(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102539882 B
(45) 授权公告日 2015.07.22

(21) 申请号 201110408331.5
(22) 申请日 2011.12.09
(30) 优先权数据
 12/963787 2010.12.09 US
(73) 专利权人 英飞凌科技股份有限公司
 地址 德国瑞伊比贝尔格市坎花昂 1 - 12 号
(72) 发明人 U. 奥塞莱希纳
(74) 专利代理机构 中国专利代理 (香港) 有限公司 72001
 代理人 王岳 卢江

(51) Int. Cl.
 G01R 19/00(2006.01)

(56) 对比文件

(54) 发明名称
 磁场电流传感器

(57) 摘要
 实施例涉及磁场电流传感器。在一个实施例中,一种磁场电流传感器包括:半导体管芯,具有第一和第二相对的表面并且包括至少一个磁场感应元件;以及单一导体,包括足部部分、第一和第二支柱部分以及第一和第二接触部分。第一支柱部分具有第一高度且将第一接触部分耦合到足部部分,第二支柱部分具有第一高度并且将第二接触部分耦合到足部部分,第一高度是将足部部分与第一和第二接触部分分开的单倾角直尺寸,并且足部部分将导体耦合到管芯的第一表面,使得足部部分基本上平行于管芯的第一表面且处于第一表面的周界内,并且第一和第二接触部分比第二表面更靠近第一表面。
1. 一种磁场电流传感器，包括：

半导体管芯，具有第一和第二相对的表面并且包括至少一个磁场感测元件；以及

单一导体，其被配置携带由至少一个磁场感测元件感测的电流，并且包括足 indice 部分、第一和第二支柱部件以及第一和第二接触部分；第一支柱部分具有第一高度并且将第一接触部分耦合到足 indice 部分，第二支柱部分具有第一高度并且将第二接触部分耦合到足 indice 部分，第一高度是将足 indice 部分与第一和第二接触部分分开的单调径直尺寸，并且足 indice 部分将导体耦合到管芯的第一表面，使得足 indice 部分基本平行于管芯的第一表面且处于第一表面的周边内，并且第一和第二接触部分比第二表面更靠近第一表面，其中单一导体被配置携带在同一接触部分和第二接触部分之间的电流，其中导体包括在足 indice 部分中形成的至少一个切口。

2. 权利要求 1 的磁场电流传感器，其中切口的端部具有半径。

3. 权利要求 1 的磁场电流传感器，其中切口为 0.3mm 宽和 0.5mm 长。

4. 权利要求 1 的磁场电流传感器，其中切口的宽度等于或大于导体的厚度。

5. 权利要求 1 的磁场电流传感器，其中足 indice 部分的边沿以 0.1mm 至 1mm 的范围内的距离与管芯的第一表面的周边分开。

6. 权利要求 1 的磁场电流传感器，其中第一和第二支柱部分近似垂直于足 indice 部分以及第一和第二接触部分。

7. 权利要求 1 的磁场电流传感器，其中足 indice 部分将导体耦合到管芯的第一表面，使得第一和第二接触部分延伸超出以坚直距离分开的管芯第一表面的周边。

8. 权利要求 1 的磁场电流传感器，其中足 indice 部分的表面的面积为第一表面的面积的至少 25%，该表面将足 indice 部分耦合到第一表面。

9. 权利要求 1 的磁场电流传感器，进一步包括足 indice 部分与管芯的第一表面之间的隔离层。

10. 权利要求 1 的磁场电流传感器，其中足 indice 部分通过粘合剂或焊接胶之一耦合到第一表面。

11. 权利要求 1 的磁场电流传感器，其中导体由片状金属形成。

12. 权利要求 11 的磁场电流传感器，其中片状金属具有 0.1mm 至 0.6mm 的范围内的恒定厚度。

13. 权利要求 1 的磁场电流传感器，其中所述至少一个磁场感测元件接近管芯的第一表面。

14. 权利要求 1 的磁场电流传感器，其中所述至少一个磁场感测元件接近管芯的第二表面。

15. 权利要求 1 的磁场电流传感器，其中足 indice 部分的横截面积小于第一接触部分的横截面积。

16. 权利要求 1 的磁场电流传感器，进一步包括包封管芯和导体的封装。

17. 一种磁场电流传感器，包括：

管芯，具有至少一个磁场感测元件；

多个接触，设置在第一平面内并且耦合到管芯；

导体，包括第一和第二接触部分，第一和第二接触被电气耦合且设置在与第一平面不
同的第二平面内，并且导体耦合到管芯且与管芯电气隔离；以及
模具主体，包封管芯。所述多个接触以及第一和第二接触部分。
18. 权利要求 17 的磁场电流传感器，进一步包括环绕密封，该环绕密封被设置成邻近
模具主体以防止第一和第二平面之间的沿着模具主体的表面的爬电电流。
19. 权利要求 18 的磁场电流传感器，其中环绕密封包括 O 形环。
20. 权利要求 18 的磁场电流传感器，其中所述环绕密封包括被配置用于安装在传感器
模块中的肩部结构的至少一部分。
21. 权利要求 20 的磁场电流传感器，其中传感器模块被配置成安装到印刷电路板。
22. 权利要求 18 的磁场电流传感器，其中所述环绕密封设置在第一和第二平面之间。
23. 权利要求 18 的磁场电流传感器，其中所述环绕密封设置在第一或第二平面之一
内。
24. 权利要求 17 的磁场电流传感器，其中所述多个接触将管芯耦合到引线框架。
25. 权利要求 17 的磁场电流传感器，其中第一平面位于第二平面上方。
26. 权利要求 25 的磁场电流传感器，其中管芯处于第一和第二平面之间。
27. 权利要求 17 的磁场电流传感器，其中导体包括第一和第二支柱部分以及足迹部
分，第一和第二支柱部分分别将第一和第二接触部分耦合到足迹部分。
磁场电流传感器

技术领域
[0001] 本发明通常涉及集成电路, 并且更特别地涉及集成电路磁场电流传感器。

背景技术
[0002] 电磁隔离集成电路（IC）磁场电流传感器的希望的属性包括高的磁灵敏度; 高的机械稳定性和可靠性; 对芯片边缘附近的霍尔传感器元件的低应力影响; 高的热均匀性和平低的热梯度; 高的隔离电压; 最小化的电迁移问题; 以及低的制造成本。常规的电流传感器可以包括一个或多个特征或者旨在解决这些希望的属性的方式制造。
[0003] 例如，一些电流传感器使用引线框架作为电流引线。其他的电流传感器也包括磁芯。然而，这样的传感器可能制造起来是昂贵的。
[0004] 其他的电流传感器包括附加的层，诸如硅管芯上的特殊磁层或者隔离层上形成的厚金属层。这些传感器也是昂贵的，并且前者可能对干扰场是敏感的并且可能遭受与 IC 外部的电流引线的定位有关的缺陷。
[0005] 因此，需要一种具有希望的属性同时最小化缺陷的电磁隔离 IC 磁场电流传感器。

发明内容
[0006] 在一个实施例中，一种磁场电流传感器包括：半导体管芯，具有第一和第二相对的表面并且包括至少一个磁场感测元件；以及单一导体，包括足部部分、第一和第二支撑部分以及第一和第二接触部分。第一支撑部分具有第一高度并且将第一接触部分耦合到足部部分，第二支撑部分具有第一高度并且将第二接触部分耦合到足部部分，第一高度是将足部部分与第一和第二接触部分分开的单倾斜尺寸，并且足部部分将导体耦合到管芯的第一表面，使得足部部分基本上平行于管芯的第一表面并且处于第一表面的周界内，并且第一和第二接触部分比第二表面更靠近第一表面。
[0007] 在一个实施例中，一种磁场电流传感器包括：管芯，具有至少一个磁场感测元件；多个接触，设置在第一平面内并且耦合到管芯；导体，包括第一和第二接触部分，第一和第二接触被电气耦合且设置在与第一平面不同的第二平面内，并且导体耦合到管芯并且电气隔离；以及模具主体，包封管芯、所述多个接触以及第一和第二接触部分。

