
US 2005O240546A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0240546A1

Barry (43) Pub. Date: Oct. 27, 2005

(54) FORWARD-CHAINING INFERENCING Publication Classification

(51) Int. Cl." G06N 5/02; G06F 17/00
(75) Inventor: Andrew Barry, Barton (AU) (52) U.S. Cl. .. 706/47

(57) ABSTRACT
Correspondence Address: A method is disclosed of forward-chaining inferencing in a
LAHIVE & COCKFIELD, LLP. rulebased System having a rulebase and a set of input facts,
28 STATE STREET wherein new facts are inferred in accordance with variations
BOSTON, MA 02109 (US) to the rules or the input facts, the method including:

(73) Assignee: SOFTLAW CORPORATION LIM- developing a computerized database containing a fact
dependency tree for indicating which facts are used

ITED, Barton (AU) to produce other facts in accordance with respective
(21) Appl. No.: 10/908,495 rules in the rulebase;

Sequentially ordering the facts in the fact dependency
(22) Filed: May 13, 2005 tree to produce a Serialized fact dependency tree

wherein for any given fact in the Sequence, all facts
Related U.S. Application Data which are used to produce that fact are facts which

are earlier in the Sequence than is the given fact, and
(63) Continuation-in-part of application No. PCT/AU03/

O1524, filed on Nov. 13, 2003. ordering the rules in the rulebase in accordance with the
facts produced thereby to produce a Serialized rule

(30) Foreign Application Priority Data base wherein the rules are in the same Sequential
order as the facts in the Serialized fact dependency

Nov. 14, 2002 (AU)...................................... 2002.952648 tree

tro-- Unserialised
rulebase

wn

1. Build fact dependency tree
--------------weswarareware-arror-r"

i Begin with a graph containing each of the facts in the rulease (with no
connecting arcs)
For each rule in the rulebase, insert a directed arc from each fact
appearing on the left-hand side of the rule to the fact appearing on the
right-hand side

www.werverrve

2, Serialise fact dependency tree.

sequentially order the facts in the fact dependency tree so that, for
each fact, all arcs come from facts earlier in the seq

3. Serialise rulebase

order the rules in the rulebase, by the facts they produce, in the same
order that the facts appear in the serialised fact dependency tree

from tw.

--- Serialised
: rulebase

Patent Application Publication Oct. 27, 2005 Sheet 1 of 9 US 2005/0240546A1

'ri r
r hu. r w kr s

is. L s

FIG 1 - PRIOR ART
Rete network

Patent Application Publication Oct. 27, 2005 Sheet 2 of 9 US 2005/0240546A1

t = true, f as false, ? -s unknown

'mw .

“---
mst

FIG 2 - PRIOR ART
Refe network when f1 F true

FIG 3 - PRIOR ART
Rete network when f1 F true, f2 true

Patent Application Publication Oct. 27, 2005 Sheet 3 of 9 US 2005/0240546A1

FIG 4 - PRIOR ART
Rete network when f1 = true, f2 F true, fö F false

w
- A N

- N.
Y ^ N

G) \
sy a/ ty Y.

. 1 -/ i N s

FIG 5
Fact dependency tree

Patent Application Publication Oct. 27, 2005 Sheet 4 of 9 US 2005/0240546A1

FG 6
Serialised fact dependency tree

rs: fi + f2 - f7 r1; f1 + f2 + fs - f10 r3: f4 - f10

... - - " " ' '

- ra: f6+ f1 - fB r2: F + f10 - f9 rs: f3 + f8 - F9

FIG 7
Serialised rulebase

Patent Application Publication Oct. 27, 2005 Sheet 5 of 9 US 2005/0240546A1

s Unserialised
rulebase

t
1. Build fact dependency tree

Begin with a graph containing each of the facts in the rulebase (with no
connecting arcs)
For each rule in the rulebase, insert a directed arc from each fact
appearing on the left-hand side of the rule to the fact appearing on the
right-hand side
w-wa-no-o-o-o-ow-o-o-o-w

2. Serialise fact dependency tree.

Sequentially order the facts in the fact dependency tree so that, for
each fact, at arcs come from facts earlier in the sequence

...ns...re-rrrrrrlainvirraraunassure-am-nramistramurrrrrrrramurosaurone.-airmarris-ture...s.l. r. In r-i.--:

Order the rules in the rulebase, by the facts they produce, in the same
i order that the facts appear in the serialised fact dependency tree
run-rr. An--Ey-rulendalla-lauwwarthal narr-Hrrun s

3. Serialise rulebase

r

--- Serialised
rulebase

Patent Application Publication Oct. 27, 2005 Sheet 6 of 9 US 2005/0240546A1

1. Initialise
Set all known fact values in working memory and

i move to first rule in serialised rulebase

w M s Y. N / Y.
r Any more rules ss., r al-H-I-Hiram klarerg, -- y wrrrrrors End

t s in rulebase? --
“s - N-/

Y
s

2. Evaluate next rule in serialised rulebase
w

Evaluate next rule and, if a fact value becomes
known, update working memory accordingly

m verwarrrrrrrrr.

