

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2018/0371434 A1 BRADDOCK et al.

Dec. 27, 2018 (43) **Pub. Date:**

(54) COMPOSITIONS FOR TREATING ECTOPIC CALCIFICATION DISORDERS, AND METHODS USING SAME

(71) Applicant: YALE UNIVERSITY, New Haven, CT (US)

(72) Inventors: Demetrios BRADDOCK, Guilford, CT (US); Enrique DE LA CRUZ, New Haven, CT (US)

(21) Appl. No.: 15/777,446

(22) PCT Filed: Nov. 21, 2016

(86) PCT No.: PCT/US16/63034

§ 371 (c)(1),

May 18, 2018 (2) Date:

Related U.S. Application Data

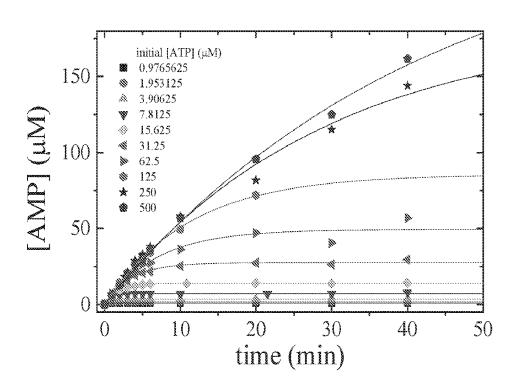
(60) Provisional application No. 62/257,883, filed on Nov. 20, 2015.

Publication Classification

(51) Int. Cl.

C12N 9/16 (2006.01)C07K 14/76 (2006.01)C12N 9/14 (2006.01)

(52) U.S. Cl.


CPC C12N 9/16 (2013.01); C07K 14/76 (2013.01); C12Y 301/04001 (2013.01); C12N 9/14 (2013.01); A61K 38/00 (2013.01); C07K 2319/30 (2013.01); C07K 2319/02 (2013.01); C07K 2319/31 (2013.01); C12Y 306/01009 (2013.01)

(57)**ABSTRACT**

The present invention includes compositions and methods for treating disease and disorders associated with pathological calcification or pathological ossification.

Specification includes a Sequence Listing.

FIG. 1A

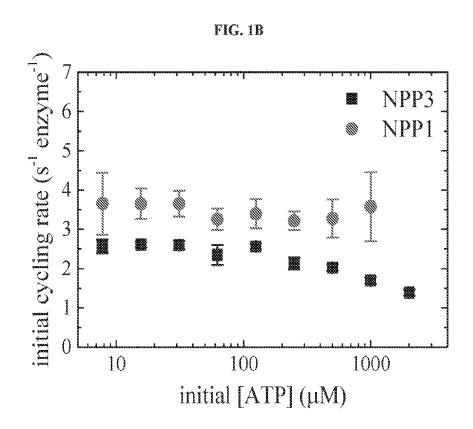


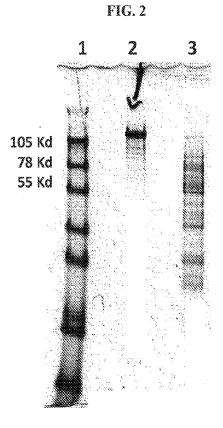
FIG. 1C

2.0

1.5

NPP3
NPP1

0.5


10

100

100

1000

initial [ATP] (μM)

- 1 M.W. Markers
- 2 Partially Purified ENPP3
- 3 Starting Crude Material

FIG. 3

Construct Map in pcDNA3

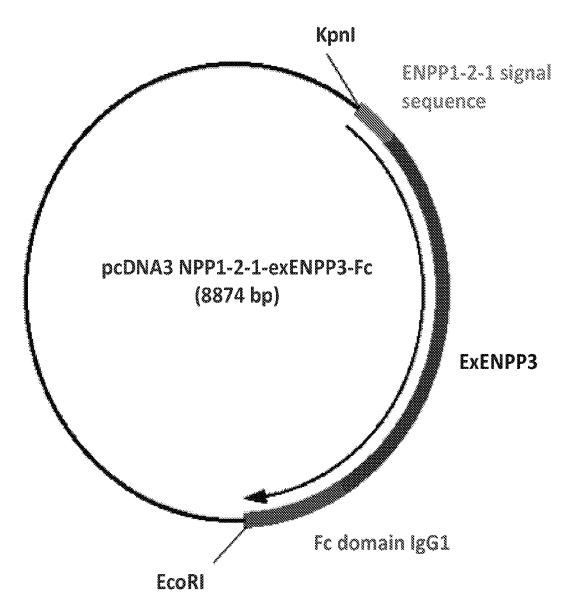
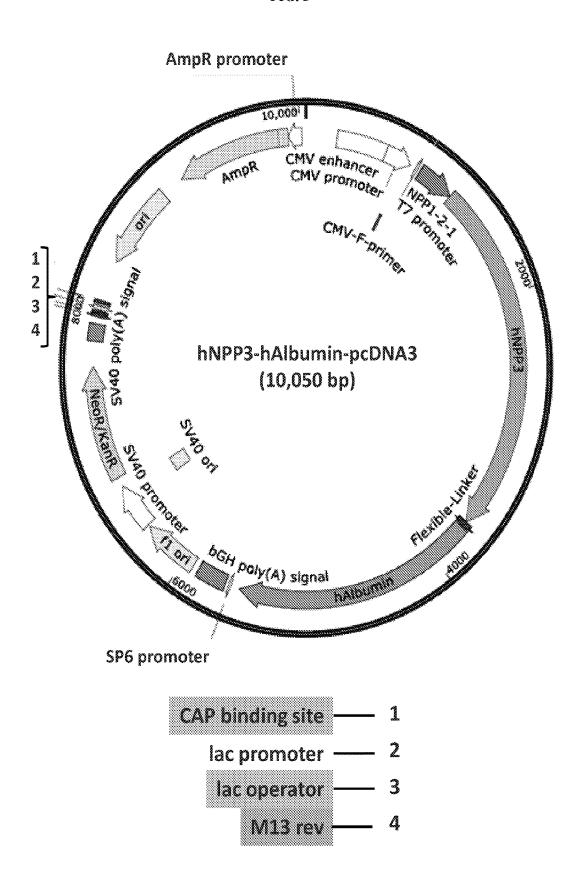



FIG. 4

FIG. 5

COMPOSITIONS FOR TREATING ECTOPIC CALCIFICATION DISORDERS, AND METHODS USING SAME

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/257, 883, filed Nov. 20, 2015, which application is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] Calcification is the accumulation of calcium salts in a body tissue. It normally occurs during formation of bone, but calcium can also be deposited abnormally in soft tissues such as arteries, cartilage and heart valves. Vascular calcification frequently develops in patients with atherosclerosis, stroke, valvular disease and varicosis. Advanced age and metabolic disorders, including diabetes mellitus are contributing factors.

[0003] Ossification refers to the process of bone tissue formation or bone remodeling orchestrated by the osteo-blasts. Ossification allows bones to form while a fetus is still in the womb, and also converts various types of connective tissue into bone. The two main processes of ossification are intra-membranous ossification and intra-cartilaginous ossification, which differ based on the area of the body in which the cartilage is located.

[0004] Abnormalities in the levels of calcification and ossification lead to a spectrum of diseases, a few examples of such as general arterial calcification of infancy (GACI), idiopathic infantile arterial calcification (IIAC), pseudoxanthoma elasticum (PXE), ossification of posterior longitudinal ligament (OPLL), medial wall vascular calcification (MWVC), autosomal recessive hypophosphatemia rickets type-2 (ARHR2), end state renal disease (ESRD), chronic kidney disease-bone/mineral disorder (CKD-MBD), X-linked hypophosphatemia (XLH), age related osteopenia, calcific uremic arteriolopathy (CUA) and hypophosphatemic rickets.

[0005] GACI is an ultra-rare neonatal disease characterized by infantile onset of widespread arterial calcifications in large and medium sized vessels, resulting in cardiovascular collapse and death in the neonatal period. The disease presents clinically with heart failure, respiratory distress, hypertension, cyanosis, and cardiomegaly. The prognosis is grave, with older reports of a mortality rate of 85% at six months, while recently intensive treatment with bisphosphonates (such as etridonate) has lowered mortality to 55% at six months. Tempering this apparent progress is the severe skeletal toxicity associated with prolonged use of etridonate in patients with GACI, and the ineffectiveness of bisphosphonates to prevent mortality in some patients even when instituted early. Further, the limited available data makes it difficult to determine if bisphosphonate treatment is truly protective or reflects the natural history of the disease in less effected patients. Interestingly, serum PPi levels appear to be significantly depleted in GACI patients.

[0006] Kidneys are integral to maintenance of normal bone and mineral metabolism, including excretion of phosphate. In 2003, 19.5 million U.S. adults have chronic kidney disease (CKD), and 13.6 million had stage 2-5 CKD, as defined by the National Kidney Foundation Kidney Disease

Outcomes Quality Initiative (NKFK/DOQI). The prevalence of ESRD is increasing at an alarming rate. In 2000, end stage kidney disease developed in over 90,000 people in the U.S. The population of patients on dialysis therapy or needing transplantation was 380,000 in 2003, and became 651,000 patients in 2010. Care for patients with ESRD already consumes more than \$18 billion per year in the U.S., a substantial burden for the health care system. Importantly, patients with kidney failure are unable to appropriately regulate serum mineral balance and tend to retain phosphate that is absorbed from the various dietary components. A high serum level of phosphate is associated with excessive secretion of parathyroid hormone and a tendency to calcification of the soft tissues, including blood vessels.

[0007] In patients with kidney failure, excess removal of phosphate and pyrophosphate anions can occur during hemodialysis or peritoneal dialysis. Depletion of these anions from tissues and plasma leads to disorders of bone and mineral metabolism, including osteomalacia and calcification of soft tissues and bone disease. Deposition of calcium into the small vessels of the skin causes an inflammatory vasculitis called calciphylaxis, which can lead to gangrene of the skin and underlying tissues, resulting in severe, chronic pain. Calciphylaxis may necessitate amputation of the affected limb and is commonly fatal, with no effective treatment for this condition. It is thus important to regulate the amount of pyrophosphate in the system and reduce the occurrence of calciphylaxis in patients.

[0008] CUA is a fatal disease seen in patients with CKD on dialysis. Calcification of small arteries leads to tissue/skin ischemia, infarction and thrombosis, with patient mortality close to 80%. Currently there are 450,000 patients on dialysis in the U.S. who are at risk of acquiring CUA, and there is no FDA approved treatments for the disease. CUA has hallmarks resembling GACI and other disorders of calcification, exhibiting low levels of PPi and high levels of fibroblast growth factor 23 (FGF23). In ESRD patients requiring dialysis, this calcification process is further accelerated, with an average life-expectancy of 5-6 years.

[0009] PXE is a heritable disorder characterized by mineralization of elastic fibers in skin, arteries and the retina. which results in dermal lesions with associated laxity and loss of elasticity, arterial insufficiency, cardiovascular disease and retinal hemorrhages leading to macular degeneration. Mutations associated with PXE are also located in the abcc6 gene. Characteristic skin lesions (yellowish papules and plaques and laxity with loss of elasticity, typically seen on the face, neck, axilla, antecubital fossa, popliteal fossa, groin and periumbilical areas) are generally an early sign of PXE and result from an accumulation of abnormal mineralized elastic fibers in the mid-dermis. They are usually detected during childhood or adolescence and progress slowly and often unpredictably. A PXE diagnosis can be confirmed by a skin biopsy that shows calcification of fragmented elastic fibers in the mid- and lower dermis. The skin manifestations are among the most common characteristics of PXE, but the ocular and cardiovascular symptoms are responsible for the morbidity of the disease.

[0010] Common cardiovascular complications of PXE are due to the presence of abnormal calcified elastic fibers in the internal elastic lamina of medium-sized arteries. The broad spectrum of phenotypes includes premature atherosclerotic changes, intimal fibroplasia causing angina or intermittent claudication or both, early myocardial infarction and hyper-

US 2018/0371434 A1 Dec. 27, 2018

tension. Fibrous thickening of the endocardium and atrioventricular valves can also result in restrictive cardiomyopathy. Approximately 10%, of PXE patients also develop gastrointestinal bleeding and central nervous system complications (such as stroke and dementia) as a consequence of systemic arterial wall mineralization. In addition, renovascular hypertension and atrial septal aneurysm can be seen in PXE patients.

[0011] Conditions in which serum phosphate levels are reduced or elevated are referred to as hypophosphatemia and hyperphosphatemia, respectively. Hypophosphatemia, which often results from renal phosphate wasting, is caused by a number of genetic disorders including X-linked hypophosphatemic rickets (XLH), hereditary hypophosphatemic rickets with hypercakiuria (HHRH), hypophosphatemic bone disease (HBD), and autosomal dominant hypophosphatemic rickets (ADHR). The exact molecular mechanisms by which proper serum phosphate concentrations are maintained are poorly understood.

[0012] There is a need in the art for novel compositions and methods for treating diseases and disorders associated with pathological calcification and/or pathological ossification. Such compositions and methods should not undesirably disturb other physiologic processes. Such compositions and methods should reduce the level of calcification and increasing PPi plasma levels in individuals who exhibit lower than normal plasma PPi levels. The present invention fulfills this need.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The following detailed description of exemplary embodiments of the invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings exemplary embodiments. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities of the embodiments shown in the drawings.

[0014] FIGS. 1A-1C comprise graphs illustrating studies of human ENPP3 steady state ATP hydrolysis activity. FIG. 1A illustrates time courses of AMP product formation after addition of 50 nM hNPP3 with (from bottom to top) 0.98, 1.95, 3.9, 7.8, 15.6, 31.3, 62.5, 125, 250 and $500 \,\mu\text{M}$ ATP. The enzyme reaction was quenched by equal volume of 3 M formic acid at different times, and the reaction product AMP was quantified by HPLC analysis with an AMP standard curve. The smooth line though data points are best fits to a non-linear enzyme kinetic model with product inhibition and substrate depletion. FIG. 1B illustrates steady state ATPase cycling rate comparison. ENPP3 substrate concentration dependence of initial steady state enzyme cycling rate was compared with the previously measured values for human ENPP1. ATPase cycling reaction of both 50 nM hNPP3 and hNPP1 totally depleted ATP substrate in 1 minute for 0.98, 1.95 and 3.9 μM ATP, and thus these three rates were omitted from the plot because their rates could not be accurately determined. The hNPP3 steady state ATPase reaction reached the maximum (k_{cat}) of $2.59(\pm0.04)$ s⁻¹ enzyme⁻¹, from the weighted average of the measured rates with 7.8, 15.6, 31.3, 62.5, 125 µM substrate concentration, seeming slower than that for hNPP1 $3.46(\pm 0.44)$ s⁻¹ enzyme⁻¹. The K_M can be estimated <8 μ M. At substrate [ATP]>125 μ M, hNPP3 ATPase cycling rate gradually decreased. FIG. 1C illustrates substrate concentration dependent η . The decreasing η value with substrate concentration for both enzymes indicates that substrate depletion contributes to the nonlinearity in the enzyme reaction time courses much more than product inhibition at the lower initial substrate concentration. The striking similarity with human ENPP3 vs. human ENPP1 η indicates the two enzymes have similar reaction rate and product inhibition. hNPP1 has slightly faster rate and thus depletes substrate ATP slightly faster than hNPP3 at low substrate concentration.

[0015] FIG. 2 illustrates a non-limiting purification profile of NPP3 fusion protein through a Coomasie stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel, wherein the purified. NPP3 protein is shown in relation to certain size markers.

[0016] FIG. 3 illustrates a non-limiting plasmid construct map of human NPP121-NPP3-Fc in the plasmid, cloned using the indicated restriction endonuclease sites.

[0017] FIG. 4 illustrates a non-limiting plasmid construct map of human NPP121-NPP3-Fc in the plasmid pcDNA3, cloned using IN-FUSION® technology.

[0018] FIG. 5 illustrates a non-limiting plasmid construct map of human NPP121-NPP3-Albumin in the plasmid pcDNA3.

BRIEF SUMMARY OF IRE INVENTION

[0019] The invention provides an isolated polypeptide, or a pharmaceutical salt or solvate thereof. The invention further provides a method of treating or preventing a disease or disorder associated with pathological calcification or pathological ossification in a subject in need thereof. The invention further provides a method of reducing or preventing vascular calcification in a subject with low plasma pyrophosphate (PPi) or high serum phosphate (Pi). The invention further provides a method of treating of a subject having NPP I deficiency or NPP1-associated disease. The invention further provides a kit comprising at least one isolated polypeptide of the invention and instructions reciting the use of the at least one polypeptide for treating a disease or disorder associated with pathological calcification or pathological ossification in a subject in need thereof, optionally further comprising an applicator.

[0020] In certain embodiments, the polypeptide of the invention has formula (I): EXPORT-PROTEIN-Z-DO-MAIN-X-Y (I), wherein in (I): EXPORT is absent, or a signal export sequence or a biologically active fragment thereof PROTEIN is the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment thereof; DOMAIN is selected from the group consisting of a human IgG Fc domain and human albumin domain; X and Z are independently absent or a polypeptide comprising 1-20 amino acids; and, Y is absent or a sequence selected from the group consisting of: $(DSS)_n$ (SEQ ID NO:6), $(ESS)_n$ (SEQ ID NO:7), (RQQ), (SEQ ID NO:8), (KR), (SEQ ID NO:9), R_n (SEQ ID NO:10), (KR)_n (SEQ ID NO:11), DSSSEEK-FLRRIGRFG (SEQ ID NO:12), EEEEEEEPRGDT (SEQ ID NO:13), APWHLSSQYSRT (SEQ ID NO:14), STLPIPHEFSRE (SEQ ID NO:15), VTKHLNQISQSY (SEQ ID NO:16), E_n (SEQ ID NO:17), and D_n (SEQ ID NO:18), wherein each occurrence of n is independently an integer ranging from 1 to 20.

[0021] In certain embodiments, the nuclease domain of the PROTEIN or mutant thereof is absent. In other embodiments. EXPORT is absent or selected from the group consisting of SEQ ID NOs:2-5. In yet other embodiments, X

is selected from the group consisting of: absent, a polypeptide consisting of 20 amino acids, a polypeptide consisting of 19 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 17 amino acids, a polypeptide consisting of 16 amino acids, a polypeptide consisting of 15 amino acids, a polypeptide consisting of 14 amino acids, a polypeptide consisting of 13 amino acids, a polypeptide consisting of 12 amino acids, a polypeptide consisting of 11 amino acids, a polypeptide consisting of 10 amino acids, a polypeptide consisting of 9 amino acids, a polypeptide consisting of 8 amino acids, a polypeptide consisting of 7 amino acids, a polypeptide consisting of 6 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 4 amino acids, a polypeptide consisting of 3 amino acids, a polypeptide consisting of 2 amino acids, and a polypeptide consisting of 1 amino acid. In yet other embodiments, Z is selected from the group consisting of: absent, a polypeptide consisting of 20 amino acids, a polypeptide consisting of 19 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 17 amino acids, a polypeptide consisting of 16 amino acids, a polypeptide consisting of 15 amino acids, a polypeptide consisting of 14 amino acids, a polypeptide consisting of 13 amino acids, a polypeptide consisting of 12 amino acids, a polypeptide consisting of 11 amino acids, a polypeptide consisting of 10 amino acids, a polypeptide consisting of 9 amino acids, a polypeptide consisting of 8 amino acids, a polypeptide consisting of 7 amino acids, a polypeptide consisting of 6 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 4 amino acids, a polypeptide consisting of 3 amino acids, a polypeptide consisting of 2 amino acids, and a polypeptide consisting of 1 amino acid.

[0022] In certain embodiments, DOMAIN is a human IgG Fe domain selected from the group consisting of IgG1, IgG2, IgG3 and IgG4. In other embodiments, the polypeptide is selected from the group consisting of SEQ NOs:19, 21 and 22. In yet other embodiments, DOMAIN is a human albumin domain. In yet other embodiments, the polypeptide is selected from the group consisting of SEQ ID NOs:24, 25 and 26.

[0023] In certain embodiments, the polypeptide comprises a soluble region of NPP3 and lacks a transmembrane domain and a signal peptide, or a fusion protein thereof, wherein the polypeptide reduces cellular calcification when administered to a subject suffering from diseases of calcification and ossification. In other embodiments, the polypeptide comprises a soluble region of NPP3 and lacks a transmembrane domain and a signal peptide, wherein the polypeptide reduces cellular calcification when administered to a subject suffering from diseases of calcification and ossification.

[0024] In certain embodiments, the polypeptide comprises the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment thereof. In other embodiments, the polypeptide consists essentially of SEQ ID NO:1 or a biologically active fragment thereof. In yet other embodiments, the polypeptide consists of SEQ ID NO: 1 or a biologically active fragment thereof.

[0025] In certain embodiments, the soluble ENPP3 fragment or fusion protein thereof comprises the extracellular domain of ENPP3 (SEQ IL) NO:1) or a biologically active fragment thereof. In other embodiments, the soluble ENPP3 fragment consists essentially of SEQ ID NO:1 or a biologically active fragment thereof In yet other embodiments, the soluble ENPP3 fragment consists of SEQ ID NO:1 or a

biologically active fragment thereof. In yet other embodiments, the soluble ENPP3 fragment or fusion protein thereof lacks a transmembrane domain and a signal peptide.

[0026] In certain embodiments, the method comprises administering to the subject a therapeutically effective amount of at least one polypeptide the invention, or a pharmaceutical salt or solvate thereof. In other embodiments, the method comprises administering to the subject a therapeutically effective amount of an isolated recombinant human soluble ENPP3 fragment or fusion protein thereof. [0027] In certain embodiments, the disease or disorder comprises at least one selected from the group consisting of GACI, IIAC, PXE, OPLL, hypophosphatemic rickets, osteoarthritis, calcification of atherosclerotic plaques, hereditary and non-hereditary forms of osteoarthritis, ankylosing spondylitis, hardening of the arteries occurring with aging, and calciphylaxis resulting from end stage renal disease (or mineral bone disorder of chronic kidney disease). [0028] In certain embodiments, the disease or disorder comprises at least one selected from a group consisting of GACI, IIAC, PXE, OPLL, MWVC, ARHR2, ESRD, CKD-MBD, XLH, age related osteopenia, CUA and hypophosphatemic rickets.

[0029] In certain embodiments, the disease or disorder is GACI. In other embodiments, the disease or disorder is IIAC. In yet other embodiments, the disease or disorder is PXE. In vet other embodiments, the disease or disorder is OPLL. In yet other embodiments, the disease or disorder is hypophosphatemic rickets. In yet other embodiments, the disease or disorder is osteoarthritis. In vet other embodiments, the disease or disorder is calcification of atherosclerotic plaques. In yet other embodiments, the disease or disorder is hereditary and non-hereditary forms of osteoarthritis. In yet other embodiments, the disease or disorder is ankylosing spondylitis. In vet other embodiments, the disease or disorder is hardening of the arteries occurring with aging. In yet other embodiments, the disease or disorder is calciphylaxis resulting from end stage renal disease (or mineral bone disorder of chronic kidney disease). In yet other embodiments, the disease or disorder is age related osteopenia. In yet other embodiments, the disease or disorder is CUA. In yet other embodiments, the disease or disorder is MWVC. In yet other embodiments, the disease or disorder is ARHR2. In yet other embodiments, the disease or disorder is ESRD.

[0030] In certain embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 800 nM. In other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 1 μ M. In yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 1.5 μ M.

[0031] In certain embodiments, the at least one polypeptide is administered acutely or chronically to the subject. In other embodiments, the at least one polypeptide is administered locally, regionally or systemically to the subject. In yet other embodiments, the subject is a mammal. In yet other embodiments, the mammal is human.

DETAILED DESCRIPTION OF THE INVENTION

[0032] The present invention relates to the discovery that ENPP3 (also known as NPP3), which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase (ENPP

or NPP) family of enzymes, has potent ATP hydrolase activity. ENPP3 hydrolyzes ATP to AMP and PPi, as demonstrated herein.

[0033] In certain aspects, the present invention provides compositions, such as but not limited to fusion proteins, that elevate plasma PPi in physiologic states where plasma PPi is low (as determined, for example, by a medical professional or by consulting of a medical document or manual), placing the individual at risk of morbidity associated with low PPi states. In certain embodiments, these physiologic states are recognized disease conditions such as GACI, PXE, Hutchinson Gilford Progeria Syndrome, chronic kidney disease (CKD), X-linked hypophosphatemia, sickle cell anemia, and end stage renal disease. In other embodiments, these physiologic states occur in non-disease states, such as in elderly adults who are afflicted with chronic ailments known to occur in all aging adults such as "hardening of the arteries" and osteopenia.