附图说明
[0008] 考虑以下结合附图的对本发明各个实施例的详细描述，可以更加完整地理解本发明，在附图中：
[0009] 图 1 绘出了依照一个实施例的流通导体夹具；
[0010] 图 2A 绘出了依照一个实施例的传感器部件；
[0011] 图 2B 绘出了依照一个实施例的传感器封装；
[0012] 图 3A 绘出了依照一个实施例的传感器部件的俯视图；
[0013] 图 3B 绘出了图 3A 的传感器部件的侧视图；
图 4A 绘出了依照一个实施例的传感器部件的顶视图；
图 4B 绘出了图 4A 的传感器部件的侧视面图；
图 5A 绘出了依照一个实施例的传感器部件的顶视图；
图 5B 绘出了图 5A 的传感器部件的侧视面图；
图 6 以局部视图绘出了依照一个实施例的电流导体夹具的仿真结果；
图 7 绘出了磁场与图 6 的导体夹具的 z 位置的关系的仿真结果；
图 8 以局部视图绘出了依照一个实施例的电流导体夹具的仿真结果；
图 9 以局部视图绘出了依照一个实施例的电流导体夹具的仿真结果；
图 10 绘出了图 9 的导体夹具的通量密度的仿真结果；
图 11 以局部视图绘出了依照一个实施例的电流导体夹具的仿真结果；
图 12 以局部视图绘出了依照一个实施例的电流导体夹具的仿真结果；
图 13A 绘出了依照一个实施例的传感器部件的顶视图；
图 13B 绘出了图 13A 的传感器部件的侧视面图；
图 14A 绘出了依照一个实施例的传感器部件的顶视图；
图 14B 绘出了图 14A 的传感器部件的侧视面图；
图 15 为依照一个实施例的制造工艺的流程图；
图 16 为依照一个实施例的传感器封装的侧视面图；
图 17 为依照一个实施例的传感器封装的侧视面图；
图 18 为依照一个实施例的传感器封装的侧视面图；
图 19 为依照一个实施例的传感器封装的侧视面图；
图 20 为依照一个实施例的传感器封装的侧视面图；
图 21 为依照一个实施例的传感器封装的侧视面图；
图 22 为依照一个实施例的传感器封装的侧视面图；
图 23 为依照一个实施例的传感器封装的侧视面图；
图 24 为依照一个实施例的传感器封装的侧视面图；
图 25 为依照一个实施例的传感器封装的侧视面图；
图 26 为依照一个实施例的传感器封装的侧视面图；
图 27 为依照一个实施例的安装到 PCB 的传感器封装的侧视面图；
图 28 为依照一个实施例的安装到 PCB 的传感器封装的侧视面图；
图 29 为依照一个实施例的安装到 PCB 的传感器封装的侧视面图；
图 30A 绘出了依照一个实施例的安装到汇流条的传感器部件的侧视面图；
图 30B 绘出了依照一个实施例的安装到汇流条的传感器部件的顶视图；
图 31A 绘出了依照一个实施例的传感器部件的侧视面图；
图 31B 绘出了图 31A 的传感器部件的顶视图；
图 32 为依照一个实施例的夹具片状金属的顶视图；
图 33 为依照一个实施例的夹具片状金属的顶视图；
图 34 为依照一个实施例的夹具片状金属的顶视图；
图 35 为依照一个实施例的制造工艺的流程图；
图 36A 绘出了依照一个实施例的传感器部件的顶视图；
尽管本发明经由各种修改和可替换的形式，但是其细节在其附图中通过实例方式清晰出，并且详细地加以描述。然而，应当理解的是，目的在于将本发明限于所描述的特定实施例。相反，目的是覆盖落入由所附权利要求书限定的本发明的精神和范围内的所有修改、等效物和可替换方案。

具体实施方式

本发明涉及具有三维电流导体的IC磁场电流传感器。在实施例中，三维导体可以避免增大内部电阻的长的横向尺寸并且也可以被定位成更靠近管芯以便最大化传感器元件位置处的磁场。此外，由单个制造的三维电流导体可以减少或者消除电迁移问题。实施例也可以保持电阻低（诸如在一个实施例中约为大约100μΩ）并且提供良好的电隔离（诸如在实施例中高达大约10kV）。实施例也可以包括设置在不同的电平的低电压传感器引脚和电流接触。实施例由此可以以相对低的成本提供显著的电压隔离。

[0074] 图1给出了依照一个实施例的电流导体夹具100。在一个实施例中，夹具100包括中心或芯片部分102、第一支点部分104、第一接触106、第二支点部分108和第二接触110。
说明书

对称部分 102 通常这样确定尺寸和形状，使得它能够大为它安装于其上的管芯形成良好的机械接触并且也在制造期间支撑夹具 100，而不使其倾斜（tip）或跌落，同时保持小于管芯，因为夹具 100 应当置于相距管芯的锯切刃沿的足够横向距离处以便实现希望的或要求的电压隔离。在实际例中，电压隔离处于大约 1kV 至大约 10kV 的范围内，其中足迹部分 102 与管芯的锯切刃沿分开大约 0.1mm × 大约 1mm。如图 1 中所绘出的，足迹部分 102 为大约 1mm × 大约 1mm。如果它安装于其上的管芯为例如大约 2.7mm × 大约 2.7mm，并且夹具 100 安装在近似中心处，则足迹部分 102 与管芯的锯切刃沿之间的横向距离为大约 0.85mm。因此，利用管芯之上的适当模具化合物，该距离足以耐受大约 10kV 的电压。

第一和第二支柱部分 104 和 108 将足迹部分 102 分别耦合到第一和第二接触 106 和 110，并且与足迹部分 102 以及接触 106 和 110 成近似直角。在实施例中，第一和第二支柱部分 104 和 108 具有单调的高度，使得它们分别使第一和第二接触 106、110 与足迹部分分开距离并且足够长以提供接触 106 和 110 与管芯的锯切刃沿之间的足够距离，因为接触 106 和 110 中的一者或二者可以与锯切刃沿重叠而不会有必要地增大夹具 100 中的电流路径长度。关于第一和第二支柱部分 104 和 108 的单调性质，夹具 100 仅在单个方向上从接触 106 和 110 延伸到足迹部分 102，而不反转方向或者向上且然后向下弯曲。换言之，如果接触 106 和 110 处于第一高度并且足迹部分 102 处于第二高度，则描述高度与横向尺寸关系的函数在数学意义上是单调的，意味着它的导数不改变符号。

在图 1 的实施例中，夹具 100 的总体高度为大约 0.7mm，其中厚度为大约 0.2mm。因此，接触 106 和 110 与夹具 100 安装于其上的管芯（其在图 1 中未示出）的锯切刃沿之间的竖直距离为大约 0.5mm。然而，夹具 100 的高度不应当太大，因为这可能增大夹具 100 的电阻以及因而增大功耗和温度的影响。

在一个实施例中，接触 106 和 110 是相同的。接触 106 和 110 应当足够大以提供足够的表面并且希望地是比管芯大。因此，如图 1 中所绘出的，接触 106 和 110 可以与管芯（未绘出）的锯切刃沿重叠并且为大约 3mm × 大约 1.2mm。

如前面所提到的，图 1 中的夹具 100 的厚度为大约 0.2mm。夹具 100 应当足够厚以在组装期间以及在随后的器件操作期间确保机械稳定性。较厚的夹具也降低夹具的内部电阻。另一方面，夹具 100 的厚度由夹具的可制造性限制；夹具 100 被冲压和压制、弯曲或者以其他方式形成形状并且需要以合理的精确度这样做，这限制了总体厚度。此外，如果夹具 100 包括切口 112，则切口 112 的宽度典型地等于或大于夹具 100 的厚度，而不管切口 112 是通过冲压、蚀刻还是某种其他方法而形成的。因此，在图 1 的实施例中，夹具 100 为大约 0.2mm，其与所绘出的切口 112 的宽度相同。然而，对于大的电流范围，夹具 100 不需要包括切口 112，并且切口 112 的省略可以简化制造且允许更厚的夹具，诸如在实施例中高达大约 1mm 或更大。

通常，夹具 100 包括为良好的电和热导体且无磁性的材料，诸如具有小于 0.1% 的铁磁杂质。有益的是，该材料足够柔软以有利于制造期间的冲压、形成、压制、修整和其他步骤。在一个实施例中，夹具 100 包括铜。在另一个实施例中，夹具 100 包括铝。