3. Advance to next rule in rulebase
praraahaaw- -

FIG 9

Patent Application Publication Oct. 27, 2005 Sheet 7 of 9 US 2005/0240546A1

FIG 10
Fact dependency loop

-- "-" press T "",
alluser-intrass.r - - - - . .. --- H- i- 2 - " "is

G5 (G-6 (6) (9-6). G-G G-6)
Ys, ... ::::::...,' N.----1

FIG 11
Serialised fact dependency tree with a snarl

Patent Application Publication Oct. 27, 2005 Sheet 8 of 9 US 2005/0240546A1

-> f ... - f's - fin ... s rules that prove fn

10... snar end

FIG 12
Serialised rulebase with snarl

parent = George

fl: sex = male

V. w ---

f

child =)ulie

t

child s Barney

f2: Sex = maie
f3; is happy at 2

f2: Sex a female
f3: is happy = ? ? = unknown

fa: sex = female
f5: is nice = false

fied - Fred

fa: Sex ?ale
f5: is nice = true

FIG 13
Related objects with attributes

Patent Application Publication Oct. 27, 2005 Sheet 9 of 9

Tables that store object instance data

US 2005/0240546A1

friend: Fred

fa: tale
fS: tte

FIG 14

US 2005/0240546 A1

FORWARD-CHANING INFERENCING

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation-in-part of Inter
national Patent Application No. PCT/AU2003/001524, filed
Nov. 13, 2003, which claims priority to Australian Patent
Application No. 2002952648, filed Nov. 14, 2002.

TECHNICAL FIELD

0002 This invention relates to systems for and methods
of forward-chaining inferencing.

0.003 Forward-chaining inferencing can be described as
a proceSS or method by which new facts are discovered
given a rulebase (i.e. a set of rules) and a set of input facts.
It is used by and in So-called expert Systems which can be
described as computerS or computer programs that use
Symbolic knowledge and inference to reach conclusions.
0004. By way of example, an expert system could apply
a set of input facts describing an individual’s personal
circumstances to a rulebase that models a national Social
Security Act or the like to determine the Social Security
benefits to which the individual is entitled.

0005. This process is referred to as forward-chaining
because it is essentially a chain of inferences that Start from
the input facts and end with the required determinations.
0006 The invention has particular but not exclusive
application to the use of forward-chaining inferencing in
expert Systems and for illustrative purposes reference will be
made throughout this specification to Such use. However it
will be realized the present invention may be utilized in
other applications where computers are used to infer out
comes (or new facts) from a set of given inputs (or facts) in
accordance with a set of rules (i.e. a number of operational
or governing criteria).

BACKGROUND OF THE INVENTION

0007 Expert systems are well known. They have been
described as follows:

0008 Expert System
0009. A computer program that uses symbolic knowledge
and inference to reach conclusions. It derives most of its
power from its knowledge. The key components of an expert
System are an inference engine and a knowledge base. The
Separation of control (the inference engine) from knowledge
(knowledge base) is a hallmark of an expert System. Other
components of an expert System include a user interface, a
knowledge-acquisition module, and an explanatory inter
face.

0010. An expert system derives most of its power from its
knowledge rather than its inferencing ability. Expert Systems
are applied to the class of problems in which no simple
algorithmic Solution is known. To qualify as an expert
System it must attain levels of performance roughly equiva
lent to a human expert. Most expert Systems are able to
explain their reasoning. Expert Systems are generally able to
reason about their own inference processes. Other advan
tages of expert Systems are that they do not forget, they

Oct. 27, 2005

consider all details, they don't overlook remote possibilities
and they do not jump to conclusions.
0011. In contrast with ordinary computer programs,
expert Systems can be incrementally modified with little
difficulty-at least as compared to conventional programs.
The knowledge in an expert System is more available to
Scrutiny than it is in a conventional program where knowl
edge may be intertwined with procedure . . . Expert Systems
are more robust than conventional programs-they are more
likely to be able to handle unexpected Situations.
0012. There are a number of criteria for the use of expert
Systems: One is the existence of expertise in the area. The
task should be a complex problem with multiple interacting
Subtasks where there appears to be no fixed order of problem
Solution. It is useful when the Solution needs to be explained,
when what-if analysis is desirable, or when it is known that
the system will be frequently revised.
0013 Mercadal, D. 1990. Dictionary of Artificial Intel
ligence. p. 96-97. NY: Van Nostrand Reinhold
0014. It should be noted the term rulebase as used herein
is Synonymous with the expression knowledge base above.
0015 The standard method used by expert systems for
forward-chaining inferencing is known as the Rete algo
rithm and aims to minimize the amount of effort required for
an inference cycle whenever input facts change. The Rete
algorithm will be explained in more detail when describing
the preferred embodiment of present invention.
0016. The Rete algorithm was invented in 1979–a
bygone era of computing. Since then, the application of
expert Systems, including the environment that they work
within, has changed dramatically:

0017) Systems must now provide high levels of scal
ability to Support thousands of concurrent users, par
ticularly through the use of StateleSS application devel
opment,

0018 Today’s Internet technologies mean that systems
are largely transactional by nature;

0019 Modern user interfaces are better at collecting
many items of data per Screen (or transaction);

0020 Today’s processors are much faster with large
onboard caches.

0021 Expert systems that perform batch processing
and provide engine-based Services are now a common
requirement;

0022 Integration of expert systems with corporate
databases is a Standard requirement.

0023 The forward-chaining inferencing system and
method of the present invention allows expert Systems to
better deal with these significant changes.