[0034] In certain embodiments, low plasma PPi is defined as plasma PPi concentration lower than about 1.5 μM . These disease states may or may not be accompanied by pathologic calcification of the arteries and/or soft tissues, medial vascular wall calcifications, strokes or cerebrovascular accidents, decreased pulse wave velocity, calcifications of the soft tissues such as the skin, calcifications of the Bruchs membrane in the eye, calcifications of soft tissues surrounding tendons also known as entheses, calcifications of ligaments in the spine such as the posterior longitudinal ligament, and disease of ossification such as Rickets. In other embodiments, the invention contemplates treatment of low PPi physiologic states via administration of the fusion proteins described herein.

[0035] In other aspects, the compositions and methods of the invention can be used to treat disease states known to occur in conditions where the expression or the activity of the enzyme ENPP1 is reduced. These recognized disease states include, in non-limited manner, osteoarthritis, GACI, and ARHR2. These states may also occur in other physiologic states in which ENPP1 protein levels are reduced, such as in individuals who have a common polymporphism in the ENPP1 coding region in which a Q residue is substituted for a K reside at position 121 of the secreted protein (or position 173 of the full length protein) (Eller, et al., 2008, Nephrol. Dial. Transplant. 23(1):321-7; Flanagan, et al., 2013, Blood 121(16):3237-45).

[0036] As demonstrated herein, the products of ATP hydrolysis by ENPP3, and the corresponding enzymatic constants, were analyzed in order to study the enzymatic activity of this enzyme. ENPP3 was found to he a potent _ATP hydrolase, capable of generating PPi and AMP from ATP. In certain embodiments, ENPP3 has an ATP hydrolase activity that is comparable to that of ENPP1. As demonstrated herein, ENPP3 catalyzes the hydrolysis of ATP to PPi with nearly the same Michaelis-Menton kinetics as ENPP1, which is another member of the ENPP family of enzymes. In certain embodiments, soluble fusion constructs of ENPP3, including albumin fusion constructs thereof and/or IgG Fc domain constructs thereof, are efficacious in treating diseases of ectopic calcification. In yet other embodiments, the constructs described herein are efficacious in treating and/or preventing disorders of ectopic vascular calcification. [0037] In one aspect NPP3 is poorly exported to the cell surface. In certain embodiments, soluble ENPP3 protein is

constructed by replacing the signal sequence of NPP3 with

ments, soluble ENPP3 constructs are prepared by using the signal export signal sequence of other ENPP enzymes, such as but not limited to ENPP7 and/or ENPPS. In yet other embodiments, soluble ENPP3 constructs are prepared by using a signal sequence comprised of a combination of the signal sequences of ENPP1 and ENPP2 ("ENPP1-2-1" hereinafter). In yet other embodiments, signal sequences of any other known proteins may be used to target the extracellular domain of ENPP3 for secretion as well, such as but not limited to the signal sequence of the immunoglobulin kappa and lambda light chain proteins. Further, the invention should not be construed to be limited to the constructs described herein, but also includes constructs comprising any enzymatically active truncation of the ENPP3 extracellular domain.

the native signal sequence of other ENPPs. In other embodi-

[0038] Diseases and disorders involving pathological calcification and/or pathological ossification treatable by the compositions and methods of the invention, include, but are not limited to, Idiopathic Infantile Arterial Calcification (IIAC), Ossification of the Posterior Longitudinal Ligament (OPLL), hypophosphatemic rickets, osteoarthritis, calcification of atherosclerotic plaques, Pseudoxanthoma elasticum (PXE), hereditary and non-hereditary forms of osteoarthritis, ankylosing spondylitis, hardening of the arteries occurring with aging, and calciphylaxis resulting from end stage renal disease.

Definitions

[0039] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described.

[0040] As used herein, each of the following terms has the meaning associated with it in this section.

[0041] The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

[0042] The term "abnormal" when used in the context of organisms, tissues, cells or components thereof, refers to those organisms, tissues, cells or components thereof that differ in at least one observable or detectable characteristic (e.g., age, treatment, time of day, etc.) from those organisms, tissues, cells or components thereof that display the "normal" (expected) respective characteristic. Characteristics which are normal or expected for one cell or tissue type, might be abnormal for a different cell or tissue type.

[0043] "About" as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of $\pm 20\%$ or $\pm 10\%$, more preferably $\pm 5\%$, even more preferably $\pm 1\%$, and still more preferably $\pm 0.1\%$ from the specified value, as such variations are appropriate to perform the disclosed methods.

[0044] As used herein, the term "AMR" refers to autosomal dominant hypophosphatemic rickets.

[0045] As used herein, the term "albumin" refers to the blood plasma protein that is produced in the liver and forms a large proportion of all plasma protein. In certain embodiments, albumin refers to human serum albumin. Usage of

other albumins such as bovine serum albumin, equine serum album and porcine serum albumin are also contemplated within the invention.

[0046] A disease or disorder is "alleviated" if the severity of a symptom of the disease or disorder, the frequency with which such a symptom is experienced by a patient, or both, is reduced.

[0047] As used herein the terms "alteration," "defect," "variation" or "mutation" refer to a mutation in a gene in a cell that affects the function, activity, expression (transcription or translation) or conformation of the polypeptide it encodes. Mutations encompassed by the present invention can be any mutation of a gene in a cell that results in the enhancement or disruption of the function, activity, expression or conformation of the encoded polypeptide, including the complete absence of expression of the encoded protein and can include, for example, missense and nonsense mutations, insertions, deletions, frameshifts and premature terminations. Without being so limited, mutations encompassed by the present invention may alter splicing the mRNA (splice site mutation) or cause a shift in the reading frame (frameshift).

[0048] The term "amino acid sequence variant" refers to polypeptides having amino acid sequences that differ to some extent from a native sequence polypeptide. Ordinarily, amino acid sequence variants possess at least about 70% homology, at least about 80% homology, at least about 90% homology, or at least about 95% homology to the native polypeptide. The amino acid sequence variants possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence of the native amino acid sequence.

[0049] As used herein, the term "Ap3P" refers to adenosine-(5')-triphospho-(5')-adenosine or a salt thereof.

[0050] As used herein, the term "ARHR2" refers to autosomal recessive hypophosphatemic rickets type-2.

[0051] As used herein, the term "CKD" refers to chronic kidney disease.

[0052] As used herein, the term "CKD-MBD" refers to chronic kidney disease-bone/mineral disorder.

[0053] The term "coding sequence," as used herein, means a sequence of a nucleic acid or its complement, or a part thereof that can be transcribed and/or translated to produce the mRNA and/or the polypeptide or a fragment thereof. Coding sequences include exons in a genomic DNA or immature primary RNA transcripts, which are joined together by the cell's biochemical machinery to provide a mature mRNA. The anti-sense strand is the complement of such a nucleic acid, and the coding sequence can be deduced therefrom. In contrast, the term "non-coding sequence," as used herein, means a sequence of a nucleic acid or its complement, or a part thereof, that is not translated into amino acid in vivo, or where tRNA does not interact to place or attempt to place an amino acid. Non-coding sequences include both intron sequences in genomic DNA or immature primary RNA transcripts, and gene-associated sequences such as promoters, enhancers, silencers, and the like.

[0054] As used herein, the terms "complementary" or "complementarity" are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, the sequence "A-G-T," is complementary to the sequence "T-C-A." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may

be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.

[0055] As used herein, the term "composition" or "pharmaceutical composition" refers to a mixture of at least one compound useful within the invention with a pharmaceutically acceptable carrier. The pharmaceutical composition facilitates administration of the compound to a patient. Multiple techniques of administering a compound exist in the art including, but not limited to, intravenous, oral, aerosol, inhalational, rectal, vaginal, transdermal, intranasal, buccal, sublingual, parenteral, intrathecal, intragastrical, ophthalmic, pulmonary and topical administration.

[0056] As used herein, the terms "conservative variation" or "conservative substitution" as used herein refers to the replacement of an amino acid residue by another, biologically similar residue. Conservative variations or substitutions are not likely to change the shape of the peptide chain. Examples of conservative variations, or substitutions, include the replacement of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acid, or glutamine for asparagine.

[0057] As used herein, the term "CUA" refers to calcific uremic arteriolopaihy.

[0058] A "disease" is a state of health of an animal wherein the animal cannot maintain homeostasis, and wherein if the disease is not ameliorated then the animal's health continues to deteriorate.

[0059] A "disorder" in an animal is a state of health in which the animal is able to maintain homeostasis, but in which the animal's state of health is less favorable than it would be in the absence of the disorder. Left untreated, a disorder does not necessarily cause a further decrease in the animal's state of health.

[0060] As used herein, the term "domain" refers to a part of a molecule or structure that shares common physicochemical features, such as, but not limited to, hydrophobic, polar, globular and helical domains or properties. Specific examples of binding domains include, but are not limited to, DNA binding domains and ATP binding domains.

[0061] As used herein, the terms "effective amount," "pharmaceutically effective amount" and "therapeutically effective amount" refer to a nontoxic but sufficient amount of an agent to provide the desired biological result. That result may be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. An appropriate therapeutic amount in any individual ease may be determined by one of ordinary skill in the art using routine experimentation.

[0062] "Encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces

the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA. [0063] As used herein, the term "ESRD" refers to end-stage renal disease. As used herein, the term "Fc" refers to a human IgG Fc domain. Subtypes of IgG such as IgG1, IgG2, IgG3, and IgG4 are all being contemplated for usage as Fc domains.

[0064] As used herein, the term "fragment," as applied to a nucleic acid, refers to a subsequence of a larger nucleic acid. A "fragment" of a nucleic acid can be at least about 15 nucleotides in length; for example, at least about 50 nucleotides to about 100 nucleotides; at least about 100 to about 500 nucleotides, at least about 500 to about 1000 nucleotides; at least about 1000 nucleotides to about 1500 nucleotides; about 1500 nucleotides to about 2500 nucleotides; or about 2500 nucleotides (and any integer value in between). As used herein, the term "fragment," as applied to a protein or peptide, refers to a subsequence of a larger protein or peptide. A "fragment" of a protein or peptide can be at least about 20 amino acids in length; for example, at least about 50 amino acids in length; at least about 100 amino acids in length; at least about 200 amino acids in length; at least about 300 amino acids in length; or at least about 400 amino acids in length (and any integer value in between).

[0065] As used herein, the term "HBD" refers to hypophosphatemic bone disease.

[0066] As used herein, the term "HHRH" refers to hereditary hypophosphatemic rickets with hypercakiuria.

[0067] "Homologous" refers to the sequence similarity or sequence identity between two polypeptides or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position. The percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared X 100. For example, if 6 of 10 of the positions in two sequences are matched or homologous then the two sequences are 60% homologous. By way of example, the DNA sequences ATTGCC and TATGGC share 50% homology. Generally, a comparison is made when two sequences are aligned to give maximum homology.

[0068] As used herein, the term "IIAC" refers to idiopathic infantile arterial calcification.

[0069] As used herein, an "immunoassay" refers to any binding assay that uses an antibody capable of binding specifically to a target molecule to detect and quantify the target molecule.

[0070] As used herein, the term "immunoglobulin" or "Ig" is defined as a class of proteins that function as antibodies. Antibodies expressed by B cells are sometimes referred to as the BCR (B cell receptor) or antigen receptor. The five members included in this class of proteins are IgA, IgG, IgS9, IgD, and IgE. IgA is the primary antibody that is present in body secretions, such as saliva, tears, breast milk, gastrointestinal secretions and mucus secretions of the respiratory and genitourinary tracts. IgG is the most common circulating antibody. IgM is the main immunoglobulin pro-

duced in the primary immune response in most subjects. It is the most efficient immunoglobulin in agglutination, complement fixation, and other antibody 15 responses, and is important in defense against bacteria and viruses. IgD is the immunoglobulin that has no known antibody function, but may serve as an antigen receptor. IgE is the immunoglobulin that mediates immediate hypersensitivity by causing release of mediators from mast cells and basophils upon exposure to allergen.

[0071] "Instructional material," as that term is used herein, includes a publication, a recording, a diagram, or any other medium of expression which can be used to communicate the usefulness of the nucleic acid, peptide, and/or compound of the invention in the kit for identifying or alleviating or treating the various diseases or disorders recited herein. Optionally, or alternately, the instructional material may describe one or more methods of identifying or alleviating the diseases or disorders in a cell or a tissue of a subject. The instructional material of the kit may, for example, be affixed to a container that contains the nucleic acid, polypeptide, and/or compound of the invention or be shipped together with a container that contains the nucleic acid, polypeptide, and/or compound. Alternatively, the instructional material may be shipped separately from the container with the intention that the recipient uses the instructional material and the compound cooperatively. Alternatively, the kit comprises an applicator that can be used to administer the nucleic acid, peptide, and/or compound of the invention to the subject. The application may be for example a drop dispenser, a bottle, a pill dispenser, a syringe and so forth. [0072] "Isolated" means altered or removed from the natural state. For example, a nucleic acid or a polypeptide naturally present in a living animal is not "isolated," but the same nucleic acid or polypeptide partially or completely separated from the coexisting materials of its natural state is "isolated." An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell.

[0073] An "isolated nucleic acid" refers to a nucleic acid segment or fragment which has been separated from sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins, which naturally accompany it in the cell. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., as a cDNA or a genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.

[0074] As used herein, the term "MWVC" refers to medial wall vascular calcification.

[0075] As used herein, the term "NPP" refers to ectonucleotide pyrophosphatase/phosphodiesterase.

[0076] A "nucleic acid" refers to a polynucleotide and includes poly-ribonucleotides and poly-deoxyribonucleotides. Nucleic acids according to the present invention may

include any polymer or oligomer of pyrimidine and purine bases, preferably cytosine, thymine, and uracil, and adenine and guanine, respectively (Lehninger, Principles of Biochemistry, at 793-800 (Worth Pub. 1982), which is herein incorporated in its entirety for all purposes). Indeed, the present invention contemplates any deoxyribonucleotide, ribonucleotide or peptide nucleic acid component, and any chemical variants thereof, such as methylated, hydroxymethylated or glucosylated forms of these bases, and the like. The polymers or oligomers may be heterogeneous or homogeneous in composition, and may be isolated from naturally occurring sources or may be artificially or synthetically produced. In addition, the nucleic acids may be DNA or RNA, or a mixture thereof, and may exist permanently or transitionally in single-stranded or double-stranded form, including homoduplex, heteroduplex, and hybrid states.

[0077] An "oligonucleotide" or "polynucleotide" is a nucleic acid ranging from at least 2, preferably at least 8, 15 or 25 nucleotides in length, but may be up to 50, 100, 1000, or 5000 nucleotides long or a compound that specifically hybridizes to a polynucleotide. Polynucleotides include sequences of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) or mimetics thereof which may be isolated from natural sources, recombinantly produced or artificially synthesized. A further example of a polynucleotide of the present invention may be a peptide nucleic acid (PNA). (See U.S. Pat. No. 6,156,501 which is hereby incorporated by reference in its entirety) The invention also encompasses situations in which there is a nontraditional base pairing such as Hoogsteen base pairing which has been identified in certain tRNA molecules and postulated to exist in a triple helix. "Polynucleotide" and "oligonucleotide" are used interchangeably herein. When a nucleotide sequence is represented herein by a DNA sequence (e.g., A, T, G, and C), this also includes the corresponding RNA sequence (e.g., A, U, G, C) in which "U" replaces "T."

[0078] As used herein, the term "OPLL" refers to ossification of posterior longitudinal ligament.

[0079] As used herein, the term "patient," "individual" or "subject" refers to a human or a non-human mammal. Non-human mammals include, for example, livestock and pets, such as ovine, bovine, porcine, canine, feline and murine mammals. Exemplarily, the patient, individual or subject is human.

[0080] As used herein, the term "pharmaceutically acceptable" refers to a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the compound, and is relatively non-toxic, i.e., the material may be administered to an individual without causing undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.

[0081] As used herein, the term "pharmaceutically acceptable carrier" means a pharmaceutically acceptable material, composition or carrier, such as a liquid or solid filler, stabilizer, dispersing agent, suspending agent, diluent, excipient, thickening agent, solvent or encapsulating material, involved in carrying or transporting a compound useful within the invention within or to the patient such that it may perform its intended function. Typically, such constructs are carried or transported from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation, including the com-

pound useful within the invention, and not injurious to the patient. Some examples of materials that may serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate, and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; surface active agents; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other nontoxic compatible substances employed in pharmaceutical formulations. "Pharmaceutically acceptable carrier" also includes any and all coatings, antibacterial and antifungal agents, and absorption delaying agents, and the like that are compatible with the activity of the compound useful within the invention, and are physiologically acceptable to the patient. Supplementary active compounds may also be incorporated into the compositions. The "pharmaceutically acceptable carrier" may further include a pharmaceutically acceptable salt of the compound useful within the invention. Other additional ingredients that may he included in the pharmaceutical compositions used in the practice of the invention are known in the art and described, for example in Remington's Pharmaceutical Sciences (Genaro, Ed., Mack Publishing Co., 1985, Easton, Pa.), which is incorporated herein by reference.

[0082] As used herein, the language "pharmaceutically acceptable salt" refers to a salt of the administered compound prepared from pharmaceutically acceptable non-toxic acids and bases, including inorganic acids, inorganic bases, organic acids, inorganic bases, solvates, hydrates, and clathrates thereof. Suitable pharmaceutically acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid. Examples of inorganic acids include sulfate, hydrogen sulfate, hydrochloric, hydrobromic, hydriodic, nitric, carbonic, sulfuric, and phosphoric acids (including hydrogen phosphate and dihydrogen phosphate). Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which include formic, acetic, propionic, succinic, glycolic gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pymvic, aspartic, glutamic, benzoic, anthranilic, 4-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, trifluoromethanesulfonic, 2-hydroxyethane sulfonic, p-toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, stearic, alginic, β-hydroxy butyric, salicylic, galactaric and galacturonic acid. Suitable pharmaceutically acceptable base addition salts of compounds of the invention include, for example, metallic salts including alkali metal, alkaline earth metal and transition metal salts such as, for example, calcium, magnesium, potassium, sodium and zinc salts. Pharmaceutically acceptable base addition salts also include organic salts made from basic amines such as, for example, N,N'-dibenzylethylene-diamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared from the corresponding compound by reacting, for example, the appropriate acid or base with the compound.

[0083] As used herein, the term "plasma pyrophosphate levels" or "plasma PPi" refers to the amount of pyrophosphate (PPi) present in plasma of animals. In certain embodiments, animals include mammals, such as but not limited to rat, mouse, cat, dog, human, cow and horse. In certain embodiments, PPi is measured in plasma rather than serum, because of its release from platelets. There are several non-limiting ways to measure PPi, one of which is by enzymatic assay using uridine-diphosphoglucose (UDPG) pyrophosphorylase as described by Lust and Seegmiller (Lust, et al., 1976, Clin. Chim. Acta 66:241-249; Cheung & Suhadolnik, 1977. Anal. Biochem. 83:61-63) with modifications. Typically healthy individuals exhibit a mean plasma level of about 3.0 µM. The levels of plasma PPi in subjects with aging and or with diseases of calcification or ossification are much lower than the normal levels. In certain embodiments, subjects exhibit a low plasma PPi level of about 1.5 µm. In other embodiments, for subjects with diseases of calcification the plasma PPi levels are about 500 nM, about 600 nM, about 700 nM, about 800 nM, about 900 nM, about $1 \mu M$, about $1.1 \mu M$, about $1.2 \mu M$, about $1.3 \mu M$, about 1.4 μM, about 1.5 μM, about 1.6 μM, about 1.7 μM, about 1.8 μ M, about 1.9 μ M, about 2 μ M about 2.2 μ M, about 2.4 µM, and/or about 2.6 µM. In yet other embodiments, for subjects with diseases of calcification the plasma PPi levels range from about 500 nM to about 2.8 μM, about 600 nM to about 2.8 μ M, about 700 nM to about 2.8 μ M, about 800 nM to about 2.8 µM, about 900 nM to about 2.8 μM , about 1 μM to about 2.8 μM , about 1.1 μM to about 2.8 μM, about 1.2 μM to about 2.8 μM, about 1.3 μM to about $2.8 \mu M$, about $1.4 \mu M$ to about $2.8 \mu M$, about $1.5 \mu M$ to about 2.8 μ M, about 1.6 μ M to about 2.8 μ M, about 1.7 μ M to about 2.8 µM, about 1.8 µM to about 2.8 µM, about 1.9 μM to about 2.8 μM, about 2 μM to about 2.8 μM, about 2.2 μM to about 2.8 μM about 2.4 μM to about 2.8 μM, and/or about 2.6 μ M to about 2.8 μ M.

[0084] As used herein, "polynucleotide" includes cDNA, RNA, DNA/RNA hybrid, antisense RNA, ribozyme, genomic DNA, synthetic forms, and mixed polymers, both sense and antisense strands, and may be chemically or biochemically modified to contain non-natural or derivatized, synthetic, or semi-synthetic nucleotide bases. Also, contemplated are alterations of a wild type or synthetic gene, including but not limited to deletion, insertion, substitution of one or more nucleotides, or fusion to other polynucleotide sequences.

[0085] As used herein, the term "polypeptide" refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds. Synthetic polypeptides may be synthesized, for example, using an automated polypeptide synthesizer. As used herein, the term "protein" typically refers to large polypeptides. As used herein, the term "peptide" typically refers to short polypeptides. Conventional notation is used herein to represent polypeptide sequences: the left-hand end of a polypeptide sequence is the amino-terminus, and the right-hand end of a polypeptide sequence is the carboxyl-terminus.

[0086] As used herein, amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as

indicated below: Aspartic Acid, Asp, D; Glutamic Acid, (Hu, B; Lysine, Lys, K; Arginine, Arg, R; Histidine, His, H; Tyrosine, Tyr, Y; Cysteine, Cys, C; Asparagine, Asn, N; Glutamine, Gln, Q; Serine, Ser, S; Threonine, Thr, T; Glycine, Gly, G; Alanine, Ala, A; Valine, Val, V; Leucine, Leu, L; Isoleucine, Ile, I; Methionine, Met, M; Proline, Pro, P; Phenylalanine, Phe, F; Tryptophan, W.

[0087] As used herein, the term "prevent" or "prevention" means no disorder or disease development if none had occurred, or no further disorder or disease development if there had already been development of the disorder or disease. Also considered is the ability of one to prevent some or all of the symptoms associated with the disorder or disease.

[0088] As used herein, the term "PXE" refers to pseudox-anthoma elasticum.

[0089] "Sample" or "biological sample" as used herein means a biological material isolated from a subject. The biological sample may contain any biological material suitable for detecting a mRNA, polypeptide or other marker of a physiologic or pathologic process in a subject, and may comprise fluid, tissue, cellular and/or non-cellular material obtained from the individual.

[0090] As used herein, "substantially purified" refers to being essentially free of other components. For example, a substantially purified polypeptide is a polypeptide which has been separated from other components with which it is normally associated in its naturally occurring state.

[0091] As used herein, the term "treatment" or "treating" is defined as the application or administration of a therapeutic agent, i.e., a compound useful within the invention (alone or in combination with another pharmaceutical agent), to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient (e.g., for diagnosis or ex vivo applications), who has a disease or disorder, a symptom of a disease or disorder or the potential to develop a disease or disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease or disorder, the symptoms of the disease or disorder, or the potential to develop the disease or disorder. Such treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics.

[0092] As used herein, the term "XLH" refers to X-linked hypophosphatemia, X-linked dominant hypophosphatemic rickets, X-linked vitamin D-resistant rickets, and/or X-linked hypophosphatemic rickets.

[0093] As used herein, the term "wild-type" refers to a gene or gene product isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designed the "normal" or "wild-type" form of the gene. In contrast, the term "modified" or "mutant" refers to a gene or gene product that displays modifications in sequence and/or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. Naturally occurring mutants can be isolated; these are identified by the fact that they have altered characteristics (including altered nucleic acid sequences) when compared to the wild-type gene or gene product.

[0094] Ranges: throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as

an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6. This applies regardless of the breadth of the range.

Compositions

[0095] In certain embodiments, the polypeptide of the invention has formula (I): EXPORT-PROTEIN-Z-DO-MAIN-X-Y (I), wherein in (I): EXPORT is absent, or a signal export sequence or a biologically active fragment thereof; PROTEIN is the extracellular domain of ENPP3 (SEQ IL) NO:1) or a biologically active fragment thereof; DOMAIN is selected from the group consisting of a human IgG Fc domain and human albumin domain; X and Z are independently absent or a polypeptide comprising 1-20 amino acids; and, Y is absent or a sequence selected from the group consisting of (DSS)_n(SEQ ID NO:6), (ESS)_n (SEQ II1 NO:7), $(RQQ)_n$ (SEQ NO:8), $(KR)_n$ (SEQ NO:9), R_n (SEQ ID NO:10), (KR), (SEQ ID NO: 11), DSSSEEKFLRRI-GRFG (SEQ ID NO:12), EEEEEEEPRGDT (SEQ ID APWHLSSQYSRT (SEQ ID STLPIPHEFSRE (SEQ ID NO:15), VTKHLNQISQSY (SEQ ID NO:16), E_n (SEQ ID NO:17), and D_n (SEQ ID NO:18), wherein each occurrence of n is independently an integer ranging from 1 to 20.