图 2 绘出了包括夹具 100 的传感器封装 200。图 2A 绘出了模具之前的封装 200，而图 2B 绘出了模具之后的封装 220。

在图 2A 中，夹具 100 螺合到管芯 202。该管芯进而耦合到基座或管芯板
（paddle）203。在实施例中，管芯 202 可通过粘合剂、焊膏或者某种其他适当的装置而耦合到管芯基板 203。管芯基板 203 是传导基板，并且由于夹具 100 中的磁场可以在管芯基板中感应涡流，因而在一个实施例中，管芯 202 制造得尽可能厚以最大化夹具 100 与管芯基板 203 之间的距离。如所绘出的，夹具 100 桥合到管芯 202 的顶部，尽管在其他实施例中可以使用管芯 202 的底部。在一个实施例中，电隔离层 204 位于夹具 100 与管芯 202 之间。在图 2A 中也绘出了信号输出、地和电源电压参考引脚 206a、206b 和 206c 及相关的接合线 208a、208b 和 208c 以及两个电容器，信号引脚 206a 与接地引脚 206b 之间的 210a 和接地引脚 206b 与电源引脚 206c 之间的 210b。

[0085] 在图 2B 中，绘出了桥接之后的传感器封装 200。模具主体 212 包封传感器封装 200 的部件，其中接触 106 和 110 以及传感器引脚 206a、206b 和 206c 保持在模具主体 212 的外部。

[0086] 图 3 绘出了夹具 100 和管芯 202。图 3A 为顶部平面图，并且图 3B 为沿着图 3A 中所示的 A-A' 截面的横截面图。管芯 202 包括多个磁场传感器 214a、214b 和 214c。在一个实施例中，磁场传感器 214a、214b 和 214c 为霍尔板，其相对于管芯 202 表面的磁场分量敏感。在一个实施例中，传感器 214a、214b 和 214c 的有效信号典型地为长度和宽度大约 20μm 至大约 200μm 且厚度小于大约 10μm(诸如大约 3μm)。为了移除偏移，利用自旋流电技术，诸如利用具有 90 度对称的几何结构的霍尔板。

[0087] 磁场传感器 214a、214b 和 214c 在管芯 202 上置于这样的位置处，通过夹具 100 的电流例如沿着夹具 100 的边界经历极峰值。如果夹具 100 包括一个或多个切口 112，则磁场传感器 214a、214b 和/或 214c 的最佳位置将切口 112 的端部，因为切口 112 造成强烈的不均匀的电流密度并且因而磁场更加有效地定位在其端部附近。更多关于切口 112 和该效应的信息可以见于共同拥有的美国专利申请 No.12/711471 中，该美国专利申请通过引用全部合并于此。

[0088] 如果磁场传感器 214a、214b 和 214c 的有效信号与夹具 100 的相对表面之间的距离是小的，诸如在实施例中大约 5μm 至 50μm，则在一个实施例中有效信号的一半应当与夹具 100 重叠。在包括切口 112 的另一个实施例中，有效信号可以定位成主要地或者全部地临近切口 112，使得只有小部分或者没有任何部分的磁场传感器 214a、214b 和/或 214c 与夹具 100 的传导信号重叠。

[0089] 为了移除对磁场传感器 214a、214b 和 214c 的不希望的背景磁场影响，可以使用诸如共同拥有的美国专利申请 No.12/630596 中所描述的高阶微分场测量，该美国专利申请通过引用全部合并于此。其实，磁场传感器 214a、214b 和 214c 不需要每一个都位于磁场极端处，尽管每一个经历强磁场可能是有利的。然而，在没有复杂的芯片设计和夹具 100 的增加的欧姆电阻的情况下，这并不总是可能的。因此，另一个可行的选项是将少于全部的磁场传感器 214a、214b 和 214c 定位在来自通过夹具 100 的电流的最大场点处。这样的配置是图 3 中所绘出的配置，其中磁场传感器 214b 关于切口 112 端部定位并且磁场传感器 214a 和 214c 定位在其任一侧关于夹具 100 中的电流流动方向在传感器 214b 之后和之前。

[0090] 图 4 绘出了夹具 100 和管芯 202 的另一个实施例，其中磁场传感器 214a、214b 和 214c 的轴在管芯 202 的表面上旋转了 90 度。如图 4A 中可见，磁场传感器 214a 和 214b 之间的距离小于磁场传感器 214b 和 214c 之间的距离。在实施例中，这些距离可以任意地选
择，使得磁场传感器 214a、214b 和 214c 的位置与由于夹具 100 中的电流引起的强磁场或极端磁场的一个或若干位置匹配。

[0091] 为了与更高的电流范围兼容，夹具 100 省略了增大夹具 100 的电阻的切口 112，如图 5 中所绘出的。磁场传感器 214a、214b 和 214c 的配置类似于图 4 中所绘出的实施例的配置。但是添加了第四磁场传感器 214d。两个磁场传感器 214b 和 214c 设置在夹具 100 中间附近，并且磁场传感器 214a、214b、214c 和 214d 的信号可以如下组合：

[0092] 总信号 = (d-a) -3*(c-b)

[0093] 其中 a 指的是磁场传感器 214a 的信号，b 指的是磁场传感器 214b 的信号，等等，并且磁场传感器 214a、214b、214c 和 214d 等距地隔开。

[0094] 如果磁场传感器 214a、214b、214c 和 214d 已等距地隔开，则每个信号乘以适当的缩放因子，诸如前面提到的美国专利申请 No. 12/630596 中所述的，该美国专利申请通过引用合并于此。

[0095] 可以看到，至少一个优点涉及夹具 100 的实施例的多功能性和封装概念。夹具 100 的厚度、宽度、切口几何结构和/或其他特性的小变化可以调节或定制夹具 100 的电阻。此外，如图 3-5 中具体图解说明的，也可以诸如通过经由专用的金属罩、熔丝、齐纳轰击（zapping）、诸如 EEPROM 之类的存储器或者以某种其他适当的方式选择希望的一个或多个传感器而定制磁场传感器的数量和配置以用于信号处理。也可以调节隔离硬度。例如，对于低隔离要求（诸如大约 1kV），可以使用廉价的层，比如聚酰亚胺。对于更加适合的隔离（诸如大约 4kV），可以使用更厚的聚酰亚胺或者薄的氮化物或氧化物。对于最大的隔离（诸如高达大约 10kV），在一个实施例中可以使用诸如大约 15μm 厚的二氧化硅。因此，通常有可能以非常低的成本制造具有例如大约 5A 至大约 500A 的满量程电流范围的整个电流传感器系列。

[0096] 图 6 绘出了夹具 100 的一个实施例的仿真结果。在该实施例中，只绘出了夹具 100 的一半并且省略了切口 112。包括铜的夹具 100 耦合到汇流条 602，该汇流条为大约 5mm 宽 × 大约 1mm 厚。夹具 100 的窄部分为大约 1mm 宽和大约 0.2mm 厚，通过其中的电流流线示于图 6 中。0V 在夹具 100 的左侧限定，而 0.5mV 在汇流条 602 的右侧限定，并且电流为 5.5365A；夹具 100 耗散的功率为 4.2556mW，并且图 6 的实施例中的夹具 100 的电阻为 140μΩ。夹具 100 之下 50μm 处的磁通量密度为大约 2.05mT，或者大约 370μT/A。在 75A 的全电流范围内，夹具 100 的每侧的磁场 (B) 为大约 27.8mT。图 6 绘出了 z=50μm 处的 Bz 场。夹具 100 的底面位于 z=0mm 处。在一个实施例中，诸如霍尔元件之类的磁场传感器将定位在该点之下大约 20μm 至大约 50μm 处。

[0097] 图 7 绘出了夹具 100 的边沿附近（即在大约 y=-0.5mm 处）磁场的下降和与 z 位置的关系。例如，如果 z 改变大约 0.1mm，则磁场从大约 2mT 降低到大约 1.5mT 或者大约 0.3%/μm。如果诸如由于温度变化或湿度的原因，粘合层以及夹具 100 的厚度变化，则垂直距离也可能变化，从而可能导致电流传感器校准中的误差。然而，由于厚度的绝对值也是小的，因此，鉴于所使用的薄层，材料膨胀不是一个显著的问题。