BRIEF SUMMARY OF THE INVENTION

0024. The present invention aims to provide an alterna
tive to known Systems and methods of forward-chaining
inferencing.

0025. This invention in one aspect resides broadly in a
method of forward-chaining inferencing in a rulebased Sys
tem having a rulebase and a set of input facts, wherein new

US 2005/0240546 A1

facts are inferred in accordance with variations to the rules
or the input facts, the method including:

0026 developing a computerized database contain
ing a fact dependency tree for indicating which facts
are used to produce other facts in accordance with
respective rules in the rulebase;

0027 sequentially ordering the facts in the fact
dependency tree to produce a Serialized fact depen
dency tree wherein for any given fact in the
Sequence, all facts which are used to produce that
fact are facts which are earlier in the Sequence than
is the given fact, and ordering the rules in the
rulebase in accordance with the facts produced
thereby to produce a Serialized rulebase wherein the
rules are in the same Sequential order as the facts in
the Serialized fact dependency tree.

0028. As used herein the expression “rulebase' is to be
given a broad meaning. Rulebased Systems and methods are
ones which are developed and implemented, and which
operate, in accordance with a set of rules. The rules are
preferably declarative, i.e. they explain rather than pro
OCC.

0029)
0030)
facts,

0031 sequentially evaluating each of the ordered
rules in the rulebase, and

It is preferred that the method also includes:
Setting in working memory all known input

0032 updating the working memory in accordance
with any changes to the facts in accordance with the
evaluating of a rule.

0033. In another aspect this invention resides broadly in
a System for forward-chaining inferencing in a rulebased
System having a rulebase and a set of input facts, wherein
new facts are inferred in accordance with variations to the
rules or the input facts, the System including:

0034) a computerized database containing a fact
dependency tree for indicating which facts are used
to produce other facts in accordance with respective
rules in the rulebase, and

0035) computer program code instructions which
configure the System to Sequentially order the facts in
the fact dependency tree to produce a Serialized fact
dependency tree wherein for any given fact in the
Sequence, all facts which are used to produce that
fact are facts which are earlier in the Sequence than
is the given fact, and to order the rules in the rulebase
in accordance with the facts produced thereby to
produce a Serialized rulebase wherein the rules are in
the same Sequential order as the facts they produce in
the Serialized fact dependency tree.

0036. It is further preferred that the computer program
code instructions configure the System to:

0037)
0038 sequentially evaluate each of the ordered rules
in the rulebase, and update the working memory in
accordance with any changes to the facts in accor
dance with the evaluating of a rule.

Set in working memory all known input facts,

Oct. 27, 2005

0039. It is preferred that the development of the comput
erized database containing a fact dependency tree includes:

0040 generating a graph in which each of the facts
relevant to the set of rules in the rulebase is identified
without any indication of the Sequential relationship
of the facts, and

0041 for each rule in the rulebase, providing an arc
between the facts associated with that rule, the
linkage being directed from the fact(s) which pro
duce other fact(s) toward the other fact(s).

0042. As used herein the expression “graph” refers to a
graphical illustration of the facts in a rulebase, for example
a set of nodes each representing a fact can be referred to as
a graph. AS used herein the expression “arc” in relation to
graphs refers to a connecting one-way arrow which joins
two facts, for example a directional linkage between nodes/
facts can be referred to as an arc.

0043. It is also preferred that only those rules which are
relevant in a given Situation are evaluated whereby the new
facts are inferred incrementally. Accordingly, the method
may include:

0044) maintaining a lookup table for recording for
each fact in the rulebase which rules are reliant
thereon for evaluation, and

004.5 maintaining a flag for each rule in the rule
base, the flag indicating for any given fact or setting
of a fact value between or during inferences, whether
the rule is relevant or irrelevant.

0046) The method and system of forward-chaining infer
encing may also take into account cyclic rule dependencies.
Accordingly the method may include:

0047 identifying loops in the fact dependency tree,
the loops being generated by cyclically dependant
rules,

0048 for each said loop, identifying a snarl contain
ing the loop;

0049 for each said Snarl, ignoring the facts in the
Snarl and any fact dependencies within the Snarl and
treating the Snarl as an indivisible node, when
Sequentially ordering the facts in the fact dependency
tree, and

0050 marking the start and end of each snarl in the
Serialized rulebase.