[0096] In certain embodiments, the polypeptide comprises the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment (or region) thereof.

[0097] In certain embodiments, the polypeptide is soluble. In other embodiments, the nuclease domain of the PRO-TEIN or mutant thereof is absent. In yet other embodiments, EXPORT is absent or selected from the group consisting of SEQ ID NOs:2-5. In yet other embodiments, X is selected from the group consisting of: absent, a polypeptide consisting of 20 amino acids, a polypeptide consisting of 19 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 17 amino acids, a polypeptide consisting of 16 amino acids, a polypeptide consisting of 15 amino acids, a polypeptide consisting of 14 amino acids, a polypeptide consisting of 13 amino acids, a polypeptide consisting of 12 amino acids, a polypeptide consisting of 11 amino acids, a polypeptide consisting of 10 amino acids, a polypeptide consisting of 9 amino acids, a polypeptide consisting of 8 amino acids, a polypeptide consisting of 7 amino acids, a polypeptide consisting of 6 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 4 amino acids, a polypeptide consisting of 3 amino acids, a polypeptide consisting of 2 amino acids, and a polypeptide consisting of 1 amino acid. In vet other embodiments, Z is selected from the group consisting of: absent, a polypeptide consisting of 20 amino acids, a polypeptide consisting of 19 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 17 amino acids, a polypeptide consisting of 16 amino acids, a polypeptide consisting of 15 amino acids, a polypeptide consisting of 14 amino acids, a polypeptide consisting of 13 amino acids, a polypeptide consisting of 12 amino acids, a polypeptide consisting of 11 amino acids, a polypeptide consisting of 10 amino acids, a polypeptide consisting of 9 amino acids, a polypeptide consisting of 8 amino acids, a polypeptide consisting of 7 amino acids, a polypeptide consisting of 6 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 4 amino acids, a polypeptide consisting of 3 amino acids, a polypeptide consisting of 2 amino acids, and a polypeptide consisting of 1 amino acid.

[0098] In certain embodiments, X and Z are independently absent or a polypeptide comprising 1-18 amino acids. In other embodiments, X and Z are independently absent or a polypeptide comprising 1-16 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-14 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-12 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-10 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-8 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-6 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-5 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-4 amino acids, In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-3 amino acids. In yet other embodiments, X and Z are independently absent or a polypeptide comprising 1-2 amino acids. In yet other embodiments, X and Z are independently absent or a single amino acid.

[0099] In certain embodiments, DOMAIN is a human IgG Fe domain selected from the group consisting of IgG 1, IgG2, IgG3 and IgG4. In other embodiments, the polypeptide is selected from the group consisting of SEQ ID NOs: 19, 21 and 22. In yet other embodiments, DOMAIN is a human albumin domain. In vet other embodiments, the polypeptide is selected from the group consisting of SEQ ID NOs: 24, 25 and 26.

[0100] In certain embodiments, the soluble polypeptide lacks a transmembrane domain and/or signal peptide. In other embodiments, the soluble polypeptide lacks a transmembrane domain. In yet other embodiments, the soluble polypeptide lacks a signal peptide. In yet other embodiments, the soluble polypeptide lacks a transmembrane domain and signal peptide.

[0101] In certain embodiments, the polypeptide comprises a soluble region (or fragment) of NPP3 and lacks a transmembrane domain and a signal peptide, or a fusion protein thereof. In other embodiments, the polypeptide comprises a soluble region of NPP3 and lacks a transmembrane domain and/or a signal peptide. In yet other embodiments, the polypeptide comprises a soluble region of NPP3 and lacks a transmembrane domain. In yet other embodiments, the polypeptide comprises a soluble region of NPP3 and lacks a signal peptide. In yet other embodiments, the polypeptide reduces cellular calcification when administered to a subject suffering from diseases of calcification and ossification.

[0102] In certain embodiments, the polypeptide consists essentially of SEQ ID NO:1 or a biologically active fragment thereof. In other embodiments, the polypeptide consists of SEQ ID NO:1 or a biologically active fragment thereof.

[0103] In certain embodiments, the soluble ENPP3 fragment or fusion protein thereof comprises the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active

fragment thereof. In other embodiments, the soluble ENPP3 fragment consists essentially of SEQ ID NO:1 or a biologically active fragment thereof In yet other embodiments, the soluble ENPP3 fragment consists of SEQ ID NO:1 or a biologically active fragment thereof. In yet other embodiments, the soluble ENPP3 fragment or fusion protein thereof lacks a transmembrane domain and a signal peptide.

[0104] In certain embodiments, the polypeptide of the invention is soluble. In other embodiments, the polypeptide of the invention is a recombinant polypeptide. In yet other embodiments, the polypeptide of the invention is further pegylated.

Methods

[0105] The invention provides a method of treating or preventing a disease or disorder associated with pathological calcification or pathological ossification in a subject in need thereof. The invention further provides a method of reducing or preventing vascular calcification in a subject with low plasma pyrophosphate (PPi) or high serum phosphate (Pi). The invention further provides a method of treating of a subject having NPP1. deficiency or NPP1-associated disease. The invention further provides a method of treating or preventing disorders and diseases in a subject where an increased activity or level of ENPP3 polypeptide, fragment, derivative, mutant, or mutant fragment thereof is desirable. [0106] In certain embodiments, the subject is administered a therapeutically effective amount of at least one polypeptide of the invention. In other embodiments, the method comprises administering to the subject a therapeutically effective amount of an isolated recombinant human soluble ENPP3 fragment or fusion protein thereof.

[0107] In certain embodiments, the disease or disorder comprises at least one selected from the group consisting of GACI, IIAC, PXE, OPLL, hypophosphatemic rickets, osteoarthritis, calcification of atherosclerotic plaques, hereditary and non-hereditary forms of osteoarthritis, ankylosing spondylitis, hardening of the arteries occurring with aging, and calciphylaxis resulting from end stage renal disease (or mineral bone disorder of chronic kidney disease). [0108] In certain embodiments, the disease or disorder comprises at least one selected from a group consisting of GACI, IIAC, PXE, OPLL, MWVC, ARHR2, ESRD, CKD-MBD, XLH, age related osteopenia, CUA and hypophosphatemic rickets.

[0109] In certain embodiments, the disease or disorder is GACI. In other embodiments, the disease or disorder is IIAC. In yet other embodiments, the disease or disorder is PXE. In yet other embodiments, the disease or disorder is OPLL. In yet other embodiments, the disease or disorder is hypophosphatemic rickets. In yet other embodiments, the disease or disorder is osteoarthritis. In yet other embodiments, the disease or disorder is calcification of atherosclerotic plaques. In yet other embodiments, the disease or disorder is hereditary and non-hereditary forms of osteoarthritis. In yet other embodiments, the disease or disorder is ankylosing spondylitis. In yet other embodiments, the disease or disorder is hardening of the arteries occurring with aging. In yet other embodiments, the disease or disorder is calciphylaxis resulting from end stage renal disease (or mineral bone disorder of chronic kidney disease). In yet other embodiments, the disease or disorder is age related osteopenia. In yet other embodiments, the disease or disorder is CUA. In yet other embodiments, the disease or disorder is MWVC. In yet other embodiments, the disease or disorder is ARHR2. In yet other embodiments, the disease or disorder is ESRD.

[0110] In certain embodiments, the at least one polypeptide is administered acutely or chronically to the subject. In other embodiments, the at least one polypeptide is administered locally, regionally or systemically to the subject. In yet other embodiments, the subject is a mammal. In yet other embodiments, the mammal is human.

[0111] In certain embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 250 nM. In other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 500 nM. In yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 800 nM. In yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 900 nM, in yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 1 μM. In yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about $1.2 \mu M$. In yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 1.4 μM. In yet other embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 1.5 μM. In certain embodiments, the administered amount raises the level of plasma PPi in the subject to at least about 2 μM. In certain embodiments, the administered amount raises the level of plasma PPi in the subject to at least about

[0112] One skilled in the art, based upon the disclosure provided herein, would understand that the invention is useful in subjects who, in whole (e.g., systemically) or in part (e.g., locally, tissue, organ), are being, or will be, treated for pathological calcification or ossification. In certain embodiments, the invention is useful in treating or preventing pathological calcification or ossification. The skilled artisan will appreciate, based upon the teachings provided herein, that the diseases and disorders treatable by the compositions and methods described herein encompass any disease or disorder where a decrease in calcification or ossification will promote a positive therapeutic outcome.

[0113] It will be appreciated by one of skill in the art, when armed with the present disclosure including the methods detailed herein, that the invention is not limited to treatment of a disease or disorder once is established. Particularly, the symptoms of the disease or disorder need not have manifested to the point of detriment to the subject; indeed, the disease or disorder need not be detected in a subject before treatment is administered. That is, significant pathology from disease or disorder does not have to occur before the present invention may provide benefit. Therefore, the present invention, as described more fully herein, includes a method for preventing diseases and disorders in a subject, in that a polypeptide of the invention, or a mutant thereof, as discussed elsewhere herein, can be administered to a subject prior to the onset of the disease or disorder, thereby preventing the disease or disorder from developing.

[0114] One of skill in the art, when armed with the disclosure herein, would appreciate that the prevention of a disease or disorder in a subject encompasses administering to a subject a polypeptide of the invention, or a mutant thereof as a preventative measure against a disease or disorder.

[0115] The invention encompasses administration of a polypeptide of the invention, or a mutant thereof to practice the methods of the invention; the skilled artisan would understand, based on the disclosure provided herein, how to formulate and administer the polypeptide of the invention, or a mutant thereof to a subject. However, the present invention is not limited to any particular method of administration or treatment regimen. This is especially true where it would be appreciated by one skilled in the art, equipped with the disclosure provided herein, including the reduction to practice using an art-recognized model of pathological calcification or ossification, that methods of administering a compound of the invention can be determined by one of skill in the pharmacological arts.

Pharmaceutical Compositions and Formulations

[0116] The invention envisions the use of a pharmaceutical composition comprising a polypeptide of the invention within the methods of the invention.

[0117] Such a pharmaceutical composition is in a form suitable for administration to a subject, or the pharmaceutical composition may further comprise one or more pharmaceutically acceptable carriers, one or more additional ingredients, or some combination of these. The various components of the pharmaceutical composition may be present in the form of a physiologically acceptable salt, such as in combination with a physiologically acceptable cation or anion, as is well known in the art.

[0118] In certain embodiments, the pharmaceutical compositions useful for practicing the method of the invention may be administered to deliver a dose of between 1 ng/kg/day and 100 mg/kg/day. In other embodiments, the pharmaceutical compositions useful for practicing the invention may be administered to deliver a dose of between 1 ng/kg/day and 500 mg/kg/day.

[0119] The relative amounts of the active ingredient, the pharmaceutically acceptable carrier, and any additional ingredients in a pharmaceutical composition of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between about 0.1% and about 100% (w/w) active ingredient.

[0120] Pharmaceutical compositions that are useful in the methods of the invention may be suitably developed for inhalational, oral, rectal, vaginal, parenteral, topical, transdermal, pulmonary, intranasal, buccal, ophthalmic, intrathecal, intravenous or another route of administration. Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations. The routes) of administration is readily apparent to the skilled artisan and depends upon any number of factors including the type and severity of the disease being treated, the type and age of the veterinary or human patient being treated, and the like.

[0121] The formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit. As used herein, a "unit

dose" is a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient that would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage. The unit dosage form may be for a single daily dose or one of multiple daily doses (e.g., about 1 to 4 or more times per day). When multiple daily doses are used, the unit dosage form may be the same or different for each dose.

[0122] Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions suitable for ethical administration to humans, it is understood by the skilled artisan that such compositions are generally suitable for administration o animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, and dogs.

[0123] In certain embodiments, the compositions are formulated using one or more pharmaceutically acceptable excipients or carriers. In certain embodiments, the pharmaceutical compositions comprise a therapeutically effective amount of the active agent and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers, which are useful, include, but are not limited to, glycerol, water, saline, ethanol and other pharmaceutically acceptable salt solutions such as phosphates and salts of organic acids. Examples of these and other pharmaceutically acceptable carriers are described in Remington's Pharmaceutical Sciences, 1991, Mack Publication Co., New Jersey.

[0124] The carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms may be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it is preferable to include isotonic agents, for example, sugars, sodium chloride, or polyalcohols such as mannitol and sorbitol, in the composition. Prolonged absorption of the injectable compositions may be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.

[0125] Formulations may be employed in admixtures with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for oral, parenteral, nasal, intravenous, subcutaneous, enteral, or any other suitable mode of administration, known to the art. The pharmaceutical preparations may be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic

substances and the like. They may also be combined where desired with other active agents, e.g., other analgesic agents. [0126] As used herein, "additional ingredients" include, but are not limited to, one or more of the following: excipients; surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; sweetening agents; flavoring agents; coloring agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; emulsifying agents; antioxidants; antibiotics; antifungal agents; stabilizing agents; and pharmaceutically acceptable polymeric or hydrophobic materials. Other "additional ingredients" that may be included in the pharmaceutical compositions of the invention are known in the art and described, for example in Genaro, ed., 1985, Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., which is incorporated herein by reference.

[0127] The composition of the invention may comprise a preservative from about 0.005% to 2.0% by total weight of the composition. The preservative is used to prevent spoilage in the case of exposure to contaminants in the environment. Examples of preservatives useful in accordance with the invention included but are not limited to those selected from the group consisting of benzyl alcohol, sorbic acid, parabens, imidurea and combinations thereof. A particularly preferred preservative is a combination of about 0.5% to 2.0% benzyl alcohol and 0.05% to 0.5% sorbic acid.

[0128] The composition preferably includes an antioxidant and a chelating agent, which inhibit the degradation of the compound. Preferred antioxidants for some compounds are BHT, BHA, alpha-tocopherol and ascorbic acid in the preferred range of about 0.01% to 0.3% and more preferably BHT in the range of 0.03% to 0.2% by weight by total weight of the composition. Preferably, the chelating agent is present in an amount ranging from 0.01% to 0.5% by weight by total weight of the composition. Particularly preferred chelating agents include edetate salts (e.g. disodium edetate) and citric acid in the weight range of about 0.01% to 0.20% and more preferably in the range of 0.02% to 0.10% by weight by total weight of the composition. The chelating agent is useful for chelating metal ions in the composition, which may be detrimental to the shelf life of the formulation. While BHT and disodium edetate are the particularly preferred antioxidant and chelating agent respectively for some compounds, other suitable and equivalent antioxidants and chelating agents may be substituted therefore as would be known to those skilled in the art.

[0129] Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle. Aqueous vehicles include, for example, water, and isotonic saline. Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin. Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents. Oily suspensions may further comprise a thickening agent. Known suspending agents include, but are not limited to, sorbitol syrup, hydrogenated

edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives (e.g., sodium carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose). Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene stearate, heptapolyoxyethylene decaethyleneoxycetanol. sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively). Known emulsifying agents include, but are not limited to, lecithin, and acacia. Known preservatives include, but are not limited to, methyl, ethyl, or n-propyl para-hydroxybenzoates, ascorbic acid, and sorbic acid. Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin. Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol.

[0130] Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent. As used herein, an "oily" liquid is one that comprises a carbon-containing liquid molecule and which exhibits a less polar character than water. Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent. Aqueous solvents include, for example, water, and isotonic saline. Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.

[0131] Powdered and granular formulations of a pharmaceutical preparation of the invention may be prepared using known methods. Such formulations may be administered directly to a subject, used, for example, to form tablets, to fill capsules, or to prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto. Each of these formulations may further comprise one or more of dispersing or wetting agent, a suspending agent, and a preservative. Additional excipients, such as fillers and sweetening, flavoring, or coloring agents, may also be included in these formulations.

[0132] A pharmaceutical composition of the invention may also be prepared, packaged, or sold in the form of oil-in-water emulsion or a water-in-oil emulsion. The oily phase may be a vegetable oil such as olive or arachis oil, a mineral oil such as liquid paraffin, or a combination of these. Such compositions may further comprise one or more emulsifying agents such as naturally occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soybean or lecithin phosphatide, esters or partial esters derived from combinations of fatty acids and hexitol anhydrides such as sorbitan monooleate, and condensation products of such partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. These emulsions may also contain additional ingredients including, for example, sweetening or flavoring agents.

[0133] Methods for impregnating or coating a material with a chemical composition are known in the art, and

include, but are not limited to methods of depositing or binding a chemical composition onto a surface, methods of incorporating a chemical composition into the structure of a material during the synthesis of the material such as with a physiologically degradable material), and methods of absorbing an aqueous or oily solution or suspension into an absorbent material, with or without subsequent drying.

Administration/Dosing

[0134] The regimen of administration may affect what constitutes an effective amount. For example, several divided dosages, as well as staggered dosages may be administered daily or sequentially, or the dose may be continuously infused, or may be a bolus injection. Further, the dosages of the therapeutic formulations may be proportionally increased or decreased as indicated by the exigencies of the therapeutic or prophylactic situation.

[0135] Administration of the compositions of the present invention to a patient, preferably a mammal, more preferably a human, may be carried out using known procedures, at dosages and for periods of time effective to treat a disease or disorder in the patient. An effective amount of the therapeutic compound necessary to achieve a therapeutic effect may vary according to factors such as the activity of the particular compound employed; the time of administration; the rate of excretion of the compound; the duration of the treatment; other drugs, compounds or materials used in combination with the compound; the state of the disease or disorder, age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well-known in the medical arts. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. A non-limiting example of an effective dose range for a therapeutic compound of the invention is from about 0.01 and 50 mg/kg of body weight/per day. One of ordinary skill in the art would be able to study the relevant factors and make the determination regarding the effective amount of the therapeutic compound without undue experimentation.

[0136] The compound can be administered to an animal as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even less frequently, such as once every several months or even once a year or less. It is understood that the amount of compound dosed per day may be administered, in non-limiting examples, every day, every other day, every 2 days, every 3 days, every 4 days, or every 5 days. For example, with every other day administration, a 5 mg per day dose may be initiated on Monday with a first subsequent 5 mg per day dose administered on Wednesday, a second subsequent 5 mg per day dose administered on Friday, and so on. The frequency of the dose is readily apparent to the skilled artisan and depends upon any number of factors, such as, but not limited to, the type and severity of the disease being treated, and the type and age of the

[0137] Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.

[0138] A medical doctor, physician or veterinarian, having ordinary skill in the art may readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.

Dec. 27, 2018

[0139] In particular embodiments, it is especially advantageous to formulate the compound in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the patients to be treated; each unit containing a predetermined quantity of therapeutic compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical vehicle. The dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the therapeutic compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding/formulating such a therapeutic compound for the treatment of a disease or disorder in a patient. [0140] In certain embodiments, the compositions of the invention are administered to the patient in dosages that range from one to five times per day or more. In other embodiments, the compositions of the invention are administered to the patient in range of dosages that include, but are not limited to, once every day, every two, days, every three days to once a week, and once every two weeks. It is readily apparent to one skilled in the art that the frequency of administration of the various combination compositions of the invention varies from subject to subject depending on many factors including, but not limited to, age, disease or disorder to be treated, gender, overall health, and other factors. Thus, the invention should not he construed to he limited to any particular dosage regime and the precise dosage and composition to be administered to any patient will he determined by the attending physical taking all other factors about the patient into account.

[0141] Compounds of the invention for administration may be in the range of from about 1 μ g to about 7,500 mg, about 20 μ g to about 7,000 mg, about 40 μ g, to about 6,500 mg, about 80 μ g to about 6,000 mg, about 100 μ g to about 5,500 mg, about 200 μ g to about 5,000 mg, about 400 μ g to about 4,000 mg, about 800 μ g to about 3,000 mg, about 1 mg to about 2,500 mg, about 2 mg to about 2,000 mg, about 5 mg to about 1,000 mg, about 10 mg to about 750 mg, about 20 mg to about 600 mg, about 30 mg to about 500 mg, about 40 mg to about 400 mg, about 50 mg to about 250 mg, about 60 mg to about 250 mg, about 80 mg to about 250 mg, about 80 mg to about 250 mg, about 80 mg to about 150 mg, about 70 mg to about 200 mg, about 80 mg to about 150 mg, and any and all whole or partial increments therebetween.

[0142] In some embodiments, the dose of a compound of the invention is from about 0.5 μg and about 5,000 mg. In some embodiments, a dose of a compound of the invention used in compositions described herein is less than about 5,000 mg, or less than about 4,000 mg, or less than about 3,000 mg, or less than about 2,000 mg, or less than about 1,000 mg, or less than about 800 mg, or less than about 600 mg, or less than about 500 mg, or less than about 200 mg, or less than about 50 mg. Similarly, one embodiments, a dose of a second compound as described herein is less than about 1,000 mg, or less than about 800 mg, or less than about

US 2018/0371434 A1 Dec. 27, 2018

600 mg, or less than about 500 mg, or less than about 400 mg, or less than about 300 mg, or less than about 200 mg, or less than about 50 mg, or less than about 50 mg, or less than about 40 mg, or less than about 30 mg, or less than about 25 mg, or less than about 20 mg, or less than about 15 mg, or less than about 10 mg, or less than about 5 mg, or less than about 2 mg, or less than about 5 mg, or less than about 0.5 mg, and any and all whole or partial increments thereof. [0143] In certain embodiments, the present invention is directed to a packaged pharmaceutical composition comprising a container holding a therapeutically effective amount of a compound of the invention, alone or in combination with a second pharmaceutical agent; and instructions for using the compound to treat, prevent, or reduce one or more symptoms of a disease or disorder in a patient.

[0144] The term "container" includes any receptacle for holding the pharmaceutical composition. For example, in certain embodiments, the container is the packaging that contains the pharmaceutical composition. In other embodiments, the container is not the packaging that contains the pharmaceutical composition, i.e., the container is a receptacle, such as a box or vial that contains the packaged pharmaceutical composition or unpackaged pharmaceutical composition and the instructions for use of the pharmaceutical composition. Moreover, packaging techniques are well known in the art. It should be understood that the instructions for use of the pharmaceutical composition may he contained on the packaging containing the pharmaceutical composition, and as such the instructions form an increased functional relationship to the packaged product. However, it should be understood that the instructions may contain information pertaining to the compound's ability to perform its intended function, e.g., treating, preventing, or reducing a disease or disorder in a patient.

Routes of Administration

[0145] Routes of administration of any of the compositions of the invention include inhalational, oral, nasal, rectal, parenteral, sublingual, transdermal, transmucosal (e.g., sublingual, lingual, (trans)buccal, (trans)urethral, vaginal (e.g., trans- and perivaginally), (intra)nasal, and (trans)rectal), intravesical, intrapulmonary, intraduodenal, intragastrical, intrathecal, subcutaneous, intramuscular, intradermal, intraarterial, intravenous, intrabronchial, inhalation, and topical administration.

[0146] Suitable compositions and dosage forms include, for example, tablets, capsules, caplets, pills, gel caps, troches, dispersions, suspensions, solutions, syrups, granules, beads, transdermal patches, gels, powders, pellets, magmas, lozenges, creams, pastes, plasters, lotions, discs, suppositories, liquid sprays for nasal or oral administration, dry powder or aerosolized formulations for inhalation, compositions and formulations for intravesical administration and the like. It should be understood that the formulations and compositions that would be useful in the present invention are not limited to the particular formulations and compositions that are described herein.

Oral Administration

[0147] For oral application, particularly suitable are tablets, dragees, liquids, drops, suppositories, or capsules, caplets and gelcaps. Other formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, a paste, a gel, toothpaste, a mouthwash, a coating, an oral rinse, or an emulsion. The compositions intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic pharmaceutically excipients that are suitable for the manufacture of tablets. Such excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate.

[0148] Tablets may be non-coated or they may be coated using known methods to achieve delayed disintegration in the gastrointestinal tract of a subject, thereby providing sustained release and absorption of the active ingredient. By way of example, a material such as glyceryl monostearate or glyceryl distearate may be used to coat tablets. Further by way of example, tablets may be coated using methods described in U.S. Pat. Nos. 4,256,108; 4,160,452; and 4,265, 874 to form osmotically controlled release tablets. Tablets may further comprise a sweetening agent, a flavoring agent, a coloring agent, a preservative, or some combination of these in order to provide for pharmaceutically elegant and palatable preparation.

[0149] Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.

[0150] Soft gelatin capsules comprising the active ingre-

dient may be made using a physiologically degradable composition, such as gelatin. Such soft capsules comprise the active ingredient, which may be mixed with water or an oil medium such as peanut oil, liquid paraffin, or olive oil. [0151] For oral administration, the compounds of the invention may be in the form of tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents; fillers; lubricants; disintegrates; or wetting agents. If desired, the tablets may be coated using suitable methods and coating materials such as OPADRYTM film coating systems available from Colorcon, West Point, Pa. (e.g., OPADRYTM OY Type, OYC Type, Organic Enteric OY-P Type, Aqueous Enteric OY-A Type, OY-PM Type and OPADRYTM White, 32K18400).