[0098] 图 8 绘出了夹具 100 的另一个实施例的仿真结果，这次该夹具包括切口 112。在该实施例中，切口 112 为大约 0.2mm 宽，使得在夹具 100 的窄点处的用于电流的剩余横截面
为大约 0.5mm × 大约 0.2mm，或者大约 0.1mm²。电流为 4.361A，并且夹具 100 中的耗散功率为 3.56mW。在该实施例中，夹具 100 的电阻为大约 187uΩ，其与高达大约 53.5A 的满量程电流相应。夹具 100 的足迹 102 之下 50μm 处且在切口 112 附近的磁场为 50 mT，而夹具 100 的相对边沿附近的磁场仅为大约 -2mT。如果诸如霍尔板之类的第一磁场传感器设置在切口 112 端部附近且第二磁场传感器设置在足迹 102 的窄部分的另一侧，并且如果总信号计算为其间的差值，则结果为 5mT / 4.361A。如果每个磁场传感器具有 500μT 的随机残余偏移误差，则总信号中的偏移误差为大约 71μT，并且信号对偏移的比率为大约 16.28A¹。因此，传感器的偏移误差为大约 0.062A。图 8 的实施例也可以用于 25A 全范围，因为满量程磁场为大约 20mT。比较其中夹具 100 包括切口 112 的图 8 的实施例以及省略了切口 112 的图中的实施例，图 8 的实施例中的磁场几乎为图 6 的实施例的磁场的两倍，而电阻的增大仅为 187/140 或者大约 134%。

图 9 绘出了夹具 100 的另一个实施例的仿真结果，其中足迹部分 102 中的切口 112 包括孔径。这种配置可以适合于较低的电流，这时足迹部分 102 中的甚至更窄的收缩可能是有益的，并且相对于其中使用非常长的窄切口的实施例提供了优势，因为这种切口可能降低夹具 100 的机械稳定性。在图 9 的实施例中，足迹部分 102 的两个连接部分 902 具有大约 0.08mm² 的截面。夹具 100 中的电流为大约 4.43A，功耗为大约 3.6mW，内部电阻为大约 185μΩ，这可以与上文中讨论的其他实施例相比较。然而，磁场更低，其中极端为大约 340μT / A。也参见图 10。

如果诸如在图 5 的实施例中使用了四个磁场传感器且将其定位在 y=-0.6mm，-0.2mm，0.2mm 和 0.6mm 处，则总信号为大约 10.2mT。如果每个磁场传感器具有 50μT 的随机残余偏移，则信号中的总体偏移为大约 224μT，并且信号偏移比率为 10.3μA¹。因此，图 9 的实施例的偏移误差为大约 0.1A。通常，与具有相当多的连接部分 102 的至少半宽度更长的切口的实施例相比较，足迹部分 102 中具有孔径 902 的图 9 的实施例具有大约相同的电阻，多 60% 的偏移误差，更好的串扰抑制以及更大的机械稳定性。

在图 11 和图 12 中绘出了夹具 100 的另一个实施例，其中夹具 100 更宽，其可以适合于更高的电流。夹具 100 也更宽，诸如在接触区域 106 和 110 处大约 5mm 并且在足迹部分 102 处大约 2.3mm。夹具 100 可以耦合到大约 2mm × 大约 3.5mm 的管芯，其中横向分隔距离为大约 0.5mm。在该实施例中，电流为大约 16.42A 并且功耗为大约 9.74mW，其中内部电阻为大约 36μΩ。这样的实施例可以适合于至少大约 277A 的电流范围。对于 152μT / A 而言，夹具 100 的足迹部分 102 之下 50μm 处的磁场在 16.42A 处为大约 2.5mT，在 277A 处为大约 42mT。如果使用了以大约 2.5mm 的距离定位在足迹部分 102 的左边和右边的两个磁场传感器，则得到的信号为大约 304μT / A。如果每个磁场传感器的随机残余偏移为 50μT，传感器的偏移误差为大约 71μT，其等效于大约 0.23A 或者 277A 的满量程电流的 0.084%。夹具 100 的汇流条与接触部分之间的焊接接点的电流密度为大约 100A / mm² 至大约 300A / mm²。

由于在该实施例中夹具 100 为 400μm 厚，因而不必要保持隔离层小于 50μm 厚。因此，如果管芯是薄的，诸如在一个实施例中为大约 60μm，则有可能将夹具 100 附接到管芯的后侧。参见例如图 13，该图绘出了管芯 202 的更薄的示例实施例。

在图 13 的实施例中，将隔离层 204 施加到管芯 202 的底侧，并且将磁场传感器 214a，214b，214c 和 214d 设置在管芯 202 的顶侧，如所描绘的。这提供了用于制造电流传感
器的新前景，因为可以使用单个引线框架，其包括传感器的夹具 100 以及引线（参见例如图 2）。这可以通过利用仅仅一个固化工艺以将管芯 202 附接到夹具 100 而简化制造。此外，足迹部分 102 可以更大，因为夹具 100 与接合线（参见例如图 2）之间存在小的短路风险或者不存在短路风险，因为它们现在在管芯 202 的相对侧。管芯 202 上的接合焊盘的放置应当被选择成使得接合焊盘由夹具 100 的足迹 102 支撑。如果接合焊盘将在管芯 202 的周界附近，其如前面所提到的那样可以在夹具 100 上延伸，则在线接合工艺期间的力可能损坏或破坏管芯 202。

[0104] 图 14 绘出了夹具 100 和管芯 202 的另一个实施例，其包括两个磁场传感器 214a 和 214b。图 14A 中可见，磁场传感器 214a 位于夹具 100 的中心面磁场传感器 214b 位于更靠近夹具 100 的边沿。该实施例说明了高程度的对称性不是必要的，并且磁场传感器不需要关于夹具 100 的中心线对称。

[0105] 如在图 14 中那样将两个磁场传感器设置成比夹具 100 的宽度更紧密地在一起的优点包括：更好地排斥背景磁场；由于管芯附接工艺期间的不精确性而引起的小的位置公差对信号的较小影响；以及其中可经由数值仿真技术发现的、磁场强度较少依赖于频率的夹具 100 下面的位置的潜在可用性。然而，一个缺点是仅通过夹具 100 的电流的较小磁场。然而，通常，如果可以牺牲一定的灵敏度，则可以增加系统的磁带宽。

[0106] 图 15 为如上文中所讨论的传感器封装的实施例的示例性制造工艺 1500 的流程图。在 1502 处，提供具有传感器引腿和增高的管芯桨板的引线框架。在一个实施例中，管芯桨板具有比管芯更小的表面积，使得管芯的锯切边沿着其周界超出管芯桨板至少大约数十毫米。

[0107] 在 1504 处，提供管芯。在一个实施例中，该管芯可以具有大约 60μm 的厚度，尽管这在其他实施例中可以改变。

[0108] 在 1506 处，在管芯桨板与管芯的底侧之间提供绝缘层。在一个实施例中，在切割管芯之前，在晶片级的半导体制造工艺期间将绝缘层施加到管芯表面。在实施例中，该绝缘层也可以包括陶瓷、瓷器或玻璃小板或者 KAPTON 箔。在一个实施例中，绝缘层比管芯桨板更大；或者甚至比管芯更大，以确保管芯桨板与管芯的锯切边沿之间的电压隔离。

[0109] 在 1508 处，利用间质隔离层将管芯耦合到管芯桨板。在实施例中，耦合是通过粘合剂、焊接或者某种其他适当的装置。管芯的顶侧包括磁场传感器和接合焊盘而且比距管芯底侧更远地与管芯桨板隔开。

[0110] 在 1510 处，将接合焊盘耦合到引线框架的引脚。在一个实施例中，该耦合是通过接合线。

[0111] 在 1512 处，利用模具化合物诸如通过传递模制来包封管芯以及传感器引腿的部件。

[0112] 在 1514 处，在一个实施例中，从引线框架切割不包括接地引脚的传感器引腿，并且从引线框架切割用于电流夹具的两个接触中的至少一个。执行电流传感器的下线（end-of-line）测试和校准，并且切割传感器封装与引线框架之间的剩余连接。

