发明名称
一种熔体料浆塔式造粒复合肥及其制造方法

摘要
一种熔体料浆塔式造粒复合肥及其制造方法，一种熔体料浆塔式造粒复合肥由下列重量配比的组分组成：尿素：45～50 份；氯化钾或硫酸钾：20～25 份；磷酸二铵：20～30 份；填充剂：1～5 份。一种熔体料浆塔式造粒复合肥的制造方法，制造过程采用高温熔融尿素做载体，把原料熔融均匀，再经塔顶喷淋冷却成粒。塔高在 60～120 米，塔径在 8～20 米。制备过程中不向系统内引入水分来粘合成造粒，能够防止因水分超标而结块。本发明的优点是：本发明制备的熔体法复合肥，在制备过程中采用的是冷却喷淋自然冷却，一次成粒成型技术，此技术不存在返料，使生产能力大为提高，避免了因传统方法成粒率低、返料多的毛病，节省能源，提高设备利用率。同时因几乎无返料粉尘污染，使工作环境更为清洁，避免了三废排放。
1、一种熔体料浆塔式造粒复合肥，其特征在于由下列重量配比的组分组成：

尿素：45~50 份；氯化钾或硫酸钾：20~25 份；磷酸铵：20~30 份；
填充剂：1~5 份。

2、根据权利要求 1 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征在于，造过程采高温熔融尿素做载体，把原料融合均匀，再经塔顶喷淋冷却成粒。

3、根据权利要求 2 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征在于：制备过程不向系统内引入水分来粘合造粒。

4、根据权利要求 2 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征在于：采用塔顶喷淋自然冷却技术，一次成型成粒。

5、根据权利要求 2 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征在于：塔高 60~120 米，塔径在 8~20 米。

6、根据权利要求 2 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征为：液体原料加热温度为 130~145℃，固体原料加热温度为 60~95℃。

7、根据权利要求 6 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征为：两种原料液体部分和固体部分在塔顶混合器混合，温度为 115~120℃。

8、根据权利要求 6 或 7 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征为：混合槽的粘稠物料采用溢流出料方式。

9、根据权利要求 8 所述的一种熔体料浆塔式造粒复合肥的制造方法，其特征为：喷头采用旋转式离心出料方式造粒。

10、根据权利要求9所述的一种熔体料浆塔式造粒复合肥的制造方法，其特
征为：液体自喷头喷散后，自由下落与塔内上升气流实现自然换热，温度冷却至40-60℃，固化成颗粒状。
说明 书

一种熔体料浆塔式造粒复合肥及其制造方法

所属技术领域

本发明涉及一种熔体料浆塔式造粒复合肥及其制造方法。属于农业肥料领域。

背景技术

目前，用于农作物的各类复合肥（混肥），存在的几个问题是肥料存放易结块，颗粒不圆滑，不均匀，以及养分配比不稳定，不利于农田均衡施肥。

同时由于传统的造粒方法生产的复合肥（混肥）由于造粒过程属于简单的物理粘和，结构比较松散，肥料溶解释放较快，肥效分解流失快，肥料利用率较低。传统的造粒后烘干筛分过程，能耗消耗大。

发明内容

为了解决现有技术的不足，本发明提供一种熔体料浆塔式造粒复合肥及其制造方法。

本发明解决其技术问题所采用的技术方案是：

一种熔体料浆塔式造粒复合肥由下列重量配比的组分组成；
尿素：45~50 份；氯化钾或硫酸钾：20~25 份；磷酸铵：20~30 份；
填充剂：1~5 份。

一种熔体料浆塔式造粒复合肥的制造方法，制造过程采用高温熔融尿素做载体，把原料融合均匀，再经塔顶喷淋冷却成粒。有以下步骤；

步骤 1：将一种原料尿素经过高温熔融（130℃~145℃），进入缓冲槽内，再经输送泵加压，经计量后送至塔顶混合槽内；

步骤 2：将另外的原料氯化钾（硫酸钾）、磷酸铵及填充剂（滑石粉）分别
计量后，按照上述的配比送入搅拌器中充分混合；

步骤 3：将步骤 2 中的混合原料经过破碎筛分后，由斗式提升机提升到塔顶料仓；

步骤 4：将步骤 3 中的料仓中的混料，经螺旋喂料后，送入混料加热器中，加热到 60~95℃；

步骤 5：将上述步骤 4 中的加热后的混料送入上述步骤 1 中所述混合器中，经快速搅拌混合制成粘稠状物料，温度控制在 115℃~120℃，自动溢流至造粒喷头，在喷头旋转离心力作用下，将混合物均匀喷洒成小球状的小液滴；