0051 AS used herein the expression “snarl” refers to the
Smallest Set of facts in the fact dependency tree which
contains a loop or loops generated by cyclically dependent
rules.

0052. In this embodiment it is also preferred that the
method includes, when inferencing:

0053 repeatedly evaluating the rules in each snarlin
cycles, and

0054 stopping evaluating the rules in a snarl when
a steady State is reached.

0055. The method and system of forward-chaining infer
encing may also take multiple object instances into account.
In this embodiment facts representing attributes of object

US 2005/0240546 A1

instances are Stored in working memory object instance
tables for Storing multiple Sets of facts, and the rules proving
these facts are evaluated once for each object instance, the
Sequential evaluation order of the rules being preserved.
0056. As used herein the expression “object instance”
refers to a specific instance of a real-world entity and the
expression “attribute” refers to a quality associated with an
object instance. Thus by way of non-limiting example, a
child called Julie is an object instance, as is a Second child
called Barney-and object instances of the same type, (e.g.
Julie and Barney), have the same type of attributes, (e.g.
their sex).
0057 The method and system of forward-chaining infer
encing may also accommodate batch processing. Accord
ingly the Steps of Sequentially evaluating the ordered rules
and updating the working memory can be conducted Simul
taneously acroSS multiple working memories to facilitate
batch processing for enhancing the average level of System
performance.

BRIEF DESCRIPTION OF THE DRAWINGS

0.058. In order that this invention may be more easily
understood and put into practical effect, reference will now
be made to the accompanying drawings which illustrate a
preferred embodiment of the invention, wherein:
0059 FIGS. 1 to 4 illustrate exemplary networks in
accordance with forward-chaining inferencing by the known
method utilizing the Rete algorithm;
0060 FIG. 5 illustrates a fact dependency tree in accor
dance with the linear inferencing process of the present
invention;
0061 FIG. 6 illustrates a serialized fact dependency tree
in accordance with the linear inferencing process of the
present invention;
0.062 FIG. 7 illustrates a serialized rulebase in accor
dance with the linear inferencing process of the present
invention;
0.063 FIG. 8 is a schematic block diagram of the linear
inferencing process of the present invention;
0064 FIG. 9 is a flowchart illustrating the linear infer
encing process of the present invention;
0065 FIGS. 10 to 12 relate to the treatment of cyclic
dependencies with FIG. 10 illustrating a fact dependency
loop, FIG. 11 illustrating a serialized fact dependency tree
with a snarl, and FIG. 12 illustrating a serialized rulebase
with a Snarl, and
0.066 FIGS. 13 and 14 relate to the treatment of multiple
object instances with FIG. 13 illustrating an example of
related objects and their attributes and FIG. 14 illustrating
tables which Store object instance data.

DETAILED DESCRIPTION OF THE
INVENTION

0067 By way of illustrative example of forward-chaining
inferencing and to enable a better understanding of the
methodology of the present invention a simplified rulebase
will be outlined by way of example and this rulebase used
to exemplify forward-chaining inferencing, first with refer

Oct. 27, 2005

ence to the known Rete algorithm, and Second with refer
ence to the System and method of the present invention.
0068 Let it be assumed by way of example that there are
10 facts: f1, f2, ..., f10. Facts f1 to f6 are input facts, i.e.
they are provided to the rulebase. Facts f7 to f10 are inferred
by the rulebase. All the facts take Boolean logical values.
0069. The rulebase consists of 6 rules, r1 to ré:

0070 r1: f1+f2+f5->f10
0071, r2: f7+f10->f9
0072, r3: f4->f10
0.073 r4: f6+f1->f8
0074) r5: f3+f8->f9
0075 r6: f1+f2->f7

0076 For the purposes of this specification the specific
method of evaluating the rules is not relevant. The + operator
is Some combining operator and the emeans “produces',
e.g. according to r1, if we have values for f1, f2 and f5 then
they can be combined to produce a value for f10.
0077. However, to better assist with an understanding of
the examples to follow, it is assumed that the + operator
performs a logical AND, i.e. a+b produces:

0078
0079 false, if either a or b is false; or
0080 unknown, otherwise.

true, if both a and b are true; or

0081. Now, given the following input facts:
0082) f1 is true;
0.083 f2 is true;
0084 f6 is false; and
0085)
0086 an expert system uses forward-chaining infer
encing to determine that:

0.087 f7 is true (by applying ré);
0088 f8 is false (by applying ra);
0089 f) is false (by applying rá and r5); and
0090 f10 is unknown.

0091 AS indicated above, the Rete algorithm is the
industry Standard for forward-chaining inferencing and aims
to minimize the amount of effort required for an inference
cycle whenever input facts change. It relies on the following
basic assumptions:

0092)
and

0093 the left-hand side of the rules in a rulebase
contain many similar expressions.

all other input facts are unknown,

working memory generally changes slowly;

0094. The Rete algorithm is implemented using a tree
based network, where the nodes of the tree are either:

O095
0096 combining operators that take two values and
combine them to product a result, or inferred facts.

leaves, representing the input facts,

US 2005/0240546 A1

0097. The network also contains the working memory:
between inferences, fact nodes Store their values and com
bining operators Store their inputs.