[0113] 依照实施例，各种定制也是可能的。例如，如果希望改变焊接点与磁场传感器之间的距离，则可以使接触加长。如果焊接点需要镀镍，则可能有必要这样做。所述镍是有磁性的并且因此可能影响磁场以及因而影响电流传感器的校准。镍的磁性可以例如通过与
磷形成合金而降低，或者可以横向移动镀镍表面，直到它们关于磁场传感器元件以及关于磁场增大的区域足够远。

[0114] 也存在用于配置电路接触和传感器引脚的许多可能性。在图 16 中，传感器封装 200 被配置用于通孔应用，并且在图 17 中用于表面安装应用。在图 16 和图 17 的实施例中，管芯基板 203 被配置成使得传感器引脚 206 处于与管芯 202 大约相同的高度，从而使可可以使用合线 208 基本上平坦以便与支撑部分 104 和 108 尽可能短。这在表面安装应用中可能是特别有用的，在所述表面安装应用中接合线“潜入”夹具接触的下面。在图 16 的实施例中，接触 106 和 110 与支撑部分 104 和 108 成直角；相反，接触 106 和 110 为支撑部分 104 和 108 的延伸，其延伸通过模具主体 212。

[0115] 在图 18 中，与图 16 的实施例相比，夹具 100 旋转了 90 度，以便提供夹具 100 的接触 106、110 与传感器引脚 206 之间的更大的爬电（creepage）距离以及更显著的间隙。图 19 绘出了关于图 17 实施例的夹具 100 的类似旋转。

[0116] 如图 20 和图 21 中所绘出的，可以在封装 200 的相同表面上或者在不同的表面上可访问接触 106 和 110 以及传感器引脚 206。可以例如将这种封装 200 安装在印刷电路板（PCB）的孔中，其中可从 PCB 的顶侧访问传感器引脚 206 并且可从 PCB 的底侧访问夹具接触 106、110。该 PCB 可以用来增大传感器引脚 206 与夹具接触 106、110 之间的爬电距离和间隙距离。在实施例中，在 PCB 的底侧可以安装系统的高电流电容器和电力器件，而将控制和低压部件安装在 PCB 的顶侧。

[0117] 在其他实施例中，电流接触 106、110 可以如图 22 中所绘出的那样从模具主体 212 突出，或者可以如图 23 中所绘出的那样与模具主体齐平，作为所谓的“无引线”封装。在图 22 的实施例中，突出接触 106、110 可以固定到栓接或者超声焊接到汇流条或者以其他方式适当耦合的电流轨线。

[0118] 在实施例中，支柱部分 104 和 108 不需要配置为关于管芯 202 的表面成 90 度。然而，更接近 90 度的角度可以如图通过压制片状金属更容易制造。垂直于管芯 202 表面的支柱部分 104、108 的另一个优点在于，支柱部分 104、108 于是更短，这可以最小化足迹部分 102 与接触部分 106 和 110 之间的电阻和热阻。又一个优点是接触部分 106 和 110 之间的间隙的更小的横向尺寸，这可以节省空间、增大生产期间的每带的器件数量并且因而降低制造成本。

[0119] 图 24 绘出了其中支柱部分 104 和 108 不垂直于管芯 202 表面而是处于靠近 90 度的角度的实施例。例如，在各种实施例中，a 可以处于大约 50 度至大约 130 度的范围内。通常，a 应当被选择成使得夹具 100 与管芯 202 之间的电介质强度最大化，其中要考虑两条电介质击穿路径：通过模具主体 212 体积的路径以及沿着模具主体 212 到隔离层 204 的界面的路径。后者经常更弱；因此它典型地应当更长。在图 24 中，体积贯穿（bulk breakthrough）被图解说明为 E 与 C 之间的距离，而沿着界面的贯穿被图解说明为 E 与 F 之间的距离。

[0120] 参照图 25，如果在管芯 202 的表面上存在典型地不被绝缘层覆盖的接合焊盘，并且如果存在也不被绝缘层涂敷的接合线 208，则足迹部分 102 与管芯 202 边沿之间的距离 E-F 不是电介质击穿的最坏情况，相反，F 与最近的接合线 208 之间沿着模具主体 212 与隔离层 204 之间的界面的距离以及 C 与最近的接合线 208 之间通过模具主体 212 的距离是最
为了增大夹具 100 与接合线 208 和接合焊点之间的电压隔离，可以在接合焊盘与引线之间安装了接合线 208 之后施加喷涂隔离，诸如苯并环丁烷 (BCB)。此外或者可替换地，可以利用电介质隔离膜来涂敷面向接合线 208 和接合焊盘的夹具 100 表面。

在图 26 中，夹具 100 包括足部部分 102，该足部部分与在管芯 202 接触的点处包括细长的体积，其将电流路径的长度降低至最小值。在严格的数学意义上，足部部分 102 与隔离层 204 之间的接触在图 26 的实施例中不再是区域，而是在特定长度（夹具 100 的宽度）上延伸到图 26 的绘图平面中的接触线。然而，夹具 100 的足部部分 102 仍然可以被认为平行于管芯 202 的表面，因为所述接触线在数学的意义上平行于该表面。给定足部部分 102 的窄配置，实施例可选地可以包括诸如支撑螺柱 2062 之类的（一个或多个）支撑结构以支撑管芯 202。在各种实施例中，支撑结构如螺柱 2062 可以是导电的或者绝缘的。

参照图 27，如果夹具 100 拧合到管芯 202 的背侧，则可以在倒装芯片配置中利用引线框架 203 上的焊接凸点 218 接触管芯 202。在实施例中，管芯 202 应当是薄的，因为磁传感器元件 214 在管芯 202 之上并且夹具 100 在管芯 202 之下。封装 200 可以包括围绕其周界的肩部 220 以诸如在插入到 PCB 222 中时帮助改善顶部与底部之间的电压隔离。在图 27 中，也包括封装 200 与 PCB 222 之间的密封边缘 226，其可以降低夹具 100 与传感器引脚之间的爬电。例如也可以将密封膏或油脂和粘合剂施加到 PCB 222 的边缘。焊接接触 224 将引脚 206 搁合到 PCB 222 的迹线。

在另一个实施例中，如在图 28 中那样省略了肩部 220，使得模具主体 212 与 PCB 222 中的孔配置。在图 28 的实施例中，传感器封装 200 包括将引脚 206 搁合到 PCB 222 的支架 230。在一个实施例中，支架 230 在焊接接触 224 处搁合到 PCB 222 的顶面。假定密封是沿着封装 200 周边的边缘 226，这在诸如图 28 的实施例中，当与包括肩部 220 的图 27 的实施例相比较时，模具主体 212 与 PCB 222 中的孔之间需要更紧密的公差。

在图 29 中绘出了另一个实施例，其中 PCB 222 被配置成使得如在图 27 中那样在模具主体 212 上无需肩部，并且封装 200 位于 PCB 222 的凹口内。密封边缘 226 位于封装 200 的顶面处，并且传感器引脚 206 位于内部。焊接接触 222 将引脚 206 搁合到 PCB 222。

因此，通常，电流传感器的实施例受益于电流接触与接触引脚之间的良好的隔离。即使模具结合和具有高电介质强度的隔离层实现了良好的隔离，接触与引脚之间的间隙距离以及爬电仍然可能带来挑战。标准化规则通常要求特定尺寸，这在大于大约 5kV 的应用中可能导致大封装。然而，在实施例中，如果传感器封装可以提供两个平面，一个用于电流接触并且另一个用于低电压引线的引脚，其间具有某种形式的密封，则在实施例中，在将传感器封装安装到诸如 PCB 之类的模块中之后，该封装可以非常小，其中满足了爬电和间隙要求。在实施例中，该封装也可以包括用于在组装工艺期间将封装机械耦合到 PCB 的某种装置，诸如卡或夹具。

参照图 30，绘出了夹具 100 的另一个实施例。如果电流流线无需在尖锐转角周围弯曲，则可以降低夹具 100 的电阻，但是外部汇流条 240（引入的）和 242（引出的）典型地比夹具 100 宽得多，导致不可避免的电流流线弯曲。潜在问题的区域在图 30 中被圈出，其中图 30A 为侧透视图并且图 30B 为顶视图。

