、4 墨水装入 Epson me1+ 打
印机墨盒中，打印在普通打印纸上。打印相同内容。

[0047] 表6：实施例 UV 墨水和对比例墨水固化速度比较：
<table>
<thead>
<tr>
<th>实施例</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
<th>实施例 7</th>
<th>对比例 1</th>
<th>对比例 2</th>
<th>对比例 3</th>
<th>对比例 4</th>
<th>硬度</th>
<th>速度</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>墨水</td>
<td>快</td>
<td>快</td>
</tr>
<tr>
<td>40</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td>41</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td>42</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td>43</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td>44</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td>45</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td>46</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>较快</td>
<td>速度</td>
<td>速度</td>
</tr>
</tbody>
</table>