0098. The network for the rulebase exemplified above is
illustrated in FIG. 1. Arcs (represented by arrows in the
illustration) are located between nodes (represented in the
illustration as either Small circles indicating a fact, or Small
Squares indicating a combining operator). The arcs between
the nodes are used to propagate values through the network
during inferencing.

0099] It should be noted that the evaluation of fl+f2 is
used twice in the network (to evaluate f7 using ré and to
evaluate f10 using r1). This is how the algorithm deals with
repeated patterns in the left hand Side of rules, in accordance
with the 2nd of the algorithms assumptions.

0100. The leaf nodes, f1 to f6 in FIG. 1 are the inputs of
the network. When an input fact changes, the value is fed
into the network via the node's output arcs. When a value
flows into an inferred fact node it is stored by that node and
then emitted through its output arcs (if any). When a value
flows into a combining operator it is Stored by the combining
operator as an input. The combined value is then emitted
through the node's output arcs.
0101 Implementing a data structure to represent the Rete
network is relatively Straightforward. The inferencing pro
ceSS itself can be described as walking the paths from the
input fact that has changed value (e.g. f5 in FIG. 1) until the
paths come to an end (e.g. by hitting f)) or until a combining
operator is hit which does not emit a new value.
0102 FIG. 2 illustrates the relevant part of the example
network after Setting fl to true and performing the Subse
quent inference. FIG. 3 illustrates the relevant part of the
example network after Setting f2 to true and performing the
Subsequent inference, and FIG. 4 illustrates the relevant part
of the example network after Setting f6 to false and per
forming the Subsequent inference.

0103) The Rete algorithm thus always traverses the rel
evant part of a rulebase whenever a fact value is changed. By
way of contrast the method and System of the present
invention Serializes the inferencing process. This present
System and method of forward-chaining inferencing has
been termed linear inferencing and that expression will be
used throughout the Specification to refer to the System and
method of the present invention.

0104. The first step in preparing a rulebase for Linear
inferencing is to build a fact dependency tree showing which
facts are used to produce other facts. The fact dependency
tree for the exemplified rulebase is shown in FIG. 5.

0105 The next step is to lay out the facts serially while
ensuring that all the arcs point to the right. This is always
possible for a rulebase, providing the rulebase contains no
cyclic dependencies. (The approach to be adopted when
there are cyclic dependencies is described Subsequently). A
Serialized dependency tree for the exemplified rulebase is
shown in FIG. 6.

0106 The final step is to build a data structure containing
the rules laid out Serially in a contiguous block of memory.
The rules are ordered by the facts they produce, in accor
dance with the Serialized fact dependency tree.

Oct. 27, 2005

0107 Using the exemplified rulebase above, the process
starts with all the rules that produce f1, then the rules that
produce f2, then the rules that produce f7, then the rules that
produce f4, etc. The serialized rulebase for the above
example is illustrated in FIG. 7.
0108. This serializing of the rulebase by the ordering of
the rules allows inferencing to occur with a single left-to
right Scan of the rulebase and guarantees that inferred facts
needed to evaluate a specific rule are always produced
before that rule.

0109) A working memory is utilized consisting of an
array of fact values, initialized with any known values for
the input facts. For the example above, initial working
memory is:

t t f

t = true,
f = false,
? = unknown

0110 Performing an inference begins with the first rule in
the Serialized rulebase. In our example this S ré, which
produces a value for f7:

f1 f2 f3 fA. f5 f6 7 f8 9 f10

0111. The inference then continues to the next rule. In our
example this is r1, which fails to produce a value for f10
because f5 is unknown, So working memory remains
unchanged.

0112 The inference continues in this fashion until all the
rules have been evaluated. In our example, working memory
will finally be:

0113. When one or more input facts subsequently change
value, another inference is required to update working
memory.

0114) Reference is now made to FIG. 8 which is a
Stylistic block diagram illustrating the main aspects of linear
inferencing, i.e. building a fact dependency tree, Serializing
the fact dependency tree and Serializing the rulebase.
0115) To build the fact dependency tree the method
begins with a graph containing each of the facts in the
rulebase but without any connecting arcs. For each rule in
the rulebase, a directed arc is then inserted from each fact
appearing on the left-hand Side of the rule to the fact
appearing on the right-hand Side. The facts in the fact
dependency tree are then Sequentially ordered So that for

US 2005/0240546 A1

each fact, all arcs will come from facts positioned earlier in
the Sequence. The fact dependency tree has now been
serialized. Finally, the rules in the rulebase are ordered by
the facts they produce into the same order as the facts appear
in the Serialized fact dependency tree. This Serializes the
rulebase.