用于减少或消除间隔的一个选项是以恒定角度降低汇流条 240、242 和夹具 100 的
宽度，在图31中给出了其中一个实施例。图32给出了在将夹具100的片状金属101形成到夹具100中之前的片状金属。竖直黑线表示片状金属101沿着其弯曲以形成夹具100的边沿。细虚线表示虚线圆圈，其限定片状金属101的边沿以便避免电流线中的急剧弯曲。在图32的实施例中，足迹部分102省略了切口112。图33和图34给出了片状金属101的可替换形状，其中图34的实施例提供了最小的电阻。通常，圆圈的半径应当大于夹具100的高度，该高度为接触区域106或110与管芯顶面之间的竖直距离。圆圈也可以退化成椭圆。

在操作时，重要的是夹具100保持安全地耦合到管芯202。为了实现安全的耦合，实施例可以使用粘合剂、焊接或者某种其他适当的技术。关于焊接，可以使用足迹部分102与管芯202表面之上的金属层之间的扩散焊接。在实施例中，该金属层可以通过包括聚酰亚胺、二氧化硅或者氮化硅的介质隔离层与管芯202的其余部分隔离，并且通常仅仅用于与没有电气功能的粘合有关的机械用途。

然而，在实施例中，该片上金属层可以用于夹具100关于管芯202的对准。由于半导体制造工艺的高精确度，该片上金属层典型地关于管芯202非常精确地对准。如果将夹具100焊接到该层，则焊料可以穿过其表面张力的作用而将稍微离心安装的夹具100拖曳到片上金属层的中心。

由于足迹部分102的面积是小的，因而可能在组装期间带来挑战。例如，施加到夹具100底部的/或管芯202顶部的焊接膏或粘合剂的粘合力可能太小而不能在焊料或粘合剂固化之后形成全部强度之前将夹具100保持在适当的位置。因此，在实施例中，可能有利的是不将单独的夹具100附接在单独的管芯202，而是将若干夹具100设置在第二引线框架中。依照常规的半导体制造工艺将管芯202附接在第一引线框架，并且然后将第二引线框架置于第一引线框架之上。图35为依照这样的实施例的制造工艺3500的实施例的流程图。

在3502处，将粘合剂施加到第一引线框架的管芯座板。

在3504处，将半导体管芯置于管芯座板上。固化粘合剂。

在3506处，通过接合线将传感器引脚耦合到接合区域。

在3508处，将粘合剂施加到管芯和/或夹具的足迹部分。

在3510处，将具有夹具的第二引线框架置于具有管芯的第一引线框架上。在一个实施例中，这被实施成使得夹具的足迹部分置于管芯顶面上的磁场传感器组件处或其附近。在另一个实施例中，第一和第二引线框架也可以经由辅助装置例如沿着其圆周框架相连接。这在处理过程期间每带的所有器件的足迹的累积面积太小而不能承受机械负荷的情况下可能是有帮助的或者必要的。除别的以外，这些附加的装置可以包括，机械器具，诸如铆钉或螺帽；化学接头，诸如胶合或焊接；或者物理接头，例如点焊。固化管芯与夹具之间的粘合剂。

在3512处，模制模具主体。

在3514处，完全地或者仅仅在电流输入或输出侧冲压第二引线框架的夹具。也冲压除了第一引线框架的接地引脚之外的传感器引脚。如果希望或者需要其中在电流轨道与传感器引脚之间施加若干kV的电压的隔离测试，则可以冲压传感器的所有低电压引脚，使得到主体的连接不存在。如果器件是大的，则可以省略或者仅仅部分地执行步骤3514，其中在3518处执行全冲压。
说明书

在 3516 处，执行传感器器件的下线测试和校准。

在 3518 处，冲压剩余的传感器引脚以切割传感器器件。

如果夹具的接触部分在与足迹部分的尺寸相比是大的，特别是如果足迹部分因为其包含一个或多个切口对以对电流路径定位而在机械上易碎，则将非传导支撑结构添加到夹具可能是有用的帮助的或者必要的。在实施例中，这可以例如为附接到接触部分的粘合箔，或者在塑料封装中可以模制夹具耦合之后足迹部分的不与隔离层接触的那些部分。

在其他实施例中，夹具包括多层，诸如接触层和足迹层。在实施例中，每层可以与片状金属分开地冲压并且通过焊接或熔焊（诸如 UV 焊接）进行耦合。在另一个实施例中，接触层从片状金属冲压，而足迹部分诸如经由电解沉积而电生长在接触层之上。这避免了诸如焊料之类的其他材料并且可以建立各层之间的全表面接触，从而避免焊接。优点包括接触之间的甚至小于层厚度的更小的分隔距离，以及两个层具有不同厚度的可能性。层厚度对于电压隔离是重要的，因为足迹部分的厚度与在接触层的底面与管芯表面之间的竖直距离相等。此外，电流密度与接触的厚度与汇流条的厚度的比率有关。如果汇流条是厚的并且接触是薄的，则电流倾向于竖直地流经接触的中心部分，导致如图 36 中所绘出的电流密度分布在焊接区域中心附近的强峰值。汇流条 602 与接触部分 106 和 110 的接触层之间的焊接层 3602 中的高电流密度的区域也被图解说明。

如果汇流条 602 较接触层更薄，则包括横向流经接触层的电流，这降低了汇流条 602 与接触层之间的焊接层 3602 中的过高的电流密度，因为电流在焊接层 3602 上更均匀地散布。如图 37 中所绘出的电流密度在焊接层 3602 中几乎均匀。

在实施例中，接触部分 106 和 100 可以与管芯 202 上的接合焊接重叠或不重叠。在这些各种实施例中，可以为了足够的竖直距离和隔离而调节焊接回路的长度、高度和其他特性。在一个实施例中，接触层的厚度可以小于或者大于足迹层的厚度以便将焊接层 3602 中的峰值电流密度拖曳出竖直中心平面。

在图 38 中绘出了另一个实施例，其中封装 200 被配置用于插入到 PCB 中的孔中，汇流条在 PCB 的第一（高电压、高电流）侧并且传感器引脚 206 在 PCB 的第二（低电压、低电流）侧，其间具有密封环。图 38A 为夹具 100、加强模具 3802、隔离层 204、管芯 202、接触焊盘和传感器引线 206 的分解视图。在实施例中，加强模具 3802 包括适当的绝缘材料，诸如在一个实施例中为模具化合物材料。

夹具 100 可以由接触层形成，其中每个接触部分 106 和 110 分开地冲压。然后，可以将接触部分 106、110 安装到模具腔体中，其中浇铸加强模具 3802 以填充部分 106 与 110 之间的间隙。然后，可以在该模具上进行电热生长包括足迹部分 102 的足迹层。然后，可以安装管芯 202，其中隔离层 204 介于其间。在一个实施例中，该制造以接触层固定在框架中来执行。然后，可以将框架置于另一个模具工具中以利用模具主体 212 覆盖管芯 202，这示于图 38B 中。

在实施例中，根据足迹部分 102 中的切口 212 的配置、接触和足迹层的厚度和配置以及接触表面的尺寸，这样的工具可以适合于大约 5A 至大约 500A 或更大（诸如大约 1000A）的范围内的电流。在实施例中，电压隔离可以高达大约 10kV，其中爬电距离通过封装 200 插入其中的 PCB 的重叠部分进行设计。

在图 39 中绘出的无磁芯磁电流传感器的另一个实施例中，用铜块 3900 代替夹具
100。包括铜块 3900 的实施例可以带来优点，包括具有低电阻、可靠近磁传感器元件定位同时与管芯的锯切边沿隔开并且制造相对廉价，这部分地归因于与常规半导体制造技术的兼容性。

[0149] 图 40 绘出了用于制造铜块 3900 的实施例的工艺 4000。在一个实施例中，使用大约 400μm 厚的铜晶片。

[0150] 在 4002 处，在铜晶片的第一侧形成凹槽网格。在实施例中，凹槽通过蚀刻或锯切来形成。对于 400μm 厚的晶片而言，凹槽可以大约 100μm 深。