[0152] Liquid preparation for oral administration may be in the form of solutions, syrups or suspensions. The liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, methyl cellulose or hydrogenated edible fats); emulsifying agent (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters or ethyl alcohol); and preservatives (e.g., methyl or propyl para-hydroxy benzoates or sorbic acid). Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.

[0153] A tablet comprising the active ingredient may, for example, be made by compressing or molding the active ingredient, optionally with one or more additional ingredients. Compressed tablets may be prepared by compressing,

in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation, optionally mixed with one or more of a binder, a lubricant, an excipient, a surface active agent, and a dispersing agent. Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture. Pharmaceutically acceptable excipients used in the manufacture of tablets include, but are not limited to, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents. Known dispersing agents include, but are not limited to, potato starch and sodium starch glycollate. Known surface-active agents include, but are not limited to, sodium lauryl sulphate. Known diluents include, but are not limited to, calcium carbonate, sodium carbonate, lactose, microcrystalline cellulose, calcium phosphate, calcium hydrogen phosphate, and sodium phosphate. Known granulating and disintegrating agents include, but are not limited to, corn starch and alginic acid. Known binding agents include, but are not limited to, gelatin, acacia, pre-gelatinized maize starch, polyvinylpyrrolidone, and hydroxypropyl methylcellulose. Known lubricating agents include, but are not limited to, magnesium stearate, stearic acid, silica, and talc.

[0154] Granulating techniques are well known in the pharmaceutical art for modifying starting powders or other particulate materials of an active ingredient. The powders are typically mixed with a binder material into larger permanent free-flowing agglomerates or granules referred to as a "granulation." For example, solvent-using "wet" granulation processes are generally characterized in that the powders are combined with a binder material and moistened with water or an organic solvent under conditions resulting in the formation of a wet granulated mass from which the solvent must then be evaporated.

[0155] Melt granulation generally consists in the use of materials that are solid or semi-solid at room temperature (i.e. having a relatively low softening or inciting point range) to promote granulation of powdered or other materials, essentially in the absence of added water or other liquid solvents. The low melting solids, when heated to a temperature in the melting point range, liquefy to act as a binder or granulating medium. The liquefied solid spreads itself over the surface of powdered materials with which it is contacted, and on cooling, forms a solid granulated mass in which the initial materials are bound together. The resulting melt granulation may then be provided to a tablet press or be encapsulated for preparing the oral dosage form. Melt granulation improves the dissolution rate and bioavailability of an active (i.e. drug) by forming a solid dispersion or solid solution.

[0156] U.S. Pat. No. 5,169,645 discloses directly compressible wax-containing granules having improved flow properties. The granules are obtained when waxes are admixed in the melt with certain flow improving additives, followed by cooling and granulation of the admixture. In certain embodiments, only the wax itself melts in the melt combination of the wax(es) and additives(s), and in other cases both the wax(es) and the additives(s) will melt.

[0157] The present invention also includes a multi-layer tablet comprising a layer providing for the delayed release of one or more compounds useful within the methods of the invention, and a further layer providing for the immediate release of one or more compounds useful within the methods

of the invention. Using a wax/pH-sensitive polymer mix, a gastric insoluble composition may be obtained in which the active ingredient is entrapped, ensuring its delayed release.

Parenteral Administration

[0158] As used herein, "parenteral administration" of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue. Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like. In particular, parenteral administration is contemplated to include, but is not limited to, subcutaneous, intravenous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.

[0159] Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents. In one embodiment of a formulation for parenteral administration, the active ingredient is provided in dry (i.e., powder or granular) form for reconstitution with a suitable vehicle sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.

[0160] The pharmaceutical compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution. This suspension or solution may he formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein. Such sterile injectable formulations may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3butanediol, for example. Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides. Other parentally-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form, in a liposomal preparation, or as a component of a biodegradable polymer system. Compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.

Additional Administration Forms

[0161] Additional dosage forms of this invention include dosage forces as described in U.S. Pat. Nos. 6,340,475,

6,488,962, 6,451,808, 5,972,389, 5,582,837, and 5,007,790. Additional dosage forms of this invention also include dosage forms as described in U.S. Patent Applications Nos. 20030147952, 20030104062, 20030104053, 20030044466, 20030039688, and 20020051820. Additional dosage forms of this invention also include dosage forms as described in PCT Applications Nos. WO 03/35041, WO 03/35040, WO 03/35029, WO 03/35177, WO 03/35039, WO 02/96404, WO 02/32416, WO 01/97783, WO 01/56544, WO 01/32217, WO 98/55107, WO 98/11879, WO 97/47285, WO 93/18755, and WO 90/11757.

Controlled Release Formulations and Drug Delivery Systems

[0162] Controlled- or sustained-release formulations of a pharmaceutical composition of the invention may be made using conventional technology. In some cases, the dosage forms to be used can be provided as slow or controlledrelease of one or more active ingredients therein using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, or microspheres or a combination thereof to provide the desired release profile in varying proportions. Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the pharmaceutical compositions of the invention. Thus, single unit dosage forms suitable for oral administration, such as tablets, capsules, gelcaps, and caplets, which are adapted for controlled-release are encompassed by the present invention.

[0163] Most controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood level of the drug, and thus can affect the occurrence of side effects.

[0164] Most controlled-release formulations are designed to initially release an amount of drug that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.

[0165] Controlled-release of an active ingredient can be stimulated by various inducers, for example pH, temperature, enzymes, water, or other physiological conditions or compounds. The term "controlled-release component" in the context of the present invention is defined herein as a compound or compounds, including, but not limited to, polymers, polymer matrices, gels, permeable membranes, liposomes, or microspheres or a combination thereof that facilitates the controlled-release of the active ingredient.

[0166] In certain embodiments, the formulations of the present invention may be, but are not limited to, short-term,

rapid-offset, as well as controlled, for example, sustained release, delayed release and pulsatile release formulations. [0167] The term sustained release is used in its conventional sense to refer to a drug formulation that provides for gradual release of a drug over an extended period of time, and that may, although not necessarily, result in substantially constant blood levels of a drug over an extended time period. The period of time may be as long as a month or more and should be a release which is longer that the same amount of agent administered in bolus form. For sustained release, the compounds may be formulated with a suitable polymer or hydrophobic material which provides sustained, release properties to the compounds. As such, the compounds for use the method of the invention may be administered in the form of microparticles, for example, by injection or in the form of wafers or discs by implantation. In a preferred embodiment of the invention, the compounds of the invention are administered to a patient, alone or in combination with another pharmaceutical agent, using a sustained release formulation.

[0168] The term delayed release is used herein in its conventional sense to refer to a drug formulation that provides for an initial release of the drug after some delay following drug administration and that mat, although not necessarily, includes a delay of from about 10 minutes up to about 12 hours. The term pulsatile release is used herein in its conventional sense to refer to a drug formulation that provides release of the drug in such a way as to produce pulsed plasma profiles of the drug after drug administration. The term immediate release is used in its conventional sense to refer to a drug formulation that provides for release of the drug immediately after drug administration.

[0169] As used herein, short-term refers to any period of time up to and including about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 40 minutes, about 20 minutes, or about 10 minutes and any or all whole or partial increments thereof after drug administration after drug administration.

[0170] As used herein, rapid-offset refers to any period of time up to and including about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 40 minutes, about 20 minutes, or about 10 minutes, and any and all whole or partial increments thereof after drug administration.

[0171] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures, embodiments, claims, and examples described herein. Such equivalents were considered to be within the scope of this invention and covered by the claims appended hereto. For example, it should be understood, that modifications in reaction conditions, including but not limited to reaction times, reaction size/volume, and experimental reagents, such as solvents, catalysts, pressures, atmospheric conditions, e.g., nitrogen atmosphere, and reducing/oxidizing agents, with art-recognized alternatives and using no more than routine experimentation, are within the scope of the present application. [0172] It is to be understood that wherever values and ranges are provided herein, all values and ranges encompassed by these values and ranges, are meant to be encompassed within the scope of the present invention. Moreover, all values that fall within these ranges, as well as the upper or lower limits of a range of values, are also contemplated by the present application.

Dec. 27, 2018

[0173] The following examples further illustrate aspects of the present invention. However, they are in no way a limitation of the teachings or disclosure of the present invention as set forth herein.

the purpose of illustration only, and the invention is not limited to these Examples, but rather encompasses all variations that are evident as a result of the teachings provided herein.

EXAMPLES

[0174] The invention is now described with reference to the following Examples. These Examples are provided for Methods and Materials: Sequences:

[0175]

Extracellular domain of ENPP3 (SEQ ID NO: 1) EKOGSCRKKC FDASFRG LENCRODVAC KDRGDCCWDF EDTCVESTRI WMCNKFRCGE TRLEASLCSC SDDCLORKDC CADYKSVCOG ETSWLEENCD TAOOSOCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEON NPAWWHGOPM NLTAMYOGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYFEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DOTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVPDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV QPVSEILQLK TYLPTFETTI Signal sequence ENPP7 (SEQ ID NO: 2) MRGPAVLLTV ALATLLAPGA Signal sequence ENPP7 (SEQ ID NO: 3) MRGPAVLLTV ALATLLAPGA GA Signal Sequence ENPP5 (SEO ID NO: 4) MTSKFLLVSF ILAALSLSTT FS Signal Sequence ENPP1-2-1 (SEQ ID NO: 5) M E R D G C A G G G S R G G E G G R A P R E G P A G N G R D R G R S H A A E A P G D P Q A A A S L L A P M D V G E E P L E K A A R A R T A K D P N T Y K I I S <u>L F T F A V G V N I C L G</u> FTA (singly underlined) - (doubly underlined): Swapped residues with NPP2 residues 1-27 to give cleavage at the singly underlined-doubly underlined transition SEQ ID NO: 6 $(\mathrm{DSS})_n$, wherein n is an integer ranging between 1 and 20. SEQ ID NO: 7 $(ESS)_n$, wherein n is an integer ranging between 1 and 20. SEQ ID NO: 8

 $(RQQ)_n$, wherein n is an integer ranging between 1 and 20.

-continued

$(\mathrm{KR})_n$, wherein n is an integer ranging between 1 and 20.	SEQ ID NO: 9
\mathbf{R}_n , wherein n is an integer ranging between 1 and 20.	SEQ ID NO: 10
$(\mathrm{KR})_n$, wherein n is an integer ranging between 1 and 20.	SEQ ID NO: 11
DSSSEEKFLRRIGRFG	SEQ ID NO: 12
EEEEEEPRGDT	SEQ ID NO: 13
APWHLSSQYSRT	SEQ ID NO: 14
	SEQ ID NO: 15
STLPIPHEFSRE	SEQ ID NO: 16
VTKHLNQISQSY	SEQ ID NO: 17
\mathbf{E}_n , wherein n is an integer ranging between 1 and 20.	
\mathbf{D}_{n} , wherein n is an integer ranging between 1 and 20.	SEQ ID NO: 18
ENPP121-NPP3-Fc sequence MERDGCAGGG SRGGEGGRAP REGPAGNGRD RGRSHAAEAP GDPQAAASLL APMDVGEEPL	(SEQ ID NO: 19)
EKAARARTAK DPNTYKIISL FTFAVGVNIC LGFTAKOGSC RKKCFDASFR GLENCRCDVA	
EKAARARTAK DPNTYKIIS <u>L FTFAVGVNIC LGFTA</u> KQGSC RKKCFDASFR GLENCRCDVA CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVEDCL RADVRVPPSE	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVEDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVEDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVEDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV	
CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYEEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVEDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV QPVSEILQLK TYLPTFETTI DKTHTCPPCP APELLGGPSV FLFTPKTKDT LMISRTPEVT	

 $\underline{\texttt{WESNGQPENN}} \ \ \underline{\texttt{YKTTPPVLDS}} \ \ \underline{\texttt{DGSFFLYSKL}} \ \ \underline{\texttt{TVDKSRWQQG}} \ \ \underline{\texttt{NVFSCSVMHE}} \ \ \underline{\texttt{ALHNHYTQKS}}$

LSLSPGK

US 2018/0371434 A1 Dec. 27, 2018

[0176] Bold residues=amino acid sequence from NPP1; Single underlined residues=signal peptide sequence from NPP2; Double underlined residues=amino acid sequence of IgG Fe domain. In certain embodiments, the IgG Fe domain is selected from any of the subclasses IgG1, IgG2, IgG3 and IgG4. In other embodiments, instead of Fc domain, albumin domain is used.

[0177] In certain embodiments, the NPP3 C-terminus and the Fc/albumin domain are connected by a linker. In other embodiments, the linker comprises at least two amino acids. In yet other embodiments, the linker comprises 2-40 amino acids, 2-30 amino acids, 2-20 amino acids, 2-18 amino acids, 2-16 amino acids, 2-14 amino acids, 2-12 amino acids, 2-10 amino acids, 2-8 amino acids, 2-6 amino acids, 2-4 amino acids, or 2 amino acids. In yet other embodiments, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

[0178] Single underlined residues=signal peptide sequence from NPP7; Double underlined residues=amino acid sequence of IgG Fc domain. In certain embodiments, the IgG Fc domain is selected from any of the subclasses IgG1, IgG2, IgG3 and IgG4. In other embodiments, instead of Fc domain, albumin domain is used.

[0179] In certain embodiments, the NPP3 C-terminus and the Fc/albumin domain are connected by a linker. In other embodiments, the linker comprises at least two amino acids. In yet other embodiments, the linker comprises 2-40 amino acids, 2-30 amino acids, 2-20 amino acids, 2-18 amino acids, 2-16 amino acids, 2-14 amino acids, 2-12 amino acids, 2-10 amino acids, 2-8 amino acids, 2-6 amino acids, 2-4 amino acids, or 2 amino acids. In yet other embodiments, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

IgG Fc sequence

(SEQ ID NO: 20)

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK

TKPREEOYNSTYRVVSVLTVLHODWLNGKEYKCKVSNKALPAPIEKTISKAKGOPREPOVYTLPPSRE

 ${\tt EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS}$

CSVMHEALHNHYTQKSLSLSPGK

ENPP7-NPP3-Fc sequence

LSLSPGK

(SEQ ID NO: 21)

MRGPAVLLTV ALATLLAPGA KOGSC RKKCFDASFR GLENCRCDVA CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLORKDC CADYKSVCOG ETSWLEENCD TAOOSOCPEG FDLPPVILES MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEON NPAWWHGOPM WLTAMYOGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYFEEPD SSGHAGGPVS ARVIKALOVV DHAFGMLMEG LKORNLHNCV NIILLADHGM DOTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDOH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVPDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATEPNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV QPVSEILQLK TYLPTFETTI <u>DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT</u> CVVVDVSHED PEVKFNWYVD GVEVHSNKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS

Dec. 27, 2018

ENPP5-NPP3-Fc sequence (SEQ ID NO: 22) MTSKFLLVSF ILAALSLSTT FSKQGSC RKKCFDASFR GLENCRCDVA CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NTSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYFEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DOTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDOH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDO OWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFFNI EVYNLMCDLL RIOPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LOKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPOLGDTS PLPPTVPDCL RADVRVPPSE SOKCSFYLAD KNITHGFLYP PASNRTSDSO YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV QPVSEILQLK TYLPTFETTI <u>DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT</u> CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS

[0180] Single underlined residues=signal peptide sequence from NPP5; Double underlined residues=amino acid sequence of IgG Fc domain. In certain embodiments, the IgG Fc domain is selected from any of the subclasses IgG1, IgG2, IgG3 and IgG4. In other embodiments, instead of Fe domain, albumin domain is used.

LSLSPGK

[0181] In certain embodiments, the NPP3 C-terminus and the Fe/albumin domain are connected by a linker. In other

embodiments, the linker comprises at least two amino acids. In yet other embodiments, the linker comprises 2-40 amino acids, 2-30 amino acids, 2-20 amino acids. 2-18 amino acids, 2-16 amino acids, 2-14 amino acids, 2-12 amino acids, 2-10 amino acids, 2-8 amino acids, 2-6 amino acids, 2-4 amino acids, or 2 amino acids. In yet other embodiments, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

(SEQ ID NO: 23)

Albumin sequence

NLVTRCKDALA

GGGGGGGGGGGMKWVTFLLLFVSGSAFSRGVFRREAHKSEIAHRYNDLGEQHFKGLVLIAFSQ
YLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPE
RNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEIL
TQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITK
LATDLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPAD
LPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPAC
YGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKC
CTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAE
TFTFHSDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGP

-continued

ENPP121-NPP3-Albumin sequence

(SEO ID NO: 24) MERDGCAGGG SRGGEGGRAP REGPAGNGRD RGRSHAAEAP GDPQAAASLL APMDVGEEPL ${\tt EKAARARTAK\ DPNTYKIIS} {\tt L} \ {\tt FTFAVGVNIC\ LGFTA} {\tt KQGSC\ RKKCFDASFR\ GLENCRCDVA}$ CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYFEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DOTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDOH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIOPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLONSTO LEQVNOMLNL TOEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVPDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV QPVSEILQLK TYLPTFETTI GGGSGGGGSG GGGSMKWVTF LLLLFVSGSA FSRGVFRREA HKSEIAHRYN DLGEQHFKGL VLIAFSQYLQ KCSYDEHAKL VQEVTDFAKT CVADESAANC DKSLHTLFGD KLCAIPNLRE NYGELADCCT KQEPERNECF LQHKDDNPSL PPFERPEAEA MCTSFKENPT TFMGHYLHEV ARRHPYFYAP ELLYYAEQYN EILTQCCAEA DKESCLTPKL DGVKEKALVS SVRQRMKCSS MOKFGERAFK AWAVARLSOT FPNADFAEIT KLATDLTKVN KECCHGDLLE CADDRAELAK YMCENQATIS SKLQTCCDKP LLKKAHCLSE VEHDTMPADL PAIAADFVED QEVCKNYAEA KDVFLGTFLY EYSRRHPDYS VSLLLRLAKK YEATLEKCCA EANPPACYGT VLAEFQPLVE EPKNLVKTNC DLYEKLGEYG FQNAILVRYT QKAPQVSTPT LVEAARNLGR VGTKCCTLPE DORLPCVEDY LSAILNRVCL LHEKTPVSEH VTKCCSGSLV ERRPCFSALT VDETYVPKEF KAETFTEHSD ICTLPEKEKQ IKKQTALAEL VKHKPKATAE QLKTVMDDFA QFLDTCCKAA

[0182] Bold residues=amino acid sequence from NPP1; Single underlined residues=signal peptide sequence from NPP2; Double underlined residues=amino acid sequence of spacer sequence and albumin domain.

DKDTCFSTEG PNLVTRCKDA LA

[0183] In certain embodiments, the NPP3 C-terminus and the albumin domain are connected by a linker. In other embodiments, the linker comprises at least two amino acids.

In yet other embodiments, the linker comprises 2-40 amino acids, 2-30 amino acids, 2-20 amino acids, 2-18 amino acids, 2-16 amino acids, 2-14 amino acids, 2-12 amino acids, 2-10 amino acids, 2-8 amino acids, 2-6 amino acids, 2-4 amino acids, or 2 amino acids. In yet other embodiments, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

ENPP7-NPP3-Albumin sequence

(SEQ ID NO: 25)

Dec. 27, 2018

MRGPAVLLTV ALATLLAPGA KQGSC RKKCFDASFR GLENCRCDVA

CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLQRKDC CADYKSVCQG

ETSWLEENCD TAQQSQCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK

22

YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSLSSKEQN NPAWWHGQPM WLTAMYQGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYFEEPD SSGHAGGPVS ARVIKALQVV DHAFGMLMEG LKQRNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LOKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPOLGDTS PLPPTVPDCL RADVRVPPSE SOKCSFYLAD KNITHGFLYP PASNRTSTSO YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH LARVRDVELL TGLDFYQDKV OPVSEILOLK TYLPTFETTI GGGSGGGGSG GGGSMKWVTF LLLLFVSGSA FSRGVFRREA HKSEIAHRYN DLGEQHFKGL <u>VLIAFSQYLQ KCSYDEHAKL VQEVTDFAKT CVADESAANC DKSLHTLFGD KLCAIPNLRE</u> NYGELADCCT KQEPERNECF LQHKDDNPSL PPFERPEAEA MCTSFKENPT TFMGHYLHEV ARRHPYFYAP ELLYYAEQYN EILTQCCAEA DKESCLTPKL DGVKEKALVS SVRQRMKCSS MQKFGERAFK AWAVARLSQT FPNADFAEIT KLATDLTKVN KECCHGDLLE CADDRAELAK YMCENQATIS SKLQTCCDKP LLKKAHCLSE VEHDTMPADL PAIAADFVED QEVCKNYAEA KDVFLGTFLY EYSRRHPDYS VSLLLRLAKK YEATLEKCCA EANPPACYGT VLAEFQPLVE EPKNLVKTNC DLYEKLGEYG FQNAILVRYT QKAPQVSTPT LVEAARNLGR VGTKCCTLPE DQRLPCVEDY LSAILNRVCL LHEKTPVSEH VTKGCSGSLV ERRPCFSALT VDETYVPKEF KAETFTFHSD ICTLPEKEKQ IKKQTALAEL VKHKPKATAE QLKTVMDDFA QFLDTCCKAA DKDTCFSTEG PNLVTRCKDA LA

continued

[0184] Single underlined residues=signal peptide sequence from NPP7; Double underlined residues=amino acid sequence of spacer sequence and albumin domain. [0185] In certain embodiments, the NPP3 C-terminus and the albumin domain are connected by a linker. In other embodiments, the linker comprises at least two amino acids. In yet other embodiments, the linker comprises 2-40 amino acids, 2-30 amino acids, 2-20 amino acids, 2-18 amino acids, 2-16 amino acids, 2-14 amino acids, 2-12 amino acids, 2-10 amino acids, 2-8 amino acids, 2-6 amino acids, 2-4 amino acids, or 2 amino acids. In yet other embodiments, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

ENPP5-NPP3-albumin sequence

(SEQ ID NO: 26)

Dec. 27, 2018

MTSKFLLVSF ILAALSLSTT FSKQGSC RKKCFDASFR GLENCRCDVA CKDRGDCCWD FEDTCVESTR IWMCNKFRCG ERLEASLCSC SDDCLORKDC CADYKSVCOG ETSWLEENCD TAOOSOCPEG FDLPPVILFS MDGFRAEYLY TWDTLMPNIN KLKTCGIHSK YMRAMYPTKT FPNHYTIVTG LYPESHGIID NNMYDVNLNK NFSISSKEON NPAWWHGOPM WLTAMYOGLK AATYFWPGSE VAINGSFPSI YMPYNGSVPF EERISTLLKW LDLPKAERPR FYTMYFEEPD SSGHAGGPVS ARVIKALOVV DHAFGMLMEG LKORNLHNCV NIILLADHGM DQTYCNKMEY MTDYFPRINF FYMYEGPAPR IRAHNIPHDF FSFNSEEIVR NLSCRKPDQH FKPYLTPDLP KRLHYAKNVR IDKVHLFVDQ QWLAVRSKSN TNCGGGNHGY NNEFRSMEAI FLAHGPSFKE KTEVEPFENI EVYNLMCDLL RIQPAPNNGT HGSLNHLLKV PFYEPSHAEE

Dec. 27, 2018

VSKFSVCGFA NPLPTESLDC FCPHLQNSTQ LEQVNQMLNL TQEEITATVK VNLPFGRPRV LQKNVDHCLL YHREYVSGFG KAMRMPMWSS YTVPQLGDTS PLPPTVPDCL RADVRVPPSE SQKCSFYLAD KNITHGFLYP PASNRTSDSQ YDALITSNLV PMYEEFRKMW DYFHSVLLIK HATERNGVNV VSGPIFDYNY DGHFDAPDEI TKHLANTDVP IPTHYFVVLT SCKNKSHTPE NCPGWLDVLP FIIPHRPTNV ESCPEGKPEA LWVEERFTAH IARVRDVELL TGLDFYQDKV QPVSEILQLK TYLPTFETTI GGGSGGGGG GGGSMKWVTF LLLLFVSGSA FSRGVFRREA HKSEIAHRYN DLGEQHFKGL VLIAFSQYLQ KCSYDEHAKL VQEVTDFAKT CVADESAANC DKSLHTLFGD KLCAIPNLRE NYGELADCCT KQEPERNECF LQHKDDNPSL PPFERPEAEA MCTSFKENPT TFMGHYLHEV ARRHPYFYAP ELLYYAEQYN EILTQCCAEA DKESCLTPKL DGVKEKALVS SVRQRMKCSS MQKFGERAFK AWAVARLSQT FPNADFAEIT KLATDLTKVN KECCHGDLLE CADDRAELAK YMCENQATIS SKLQTCCDKP LLKKAHCLSE VEHDTMPADL PAIAADFVED QEVCKNYAEA KDVFLGTFLY EYSRRHPDYS VSLLLRLAKK YEATLEKCCA EANPPACYGT VLAEFQPLVE EPKNLVKTNC DLYEKLGEYG FQNAILVRYT QKAPQVSTPT LVEAARNLGR VGTKCCTLPE DQRLPCVEDY LSAILNRVCL LHEKTPVSEH VTKGCSGSLV ERRPCFSALT VDETYVPKEF KAETFTFHSD ICTLPEKEKQ IKKQTALAEL VKHKPKATAE QLKTVMDDFA QFLDTCCKAA DKDTCFSTEG PNLVTRCKDA LA

continued

[0186] Single underlined residues=signal peptide sequence from NPP5; Double underlined residues=amino acid sequence of spacer sequence and albumin domain. In certain embodiments, the NPP3 C-terminus and the albumin domain are connected by a linker. In other embodiments, the linker comprises at least two amino acids. In yet other

embodiments, the linker comprises 2-40 amino acids, 2-30 amino acids, 2-20 amino acids, 2-18 amino acids, 2-16 amino acids, 2-14 amino acids, 2-12 amino acids, 2-10 amino acids, 2-8 amino acids, 2-6 amino acids, 2-4 amino acids, or 2 amino acids. In yet other embodiments, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

ents, the flexible linker comprises a polyethylene glycol chain and/or a hydrocarbon chain (such as an alkylene chain).