步骤 6：采用塔顶喷淋自然冷却技术，上述步骤 5 中从喷头喷淋落下的小液滴在直径 8~20 米的塔内自由落下，经与塔内的自然上升气流换热后冷却至 40~60℃，一次成型成粒，即成为复合肥小颗粒。

塔高在 60~120 米，塔径在 8~20 米。制备过程中不向系统内引入水分来粘合造粒，能够防止因水分超标而结块。

本发明的优点是：本发明制备的复合肥料是在微观分子水平上，将尿素、氯化钾、磷铵、硫酸钾等原料，融合成一个有机养分整体，通过各种养分之间的相互作用，形成均衡的稳定养分单元。这样，可以根据农作物的各个生长期对不同养分的吸收情况，连续不断地释放养分，供作物吸收，从而减少肥料在农田中的分解损失，提高化肥利用率。

本发明制备的熔体法复合肥，在制备过程中一个最大的特点就是采用高温熔融法，将原料融合在一起，其过程避免了向系统内引入水分来溶解，从而防止了因水分超标而使肥料结块，因而避免了存储和施用的麻烦。同时省去了传统的造粒后烘干筛分过程，从而节省能耗。

本发明制备的熔体法复合肥，在制备过程中采用的是高塔喷淋自然冷却，一次成粒成型技术，此技术不存在返料，使生产能力大为提高，避免了因传统
方法成粒率低、返料多的毛病，节省能源，提高设备利用率。同时因几乎无返料粉尘污染，使工作环境更为清洁，避免了三废排放。

具体实施方式

实施例 1：尿素 45 份，氯化钾 25 份，磷酸二铵 25 份，填充剂(白云石粉)5 份；

步骤 1：将 45 份尿素经高温熔融 130℃，用泵送入塔顶混合槽中。

步骤 2：将 25 份氯化钾，25 份磷酸二铵，5 份白云石粉，经计量后，送入搅拌器中充分混合均匀。

步骤 3：将步骤 2 中混合原料经破碎筛分后，用斗提机送至塔顶料仓。

步骤 4：将步骤 3 中料仓中的混料，经螺旋喂料机后送入混料加热器加热至 60℃。

步骤 5：将上述步骤 4 中加热后的混料送入上述步骤 1 中所述混合器中，经快速搅拌混合成粘稠液状物料，温度控制在 115℃，然后溢流去造粒喷头，在喷头旋转离心力作用下，将混合物料均匀喷洒成小球状液滴。

步骤 6：上述步骤 5 中从喷头喷淋落下小液滴在塔内自由落下，与塔内自然上升气流热交换后冷却至 40℃，即成为复合肥小颗粒。

实施例 2：尿素 48 份，氯化钾 24 份，磷酸二铵 20 份，填充剂(滑石粉)2 份；

步骤 1：将 48 份尿素经高温熔融 145℃，用泵送入塔顶混合槽中。

步骤 2：将 24 份氯化钾，20 份磷酸二铵，2 份滑石粉，经计量后，送入搅拌器中充分混合均匀。

步骤 3：将步骤 2 中混合原料经破碎筛分后，用斗提机送至塔顶料仓。

步骤 4：将步骤 3 中料仓中的混料，经螺旋喂料机后送入混料加热器加热至 95℃。
步骤 5：将上述步骤 4 中加热后的混料送入上述步骤 1 中所述混合器中，经快速搅拌混合成粘稠液状物料，温度控制在 120℃，然后溢流到造粒喷头，在喷头旋转离心力作用下，将混合物料均匀喷洒成小球状液滴。

步骤 6：上述步骤 5 中从喷头喷淋落下的小液滴在塔内自由落下，与塔内自然上升气流热交换后冷却至 60℃，即成为复合肥小颗粒。

实施例 3：尿素 50 份，氯化钾 20 份，磷酸三铵 30 份，填充剂（粘土）1 份；
步骤 1：将 50 份尿素经高温熔融 135℃，用泵送入塔顶混合槽中。
步骤 2：将 20 份氯化钾，30 份磷酸三铵，1 份粘土，经计量后，送入搅拌器中充分混合均匀。
步骤 3：将步骤 2 中混合原料经破碎筛分后，用斗提机送至塔顶料仓。
步骤 4：将步骤 3 中料仓中的混料，经螺旋喂料机后送入混料加热器加热至 65℃。
步骤 5：将上述步骤 4 中加热后的混料送入上述步骤 1 中所述混合器中，经快速搅拌混合成粘稠液状物料，温度控制在 118℃，然后溢流到造粒喷头，在喷头旋转离心力作用下，将混合物料均匀喷洒成小球状液滴。
步骤 6：上述步骤 5 中从喷头喷淋落下的小液滴在塔内自由落下，与塔内自然上升气流热交换后冷却至 49℃，即成为复合肥小颗粒。