0116. A flow chart diagram illustrating the linear infer
encing process is seen in FIG. 9.

0117. A number of enhancements to the basic Linear
inferencing approach will now be described.

0118
0119) The Linear inferencing algorithm can be easily
extended to provide a mechanism for implementing incre
mental inferencing. The basic approach is to evaluate only
those rules that are relevant, when inferencing, by tracking
fact dependencies as follows:

Incremental Inferencing

0120) 1. Maintain a flag for each rule in the rulebase that
specifies whether the rule is relevant or irrelevant. Initially,
all rules are marked irrelevant.

0121 2. Maintain a lookup table that records, for each
fact in the rulebase, which rules are reliant on that fact for
evaluation, i.e. which rules have that fact appearing on the
left-hand Side. For Our Standard example, the lookup table
for incremental inferencing is as follows:

f1 2 f3 fA. f5 f6 f7 f8 9 f10

r1 r1 r5 r3 r1 rá. r2 r5 - r2
rá. res
ró

0122) 3. Whenever a fact value is set (between or during
inferences), the lookup table is used to mark each dependent
rule as relevant. For our Standard example, the initial State of
the relevancy flags immediately after working memory has
been initialized, is as follows:

r1 r2 r3 r4 r5 res

i i i

i = irrelevant,
r = relevant

0123 4. Inferencing proceeds as described earlier except
that any irrelevant rules are skipped over. When a fact is Set
during an inference, any dependent rules of that fact are also
marked as relevant. It is noted that these newly dependent
rules will always appear to the right of the current rule in the
Serialized rulebase, maintaining the linearity of the infer
encing process.
0.124 Cyclic Dependencies
0.125 Cyclic dependencies generate loops in a rulebase
because of rules Such as:

0.126 1. If the person is male then they are not female

0127 2. If the person is female then they are not male

Oct. 27, 2005

0128 Such rules, although prima facie Superfluous, are
often required in an expert System.

0129. Extending the above exemplified rule format
Slightly, Such rules can be represented as follows:

0130

0131)
0132 where f10 represents “the person is male' and f11
represents “the perSon is female'.

r7: f(0-sf11=false

r8: f11-ef10=false,

0.133 Such cyclic dependencies thwart the establishment
of a perfectly Serialized fact dependency tree and hence, of
a perfectly Serialized rulebase. This is because, in terms of
the above example, facts cannot be ordered So that all the
arcs point to the right as seen in FIG. 10.
0134) These cyclic dependency loops can be dealt with as
follows:

0.135 1. For each loop in the fact dependency tree,
identify the Smallest Set of facts that contain Such a loop.
These Sets of facts are herein termed Snarls.

0.136 2. Treat each snarl as an indivisible node, when
Serializing the fact dependency tree, ignoring the individual
facts and any dependencies within the Snarl itself. The
internal order of facts within Snarls also no longer matters.
An example of this is seen in FIG. 11 which illustrates a
Serialized fact dependency tree with a Snarl. For the tree in
FIG. 11, the f4, f5, f10 snarl is dependent on f1 and f2,
with only f) dependent on the Snarl itself.

0.137 3. The serialized rulebase is then created from the
Serialized fact dependency tree as normal. The Start and end
of the group of rules that represent each Snarl are also
recorded for future reference during inferencing as Seen in
FIG. 12 which illustrates a serialized rulebase with a Snarl.

0.138 4. When inferencing, the normal process is fol
lowed until a Snarl is encountered. At this point, what may
be termed a "brute-force' approach to inferencing is used,
wherein the rules in a Snarl are repeatedly evaluated in
cycles, until a steady-state in working memory is reached (or
until Some Sort other terminating mechanism kicks in). In
practice, the number of rules in each Snarl is very Small,
making the brute force approach ideal.

0139 Multiple Object Instances

0140 Modern expert systems need to be able to reason
about real-world objects having rich interrelationships, Such
as illustrated in FIG. 13 which illustrates related objects and
their attributes.

0.141. In an extension of the present invention, object
attributes Such as “is nice' are regarded as actual facts (f5
in the example of FIG. 13). This means that facts can take
on multiple values, one for each associated object instance
(so f5 is true for Fred but false for Geri in the example of
FIG. 13).
0142. The system provides for the development of rules
that infer facts acroSS object instances Simultaneously. For
example, rules Such as:

0143)
happy

r1: all a child's friends are nice the child is

US 2005/0240546 A1

0144 r2: any of a child's friends are not nice the
child is not happy,

0145 would produce the value of true forjulie's f3 and
false for Barney's f3.
0146 Linear inferencing deals with these multiple object
instances by extending the way in which working memory
is structured. The original flat table of values is only used for
Storing facts that are not related to any objects. Facts
representing object attributes are Stored in Special object
instance tables Such as illustrated in FIG. 14.

0147 The Linear inferencing process itself is largely
unaffected by these Structural changes to working memory.
The existence of multiple values for facts does not change
the order in which rules need to be inferenced So the proceSS
remains linear, as before.

0148 However, the inferencing process is modified when
a rule is encountered that proves a fact that appears in
multiple object instances, in which case that rule is evaluated
once for each instance. In other words, the rule evaluation
order is preserved but Some rules are evaluated more than
OCC.