Nucleotide sequence of NPP121-NPP3-Fc

ATGGAAAGGGACGGTGGTGGTGGATCTCG

(SEQ ID NO: 27)

CGGAGGCGAAGGTGGAAGGCCCCTAGGGAAGGACCTGCCGGAAACGGAAGGGACAGGG
ACGCTCTCACGCCGCTGAAGCTCCAGGCGACCCTCAGGCCGCTGCCTCTCTGCTGGCTCC
TATGGACGTCGGAGAAGAACCCCTGGAAAAGGCCGCCAGGGCCAGGACTGCCAAGGACCC
CAACACCTACAAGATCATCTCCCTCTTCACTTTCGCCGTCGGAGTCAACATCTGCCTGGG
ATTCACCGCCGAAAAGCAAGGCAGCTGCAGGAAGAAGTGCTTTGATGCATCATTTAGAGG
ACTGGAGAACTGCCGGTGTGATGTGGCATGTAAAGACCGAGGTGATTGCTGCTGGGATTT
TGAAGACACCTGTGTGGAATCAACTCGAATATGGATGTCAATAAATTTCGTTGTGGAGA
GACCAGATTAGAGGCCAGCCTTTGCTCTTGTTCAGATGACTGTTTGCAGAGGAAAAACTGTGA
CACAGCCCAGCAGTCTCAGTGCCCAGAAGGGTTTGACCTACGCCAACAATATCAA
TAAACTGAAAACATGTGGAATTCATTCAAAATACATGAGGACCATGGCACCAAAAC
CTTCCCAAATCATTACACCATTGTCACCAGGACTTTTCCAAAGGAACAAAA

-continued

TAATCCAGCCTGGTGGCATGGGCAACCAATGTGGCTGACAGCAATGTATCAAGGTTTAAA ATACATGCCTTACAACGGAAGTGTCCCATTTGAAGAGAGGATTTCTACACTGTTAAAATG GCTGGACCTGCCCAAAGCTGAAAGACCCAGGTTTTATACCATGTATTTTGAAGAACCTGA $\tt TTCCTCTGGACATGCAGGTGGACCAGTCAGTGCCAGAGTAATTAAAGCCTTACAGGTAGT$ ${\tt AGATCATGCTTTTGGGATGTTGATGGAAGGCCTGAAGCAGCGGAATTTGCACAACTGTGT}$ CAATATCATCCTTCTGGCTGACCATGGAATGGACCAGACTTATTGTAACAAGATGGAATA CATGACTGATTATTTTCCCAGAATAAACTTCTTCTACATGTACGAAGGGCCTGCCCCCG AAACCTCAGTTGCCGAAAACCTGATCAGCATTTCAAGCCCTATTTGACTCCTGATTTGCC AAAGCGACTGCACTATGCCAAGAACGTCAGAATCGACAAAGTTCATCTCTTTTGTGGATCA ACAGTGGCTGGCTGTTAGGAGTAAATCAAATACAAATTGTGGAGGAGGCAACCATGGTTA TAACAATGAGTTTAGGAGCATGGAGGCTATCTTTCTGGCACATGGACCCAGTTTTAAAGA GAAGACTGAAGTTGAACCATTTGAAAATATTGAAGTCTATAACCTAATGTGTGATCTTCT ACGCATTCAACCAGCACCAAACAATGGAACCCATGGTAGTTTAAACCATCTTCTGAAGGT GCCTTTTTATGAGCCATCCCATGCAGAGGAGGTGTCAAAGTTTTCTGTTTGTGGCTTTGC TAATCCATTGCCCACAGAGTCTCTTGACTGTTTCTGCCCTCACCTACAAAATAGTACTCA GCTGGAACAAGTGAATCAGATGCTAAATCTGACCCAAGAAGAAATAACAGGAACAGTGAA ${\tt AGTAAATTTGCCATTTGGGAGGCCTAGGGTACTGCAGAAGAACGTGGACCACTGTCTCCT}$ $\tt TTACCACAGGGAATATGTCAGTGGATTTGGAAAAGCTATGAGGATGCCCATGTGGAGTTC$ ATACACAGTCCCCCAGTTGGGAGACACATCGCCTCTGCCTCCCACTGTCCCAGACTGTCT $\tt GCGGGCTGATGTCAGGGTTCCTCCTTCTGAGAGCCAAAAATGTTCCTTCTATTTAGCAGA$ CAAGAATATCACCCACGGCTTCCTCTATCCTCCTGCCAGCAATAGAACATCAGATAGCCA GGTTAGTGGACCAATATTTGATTATAATTATGATGGCCATTTTGATGCTCCAGATGAAAT ${\tt CAGTTGTAAAAACAAGAGCCACACCCGGAAAACTGCCCTGGGTGGCTGGATGTCCTACC}$ $\tt CTTTATCATCCCTCACCGACCTACCAACGTGGAGAGCTGTCCTGAAGGTAAACCAGAAGC$ TCTTTGGGTTGAAGAAGATTTACAGCTCACATTGCCCGGGTCCGTGATGTAGAACTTCT CACTGGGCTTGACTTCTATCAGGATAAAGTGCAGCCTGTCTCTGAAATTTTGCAACTAAA GACATATTTACCAACATTTGAAACCACTATTGACAAAACTCACACATGCCCACCGTGCCC AGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC CCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGTGGACGTGAGCCACGAAGA CCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGC CCCCATCGAGAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACAC

25

Dec. 27, 2018

continued AGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCT GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAA Nucleotide sequence of NPP121-NPP3-Fc (SEQ ID NO: 28) $\tt ATGGAAAGGGACGGATGCGCCGGTGGTGGATCTCGCGGAGGCGAAGGTGGAAGGGCCCCT$ AGGGAAGGACCTGCCGGAAACGGAASGGACAGGGGACGCTCTCACGCCGCTGAAGCTCCA $\tt GGCGACCCTCAGGCCGCTGCCTCTCTGCTGGCTCCTATGGACGTCGGAGAAGAACCCCTG$ GAATAGGCCGCCAGGGCCAGGACTGCCAAGGACCCCAACACCTACAAGATCATCTCCCTC TGCAGGAAGAGTGCTTTGATGCATCATTTAGAGGACTGGAGAACTGCCGGTGTGATGTG GCATGTAAAGACCGAGGTGATTGCTGCTGCGGATTTTGAAGACACCTGTGTGGGAATCAACT CGAATATGGATGTGCAATAAATTTCGTTGTGGAGAGACCAGATTAGAGGCCAGCCTTTGC TCTTGTTCAGATGACTGTTTGCAGAGGAAAGATTGCTGTGCTGACTATAAGAGTGTTTGC CAAGGAGAAACCTCATGGCTGGAAGAAACTGTGACACAGCCCAGCAGTCTCAGTGCCCA TTATACACATGGGATACTTTAATGCCAAATATCAATAAACTGAAAACATGTGGAATTCAT TCAAAATACATGAGAGCTATGTATCCTACCAAAACCTTCCCAAATCATTACACCATTGTC AACAAGAATTTTTCACTTTCTTCAAAGGAACAAAATAATCCAGCCTGGTGGCATGGGCAA TCAGAAGTGGCTATAAATGGCTCCTTTCCTTCCATATACATGCCTTACAACGGAAGTGTC $\verb|CCATTTGAAGAGAGGATTTCTACACTGTTAAAATGGCTGGACCTGCCCAAAGCTGAAAGA|\\$ CCCAGGTTTTATACCATGTATTTTGAAGAACCTGATTCCTCTGGACATGCAGGTGGACCA GTCAGTGCCAGAGTAATTAAAGCCTTACAGGTAGTAGATCATGCTTTTTGGGATGTTGATG GAAGGCCTGAAGCAGCGGAATTTGCACAACTGTGTCAATATCATCCTTCTGGCTGACCAT GGAATGGACCAGACTTATTGTAACAAGATGGAATACATGACTGATTATTTTCCCAGAATA AACTTCTTCTACATGTACGAAGGGCCTGCCCCCGCATCCGAGCTCATAATATACCTCAT GACTTTTTTAGTTTTAATTCTGAGGAAATTGTTAGAAACCTCAGTTGCCGAAAACCTGAT CAGCATTTCAAGCCCTATTTGACTCCTGATTTGCCAAAGCGACTGCACTATGCCAAGAAC TCAAATACAAATTGTGGAGGAGGCAACCATGGTTATAACAATGAGTTTAGGAGCATGGAG GCTATCTTCTGGCACATGGACCCAGTTTTAAAGAGAAGACTGAAGTTGAACCATTTGAA AATATTGAAGTCTATAACCTAATGTGTGATCTTCTACGCATTCAACCAGCACCAAACAAT GGAACCCATGGTAGTTTAAACCATCTTCTGAAGGTGCCTTTTTATGAGCCATCCCATGCA GAGGAGGTGTCAAAGTTTTCTGTTTGTGGCTTTGCTAATCCATTGCCCACAGAGTCTCTT GACTGTTTCTGCCCTCACCTACAAATAGTACTCAGCTGGAACAAGTGAATCAGATGCTA AATCTCACCCAAGAAGAAATAACAGCAACAGTGAAAGTAAATTTGCCATTTGGGAGGCCT

AGGGTACTGCAGAAGAACGTGGACCACTGTCTCCTTTACCACAGGGAATATGTCAGTGGA

-continued

TTTGGAAAAGCTATGAGGATGCCCATGTGGAGTTCATACACAGTCCCCCAGTTGGGAGAC ${\tt TCTGAGAGCCAAAAATGTTCCTTCTATTTAGCAGACAAGAATATCACCCACGGCTTCCTC}$ TATCCTCCTGCCAGCAATAGAACATCAGATAGCCAATATGATGCTTTAATTACTAGCAAT $\tt TTGGTACCTATGTATGAAGAATTCAGAAAAATGTGGGACTACTTCCACAGTGTTCTTCTT$ ATAAAACATGCCACAGAAAGAAATGGAGTAAATGTGGTTAGTGGACCAATATTTGATTAT AATTATGATGGCCATTTTGATGCTCCAGATGAAATTACCAAACATTTAGCCAACACTGAT GTTCCCATCCCAACACACTACTTTGTGGTGCTGACCAGTTGTAAAAACAAGAGCCACACA GCTCACATTGCCCGGGTCCGTGATGTAGAACTTCTCACTGGGCTTGACTTCTATCAGGAT AAAGTGCAGCCTGTCTCTGAAATTTTGCAACTAAAGACATATTTACCAACATTTGAAACC A CTA TTGGTGGA GGAGGCTCTGGTGGAGGCGGTAGCGGAGGCCGGAGGGTCGATGAAGTGG GTAACCTTTATTTCCCTTCTTTTCTCTTTAGCTCGGCTTATTCCAGGGGTGTGTTTCGT CGAGATGCACACAAGAGTGAGGTTGCTCATCGGTTTAAAGATTTGGGAGAAGAAATTTC AAAGCCTTGGTGTTGATTGCCTTTGCTCAGTATCTTCAGCAGTGTCCATTTGAAGATCAT GTAAAATTAGTGAATGAAGTAACTGAATTTGCAAAAACATGTGTTGCTGATGAGTCAGCT GAAAATTGTGACAAATCACTTCATACCCTTTTTTGGAGAGAAATTATGCACAGTTGCAACT $\tt CTTCGTGAAACCTATGGTGAAATGGCTGACTGCTGTGCAAAACAAGAACCTGAGAGAAAT$ GAATGCTTCTTGCAACACAAAGATGACAACCCAAACCTCCCCCGATTGGTGAGACCAGAG ${\tt GTTGATGTGATGTGCACTGCTTTTCATGACAATGAAGAGACATTTTTGAAAAAATACTTA}$ TATGAAATTGCCAGAAGACATCCTTACTTTTATGCCCCGGAACTCCTTTTCTTTGCTAAA ${\tt AGGTATAAAGCTGCTTTTACAGAATGTTGCCAAGCTGCTGATAAAGCTGCCTGTTG}$ $\tt CCAAAGCTCGATGAACTTCGGGATGAAGGGAAGGCTTCGTCTGCCAAACAGAGACTCAAG$ TGTGCCAGTCTCCAAAAATTTGGAGAAAGAGCTTTCAAAGCATGGGCAGTAGCTCGCCTG ${\tt AGCCAGAGATTTCCCAAAGCTGAGTTTGCAGAAGTTTCCAAGTTAGTGACAGATCTTACC}$ ${\tt AAAGTCCACACGGAATGCTGCCATGGAGATCTGCTTGAATGTGCTGATGACAGGGCGGAC}$ $\tt CTTGCCAAGTATATCTGTGAAAATCAAGATTCGATCTCCAGTAAACTGAAGGAATGCTGT$ GAAAAACCTCTGTTGGAAAAATCCCACTGCATTGCCGAAGTGGAAAATGATGAGATGCCT GCTGACTTGCCTTCATTAGCTGCTGATTTTGTTGAAAGTAAGGATGTTTGCAAAAACTAT GCTGAGGCAAAGGATGTCTTCCTGGGCATGTTTTTGTATGAATATGCAAGAAGGCATCCT GATTACTCTGTCGTGCTGCTGAGACTTGCCAAGACATATGAAACCACTCTAGAGAAG TGCTGTGCCGCTGCAGATCCTCATGAATGCTATGCCAAAGTGTTCGATGAATTTAAACCT CTTGTGGAAGAGCCTCAGAATTTAATCAAACAAAATTGTGAGCTTTTTTGAGCAGCTTTGGA GAGTACAAATTCCAGAATGCGCTATTAGTTCGTTACACCAAGAAGTACCCCAAGTGTCA ACTCCAACTCTTGTAGAGGTCTCAAGAAACCTAGGAAAAGTGGGCAGCAAATGTTGTAAA TTATGTGTGTTGCATGAGAAACGCCAGTAAGTGACAGAGTCACCAAATGCTGCACAGAA TCCTTGGTGAACAGGCGACCATGCTTTTCAGCTCTGGAAGTCGATGAAACATACGTTCCC

-continued

AAAGAGTTTAATGCTGAAACATTCACCTTCCATGCAGATATATGCACACTTTCTGAGAAG
GAGAGACAAATCAAGAAACAAACTGCACTTGTTGAGCTCGTGAAACACAAGCCCAAGGCA
ACAAAAGAGCAACTGAAAGCTGTTATGGATGATTTCGCAGCTTTTGTAGAGAAGTGCTGC
AAGGCTGACGATAAGGAGACCTGCTTTGCCGAGGAGGGTAAAAAAACTTGTTGCTGCAAGT
CAAGCTGCCTTAGGCTTA

Nucleotide sequence of hNPP3-hFc-pcDNA3 (SEQ ID NO: 29) GACGGATCGGGAGATCTCCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATG $\tt CGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGC$ $\tt TTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATT$ GATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATA TGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACC CCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCC ATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATT ATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA TCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTG AAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCG GTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCA $\tt CTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTTATGGAA$ AGGGACGGATGCGCCGGTGGTGGATCTCGCGGAGGCGAAGGTGGAAGGGCCCCTAGGGAA $\verb| CCTCAGGCCGCTGCCTCTGCTGGCTCCTATGGACGTCGGAGAAGAACCCCTGGAAAAG| \\$ $\tt GCCGCCAGGGCCAGGACTGCCAAGGACCCCAACACCTACAAGATCATCTCCCTCTTCACT$ TTCGCCGTCGGAGTCAACATCTGCCTGGGATTCACCGCCGAAAAGCAAGGCAGCTGCAGG ${\tt AAGAAGTGCTTTGATGCATCATTTAGAGGACTGGAGAACTGCCGGTGTGATGTGGCATGT}$ ${\tt AAAGACCGAGGTGATTGCTGCTGGGATTTTGAAGACACCTGTGTGGAATCAACTCGAATA}$ TGGATGTGCAATAAATTTCGTTGTGGAGAGACCAGATTAGAGGCCAGCCTTTGCTCTTGT TCAGATGACTGTTTGCAGAGGAAAGATTGCTGTGCTGACTATAAGAGTGTTTGCCAAGGA GAAACCTCATGGCTGGAAGAAACTGTGACACAGCCCAGCAGTCTCAGTGCCCAGAAGGG TACATGAGAGCTATGTATCCTACCAAAACCTTCCCAAATCATTACACCATTGTCACGGGC AATTTTTCACTTTCTTCAAAGGAACAAAATAATCCAGCCTGGTGGCATGGGCAACCAATG GTGGCTATAAATGGCTCCTTTCCTTCCATATACATGCCTTACAACGGAAGTGTCCCATTT ${\tt GAAGAGGATTTCTACACTGTTAAAATGGCTGGACCTGCCCAAAGCTGAAAGACCCAGG}$

Dec. 27, 2018

28

-continued

 $\tt GCCAGAGTAATTAAAGCCTTACAGGTAGTAGATCATGCTTTTGGGATGTTGATGGAAGGC$ $\tt CTGAAGCAGCGGAATTTGCACAACTGTGTCAATATCATCCTTCTGGCTGACCATGGAATG$ ${\tt GACCAGACTTATTGTAACAAGATGGAATACATGACTGATTATTTTCCCAGAATAAACTTC}$ $\tt TTCTACATGTACGAAGGGCCTGCCCCCCGCATCCGAGCTCATAATATACCTCATGACTTT$ TTTAGTTTTAATTCTGAGGAAATTGTTAGAAACCTCAGTTGCCGAAAACCTGATCAGCAT TTCAAGCCCTATTTGACTCCTGATTTGCCAAAGCGACTGCACTATGCCAAGAACGTCAGA ${\tt ATCGACAAAGTTCATCTTTTGTGGATCAACAGTGGCTGGTTTAGGAGTAAATCAAAT}$ ACAAATTGTGGAGGAGGCAACCATGGTTATAACAATGAGTTTAGGAGCATGGAGGCTATC TTTCTGGCACATGGACCCAGTTTTAAAGAGAAGACTGAAGTTGAACCATTTGAAAATATT GAAGTCTATAACCTAATGTGTGATCTTCTACGCATTCAACCAGCACCAAACAATGGAACC CATGGTAGTTTAAACCATCTTCTGAAGGTGCCTTTTTATGAGCCATCCCATGCAGAGGAG GTGTCAAAGTTTTCTGTTTGTGGCTTTGCTAATCCATTGCCCACAGAGTCTCTTGACTGT TTCTGCCCTCACCTACAAAATAGTACTCAGCTGGAACAAGTGAATCAGATGCTAAATCTC ACCCAAGAAGAAATAACAGCAACAGTGAAAGTAAATTTGCCATTTGGGAGGCCTAGGGTA CTGCAGAAGAACGTGGACCACTGTCTCCTTTACCACAGGGAATATGTCAGTGGATTTGGA $\verb|AAAGCTATGAGGATGCCCATGTGGAGTTCATACACAGTCCCCCAGTTGGGAGACACATCG|$ AGCCAAAAATGTTCCTTCTATTTAGCAGACAAGAATATCACCCACGGCTTCCTCTATCCT CCTGCCAGCAATAGAACATCAGATAGCCAATATGATGCTTTAATTACTAGCAATTTGGTA CCTATGTATGAAGAATTCAGAAAAATGTGGGACTACTTCCACAGTGTTCTTCTTATAAAA CATGCCACAGAAAGAAATGGAGTAAATGTGGTTAGTGGACCAATATTTGATTATAATTAT GATGGCCATTTGATGCTCCAGATGAAATTACCAAACATTTAGCCAACACTGATGTTCCC $\verb|ATCCCAACACCTACTTGTGGTGCTGACCAGTTGTAAAAACAAGAGCCACACCGGAA|$ ${\tt AACTGCCCTGGGTGGCTGGATGTCCTACCCTTTATCATCCCTCACCGACCTACCAACGTG}$ $\tt ATTGCCCGGGTCCGTGATGTAGAACTTCTCACTGGGCTTGACTTCTATCAGGATAAAGTG$ ${\tt CAGCCTGTCTCTGAAATTTTGCAACTAAAGACATATTTACCAACATTTGAAACCACTATT}$ GACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTC TTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACA TGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGAC GGCGTGGAGGTGCATAATGCCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTAC CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAG TGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA GGGCAGCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAG AACCAGGTCAGCCTGACCTGCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG $\tt TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCC$ GACGGCTCCTTCTTCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGG

Dec. 27, 2018

-continued

CTCTCCCTGTCCCCGGGTAAATGAAATTCTGCAGATATCCATCACACTGGCGGCCGCTCG AGCATGCATCTAGAGGGCCCTATTCTATAGTGTCACCTAAATGCTAGAGCTCGCTGATCA $\tt TTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCG$ ${\tt GAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAG}$ GCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTA AGCGCGGCGGTGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCG $\tt CCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAA$ GCTCTAAATCGGGGCATCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCC AAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTT CGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACA ACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGGGGATTTCGGCC ${\tt AGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCC}$ $\tt ATCCCGCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTT$ $\tt TTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGA$ $\tt GGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTC$ GGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCAC GCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACA ATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTT $\tt GTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGGGGCTATCG$ $\tt TGGCTGGCCACGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGA$ $\tt AGGGACTGGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCT$ $\verb|CCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCG|\\$ GAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCC GAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCAT GGCGATGCCTGCTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGAC TGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATT GCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCT CCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTC TGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCA CCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGA TCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAG CTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT

-continued

 $\tt CGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGTTTTCCTGTGTGAAATT$ $\tt GTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGG$ $\tt GTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGT$ $\tt CGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTT$ ATAACGCAGGAAAGACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGG CCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGAC GCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTG GAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCT $\tt TTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGG$ TGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCGTTCAGCCCGACCGCT $\tt GCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCAC$ ${\tt TCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTC}$ $\tt CTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCAC$ GTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATT AAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACC AATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTG $\tt CTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGC$ $\tt TTAATTGTTGCCGGGAAGCTAGAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTG$ $\tt CCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTA$ $\tt GCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGG$ ${\tt TTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGA}$ $\tt CTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTT$ GCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCA $\tt TTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTT$ CGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTT $\tt CTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAAGGGAATAAGGGCGACACGGA$ AATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATT GTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGC GCACATTTCCCCGAAAAGTGCCACCTGACGTC

31

Example 1

[0187] FIGS. 1A-1C comprise graphs illustrating studies of hNPP3 steady state ATP hydrolysis activity.

[0188] As illustrated in FIG. 1A, time courses of AMP product formation after addition of 50 nM hNPP3 with (from bottom to top) 0.98, 1.95, 3.9, 7.8, 15.6, 31.3, 62.5, 125, 250 or 500 μM ATP were analyzed. The enzyme reaction was quenched with equal volume of 3 M formic acid at different times and the reaction product, AMP, was quantified by HPLC analysis with an AMP standard curve. The smooth line through the data points were best fits to a non-linear enzyme kinetic model with product inhibition and substrate depletion.

[0189] FIG. 1B illustrates steady state ATPase cycling rate comparison hNPP3 substrate concentration dependence of initial steady state enzyme cycling rate was compared with that measured for hNPP1. ATPase cycling reaction of both 50 nM hNPP3 and hNPP1 depleted ATP substrate within 1 minute at 0.98, 1.95 and 3.9 μ M ATP. The uncertainty at these low ATP concentrations was significant, and thus these three rates were omitted from the data set during fitting. The hNPP3 steady state ATPase reaction reached the maximum (k_{cat}) of 2.59(±0.04) s^-1 enzyme^-1, from the weighted average of the measured rates at 7.8, 15.6, 31.3, 62.5, 125 μ M substrate. The turnover rate of hNPP1 was 3.46(±0.44) s^-1 enzyme^-1. The K_M for ATP substrate was estimated to be <8 μ M.

[0190] FIG. 1C illustrates substrate concentration dependence of the η value. The decreasing η value with substrate concentration for both enzymes indicates that substrate depletion contributes to the non-linearity in the enzyme reaction time courses much more than product inhibition at lower initial substrate concentrations. The similarity of hNPP3 and hNPP1 η values was consistent with the two enzymes having similar reaction rates and product inhibition.