[0151] 在 4004 处，将现在被开槽的铜晶片的第一侧耦合到硅晶片。在实施例中，通过焊接、胶合或某种其他适当的装置而将铜晶片耦合到硅晶片。在实施例中，硅晶片可以包括隔离层。铜块耦合到该隔离层上。在一个实施例中，隔离层包括氧化硅并且为大约 12μm 厚。

[0152] 在 4006 处，在铜晶片的第二侧形成凹槽网格。在其中铜晶片为 400μm 厚的实施例中，凹槽为 300μm 深并且与在铜晶片的第一侧形成的第一凹槽网格对准，使得框架结构可以被释放和丢弃，从而在硅晶片的表面上留下隔开的铜块阵列。在一个实施例中，每个铜块为大约 1.9mm × 大约 1.9mm × 大约 0.4mm，尽管在其他实施例中这些尺寸可以改变。

[0153] 在 4008 处，可选地在剩余的铜块中形成凹槽。在一个实施例中大约 300μm 深和大约 100μm 宽，但是在其他实施例中具有其他深度的这样的凹槽可能有助于在低电流应用中增大电流密度。在一个实施例中，凹槽用锯切刀片形成。

[0154] 在一个实施例中，如果无需保持铜块 3900 与管芯的锯切边沿之间的横向距离，则可以组合 4006 和 4008。这可以适用于具有低电压隔离要求的实施例。

[0155] 在这一点上，在一个实施例中，结构是如图 41 中所绘出的，其中多个铜块 3900 具有安装到硅晶片 3904 上的凹槽 3902。隔离层 3905 在晶片 3904 上形成。

[0156] 在 4010 处，可以清洁接合焊盘 3906（图 41）并且切割单独的芯片 3910。这可以在一个或多个步骤中执行。图 40 中绘出的特定顺序只是非限制性实施例。在一个实施例中，在切割之后，每个芯片或管芯 3910 为大约 2.8mm × 大约 2.5mm × 大约 0.5mm，并且每个铜块 3900 具有到隔离层 3905 的边沿，即到管芯 3910 的锯切边沿或者到接合线（图 39）的标称周界为大约 300μm 的间隙，其中常被保留用于接合焊盘 3906。在一个实施例中，该带为大约 200μm。

[0157] 图 39 中绘出的实施例可以是诸如图 44C 中所示的完整传感器的一部分。其中顶面暴露在封装之外。这样的实施例适合于高达大约 30A 的电流，但是由于电迁移问题而可以限制为高于该范围。

[0158] 在 4012 处，可以诸如图 42 中所绘出的那样将铜块 3900 耦合到引线框架 3912。在一个实施例中，引线框架 3912 可以为大约 0.4mm 厚。耦合可以通过胶合、焊接或者其他适当的装置来实现。例如，在一个实施例中，通过大约 10μm 厚的大约一层导电膏或管芯附接面将铜块 3900 耦合到引线框架 3912。

[0159] 在 4014 处，可以在引线框架 3912 和铜块 3900 上施加铜涂层。在一个实施例中，在引线框架 3912 和铜块 3900 上均匀地电镀大约 50μm 厚的铜涂层。该铜涂层在每个方向上使得在块 3900 与硅管芯 3910 的锯切边沿及接合焊盘 3906 之间的距离降低大约 50μm，而引线框架 3912 变厚大约 100μm。凹槽 3902 的深度和宽度也降低。

[0160] 图 43 绘出了图 42 的结构的放大局部横截面图，其中铜涂层示于 3914 处。铜块
3900 与引线框架 3912 之间的焊料 3916 在电镀之前彼此附着，但是对于电流运送而言是不必要的，因为电气接触由铜涂层 3914 制成。因此，焊料 3916 不影响电迁移。

【0161】在另一个实施例中，如果使凹槽 3902 通过铜块 3900，则铜块 3900 可以包括两个不同的部分。诸如铝或者电力铜之类的金属层可以在下面形成，并且如果与铜块 3900 接触的话，也被电镀，包括在铜块 3900 的各部分之间。在该实施例中，可以生长任意薄层并且根据需要也横向地图案化该任意薄层。

【0162】实施例和工艺 4000 的优点包括比常规解决方法更精确地且更廉价地生产结构，这部分地归因于可以使用整个硅晶片并且可以在晶片级更精确地形成为所述结构。特别是，可以实现精确的位置公差。

【0163】在实施例中，其他的变型也是可能的。例如，可以将铜块耦合到晶片的前侧、背侧或者两侧。铜块的顶侧可以装备用于焊接，尽管电迁移于是可能以被限制。可以诸如通过焊接将形成引线框架的大部分的接触耦合到铜块的顶侧。这可以在封装组装期间执行。如果使用了扩散焊接，则焊接接点可以容忍更高的电流密度，诸如高达大约 60A。大的接触也可以由导电胶或其他焊料耦合并且至少部分地涂敷以确保诸如在电镀槽中与铜块的良好的电气接触。在实施例中，涂层为大约 10μm 至大约 50μm 厚，并且包括良导体，诸如铜。

【0164】如前面所提到的，铜块 3900 可以替代夹具 100。因此，包括铜块 3900 的用于电感测应用的实施例也可以包括至少一个磁场传感器。实施例也可以包括放大器和信号调节电路系统。磁场传感器可以包括霍尔平板，其可以设置在铜块的笔直或倾斜的边沿附近以及在铜块的具有最小横截面区域（以及因而最高电流密度）的局部附近。

【0165】在 4008 之后，可以改为诸如通过胶合而将管芯耦合到管芯载板或者引线框架，其中然后利用施加的模具化合物和接合线在引线与接合焊盘之间制成连接。

【0166】在图 44 中示出了一个示例实施例。图 44A 为模具主体 4400 和传感器引线 4402 的顶视图。图 44B 为模具主体 4400 和传感器引线 4402 的底视图，其中铜块 3900 可见。图 44C 省略了模具主体，使得可以看见管芯 3904 和管芯板 4404 以及将接合焊盘 3906 耦合到引线框架 4408 的接合线 4406。

【0167】在图 44B 中，可以看出凹槽 3902 穿穿有模具化合物以在将接触（块 3900 的暴露的表面）焊接到汇流条、PCB 或者其他结构时避免短路。在一个实施例中，可以通过首先利用厚刀片形成凹槽 3902 并且然后利用薄刀片更深地锯切而在封装的表面使得凹槽 3902 更宽。在另一个实施例中，凹槽 3902 也可以通过蚀刻并且然后锯切（或者以相反的顺序）而形成。

【0168】图 45 绘出了另一个实施例，其中大的接触耦合到铜块。类似于图 44，图 45A 为顶视图，图 45B 为底视图，并且图 45C 省略了模具主体。在一个实施例中，大的接触 4500 可以是引线框架的一部分，使得单独的管芯载板不是必须的。在实施例中，这可以增大传感器的带宽。如果接触 4500 通过诸如扩散焊接之类的具有高熔点的焊接技术进行耦合，则焊接接点的电迁移限制也比图 44 实施例的更高。类似于图 44 的实施例，接触 4500 之间的间隙 4502 填充有模具化合物以避免短路，但是在间隙宽度足够的情况下可以不填充延伸超出模具主体 4400 的间隙 4502 的部分。

【0169】参照图 45C，在实施例中，接合线 4406 的高度尽可能低以保持接触 4500 与模具主体 4400 表面之间的距离更大。因此，在一个实施例中，线 4406 向下弯曲，使得其顶点为与管芯 3904 上的接合焊盘大约相同的高度。
接触 4500 的厚度可以类似于传感器引线 4402 的厚度，这可以降低引线框架 4408 的价格。在一个实施例中，引线框架包括具有非常低（诸如小于 0.1%）的铁含量的钢。然而，钢块 3900 的优点在于，它可以由具有低电阻率的高纯度铜制成以便降低传感器的耗散和自发热。

如前面在各种上下文中且关于本文通篇讨论的各种实施例所提到的，导体与（一个或多个）磁场传感器之间的距离也是重要的，因为该距离在传感器的寿命周期中保持稳定这一事实。常规的解决方案是使用半导体制作的薄导体层，这些薄导体层在寿命内具有明确限定的位置并且通常是稳定的。然而，薄导体是感流器。用于更高电流应用的其他常规解决方案使用粘合剂、胶、模具化合物或其他材料来将导体固定到管芯。尽管这样的配置可以处理较高的电流，但是固定材料较不稳定，易受湿气、因长期暴露于高温而引起的化学反应以及其他可能改变材料厚度并且从而影响传感器精确度的因素的影响。