0149 Batch Processing
0150. It is normal for expert systems to support some
form of batch processing, i.e. the unattended recalculation or
reconsideration of a large number of Saved cases due to a
change in rules.
0151 Batch processing basically involves the following
Steps:

0152 Load the next case into working memory

0153 Reinference using the new rules
0154 Save the case data out of working memory

O155 Repeat until there are no more cases to pro
CCSS

0156 AS discussed earlier, the Linear inferencing algo
rithm is well Suited to providing high performance in this
type of processing Scenario because it is very good at dealing
with multiple changes to working memory.

O157 However, a simple extension can provide even
better levels of performance by taking advantage of the fact
that all inferences involve a Single left-to-right Sweep of the
rulebase. The basic idea is to exploit the highly linear nature
of the inferencing proceSS by processing multiple working
memories simultaneously for each Sweep of the rulebase.
0158 Rulebases can often be very large in size (mega
bytes) and the process of Sweeping the memory occupied by
a rulebase is relatively expensive. Spreading the cost of that
operation over multiple Sessions provides a significant per
formance boost, especially for large rulebases.
0159 Minimizing Conditional Branches
0160 Modern processors use onboard caches to achieve
high levels of performance, which the Linear inferencing
algorithm uses to good effect to maximize performance.
0.161 Another important strategy employed by modern
processors to boost performance is deep instruction pipelin

Oct. 27, 2005

ing, which involves overlapping the execution of instruc
tions which effectively keeps every part of a processor as
busy as possible.
0162 One of the key hazards to instruction pipelining is
conditional branching which can cause the pipeline to Stall
when the processor fails to predict the next instruction to
execute. To facilitate maximum processor performance, the
frequency of unpredictable conditional branches is mini
mized.

0163 The main area where the avoidance of conditional
branching can pay large performance dividends is rule
evaluation. To this end, implementation of Linear inferenc
ing has largely reduced the process of evaluating rules to a
Sequence of logical operations and table lookups. An
example of this preferred approach applied to the Specific
problem of performing a logical AND on a set of Boolean
fact values is as follows:

0.164 1. Represent each fact value as a bit mask:

Value Binary mask (decimal equivalent)

true 100 (4)
false 010 (2)
unknown 001 (1)

0.165 2. Combine the fact values using a bitwise OR
operation and use it to lookup the result:

Binary index (decimal equivalent) Result

000 (O) true
001 (1) unknown
010 (2) false
011 (3) false
100 (4) true
101 (5) unknown
110 (6) false
111 (7) false

0166 It should be noted that his type of approach can also
be used with the other logical operators to help remove
conditional branching from rule evaluation.
0167. It will be appreciated that the forward-chaining
inferencing System and method of the present invention, and
which utilizes linear inferencing, has a number of advan
tages over known forward-chaining inferencing methods.
The Rete algorithm has a number of Shortcomings including
that it only deals with Small changes, that it carries a high
memory overhead and that it lackS Support for modern
processor architectures.
0168 With regard to the first of these shortcomings, the
Rete algorithm was designed to perform the completely
minimum amount of work for each discrete change in input
fact value. This is a valid approach, given its key assumption
that working memory changes slowly, but this assumption is
out of date-inferencing in modern expert Systems usually
occurs after many changes in input fact values:
0169 Stateless, interactive systems (for supporting high
levels of scalability) rely on the efficient reconstruction of an
inferred state from a large set of input facts (routinely 100s
per transaction)

US 2005/0240546 A1

0170 Even for interactive systems that do not implement
Statelessness, the transactional nature of modern Systems,
combined with the capacity and desire to collect multiple
items of data from a user at a time, means that inferencing
rarely occurs after a single fact changes value
0171 Batch processing or engine-based Systems are pre
sented with a lump of input facts (routinely 100s per
transaction) from which to infer decisions
0172 Data sourced from corporate databases is presented
to an expert System as a lump of input facts (routinely 100s),
when initializing a Session
0173 The Rete algorithm is not suited to efficiently
coping with the routine change of 100S of input facts and yet
this is what is required by modern Systems.
0.174 AS to high memory overhead, the Rete algorithm
builds complex data Structures which mirror the complexity
of the rulebase. These data Structures can, therefore, get
quite large for big and complex rulebases. ESSentially the
algorithm Sacrifices memory efficiency to ensure that the
minimum number of operations is conducted during an
inference. This is a major disadvantage for high-perfor
mance, high-load enterprise applications where memory is
at a premium because each active Session requires its own
Rete network. Finally, the Rete algorithm does not best
exploit the large onboard caches of modern processor archi
tectures which provide the potential for massive perfor
mance breakthroughs.
0.175. The Linear inferencing approach of the present
invention improves upon the above shortcomings and deal
with multiple, Simultaneous updates to input fact values.
This means that it can deal with the various processing
Scenarios listed above and which are Standard features of
modern enterprise-level expert Systems today. Furthermore,
because the working memory largely consists of Simple
tables of values, working memory required for the present
invention has been fully minimized. Finally, modern pro
ceSSors achieve high levels of performance by employing
large onboard caches with high-Speed memory. The SucceSS
of these caches relies on memory access locality, i.e. the fact
that Successive memory accesses are located close together.
The Linear inferencing algorithm allows the efficient orga
nization of data Structures to achieve very high levels of
memory access locality thus maximizing the performance of
these caches.