Example 2

Animal Models

[0191] The following non-limiting animal models can be used to test the efficacy of the presently claimed compositions on human disease resulting from low pyrophosphate (Phi):

- [0192] 1. enpp1asj/asj model of Generalized Arterial Calcification of Infancy (GACI); Li, et al., 2013, Disease Models & Mech. 6(5):1227-35.
- [0193] 2. enpp12asj/2asj model of Generalized Arterial Calcification of Infancy (GACI); Li, et al., 2014, PloS one 9(12):e113542.
- [0194] 3. ABCC6-/- mouse model of Pseudoxanthoma Elasticum (PXE); Jiang, et al., 2007, J. Invest. Derm. 127(6):1392-402.
- [0195] 4. HYP mouse model of X-linked hypophosphatasia (XLH); Liang, et al., 2009. Calcif. Tissue Int. 85(3): 235.46
- [0196] 5. LmnaG609G/+ mouse model of Hutchison-Gilford Progeria Syndrome; Villa-Bellosta, et al., 2013, Circulation 127(24):2442-51.
- [0197] 6. Tip toe walking (ttw) mouse model of Ossification of the Posterior Longitudinal Ligament (OPLL) (Okawa, et al., 1998, Nature Genetics 19(3):271-3; Naka-

mura, et al., 1999, Human Genetics 104(6):492-7) and osteoarthritis (Bertrand, et al., 2012, Annals Rheum. Diseases 71(7):1249-53).

Dec. 27, 2018

- [0198] 7. Rat model of chronic kidney disease (CKD) on the adenine diet; Schibler, et al., 1968, Clin. Sci. 35(2): 363-72; O'Neill, et al., 2011, Kidney Int. 79(5):512-7.
- [0199] 8. Mouse model of chronic kidney disease (CKD) on the adenine diet; Jia, et al., 2013, BMC Nephrol. 14:116.
- [0200] 9. 5/6th nephrectomy rat model of CKD; Morrison, 1962, Lab Invest. 11:321-32; Shimamura & Morrison. 1975, Am. J. Pathol. 79(1):95-106.
- [0201] 10. ENPP1 knockout mouse model of GACI and osteopenia; Mackenzie, et al., 2012, PloS one 7(2): e32177.
- **[0202]** In certain embodiments, there is no rodent model that recapitulates the adult form of the human disease GACI, also referred to in the literature as Autosomal Recessive Hypohposphatemic Rickets type 2 (ARHR2) (Levy-Litan, et al., 2010, Am. J. Human Gen. 86(2):273-8.

[0203] Experimental details on enzymatic activity, quantification of plasma PPi, micro-CT scans, quantification of plasma pyrophosphate uptake and mouse models of calcification are described in detail in the patent applications and/or publications PCT/US2016/33236, WO2014126965 (relating to PCT Patent Application No. PCT/US2014/015945), and US 20150359858, each of which is herein incorporated in its entirety by reference.

Example 3

Production and Purification of ENPP3 Fusion Proteins

[0204] ENPP3 is produced by establishing stable transfections in either CHO or HEK293 mammalian cells. The protein can be produced in either adherent or suspension cells. To establish stable cell lines the nucleic acid sequence encoding NPP3 fusion proteins (FIGS. 3-5 & SEQ ID NO:s 1-29) into an appropriate vector for large scale protein production. There are a variety of these vectors available from commercial sources and any of those can be used.

[0205] For example, FIG. 3 illustrates a plasmid map of ENPP1-2-1-exENPP3-Fc cloned into the pcDNA3 plasmid with appropriate endonuclease restriction sites. The protein subdomains are color coded to illustrate the signal sequence, extracellular domain of ENPP3, and Fc domains of the fusion protein. The amino acid sequence of the cloned protein is also displayed below the plasmid map and also color coded to illustrate the domains of the fusion protein. The pcDNA3 plasmid containing the desired protein constructs can be stably transfected into expression plasmid using established techniques such as electroporation or lipofectamine, and the cells can be grown under antibiotic selection to enhance for stably transfected cells.

[0206] Clones of single, stably transfected cells are then established and screened for high expressing clones of the desired fusion protein. Screening of the single cell clones for ENPP3 protein expression can be accomplished in a high-throughput manner in 96 well plates using the synthetic enzymatic substrate pNP-TMP as previously described for ENPP1 (Saunders, et al., 2008, Mol. Cancer Therap, 7(10): 3352-62; Albright, et al., 2015, Nat Commun. 6:10006). Upon identification of high expressing clones through screening, protein production can be accomplished in shak-

ing flasks or bio-reactors previously described for ENPP1 (Albright, et al., 2015, Nat Commun. 6:10006).

[0207] Purification of ENPP3 can be accomplished using a combination of standard purification techniques known in the art. These techniques are well known in art and are selected from techniques such as column chromatograph, ultracentrifugation, filtration, and precipitation. Column chromatographic purification is accomplished using affinity chromatography such as protein-A and protein-G resins, metal affinity resins such as nickel or copper, hydrophobic exchange chromatography, and reverse-phase high-pressure chromatography (HPLC) using C8-C14 resins. Ion exchange may also be employed, such as anion and cation exchange chromatography using commercially available resins such as Q-sepharose (anion exchange) and SP-sepharose (cation exchange), blue sepharose resin and blue-sephadex resin, and hydroxyapatite resins. Size exclusion chromatography using commercially available S-75 and 5200 Superdex resins can also be employed, as known in the art. Buffers used to solubilize the protein, and provide the selection media for the above described chromatographic steps, are standard biological buffers known to practitioners of the art and science of protein chemistry.

[0208] Some examples of buffers that are used in preparation include citrate, phosphate, acetate, tris(hydroxymethyl)aminomethane, saline buffers, glycine-HCL buffers, Cacodylate buffers, and sodium barbital buffers, which are well known in art. Using a single techniques, or a series of techniques in combination, and the appropriate buffer systems adjusted to the appropriate one can purify the fusion proteins described to greater than 99% purity from crude material (see, for example, FIG. 2). This figure compares partially purified ENPP3 and the crude starting material side by side on a Coomasie stained polyacrylamide gel after a single purification step. As demonstrated in FIG. 2, a protein of molecular weight slightly greater than 105 kD corresponding to the appropriate molecular weight of ENPP3 was enriched from the crude starting material displayed in the right lane after a single purification step. This material can then be additionally purified using additional techniques and/or chromatographic steps as described above, to reach substantially higher purity such as ~99% purity. In certain embodiments, the purified protein has enzymatic activity comparable to the enzymatic activity described and demonstrated in FIGS. 1A-1C.

Example 4

Usage of Plasma PPi as a Biomarker

[0209] Certain embodiments of the invention contemplate the usage of plasma pyrophosphate as a biomarker to

determine which individuals are at risk for diseases of ectopic calcification of the soft tissues, calcification of the medial vascular wall, low bone mineral density, osteopenia, stroke, arthritis, and/or hereditary forms of rickets. Plasma PPi has not been clinically used to predict individuals at risk for the above disorders, as demonstrated by the lack of a plasma PPi test in catalogs of laboratory tests offered by leading clinical laboratories, such as Mayo Medical Laboratory (www dot mayomedicallaboratories dot com/test-catalog/alphabetical/P) or Yale University, or leading commercial reference laboratories such as ARUP (Itd dot aruplab dot com/Search/Browse/P) or The Quest Diagnostics Nichols Institute (www dot specialtylabs dot com/about_us/).

[0210] In certain embodiments, plasma PPi has clinical utility as a predictive and diagnostic agent to identify individuals at risk for the above disorders of calcification, ossification, stroke, osteopenia, low bone mineral density, and/or arthritis.

[0211] The measurement of plasma PPi can be accomplished by several published methods including radio-isotopic (Cheung, et al., 1977, Anal. Biochem. 83(1):61-3) and fluorescent (Jansen, et al., 2013, PNAS USA 110(50):20206-11; Jansen, et al., 2014, Arterioscler. Thromb. Vasc. Biol. 34(9):1985-9). Correct measurement of plasma PPi requires that platelets are removed from the plasma and that the whole blood, when collected, is not hemolyzed. Platelets can be removed from the blood either by high speed centrifugation or by ultrafiltration. Removal of platelets is required to prevent platelets from releasing PPi and ATP into the plasma upon activation and degranulation, which will artificially elevate the plasma PPi levels. Hemolysis of whole blood also releases ATP into the plasma and falsely elevate the measurement of plasma PPi. Plasma that has been collected from non-hemolyzed blood and removed of platelets can be used to reliable measure PPi concentrations, and can provide clinical utility as predictive diagnostic identifying patients at risk for the above mentioned disorders.

[0212] The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety. While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent variations.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 29

<210> SEQ ID NO 1
<211> LENGTH: 827
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Extracellular domain of ENPP3

<400> SEQUENCE: 1

Glu Lys Gln Gly Ser Cys Arg Lys Lys Cys Phe Asp Ala Ser Phe Arg
1 5 10 15
```

Gly	Leu	Glu	Asn 20	Cys	Arg	Cys	Asp	Val 25	Ala	Cys	Lys	Asp	Arg 30	Gly	Asp
Cys	Сув	Trp 35	Asp	Phe	Glu	Asp	Thr 40	Cys	Val	Glu	Ser	Thr 45	Arg	Ile	Trp
Met	Сув 50	Asn	Lys	Phe	Arg	Сув 55	Gly	Glu	Thr	Arg	Leu 60	Glu	Ala	Ser	Leu
Cys 65	Ser	Сув	Ser	Asp	Asp 70	Сув	Leu	Gln	Arg	Lys 75	Asp	СЛа	Сув	Ala	Asp 80
Tyr	Lys	Ser	Val	Сув 85	Gln	Gly	Glu	Thr	Ser 90	Trp	Leu	Glu	Glu	Asn 95	Cys
Asp	Thr	Ala	Gln 100	Gln	Ser	Gln	Cys	Pro 105	Glu	Gly	Phe	Asp	Leu 110	Pro	Pro
Val	Ile	Leu 115	Phe	Ser	Met	Asp	Gly 120	Phe	Arg	Ala	Glu	Tyr 125	Leu	Tyr	Thr
Trp	Asp 130	Thr	Leu	Met	Pro	Asn 135	Ile	Asn	Lys	Leu	Lys 140	Thr	Cys	Gly	Ile
His 145	Ser	Lys	Tyr	Met	Arg 150	Ala	Met	Tyr	Pro	Thr 155	ГÀа	Thr	Phe	Pro	Asn 160
His	Tyr	Thr	Ile	Val 165	Thr	Gly	Leu	Tyr	Pro 170	Glu	Ser	His	Gly	Ile 175	Ile
Asp	Asn	Asn	Met 180	Tyr	Aap	Val	Asn	Leu 185	Asn	ГÀа	Asn	Phe	Ser 190	Leu	Ser
Ser	Lys	Glu 195	Gln	Asn	Asn	Pro	Ala 200	Trp	Trp	His	Gly	Gln 205	Pro	Met	Trp
Leu	Thr 210	Ala	Met	Tyr	Gln	Gly 215	Leu	Lys	Ala	Ala	Thr 220	Tyr	Phe	Trp	Pro
Gly 225	Ser	Glu	Val	Ala	Ile 230	Asn	Gly	Ser	Phe	Pro 235	Ser	Ile	Tyr	Met	Pro 240
Tyr	Asn	Gly	Ser	Val 245	Pro	Phe	Glu	Glu	Arg 250	Ile	Ser	Thr	Leu	Leu 255	Lys
Trp	Leu	Asp	Leu 260	Pro	Lys	Ala	Glu	Arg 265	Pro	Arg	Phe	Tyr	Thr 270	Met	Tyr
Phe	Glu	Glu 275	Pro	Asp	Ser	Ser	Gly 280	His	Ala	Gly	Gly	Pro 285	Val	Ser	Ala
Arg	Val 290	Ile	Lys	Ala	Leu	Gln 295	Val	Val	Asp	His	Ala 300	Phe	Gly	Met	Leu
Met 305	Glu	Gly	Leu	Lys	Gln 310	Arg	Asn	Leu	His	Asn 315	CAa	Val	Asn	Ile	Ile 320
Leu	Leu	Ala	Asp	His 325	Gly	Met	Asp	Gln	Thr 330	Tyr	CAa	Asn	Lys	Met 335	Glu
Tyr	Met	Thr	Asp 340	Tyr	Phe	Pro	Arg	Ile 345	Asn	Phe	Phe	Tyr	Met 350	Tyr	Glu
Gly	Pro	Ala 355	Pro	Arg	Ile	Arg	Ala 360	His	Asn	Ile	Pro	His 365	Asp	Phe	Phe
Ser	Phe 370	Asn	Ser	Glu	Glu	Ile 375	Val	Arg	Asn	Leu	Ser 380	CÀa	Arg	Lys	Pro
Asp 385	Gln	His	Phe	Lys	Pro 390	Tyr	Leu	Thr	Pro	Asp 395	Leu	Pro	Lys	Arg	Leu 400
His	Tyr	Ala	Lys	Asn 405	Val	Arg	Ile	Asp	Lys 410	Val	His	Leu	Phe	Val 415	Asp

Gln	Gln	Trp	Leu 420	Ala	Val	Arg	Ser	Lys 425	Ser	Asn	Thr	Asn	Суs 430	Gly	Gly
Gly	Asn	His 435	Gly	Tyr	Asn	Asn	Glu 440	Phe	Arg	Ser	Met	Glu 445	Ala	Ile	Phe
Leu	Ala 450	His	Gly	Pro	Ser	Phe 455	Lys	Glu	Lys	Thr	Glu 460	Val	Glu	Pro	Phe
Glu 465	Asn	Ile	Glu	Val	Tyr 470	Asn	Leu	Met	Сув	Asp 475	Leu	Leu	Arg	Ile	Gln 480
Pro	Ala	Pro	Asn	Asn 485	Gly	Thr	His	Gly	Ser 490	Leu	Asn	His	Leu	Leu 495	Lys
Val	Pro	Phe	Tyr 500	Glu	Pro	Ser	His	Ala 505	Glu	Glu	Val	Ser	Lys 510	Phe	Ser
Val	Cys	Gly 515	Phe	Ala	Asn	Pro	Leu 520	Pro	Thr	Glu	Ser	Leu 525	Asp	CÀa	Phe
CÀa	Pro 530	His	Leu	Gln	Asn	Ser 535	Thr	Gln	Leu	Glu	Gln 540	Val	Asn	Gln	Met
Leu 545	Asn	Leu	Thr	Gln	Glu 550	Glu	Ile	Thr	Ala	Thr 555	Val	Lys	Val	Asn	Leu 560
Pro	Phe	Gly	Arg	Pro 565	Arg	Val	Leu	Gln	Lys 570	Asn	Val	Asp	His	Cys 575	Leu
Leu	Tyr	His	Arg 580	Glu	Tyr	Val	Ser	Gly 585	Phe	Gly	Lys	Ala	Met 590	Arg	Met
Pro	Met	Trp 595	Ser	Ser	Tyr	Thr	Val 600	Pro	Gln	Leu	Gly	Asp 605	Thr	Ser	Pro
Leu	Pro 610	Pro	Thr	Val	Pro	Asp 615	Cys	Leu	Arg	Ala	Asp 620	Val	Arg	Val	Pro
Pro 625	Ser	Glu	Ser	Gln	630	CAa	Ser	Phe	Tyr	Leu 635	Ala	Asp	Lys	Asn	Ile 640
Thr	His	Gly	Phe	Leu 645	Tyr	Pro	Pro	Ala	Ser 650	Asn	Arg	Thr	Ser	Asp 655	Ser
Gln	Tyr	Asp	Ala 660	Leu	Ile	Thr	Ser	Asn 665	Leu	Val	Pro	Met	Tyr 670	Glu	Glu
Phe	Arg	Lys 675	Met	Trp	Asp	Tyr	Phe 680	His	Ser	Val	Leu	Leu 685	Ile	Lys	His
Ala	Thr 690	Glu	Arg	Asn	Gly	Val 695	Asn	Val	Val	Ser	Gly 700	Pro	Ile	Phe	Asp
Tyr 705	Asn	Tyr	Asp	Gly	His 710	Phe	Asp	Ala	Pro	Asp 715	Glu	Ile	Thr	Lys	His 720
Leu	Ala	Asn	Thr	Asp 725	Val	Pro	Ile	Pro	Thr 730	His	Tyr	Phe	Val	Val 735	Leu
Thr	Ser	Сув	Lys 740	Asn	ГÀа	Ser	His	Thr 745	Pro	Glu	Asn	Cys	Pro 750	Gly	Trp
Leu	Asp	Val 755	Leu	Pro	Phe	Ile	Ile 760	Pro	His	Arg	Pro	Thr 765	Asn	Val	Glu
Ser	Cys 770	Pro	Glu	Gly	Lys	Pro 775	Glu	Ala	Leu	Trp	Val 780	Glu	Glu	Arg	Phe
Thr 785	Ala	His	Ile	Ala	Arg 790	Val	Arg	Asp	Val	Glu 795	Leu	Leu	Thr	Gly	Leu 800
Asp	Phe	Tyr	Gln	Asp 805	Lys	Val	Gln	Pro	Val 810	Ser	Glu	Ile	Leu	Gln 815	Leu
ГХа	Thr	Tyr	Leu	Pro	Thr	Phe	Glu	Thr	Thr	Ile					

```
820
                              825
<210> SEQ ID NO 2
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Signal sequence ENPP7
<400> SEQUENCE: 2
Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu
Ala Pro Gly Ala
<210> SEQ ID NO 3
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Signal sequence ENPP7
<400> SEOUENCE: 3
Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu
Ala Pro Gly Ala Gly Ala
           20
<210> SEQ ID NO 4
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Signal Sequence ENPP5
<400> SEOUENCE: 4
Met Thr Ser Lys Phe Leu Leu Val Ser Phe Ile Leu Ala Ala Leu Ser
1
   5
                                  10
Leu Ser Thr Thr Phe Ser
          20
<210> SEQ ID NO 5
<211> LENGTH: 95
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Signal Sequence ENPP1-2-1
<400> SEQUENCE: 5
Gly Arg Ala Pro Arg Glu Gly Pro Ala Gly Asn Gly Arg Asp Arg Gly
                              25
Arg Ser His Ala Ala Glu Ala Pro Gly Asp Pro Gln Ala Ala Ala Ser
                          40
Leu Leu Ala Pro Met Asp Val Gly Glu Glu Pro Leu Glu Lys Ala Ala
Arg Ala Arg Thr Ala Lys Asp Pro Asn Thr Tyr Lys Ile Ile Ser Leu
Phe Thr Phe Ala Val Gly Val Asn Ile Cys Leu Gly Phe Thr Ala
```

```
85
                                     90
                                                         95
<210> SEQ ID NO 6
<211> LENGTH: 3
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(3)
<223> OTHER INFORMATION: (DSS)n, wherein n is an integer ranging
      between 1 and 20
<400> SEQUENCE: 6
Asp Ser Ser
<210> SEQ ID NO 7
<211> LENGTH: 3
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(3)
<223> OTHER INFORMATION: (ESS)n, wherein n is an integer ranging
      between 1 and 20
<400> SEQUENCE: 7
Glu Ser Ser
<210> SEQ ID NO 8
<211> LENGTH: 3
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(3)
<223> OTHER INFORMATION: (RQQ)n, wherein n is an integer ranging
      between 1 and 20
<400> SEQUENCE: 8
Arg Gln Gln
<210> SEQ ID NO 9
<211> LENGTH: 2
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(2)
<223> OTHER INFORMATION: (KR)n, wherein n is an integer ranging
      between 1 and 20
<400> SEQUENCE: 9
Lys Arq
<210> SEQ ID NO 10
```

```
<211> LENGTH: 1
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: (R)n, wherein n is an integer ranging
     between 1 and 20
<400> SEQUENCE: 10
Arg
<210> SEQ ID NO 11
<211> LENGTH: 2
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(2)
<223> OTHER INFORMATION: (KR)n, wherein n is an integer ranging
     between 1 and 20
<400> SEQUENCE: 11
Lys Arg
<210> SEQ ID NO 12
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<400> SEOUENCE: 12
Asp Ser Ser Ser Glu Glu Lys Phe Leu Arg Arg Ile Gly Arg Phe Gly
               5
                                   10
<210> SEQ ID NO 13
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<400> SEQUENCE: 13
Glu Glu Glu Glu Glu Glu Pro Arg Gly Asp Thr
<210> SEQ ID NO 14
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Chemically synthesized
<400> SEQUENCE: 14
Ala Pro Trp His Leu Ser Ser Gln Tyr Ser Arg Thr
1 5
<210> SEQ ID NO 15
<211> LENGTH: 12
```