因此，例如在其中使用了大块导体的高电流应用中，实施例可以利用焊接技术来耦合主导体和半导体管芯。在实施例中，焊料不是用来携带电流，而是建立导体与具有磁场传感器元件的半导体管芯之间的机械连接，其中电流在导体中流动。因此，导体关于（一个或多个）磁场传感器元件的相对位置由诸如半导体、金属、陶瓷、玻璃、瓷料、焊料等等之中的无机高稳定材料确定。

参照图 46，在一个实施例中，在半导体管芯 4604 上形成绝缘层 4602。在实施例中，绝缘层 4602 是无机的，并且可以包括氧化硅、氮化物或者某种其他适当的材料。金属层 4606（图 46B）在绝缘层 4602 上形成并且可以包括铜、铝或者某种其他适当的材料。可以形成和/或制备金属层 4606，使得它是可焊接的，例如在封装组装工艺中焊接到金属部分。在一个实施例中，可以在前端半导体制造期间形成绝缘层 4602 和金属层 4606 二者。

在制造期间切割出单独的半导体管芯 4604 之后，可以在金属层 4606 处将每一个管芯 4604 焊接到主导体 4608。在图 46 所绘出的实施例中，主导体 4608 包括夹具。该夹具可以包括单个金属部件或者诸如上文中所讨论的其他配置。在其他实施例中，主导体 4608 可以包括其他配置，诸如上文中讨论的铜块。因此，这里将不详细地讨论夹具的特定配置，改为参照上文关于各种实施例的讨论。

特别地参照图 46B，可以看到绝缘层 4602 和金属层 4606。绝缘层 4602 可以是绝缘的且无机的，其中无机体避免湿气吸收或者以其他方式改变其成分或尺寸。在实施例中，绝缘层 4602 包括二氧化硅、氮化物或者某种其他适当的材料。金属层 4606 位于绝缘层 4602 上，使得层 4606 不接触管芯 4604 并且是电浮动的。在一个实施例中，金属层 4606 包括铝、铜或者某种其他适当的材料，并且被抛光，使得层 4606 是可焊接的。类似于上文中讨论的夹具实施例，主导体 4608 的足迹部分 4610 通过金属层 4606 处的焊接而机械耦合到管芯 4604。在实施例中，主导体 4608 比金属层 4606 小并且金属层 4606 足够厚以避免来自可能的制造结果（包括主导体 4608 上的毛刺）的破坏或者其它影响。

在图 47 中绘出了另一个实施例，其中半导体管芯的表面的一部分由无需与管芯电气隔离的金属板或金属层覆盖。图 47 为用于方便图解说明的局部分解视图。在图 47 的实施例中，可焊接金属板 4702 装配到管芯 4704 的表面，该管芯在管芯 4704 的顶侧或底侧包括磁场传感器元件 4706。金属板 4702 被配置成耦合到金属板 4708，这些金属板耦合到绝缘板 4710 的表面。绝缘板 4710 进而通过金属板 4712 装配到电流导线或导体 4714。接
合线 4716 可以经由接合焊盘直接耦合到管芯 4704 和/或通过板 4710 项面上的迹线间接耦合到管芯 4704，并且然后耦合到(图 47 中未绘出的)引线框架的引线。

[0177] 在实施例中，绝缘板 4710 包括陶瓷、玻璃、瓷料、硅或者某种其他适当的材料。绝缘板 4710 可以比管芯 4704 大并且因此也可以提供更可靠的电压隔离。此外，在实施例中，板 4710 无需为完全平坦的，因为板 4710 可以通过蚀刻或者某种其他技术决定外形(profile)，使得其周界区域或者部分比中心区域更厚或更薄。例如，在其中管芯 4704 置于板 4710 中心的实施例中，板 4710 的更厚的周界部分可以提供更大的电压隔离。在这样的实施例中，金属层 4702 不应延伸到该更厚的周界部分。

[0178] 在图 47 的一个实施例中，金属层 4702 位于管芯 4704 的背侧，并且诸如磁场传感器元件 4706 之类的电子器件位于管芯 4704 的相对前侧。然后，可以经由在前侧的接合焊盘通过接合线 4716 耦合到管芯 4704。在另一个实施例中，金属层 4702 如诸如磁场传感器元件 4706 之类的电子器件那样位于管芯 4704 的前端，并且管芯 4704 被倒装芯片式安装到绝缘板 4710 上。可以经由细导电迹线 4708 和接合线 4716 制成到管芯 4704 的接触。

[0179] 将金属板或金属层 4702、4708 和 4712 制备成可焊接的，并且在制造期间，可以在单个步骤或多个步骤中执行这些层 4702、4708 和 4712 的焊接。例如，在一个实施例中，可能希望的是在不同的温度下使用不同的焊接工艺连续地焊接。在实施例中，可以使用诸如扩散焊接之类的高温焊接，这是有利的，因为它可以是薄的并且随后可以更容易地在低温下可焊接封装接触，其中导体 4714 关于管芯 4704 的位置保持稳定。

[0180] 在实施例中，导体 4714 可以包括单一或多个部件，例如夹具和引线。然而，在管芯 4704 的表面处，导体 4714 包括单一或多个部件。

[0181] 本文描述了系统、器件和方法的各种实施例。这些实施例仅仅通过实例方式而得出，并不意在限制本发明的范围。而且，应当理解的是，已描述的实施例的各种特征可以以各种方式加以组合以产生许多附加的实施例。而且，尽管描述了用于与所公开的实施例一起使用的各种材料、尺寸、形状、配置和位置等等，但是可以利用除这些公开的以外的其他材料、尺寸、形状、配置和位置而不超出本发明的范围。

[0182] 相关领域的普通技术人员应当认识到，本发明可以包括与前面描述的任何单独的实施例中图解说明的特征更多的特征。本文描述的实施例并不意指其中可以组合本发明的各种特征的方式的详尽演示。因此，这些实施例不是特征的互斥组合，相反，如本领域普通技术人员所理解的，本发明可以包括从不同的各个实施例中选择的不同的各个特征的组合。

[0183] 上面通过引用对文献的任何合并受到限制，使得没有与本文的明确公开相反的主题被合并。上面通过引用对文献的任何合并进一步受到限制，使得文献中包含的权利要求没有通过引用合并于此。上面通过引用对文献的任何合并又进一步受到限制，使得文献中提供的任何定义都不通过引用合并于此，除非明确地包含在本文中。

图 8
图 9

Bz 在 4.43A，x = 0, z = -50μm

图 10
图 15

1500 提供引线框架和增高的管芯浆板

1502 提供管芯

1504 在管芯浆板与管芯之间提供绝缘层

1506 经由间状隔离层将管芯耦合到管芯浆板

1508 将接合焊盘耦合到引线框架的引脚

1510 利用模具化合物覆盖

1512 切割选择的传感器引脚和接触，执行下线测试和校准，并且切割传感器封装到引线框架的剩余连接
图 34

电流流动方向
将粘合剂施加到第一引线框架的管芯桨板

将半导体管芯置于管芯桨板上; 固化粘合剂

经由接合线将传感器引脚耦合到管芯上的接合区域

将粘合剂施加到管芯和/或夹具的足迹部分

将具有夹具的第二引线框架置于第一引线框架之上; 固化管芯与夹具之间的粘合剂

模制模具主体

冲压第二引线框架的夹具和第一引线框架的传感器引脚

执行下线测试和校准

冲压剩余的传感器引脚以切削器件
图 40

1. 将网格锯切或蚀刻到铜晶片的第一侧
2. 将铜晶片的第一侧耦合到硅晶片的第一侧
3. 将网格锯切或蚀刻到铜晶片的第二侧，释放且丢弃得到的框架
4. 可选地将凹槽锯切或蚀刻到剩余的铜块的第二侧
5. 清洁接合焊盘；切割芯片
6. 将铜块耦合到引线框架
7. 将铜涂层施加到引线框架和铜块上