0176). It will of course be realized that whilst the above
has been given by way of an illustrative example of this
invention, all Such and other modifications and variations
hereto, as would be apparent to perSons skilled in the art, are
deemed to fall within the broad scope and ambit of this
invention as is herein Set forth.

What is claimed as new and desired to be protected by
Letters Patent of the United States is:
1. A method of forward-chaining inferencing in a rule

based System having a rulebase and a Set of input facts,
wherein new facts are inferred in accordance with variations
to the rules or the input facts, the method including:

developing a computerized database containing a fact
dependency tree for indicating which facts are used to
produce other facts in accordance with respective rules
in the rulebase;

Oct. 27, 2005

Sequentially ordering the facts in the fact dependency tree
to produce a Serialized fact dependency tree wherein
for any given fact in the Sequence, all facts which are
used to produce that fact are facts which are earlier in
the Sequence than is the given fact, and

ordering the rules in the rulebase in accordance with the
facts produced thereby to produce a Serialized rulebase
wherein the rules are in the same Sequential order as the
facts in the Serialized fact dependency tree.

2. A method of forward-chaining inferencing as claimed
in claim 1, and including:

Setting in working memory all known input facts,
Sequentially evaluating each of the ordered rules in the

rulebase, and
updating the working memory in accordance with any

changes to the facts in accordance with the evaluating
of a rule.

3. A method of forward-chaining inferencing as claimed
in claim 1, wherein development of the computerized data
base containing a fact dependency tree includes:

generating a graph in which each of the facts relevant to
the set of rules in the rulebase is identified without any
indication of the Sequential relationship of the facts,
and

for each rule in the rulebase, providing an arc between the
facts associated with that rule, the linkage being
directed from the fact(s) which produce other fact(s)
toward the other fact(s).

4. A method of forward-chaining inferencing as claimed
in claim 2, wherein only those rules which are relevant in a
given Situation are evaluated whereby the new facts are
inferred incrementally.

5. A method of forward-chaining inferencing as claimed
in claim 4, the method including:

maintaining a lookup table for recording for each fact in
the rulebase which rules are reliant thereon for evalu
ation, and

maintaining a flag for each rule in the rulebase, the flag
indicating for any given fact or Setting of a fact value
between or during inferences, whether the rule is rel
evant or irrelevant.

6. A method of forward-chaining inferencing as claimed
in claim 2, and including:

identifying loops in the fact dependency tree, the loops
being generated by cyclically dependant rules,

for each Said loop, identifying a Snarl containing the loop;
for each said Snarl, ignoring the facts in the Snarl and any

fact dependencies within the Snarland treating the Snarl
as an indivisible node, when Sequentially ordering the
facts in the fact dependency tree, and

marking the Start and end of each Snarl in the Serialized
rulebase.

7. A method of forward-chaining inferencing as claimed
in claim 6, and including:

repeatedly evaluating the rules in each Snarl in cycles, and
Stopping evaluating the rules in a Snarl when a steady State

is reached.

US 2005/0240546 A1

8. A method of forward-chaining inferencing as claimed
in claim 2:

wherein facts representing attributes of object instances
are Stored in working memory object instance tables for
Storing multiple Sets of facts, and

wherein the rules proving these facts are evaluated once
for each object instance, the Sequential evaluation order
of the rules being preserved.

9. A method of forward-chaining inferencing as claimed
in claim 2, wherein the StepS defined in claim 2 are con
ducted Simultaneously acroSS multiple working memories to
facilitate batch processing for enhancing the average level of
System performance.

10. A System for forward-chaining inferencing in a rule
based System having a rulebase and a Set of input facts,
wherein new facts are inferred in accordance with variations
to the rules or the input facts, the System including:

a computerized database containing a fact dependency
tree for indicating which facts are used to produce other
facts in accordance with respective rules in the rule
base, and

Oct. 27, 2005

computer program code instructions which configure the
System to Sequentially order the facts in the fact depen
dency tree to produce a Serialized fact dependency tree
wherein for any given fact in the Sequence, all facts
which are used to produce that fact are facts which are
earlier in the Sequence than is the given fact, and to
order the rules in the rulebase in accordance with the
facts produced thereby to produce a Serialized rulebase
wherein the rules are in the same Sequential order as the
facts they produce in the Serialized fact dependency
tree.

11. A System for forward-chaining inferencing as claimed
in claim 10, wherein the computer program code instruc
tions further configure the System to:

Set in working memory all known input facts,
Sequentially evaluate each of the ordered rules in the

rulebase, and
update the working memory in accordance with any

changes to the facts in accordance with the evaluating
of a rule.