```
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<400> SEQUENCE: 15
Ser Thr Leu Pro Ile Pro His Glu Phe Ser Arg Glu
1 5
<210> SEQ ID NO 16
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<400> SEQUENCE: 16
Val Thr Lys His Leu Asn Gln Ile Ser Gln Ser Tyr
<210> SEQ ID NO 17
<211> LENGTH: 1
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)...(1)   
<223> OTHER INFORMATION: (E)n, wherein n is an integer ranging
     between 1 and 20
<400> SEQUENCE: 17
Glu
1
<210> SEQ ID NO 18
<211> LENGTH: 1
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<220> FEATURE:
<221> NAME/KEY: REPEAT
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: (D)n, wherein n is an integer ranging
      between 1 and 20
<400> SEQUENCE: 18
Asp
<210> SEQ ID NO 19
<211> LENGTH: 1147
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: ENPP121-NPP3-Fc sequence
<400> SEQUENCE: 19
Met Glu Arg Asp Gly Cys Ala Gly Gly Gly Ser Arg Gly Gly Glu Gly
Gly Arg Ala Pro Arg Glu Gly Pro Ala Gly Asn Gly Arg Asp Arg Gly
                                25
Arg Ser His Ala Ala Glu Ala Pro Gly Asp Pro Gln Ala Ala Ala Ser
```

							-
_	con	+	п	n	11	Δ	α
	COIL	٠.	_	. 11	u	·	u

													0 111		
		35					40					45			
Leu	Leu 50	Ala	Pro	Met	Asp	Val 55	Gly	Glu	Glu	Pro	Leu 60	Glu	Lys	Ala	Ala
Arg 65	Ala	Arg	Thr	Ala	Lys 70	Asp	Pro	Asn	Thr	Tyr 75	Lys	Ile	Ile	Ser	Leu 80
Phe	Thr	Phe	Ala	Val 85	Gly	Val	Asn	Ile	Сув 90	Leu	Gly	Phe	Thr	Ala 95	ГÀз
Gln	Gly	Ser	Cys 100	Arg	Lys	Lys	Cys	Phe 105	Asp	Ala	Ser	Phe	Arg 110	Gly	Leu
Glu	Asn	Cys 115	Arg	Cys	Asp	Val	Ala 120	Сув	Lys	Asp	Arg	Gly 125	Asp	Сув	Cys
Trp	Asp 130	Phe	Glu	Asp	Thr	Сув 135	Val	Glu	Ser	Thr	Arg 140	Ile	Trp	Met	Cha
Asn 145	Lys	Phe	Arg	Cys	Gly 150	Glu	Arg	Leu	Glu	Ala 155	Ser	Leu	Сув	Ser	Cys 160
Ser	Asp	Asp	Сув	Leu 165	Gln	Arg	Lys	Asp	Cys 170	Сув	Ala	Asp	Tyr	Lys 175	Ser
Val	Сув	Gln	Gly 180	Glu	Thr	Ser	Trp	Leu 185	Glu	Glu	Asn	СЛв	Asp 190	Thr	Ala
Gln	Gln	Ser 195	Gln	Cya	Pro	Glu	Gly 200	Phe	Asp	Leu	Pro	Pro 205	Val	Ile	Leu
Phe	Ser 210	Met	Asp	Gly	Phe	Arg 215	Ala	Glu	Tyr	Leu	Tyr 220	Thr	Trp	Asp	Thr
Leu 225	Met	Pro	Asn	Ile	Asn 230	ГÀа	Leu	ГЛа	Thr	Сув 235	Gly	Ile	His	Ser	Lys 240
Tyr	Met	Arg	Ala	Met 245	Tyr	Pro	Thr	Lys	Thr 250	Phe	Pro	Asn	His	Tyr 255	Thr
Ile	Val	Thr	Gly 260	Leu	Tyr	Pro	Glu	Ser 265	His	Gly	Ile	Ile	Asp 270	Asn	Asn
Met	Tyr	Asp 275	Val	Asn	Leu	Asn	Lys 280	Asn	Phe	Ser	Leu	Ser 285	Ser	Lys	Glu
Gln	Asn 290	Asn	Pro	Ala	Trp	Trp 295	His	Gly	Gln	Pro	Met 300	Trp	Leu	Thr	Ala
305	-		-		310				-	315	_		-	Ser	320
Val	Ala	Ile	Asn	Gly 325	Ser	Phe	Pro	Ser	Ile 330	Tyr	Met	Pro	Tyr	Asn 335	Gly
Ser	Val	Pro	Phe 340	Glu	Glu	Arg	Ile	Ser 345	Thr	Leu	Leu	ГÀа	Trp 350	Leu	Asp
Leu	Pro	Lув 355	Ala	Glu	Arg	Pro	Arg 360	Phe	Tyr	Thr	Met	Tyr 365	Phe	Glu	Glu
Pro	Asp 370	Ser	Ser	Gly	His	Ala 375	Gly	Gly	Pro	Val	Ser 380	Ala	Arg	Val	Ile
185 385	Ala	Leu	Gln	Val	Val 390	Asp	His	Ala	Phe	Gly 395	Met	Leu	Met	Glu	Gly 400
Leu	Lys	Gln	Arg	Asn 405	Leu	His	Asn	Сув	Val 410	Asn	Ile	Ile	Leu	Leu 415	Ala
Asp	His	Gly	Met 420	Asp	Gln	Thr	Tyr	Cys 425	Asn	Lys	Met	Glu	Tyr 430	Met	Thr
Asp	Tyr	Phe 435	Pro	Arg	Ile	Asn	Phe 440	Phe	Tyr	Met	Tyr	Glu 445	Gly	Pro	Ala

Pro	Arg 450	Ile	Arg	Ala	His	Asn 455	Ile	Pro	His	Asp	Phe 460	Phe	Ser	Phe	Asn
Ser 465	Glu	Glu	Ile	Val	Arg 470	Asn	Leu	Ser	Cys	Arg 475	Lys	Pro	Asp	Gln	His 480
Phe	Lys	Pro	Tyr	Leu 485	Thr	Pro	Asp	Leu	Pro 490	ГЛа	Arg	Leu	His	Tyr 495	Ala
ГÀа	Asn	Val	Arg 500	Ile	Asp	Lys	Val	His 505	Leu	Phe	Val	Asp	Gln 510	Gln	Trp
Leu	Ala	Val 515	Arg	Ser	Lys	Ser	Asn 520	Thr	Asn	Сув	Gly	Gly 525	Gly	Asn	His
Gly	Tyr 530	Asn	Asn	Glu	Phe	Arg 535	Ser	Met	Glu	Ala	Ile 540	Phe	Leu	Ala	His
Gly 545	Pro	Ser	Phe	ГЛа	Glu 550	ГЛа	Thr	Glu	Val	Glu 555	Pro	Phe	Glu	Asn	Ile 560
Glu	Val	Tyr	Asn	Leu 565	Met	Cys	Asp	Leu	Leu 570	Arg	Ile	Gln	Pro	Ala 575	Pro
Asn	Asn	Gly	Thr 580	His	Gly	Ser	Leu	Asn 585	His	Leu	Leu	ГÀв	Val 590	Pro	Phe
Tyr	Glu	Pro 595	Ser	His	Ala	Glu	Glu 600	Val	Ser	ГÀа	Phe	Ser 605	Val	CÀa	Gly
Phe	Ala 610	Asn	Pro	Leu	Pro	Thr 615	Glu	Ser	Leu	Asp	Cys 620	Phe	Cya	Pro	His
Leu 625	Gln	Asn	Ser	Thr	Gln 630	Leu	Glu	Gln	Val	Asn 635	Gln	Met	Leu	Asn	Leu 640
Thr	Gln	Glu	Glu	Ile 645	Thr	Ala	Thr	Val	Lys 650	Val	Asn	Leu	Pro	Phe 655	Gly
Arg	Pro	Arg	Val 660	Leu	Gln	ГÀа	Asn	Val 665	Asp	His	СЛа	Leu	Leu 670	Tyr	His
Arg	Glu	Tyr 675	Val	Ser	Gly	Phe	Gly 680	ГÀЗ	Ala	Met	Arg	Met 685	Pro	Met	Trp
Ser	Ser 690	Tyr	Thr	Val	Pro	Gln 695	Leu	Gly	Asp	Thr	Ser 700	Pro	Leu	Pro	Pro
Thr 705	Val	Pro	Asp	CÀa	Leu 710	Arg	Ala	Asp	Val	Arg 715	Val	Pro	Pro	Ser	Glu 720
Ser	Gln	Lys	Cys	Ser 725	Phe	Tyr	Leu	Ala	Asp 730	Lys	Asn	Ile	Thr	His 735	Gly
Phe	Leu	Tyr	Pro 740	Pro	Ala	Ser	Asn	Arg 745	Thr	Ser	Asp	Ser	Gln 750	Tyr	Asp
Ala	Leu	Ile 755	Thr	Ser	Asn	Leu	Val 760	Pro	Met	Tyr	Glu	Glu 765	Phe	Arg	Lys
Met	Trp 770	Asp	Tyr	Phe	His	Ser 775	Val	Leu	Leu	Ile	Lys 780	His	Ala	Thr	Glu
Arg 785	Asn	Gly	Val	Asn	Val 790	Val	Ser	Gly	Pro	Ile 795	Phe	Asp	Tyr	Asn	Tyr 800
Asp	Gly	His	Phe	Asp 805	Ala	Pro	Asp	Glu	Ile 810	Thr	Lys	His	Leu	Ala 815	Asn
Thr	Asp	Val	Pro 820	Ile	Pro	Thr	His	Tyr 825	Phe	Val	Val	Leu	Thr 830	Ser	Cys
ГÀа	Asn	Lys 835	Ser	His	Thr	Pro	Glu 840	Asn	Сла	Pro	Gly	Trp 845	Leu	Asp	Val

-continued

Leu Pro Phe Ile Ile Pro His Arg Pro Thr Asn Val Glu Ser Cys Pro 855 Glu Gly Lys Pro Glu Ala Leu Trp Val Glu Glu Arg Phe Thr Ala His 870 Ile Ala Arg Val Arg Asp Val Glu Leu Leu Thr Gly Leu Asp Phe Tyr Gln Asp Lys Val Gln Pro Val Ser Glu Ile Leu Gln Leu Lys Thr Tyr Leu Pro Thr Phe Glu Thr Thr Ile Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 950 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 985 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 1000 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 1015 1010 1020 Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 1030 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 1040 1045 1050 Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 1060 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 1075 1080 Asn Gly \mbox{Gln} Pro \mbox{Glu} Asn \mbox{Asn} \mbox{Tyr} Lys \mbox{Thr} \mbox{Thr} Pro \mbox{Pro} \mbox{Val} Leu 1090 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 1105 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 1120 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 1135 Ser Pro Gly Lys 1145 <210> SEQ ID NO 20 <211> LENGTH: 227 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: IgG Fc sequence <400> SEQUENCE: 20 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 10 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 25

-continued

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 200 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 225 <210> SEQ ID NO 21 <211> LENGTH: 1072 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: ENPP7-NPP3-Fc sequence <400> SEQUENCE: 21 Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu Ala Pro Gly Ala Lys Gln Gly Ser Cys Arg Lys Lys Cys Phe Asp Ala Ser Phe Arg Gly Leu Glu Asn Cys Arg Cys Asp Val Ala Cys Lys Asp Arg Gly Asp Cys Cys Trp Asp Phe Glu Asp Thr Cys Val Glu Ser Thr 50 60Arg Ile Trp Met Cys Asn Lys Phe Arg Cys Gly Glu Arg Leu Glu Ala Ser Leu Cys Ser Cys Ser Asp Asp Cys Leu Gln Arg Lys Asp Cys Cys Ala Asp Tyr Lys Ser Val Cys Gln Gly Glu Thr Ser Trp Leu Glu Glu Asn Cys Asp Thr Ala Gln Gln Ser Gln Cys Pro Glu Gly Phe Asp Leu 120 Pro Pro Val Ile Leu Phe Ser Met Asp Gly Phe Arg Ala Glu Tyr Leu 135

											_	COII	CIII	ueu	
Tyr 145	Thr	Trp	Asp	Thr	Leu 150	Met	Pro	Asn	Ile	Asn 155	Lys	Leu	ГÀа	Thr	Cys 160
Gly	Ile	His	Ser	Lys 165	Tyr	Met	Arg	Ala	Met 170	Tyr	Pro	Thr	Lys	Thr 175	Phe
Pro	Asn	His	Tyr 180	Thr	Ile	Val	Thr	Gly 185	Leu	Tyr	Pro	Glu	Ser 190	His	Gly
Ile	Ile	Asp 195	Asn	Asn	Met	Tyr	Asp 200	Val	Asn	Leu	Asn	Lys 205	Asn	Phe	Ser
Leu	Ser 210	Ser	Lys	Glu	Gln	Asn 215	Asn	Pro	Ala	Trp	Trp 220	His	Gly	Gln	Pro
Met 225	Trp	Leu	Thr	Ala	Met 230	Tyr	Gln	Gly	Leu	Lys 235	Ala	Ala	Thr	Tyr	Phe 240
Trp	Pro	Gly	Ser	Glu 245	Val	Ala	Ile	Asn	Gly 250	Ser	Phe	Pro	Ser	Ile 255	Tyr
Met	Pro	Tyr	Asn 260	Gly	Ser	Val	Pro	Phe 265	Glu	Glu	Arg	Ile	Ser 270	Thr	Leu
Leu	Lys	Trp 275	Leu	Asp	Leu	Pro	Lys 280	Ala	Glu	Arg	Pro	Arg 285	Phe	Tyr	Thr
Met	Tyr 290	Phe	Glu	Glu	Pro	Asp 295	Ser	Ser	Gly	His	Ala 300	Gly	Gly	Pro	Val
Ser 305	Ala	Arg	Val	Ile	Lys 310	Ala	Leu	Gln	Val	Val 315	Asp	His	Ala	Phe	Gly 320
Met	Leu	Met	Glu	Gly 325	Leu	Lys	Gln	Arg	Asn 330	Leu	His	Asn	CAa	Val 335	Asn
Ile	Ile	Leu	Leu 340	Ala	Asp	His	Gly	Met 345	Asp	Gln	Thr	Tyr	Сув 350	Asn	Lys
Met	Glu	Tyr 355	Met	Thr	Asp	Tyr	Phe 360	Pro	Arg	Ile	Asn	Phe 365	Phe	Tyr	Met
Tyr	Glu 370	Gly	Pro	Ala	Pro	Arg 375	Ile	Arg	Ala	His	Asn 380	Ile	Pro	His	Asp
Phe 385	Phe	Ser	Phe	Asn	Ser 390	Glu	Glu	Ile	Val	Arg 395	Asn	Leu	Ser	Сув	Arg 400
Lys	Pro	Asp	Gln	His 405	Phe	Lys	Pro	Tyr	Leu 410	Thr	Pro	Asp	Leu	Pro 415	Lys
Arg	Leu	His	Tyr 420	Ala	Lys	Asn	Val	Arg 425	Ile	Asp	Lys	Val	His 430	Leu	Phe
Val	Asp	Gln 435	Gln	Trp	Leu	Ala	Val 440	Arg	Ser	Lys	Ser	Asn 445	Thr	Asn	Сув
Gly	Gly 450	Gly	Asn	His	Gly	Tyr 455	Asn	Asn	Glu	Phe	Arg 460	Ser	Met	Glu	Ala
Ile 465	Phe	Leu	Ala	His	Gly 470	Pro	Ser	Phe	Lys	Glu 475	ГЛа	Thr	Glu	Val	Glu 480
Pro	Phe	Glu	Asn	Ile 485	Glu	Val	Tyr	Asn	Leu 490	Met	Cys	Asp	Leu	Leu 495	Arg
Ile	Gln	Pro	Ala 500	Pro	Asn	Asn	Gly	Thr 505	His	Gly	Ser	Leu	Asn 510	His	Leu
Leu	Lys	Val 515	Pro	Phe	Tyr	Glu	Pro 520	Ser	His	Ala	Glu	Glu 525	Val	Ser	ГЛа
Phe	Ser 530	Val	Cha	Gly	Phe	Ala 535	Asn	Pro	Leu	Pro	Thr 540	Glu	Ser	Leu	Asp
CAa	Phe	CÀa	Pro	His	Leu	Gln	Asn	Ser	Thr	Gln	Leu	Glu	Gln	Val	Asn

545					550					555					560
	Met	Leu	Asn	Leu 565		Gln	Glu	Glu	Ile 570		Ala	Thr	Val	Lys 575	
Asn	Leu	Pro	Phe 580	Gly	Arg	Pro	Arg	Val 585	Leu	Gln	Lys	Asn	Val 590	Asp	His
Сув	Leu	Leu 595	Tyr	His	Arg	Glu	Tyr 600	Val	Ser	Gly	Phe	Gly 605	Lys	Ala	Met
Arg	Met 610	Pro	Met	Trp	Ser	Ser 615	Tyr	Thr	Val	Pro	Gln 620	Leu	Gly	Asp	Thr
Ser 625	Pro	Leu	Pro	Pro	Thr 630	Val	Pro	Asp	Cys	Leu 635	Arg	Ala	Asp	Val	Arg 640
Val	Pro	Pro	Ser	Glu 645	Ser	Gln	Lys	Cys	Ser 650	Phe	Tyr	Leu	Ala	Asp 655	Lys
Asn	Ile	Thr	His 660	Gly	Phe	Leu	Tyr	Pro 665	Pro	Ala	Ser	Asn	Arg 670	Thr	Ser
Asp	Ser	Gln 675	Tyr	Asp	Ala	Leu	Ile 680	Thr	Ser	Asn	Leu	Val 685	Pro	Met	Tyr
Glu	Glu 690	Phe	Arg	ГÀв	Met	Trp 695	Asp	Tyr	Phe	His	Ser 700	Val	Leu	Leu	Ile
Lув 705	His	Ala	Thr	Glu	Arg 710	Asn	Gly	Val	Asn	Val 715	Val	Ser	Gly	Pro	Ile 720
Phe	Asp	Tyr	Asn	Tyr 725	Asp	Gly	His	Phe	Asp 730	Ala	Pro	Asp	Glu	Ile 735	Thr
ГÀа	His	Leu	Ala 740	Asn	Thr	Asp	Val	Pro 745	Ile	Pro	Thr	His	Tyr 750	Phe	Val
Val	Leu	Thr 755	Ser	СЛа	Lys	Asn	Lys 760	Ser	His	Thr	Pro	Glu 765	Asn	CÀa	Pro
Gly	Trp 770	Leu	Asp	Val	Leu	Pro 775	Phe	Ile	Ile	Pro	His 780	Arg	Pro	Thr	Asn
Val 785	Glu	Ser	Cys	Pro	Glu 790	Gly	Lys	Pro	Glu	Ala 795	Leu	Trp	Val	Glu	Glu 800
				805			_		810	_				Leu 815	
Gly	Leu	Asp	Phe 820	Tyr	Gln	Asp	Lys	Val 825	Gln	Pro	Val	Ser	Glu 830	Ile	Leu
Gln	Leu	835	Thr	Tyr	Leu	Pro	Thr 840	Phe	Glu	Thr	Thr	Ile 845	Asp	ГÀа	Thr
His	Thr 850	Cys	Pro	Pro	CAa	Pro 855	Ala	Pro	Glu	Leu	Leu 860	Gly	Gly	Pro	Ser
Val 865	Phe	Leu	Phe	Pro	Pro 870	ГÀа	Pro	Lys	Asp	Thr 875	Leu	Met	Ile	Ser	Arg 880
Thr	Pro	Glu	Val	Thr 885	CAa	Val	Val	Val	890 Asp	Val	Ser	His	Glu	895 Asp	Pro
Glu	Val	ГÀа	Phe 900	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His 910	Asn	Ala
Lys	Thr	Lys 915	Pro	Arg	Glu	Glu	Gln 920	Tyr	Asn	Ser	Thr	Tyr 925	Arg	Val	Val
Ser	Val 930	Leu	Thr	Val	Leu	His 935	Gln	Asp	Trp	Leu	Asn 940	Gly	Lys	Glu	Tyr
Lys 945	Сув	Lys	Val	Ser	Asn 950	Lys	Ala	Leu	Pro	Ala 955	Pro	Ile	Glu	Lys	Thr 960

-continued

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 995 1000 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 1045 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 1060 Ser Pro Gly Lys 1070 <210> SEQ ID NO 22 <211> LENGTH: 1074 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: ENPP5-NPP3-Fc sequence <400> SEOUENCE: 22 Met Thr Ser Lys Phe Leu Leu Val Ser Phe Ile Leu Ala Ala Leu Ser 10 Leu Ser Thr Thr Phe Ser Lys Gln Gly Ser Cys Arg Lys Lys Cys Phe 25 Asp Ala Ser Phe Arg Gly Leu Glu Asn Cys Arg Cys Asp Val Ala Cys Lys Asp Arg Gly Asp Cys Cys Trp Asp Phe Glu Asp Thr Cys Val Glu Ser Thr Arg Ile Trp Met Cys Asn Lys Phe Arg Cys Gly Glu Arg Leu Glu Ala Ser Leu Cys Ser Cys Ser Asp Asp Cys Leu Gln Arg Lys Asp 85 90 95 Cys Cys Ala Asp Tyr Lys Ser Val Cys Gln Gly Glu Thr Ser Trp Leu Glu Glu Asn Cys Asp Thr Ala Gln Gln Ser Gln Cys Pro Glu Gly Phe Asp Leu Pro Pro Val Ile Leu Phe Ser Met Asp Gly Phe Arg Ala Glu 135 Tyr Leu Tyr Thr Trp Asp Thr Leu Met Pro Asn Ile Asn Lys Leu Lys 150 Thr Cys Gly Ile His Ser Lys Tyr Met Arg Ala Met Tyr Pro Thr Lys Thr Phe Pro Asn His Tyr Thr Ile Val Thr Gly Leu Tyr Pro Glu Ser 185 His Gly Ile Ile Asp Asn Asn Met Tyr Asp Val Asn Leu Asn Lys Asn 200 Phe Ser Leu Ser Ser Lys Glu Gln Asn Asn Pro Ala Trp Trp His Gly 215

Gln 225	Pro	Met	Trp	Leu	Thr 230	Ala	Met	Tyr	Gln	Gly 235	Leu	Lys	Ala	Ala	Thr 240
Tyr	Phe	Trp	Pro	Gly 245	Ser	Glu	Val	Ala	Ile 250	Asn	Gly	Ser	Phe	Pro 255	Ser
Ile	Tyr	Met	Pro 260	Tyr	Asn	Gly	Ser	Val 265	Pro	Phe	Glu	Glu	Arg 270	Ile	Ser
Thr	Leu	Leu 275	Lys	Trp	Leu	Asp	Leu 280	Pro	Lys	Ala	Glu	Arg 285	Pro	Arg	Phe
Tyr	Thr 290	Met	Tyr	Phe	Glu	Glu 295	Pro	Asp	Ser	Ser	Gly 300	His	Ala	Gly	Gly
Pro 305	Val	Ser	Ala	Arg	Val 310	Ile	Lys	Ala	Leu	Gln 315	Val	Val	Asp	His	Ala 320
Phe	Gly	Met	Leu	Met 325	Glu	Gly	Leu	Lys	Gln 330	Arg	Asn	Leu	His	Asn 335	Cys
Val	Asn	Ile	Ile 340	Leu	Leu	Ala	Asp	His 345	Gly	Met	Asp	Gln	Thr 350	Tyr	Cys
Asn	Lys	Met 355	Glu	Tyr	Met	Thr	Asp 360	Tyr	Phe	Pro	Arg	Ile 365	Asn	Phe	Phe
Tyr	Met 370	Tyr	Glu	Gly	Pro	Ala 375	Pro	Arg	Ile	Arg	Ala 380	His	Asn	Ile	Pro
His 385	Asp	Phe	Phe	Ser	Phe 390	Asn	Ser	Glu	Glu	Ile 395	Val	Arg	Asn	Leu	Ser 400
CÀa	Arg	Lys	Pro	Asp 405	Gln	His	Phe	Lys	Pro 410	Tyr	Leu	Thr	Pro	Asp 415	Leu
Pro	Lys	Arg	Leu 420	His	Tyr	Ala	Lys	Asn 425	Val	Arg	Ile	Asp	Lys 430	Val	His
Leu	Phe	Val 435	Asp	Gln	Gln	Trp	Leu 440	Ala	Val	Arg	Ser	Lys 445	Ser	Asn	Thr
Asn	Сув 450	Gly	Gly	Gly	Asn	His 455	Gly	Tyr	Asn	Asn	Glu 460	Phe	Arg	Ser	Met
Glu 465	Ala	Ile	Phe	Leu	Ala 470	His	Gly	Pro	Ser	Phe 475	Lys	Glu	Lys	Thr	Glu 480
Val	Glu	Pro	Phe	Glu 485	Asn	Ile	Glu	Val	Tyr 490	Asn	Leu	Met	Сув	Asp 495	Leu
Leu	Arg	Ile	Gln 500	Pro	Ala	Pro	Asn	Asn 505	Gly	Thr	His	Gly	Ser 510	Leu	Asn
His	Leu	Leu 515	Lys	Val	Pro	Phe	Tyr 520	Glu	Pro	Ser	His	Ala 525	Glu	Glu	Val
Ser	Lys 530	Phe	Ser	Val	CAa	Gly 535	Phe	Ala	Asn	Pro	Leu 540	Pro	Thr	Glu	Ser
Leu 545	Asp	Cya	Phe	CÀa	Pro 550	His	Leu	Gln	Asn	Ser 555	Thr	Gln	Leu	Glu	Gln 560
Val	Asn	Gln	Met	Leu 565	Asn	Leu	Thr	Gln	Glu 570	Glu	Ile	Thr	Ala	Thr 575	Val
ГÀа	Val	Asn	Leu 580	Pro	Phe	Gly	Arg	Pro 585	Arg	Val	Leu	Gln	590 Lys	Asn	Val
Asp	His	Сув 595	Leu	Leu	Tyr	His	Arg 600	Glu	Tyr	Val	Ser	Gly 605	Phe	Gly	Lys
Ala	Met 610	Arg	Met	Pro	Met	Trp 615	Ser	Ser	Tyr	Thr	Val 620	Pro	Gln	Leu	Gly

Asp 625	Thr	Ser	Pro	Leu	Pro 630	Pro	Thr	Val	Pro	Asp 635	CAa	Leu	Arg	Ala	Asp 640
Val	Arg	Val	Pro	Pro 645	Ser	Glu	Ser	Gln	Lys 650	Cys	Ser	Phe	Tyr	Leu 655	Ala
Asp	Lys	Asn	Ile 660	Thr	His	Gly	Phe	Leu 665	Tyr	Pro	Pro	Ala	Ser 670	Asn	Arg
Thr	Ser	Asp 675	Ser	Gln	Tyr	Asp	Ala 680	Leu	Ile	Thr	Ser	Asn 685	Leu	Val	Pro
Met	Tyr 690	Glu	Glu	Phe	Arg	Lys 695	Met	Trp	Asp	Tyr	Phe 700	His	Ser	Val	Leu
Leu 705	Ile	Lys	His	Ala	Thr 710	Glu	Arg	Asn	Gly	Val 715	Asn	Val	Val	Ser	Gly 720
Pro	Ile	Phe	Asp	Tyr 725	Asn	Tyr	Asp	Gly	His 730	Phe	Asp	Ala	Pro	Asp 735	Glu
Ile	Thr	Lys	His 740	Leu	Ala	Asn	Thr	Asp 745	Val	Pro	Ile	Pro	Thr 750	His	Tyr
Phe	Val	Val 755	Leu	Thr	Ser	Cys	Lys 760	Asn	Lys	Ser	His	Thr 765	Pro	Glu	Asn
CAa	Pro 770	Gly	Trp	Leu	Asp	Val 775	Leu	Pro	Phe	Ile	Ile 780	Pro	His	Arg	Pro
Thr 785	Asn	Val	Glu	Ser	Cys 790	Pro	Glu	Gly	Lys	Pro 795	Glu	Ala	Leu	Trp	Val 800
Glu	Glu	Arg	Phe	Thr 805	Ala	His	Ile	Ala	Arg 810	Val	Arg	Asp	Val	Glu 815	Leu
Leu	Thr	Gly	Leu 820	Asp	Phe	Tyr	Gln	Asp 825	Lys	Val	Gln	Pro	Val 830	Ser	Glu
Ile	Leu	Gln 835	Leu	ГÀа	Thr	Tyr	Leu 840	Pro	Thr	Phe	Glu	Thr 845	Thr	Ile	Asp
Lys	Thr 850	His	Thr	CAa	Pro	Pro 855	Cys	Pro	Ala	Pro	Glu 860	Leu	Leu	Gly	Gly
Pro 865	Ser	Val	Phe	Leu	Phe 870	Pro	Pro	Lys	Pro	Lys 875	Asp	Thr	Leu	Met	Ile 880
Ser	Arg	Thr	Pro	Glu 885	Val	Thr	Cys	Val	Val 890	Val	Asp	Val	Ser	His 895	Glu
Asp	Pro	Glu	Val 900	Lys	Phe	Asn	Trp	Tyr 905	Val	Asp	Gly	Val	Glu 910	Val	His
Asn	Ala	Lys 915	Thr	Lys	Pro	Arg	Glu 920	Glu	Gln	Tyr	Asn	Ser 925	Thr	Tyr	Arg
Val	Val 930	Ser	Val	Leu	Thr	Val 935	Leu	His	Gln	Asp	Trp 940	Leu	Asn	Gly	Lys
Glu 945	Tyr	Lys	Cys	Lys	Val 950	Ser	Asn	Lys	Ala	Leu 955	Pro	Ala	Pro	Ile	Glu 960
ГÀз	Thr	Ile	Ser	Lys 965	Ala	Lys	Gly	Gln	Pro 970	Arg	Glu	Pro	Gln	Val 975	Tyr
Thr	Leu	Pro	Pro 980	Ser	Arg	Glu	Glu	Met 985	Thr	Lys	Asn	Gln	Val 990	Ser	Leu
Thr	Cys	Leu 995	Val	Lys	Gly	Phe	Tyr		Se:	r Asj	, Ile	e Ala		al G	lu Trp
Glu	Ser 1010		n Gly	y Glı	n Pro	Gl:		an As	an Ty	yr L		nr 5	Thr I	Pro I	Pro
Val	Leu	Asl	Sei	r Asj	o Gly	y Sei	r Pl	ne Ph	ne Le	eu Ty	yr Se	er 1	ràa I	Leu :	Γhr

												COII	CIII	ucu	
	1025	5				103	30				10	035			
Val	Asp 1040		s Se	r Ar	g Tr	9 Gl1 104		Ln G	ly As	en Va		ne :	Ser (Cys :	Ser
Val	Met 1055		3 Gl	ı Ala	a Lei	1 His		en H	is Ty	yr Tl	nr G	ln 1 065	rys :	Ser I	Leu
Ser	Leu 1070		r Pro	o Gl	/ Ly:	3									
<211 <212 <213 <220	> LE > T? > OF > FE	EATUI	H: 62 PRT ISM: RE:				_		quen	ce					
< 400)> SI	EQUEI	ICE:	23											
Gly 1	Gly	Gly	Gly	Ser 5	Gly	Gly	Gly	Gly	Ser 10	Gly	Gly	Gly	Gly	Ser 15	Met
Lys	Trp	Val	Thr 20	Phe	Leu	Leu	Leu	Leu 25	Phe	Val	Ser	Gly	Ser 30	Ala	Phe
Ser	Arg	Gly 35	Val	Phe	Arg	Arg	Glu 40	Ala	His	Lys	Ser	Glu 45	Ile	Ala	His
Arg	Tyr 50	Asn	Asp	Leu	Gly	Glu 55	Gln	His	Phe	Lys	Gly 60	Leu	Val	Leu	Ile
Ala 65	Phe	Ser	Gln	Tyr	Leu 70	Gln	Lys	Cys	Ser	Tyr 75	Asp	Glu	His	Ala	Eys
Leu	Val	Gln	Glu	Val 85	Thr	Asp	Phe	Ala	Dys 1	Thr	CAa	Val	Ala	Asp 95	Glu
Ser	Ala	Ala	Asn 100	CÀa	Asp	Lys	Ser	Leu 105	His	Thr	Leu	Phe	Gly 110	Asp	Lys
Leu	Cys	Ala 115	Ile	Pro	Asn	Leu	Arg 120	Glu	Asn	Tyr	Gly	Glu 125	Leu	Ala	Asp
CAa	Cys 130	Thr	Lys	Gln	Glu	Pro 135	Glu	Arg	Asn	Glu	Cys 140	Phe	Leu	Gln	His
Lys 145	Asp	Asp	Asn	Pro	Ser 150	Leu	Pro	Pro	Phe	Glu 155	Arg	Pro	Glu	Ala	Glu 160
Ala	Met	Сув	Thr	Ser 165	Phe	Lys	Glu	Asn	Pro 170	Thr	Thr	Phe	Met	Gly 175	His
Tyr	Leu	His	Glu 180	Val	Ala	Arg	Arg	His 185	Pro	Tyr	Phe	Tyr	Ala 190	Pro	Glu
Leu	Leu	Tyr 195	Tyr	Ala	Glu	Gln	Tyr 200	Asn	Glu	Ile	Leu	Thr 205	Gln	Cys	CÀa
Ala	Glu 210	Ala	Asp	Lys	Glu	Ser 215	Cys	Leu	Thr	Pro	Lys 220	Leu	Asp	Gly	Val
Lys 225	Glu	Lys	Ala	Leu	Val 230	Ser	Ser	Val	Arg	Gln 235	Arg	Met	Lys	Cys	Ser 240
Ser	Met	Gln	Lys	Phe 245	Gly	Glu	Arg	Ala	Phe 250	Lys	Ala	Trp	Ala	Val 255	Ala
Arg	Leu	Ser	Gln 260	Thr	Phe	Pro	Asn	Ala 265	Asp	Phe	Ala	Glu	Ile 270	Thr	Lys
Leu	Ala	Thr 275	Asp	Leu	Thr	Lys	Val 280	Asn	Lys	Glu	Сув	Сув 285	His	Gly	Asp
Leu	Leu	Glu	Cys	Ala	Asp	Asp	Arg	Ala	Glu	Leu	Ala	ГÀа	Tyr	Met	Cha

-continued

	290					295					300				
Glu 305	Asn	Gln	Ala	Thr	Ile 310	Ser	Ser	Lys	Leu	Gln 315	Thr	CAa	Cys	Aap	Lys 320
Pro	Leu	Leu	Lys	Lys 325	Ala	His	Cys	Leu	Ser 330	Glu	Val	Glu	His	Asp 335	Thr
Met	Pro	Ala	Asp 340	Leu	Pro	Ala	Ile	Ala 345	Ala	Asp	Phe	Val	Glu 350	Asp	Gln
Glu	Val	355 Cys	Lys	Asn	Tyr	Ala	Glu 360	Ala	ГЛа	Asp	Val	Phe 365	Leu	Gly	Thr
Phe	Leu 370	Tyr	Glu	Tyr	Ser	Arg 375	Arg	His	Pro	Asp	Tyr 380	Ser	Val	Ser	Leu
Leu 385	Leu	Arg	Leu	Ala	390 Tàa	Lys	Tyr	Glu	Ala	Thr 395	Leu	Glu	Lys	CÀa	Cys 400
Ala	Glu	Ala	Asn	Pro 405	Pro	Ala	Cys	Tyr	Gly 410	Thr	Val	Leu	Ala	Glu 415	Phe
Gln	Pro	Leu	Val 420	Glu	Glu	Pro	Lys	Asn 425	Leu	Val	Lys	Thr	Asn 430	CÀa	Asp
Leu	Tyr	Glu 435	Lys	Leu	Gly	Glu	Tyr 440	Gly	Phe	Gln	Asn	Ala 445	Ile	Leu	Val
Arg	Tyr 450	Thr	Gln	Lys	Ala	Pro 455	Gln	Val	Ser	Thr	Pro 460	Thr	Leu	Val	Glu
Ala 465	Ala	Arg	Asn	Leu	Gly 470	Arg	Val	Gly	Thr	Lys 475	Cys	Cys	Thr	Leu	Pro 480
Glu	Asp	Gln	Arg	Leu 485	Pro	Cys	Val	Glu	Asp 490	Tyr	Leu	Ser	Ala	Ile 495	Leu
Asn	Arg	Val	Cys 500	Leu	Leu	His	Glu	Lys 505	Thr	Pro	Val	Ser	Glu 510	His	Val
Thr	Lys	Суs 515	Cys	Ser	Gly	Ser	Leu 520	Val	Glu	Arg	Arg	Pro 525	Cys	Phe	Ser
Ala	Leu 530	Thr	Val	Asp	Glu	Thr 535	Tyr	Val	Pro	Lys	Glu 540	Phe	Lys	Ala	Glu
Thr 545	Phe	Thr	Phe	His	Ser 550	Asp	Ile	Cys	Thr	Leu 555	Pro	Glu	Lys	Glu	Lys 560
Gln	Ile	Lys	Lys	Gln 565	Thr	Ala	Leu	Ala	Glu 570	Leu	Val	ГÀЗ	His	Lys 575	Pro
Lys	Ala	Thr	Ala 580	Glu	Gln	Leu	Lys	Thr 585	Val	Met	Asp	Asp	Phe 590	Ala	Gln
Phe	Leu	Asp 595	Thr	Cys	Cys	Lys	Ala 600	Ala	Asp	Lys	Asp	Thr 605	Cys	Phe	Ser
Thr	Glu 610	Gly	Pro	Asn	Leu	Val 615	Thr	Arg	Cys	Lys	Asp 620	Ala	Leu	Ala	
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EATUR	H: 15 PRT [SM: RE:	542 Art:			Seque PP12:		23-AI	lbum:	in se	equer	nce		
< 400)> SI	EQUE	ICE :	24											
Met 1	Glu	Arg	Asp	Gly 5	CÀa	Ala	Gly	Gly	Gly 10	Ser	Arg	Gly	Gly	Glu 15	Gly

Gly Arg Ala Pro Arg Glu Gly Pro Ala Gly Asn Gly Arg Asp Arg Gly

			0.0					0.5					2.0		
			20					25					30		
Arg	Ser	His 35	Ala	Ala	Glu	Ala	Pro 40	Gly	Asp	Pro	Gln	Ala 45	Ala	Ala	Ser
Leu	Leu 50	Ala	Pro	Met	Asp	Val 55	Gly	Glu	Glu	Pro	Leu 60	Glu	ГÀв	Ala	Ala
Arg 65	Ala	Arg	Thr	Ala	Lys 70	Asp	Pro	Asn	Thr	Tyr 75	Lys	Ile	Ile	Ser	Leu 80
Phe	Thr	Phe	Ala	Val 85	Gly	Val	Asn	Ile	Cys 90	Leu	Gly	Phe	Thr	Ala 95	Lys
Gln	Gly	Ser	Cys 100	Arg	Lys	Lys	Cys	Phe 105	Asp	Ala	Ser	Phe	Arg 110	Gly	Leu
Glu	Asn	Cys 115	Arg	Сув	Asp	Val	Ala 120	Cys	Lys	Asp	Arg	Gly 125	Asp	Cys	Cys
Trp	Asp 130	Phe	Glu	Asp	Thr	Cys 135	Val	Glu	Ser	Thr	Arg 140	Ile	Trp	Met	Cys
Asn 145	Lys	Phe	Arg	Сув	Gly 150	Glu	Arg	Leu	Glu	Ala 155	Ser	Leu	Cys	Ser	Cys 160
Ser	Asp	Asp	Сув	Leu 165	Gln	Arg	Lys	Asp	Cys 170	Cys	Ala	Asp	Tyr	Lys 175	Ser
Val	Cys	Gln	Gly 180	Glu	Thr	Ser	Trp	Leu 185	Glu	Glu	Asn	CAa	Asp 190	Thr	Ala
Gln	Gln	Ser 195	Gln	Cys	Pro	Glu	Gly 200	Phe	Asp	Leu	Pro	Pro 205	Val	Ile	Leu
Phe	Ser 210	Met	Asp	Gly	Phe	Arg 215	Ala	Glu	Tyr	Leu	Tyr 220	Thr	Trp	Asp	Thr
Leu 225	Met	Pro	Asn	Ile	Asn 230	Lys	Leu	Lys	Thr	Сув 235	Gly	Ile	His	Ser	Lys 240
Tyr	Met	Arg	Ala	Met 245	Tyr	Pro	Thr	Lys	Thr 250	Phe	Pro	Asn	His	Tyr 255	Thr
Ile	Val	Thr	Gly 260	Leu	Tyr	Pro	Glu	Ser 265	His	Gly	Ile	Ile	Asp 270	Asn	Asn
Met	Tyr	Asp 275	Val	Asn	Leu	Asn	Lys 280	Asn	Phe	Ser	Leu	Ser 285	Ser	Lys	Glu
Gln	Asn 290	Asn	Pro	Ala	Trp	Trp 295	His	Gly	Gln	Pro	Met 300	Trp	Leu	Thr	Ala
Met 305	Tyr	Gln	Gly	Leu	110	Ala	Ala	Thr	Tyr	Phe 315	Trp	Pro	Gly	Ser	Glu 320
Val	Ala	Ile	Asn	Gly 325	Ser	Phe	Pro	Ser	Ile 330	Tyr	Met	Pro	Tyr	Asn 335	Gly
Ser	Val	Pro	Phe 340	Glu	Glu	Arg	Ile	Ser 345	Thr	Leu	Leu	ГÀа	Trp 350	Leu	Asp
Leu	Pro	355 Lys	Ala	Glu	Arg	Pro	Arg 360	Phe	Tyr	Thr	Met	Tyr 365	Phe	Glu	Glu
Pro	Asp 370	Ser	Ser	Gly	His	Ala 375	Gly	Gly	Pro	Val	Ser 380	Ala	Arg	Val	Ile
Lys 385	Ala	Leu	Gln	Val	Val 390	Asp	His	Ala	Phe	Gly 395	Met	Leu	Met	Glu	Gly 400
Leu	Lys	Gln	Arg	Asn 405	Leu	His	Asn	СЛа	Val 410	Asn	Ile	Ile	Leu	Leu 415	Ala
Asp	His	Gly	Met 420	Asp	Gln	Thr	Tyr	Cys 425	Asn	Lys	Met	Glu	Tyr 430	Met	Thr

Asp	Tyr	Phe 435	Pro	Arg	Ile	Asn	Phe 440	Phe	Tyr	Met	Tyr	Glu 445	Gly	Pro	Ala
Pro	Arg 450	Ile	Arg	Ala	His	Asn 455	Ile	Pro	His	Asp	Phe 460	Phe	Ser	Phe	Asn
Ser 465	Glu	Glu	Ile	Val	Arg 470	Asn	Leu	Ser	Cys	Arg 475	Lys	Pro	Asp	Gln	His 480
Phe	Lys	Pro	Tyr	Leu 485	Thr	Pro	Asp	Leu	Pro 490	Lys	Arg	Leu	His	Tyr 495	Ala
ràa	Asn	Val	Arg 500	Ile	Asp	Lys	Val	His 505	Leu	Phe	Val	Asp	Gln 510	Gln	Trp
Leu	Ala	Val 515	Arg	Ser	Lys	Ser	Asn 520	Thr	Asn	CAa	Gly	Gly 525	Gly	Asn	His
Gly	Tyr 530	Asn	Asn	Glu	Phe	Arg 535	Ser	Met	Glu	Ala	Ile 540	Phe	Leu	Ala	His
Gly 545	Pro	Ser	Phe	ГÀв	Glu 550	Lys	Thr	Glu	Val	Glu 555	Pro	Phe	Glu	Asn	Ile 560
Glu	Val	Tyr	Asn	Leu 565	Met	CÀa	Asp	Leu	Leu 570	Arg	Ile	Gln	Pro	Ala 575	Pro
Asn	Asn	Gly	Thr 580	His	Gly	Ser	Leu	Asn 585	His	Leu	Leu	ГЛа	Val 590	Pro	Phe
Tyr	Glu	Pro 595	Ser	His	Ala	Glu	Glu 600	Val	Ser	Lys	Phe	Ser 605	Val	Cha	Gly
Phe	Ala 610	Asn	Pro	Leu	Pro	Thr 615	Glu	Ser	Leu	Asp	Cys 620	Phe	Сув	Pro	His
Leu 625	Gln	Asn	Ser	Thr	Gln 630	Leu	Glu	Gln	Val	Asn 635	Gln	Met	Leu	Asn	Leu 640
Thr	Gln	Glu	Glu	Ile 645	Thr	Ala	Thr	Val	Lув 650	Val	Asn	Leu	Pro	Phe 655	Gly
Arg	Pro	Arg	Val 660	Leu	Gln	Lys	Asn	Val 665	Asp	His	Cys	Leu	Leu 670	Tyr	His
Arg	Glu	Tyr 675	Val	Ser	Gly	Phe	Gly 680	Lys	Ala	Met	Arg	Met 685	Pro	Met	Trp
Ser	Ser 690	Tyr	Thr	Val	Pro	Gln 695	Leu	Gly	Asp	Thr	Ser 700	Pro	Leu	Pro	Pro
Thr 705	Val	Pro	Asp	CAa	Leu 710	Arg	Ala	Asp	Val	Arg 715	Val	Pro	Pro	Ser	Glu 720
Ser	Gln	ГЛа	CÀa	Ser 725	Phe	Tyr	Leu	Ala	Asp 730	ГÀз	Asn	Ile	Thr	His 735	Gly
Phe	Leu	Tyr	Pro 740	Pro	Ala	Ser	Asn	Arg 745	Thr	Ser	Asp	Ser	Gln 750	Tyr	Asp
Ala	Leu	Ile 755	Thr	Ser	Asn	Leu	Val 760	Pro	Met	Tyr	Glu	Glu 765	Phe	Arg	Lys
Met	Trp 770	Asp	Tyr	Phe	His	Ser 775	Val	Leu	Leu	Ile	Lys 780	His	Ala	Thr	Glu
Arg 785	Asn	Gly	Val	Asn	Val 790	Val	Ser	Gly	Pro	Ile 795	Phe	Asp	Tyr	Asn	Tyr 800
Asp	Gly	His	Phe	Asp 805	Ala	Pro	Asp	Glu	Ile 810	Thr	Lys	His	Leu	Ala 815	Asn
Thr	Asp	Val	Pro 820	Ile	Pro	Thr	His	Tyr 825	Phe	Val	Val	Leu	Thr 830	Ser	Сув

Lys	Asn	Lys 835	Ser	His	Thr	Pro	Glu 840		n Cy	/s]	Pro	Gly	Trp 845		ı Ası	o Val
Leu	Pro 850	Phe	Ile	Ile	Pro	His 855	Arg	Pro	o Ti	nr A	Asn	Val		ı Sei	r Cys	e Pro
Glu 865	Gly	Lys	Pro	Glu	Ala 870	Leu	Trp	Va:	1 G		Glu 875	Arg	Phe	Thi	r Ala	a His 880
Ile	Ala	Arg	Val	Arg 885	Asp	Val	Glu	Le		eu ' 90	Thr	Gly	Leu	ı Asl	Phe 895	e Tyr
Gln	Asp	Lys	Val 900	Gln	Pro	Val	Ser	Gl:		le 1	Leu	Gln	Leu	Ly:		r Tyr
Leu	Pro	Thr 915	Phe	Glu	Thr	Thr	Ile 920		y G	Ly (Gly	Ser	Gly 925		y Gly	y Gly
Ser	Gly 930	Gly	Gly	Gly	Ser	Met 935	Lys	Trj	o Vá	al :	Thr	Phe 940		ı Leı	ı Leı	ı Leu
Phe 945	Val	Ser	Gly	Ser	Ala 950	Phe	Ser	Arg	g G		Val 955	Phe	Arg	J Aro	g Glu	ı Ala 960
His	Lys	Ser	Glu	Ile 965	Ala	His	Arg	Ту	r A:		Asp	Leu	. Gly	Glı	ı Gli 975	n His
Phe	Lys	Gly	Leu 980	Val	Leu	Ile	Ala	Phe 98!		er (Gln	Tyr	Leu	990		a Cya
Ser	Tyr	Asp 995	Glu	His	Ala	Lys	Leu 100		al (3ln	Glu	ı Va		nr <i>1</i> 005	Asp I	Phe Ala
Lys	Thr 1010		val	l Ala	a Asp	Glu 101		er A	Ala	Ala	a As		ys .020	Asp	Lys	Ser
Leu	His 1025		: Lev	ı Phe	e Gly	Asp 103		ys 1	Leu	Cys	s Al		le 035	Pro	Asn	Leu
Arg	Glu 1040		туі	Gly	/ Glu	Le:		la A	Asp	Cys	a CŽ		hr .050	Lys	Gln	Glu
Pro	Glu 1055	_	J Asr	ı Glu	ı Cys	Phe 106		eu (Gln	His	s L7		sp .065	Asp	Asn	Pro
Ser	Leu 1070		Pro	Phe	e Glu	Arç 10		ro (Glu	Ala	a GI		la .080	Met	Cys	Thr
Ser	Phe 1085		g Glu	ı Asr	n Pro	Th:		hr 1	Phe	Met	t GI		is .095	Tyr	Leu	His
Glu	Val 1100		a Arg	g Arg	g His	Pro 110		yr 1	Phe	Ту	r Al		ro 110	Glu	Leu	Leu
Tyr	Tyr 1115		ı Glu	ı Glr	ı Tyr	Ası 112		lu :	Ile	Let	ı Th		ln 125	Сув	Cys	Ala
Glu	Ala 1130		Lys	Glu	ı Ser	Cys 113		eu '	Thr	Pro	o LZ		eu 140	Asp	Gly	Val
Lys	Glu 1145		a Ala	a Leu	ı Val	. Se:		er 7	Val	Arç	g GI		.rg .155	Met	Lys	CAa
Ser	Ser 1160		: Glr	ı Lys	Ph∈	Gly		lu A	Arg	Ala	a Pł		ys 170	Ala	Trp	Ala
Val	Ala 1175		J Lev	ı Sei	Glr.	1 Th:		he l	Pro	Ası	n Al		sp 185	Phe	Ala	Glu
Ile	Thr	_	. Le	ı Ala	a Thr	As ₁		eu '	Thr	Lys	s Va		sn 200	Lys	Glu	Cya
Cys	His 1205	_	/ Asp) Let	ı Lev	Gl:		ys 1	Ala	Asl	o As	_	.rg .215	Ala	Glu	Leu
Ala	Lys	Туг	: Met	. Cys	s Glu	ı Ası	n G	ln 2	Ala	Thi	r II	le S	er	Ser	Lys	Leu

-continued

													_
1220					1225					1230			
Gln Thr 1235	Сув	Cys	Asp	Lys	Pro 1240	Leu	Leu	Lys	ГÀа	Ala 1245	His	CÀa	Leu
Ser Glu 1250	Val	Glu	His	Asp	Thr 1255	Met	Pro	Ala	Asp	Leu 1260	Pro	Ala	Ile
Ala Ala 1265	Asp	Phe	Val	Glu	Asp 1270	Gln	Glu	Val	CÀa	Lys 1275	Asn	Tyr	Ala
Glu Ala 1280	Lys	Asp	Val	Phe	Leu 1285	Gly	Thr	Phe	Leu	Tyr 1290	Glu	Tyr	Ser
Arg Arg 1295	His	Pro	Asp	Tyr	Ser 1300	Val	Ser	Leu	Leu	Leu 1305	Arg	Leu	Ala
Lys Lys 1310	Tyr	Glu	Ala	Thr	Leu 1315	Glu	ГЛа	Cya	CÀa	Ala 1320	Glu	Ala	Asn
Pro Pro 1325	Ala	CÀa	Tyr	Gly	Thr 1330	Val	Leu	Ala	Glu	Phe 1335	Gln	Pro	Leu
Val Glu 1340	Glu	Pro	Lys	Asn	Leu 1345	Val	ГЛа	Thr	Asn	Сув 1350	Asp	Leu	Tyr
Glu Lys 1355	Leu	Gly	Glu	Tyr	Gly 1360	Phe	Gln	Asn	Ala	Ile 1365	Leu	Val	Arg
Tyr Thr 1370	Gln	Lys	Ala	Pro	Gln 1375	Val	Ser	Thr	Pro	Thr 1380	Leu	Val	Glu
Ala Ala 1385	Arg	Asn	Leu	Gly	Arg 1390	Val	Gly	Thr	Lys	Сув 1395	Cys	Thr	Leu
Pro Glu 1400	Asp	Gln	Arg	Leu	Pro 1405	Cha	Val	Glu	Asp	Tyr 1410	Leu	Ser	Ala
Ile Leu 1415	Asn	Arg	Val	Cys	Leu 1420	Leu	His	Glu	Lys	Thr 1425	Pro	Val	Ser
Glu His 1430	Val	Thr	Lys	Cys	Сув 1435	Ser	Gly	Ser	Leu	Val 1440	Glu	Arg	Arg
Pro Cys 1445	Phe	Ser	Ala	Leu	Thr 1450	Val	Asp	Glu	Thr	Tyr 1455	Val	Pro	Lys
Glu Phe 1460	Lys	Ala	Glu	Thr	Phe 1465	Thr	Phe	His	Ser	Asp 1470	Ile	CÀa	Thr
Leu Pro 1475	Glu	Lys	Glu	Lys	Gln 1480	Ile	Lys	Lys	Gln	Thr 1485	Ala	Leu	Ala
Glu Leu 1490	Val	ГЛа	His	Lys	Pro 1495	ГÀа	Ala	Thr	Ala	Glu 1500	Gln	Leu	Lya
Thr Val 1505	Met	Asp	Asp	Phe	Ala 1510		Phe	Leu	Asp	Thr 1515	Cya	CÀa	Lys
Ala Ala 1520	Asp	Lys	Asp	Thr	Cys 1525	Phe	Ser	Thr	Glu	Gly 1530	Pro	Asn	Leu
Val Thr 1535	Arg	CÀa	ГÀв	Asp	Ala 1540	Leu	Ala						
<210> SEQ <211> LEN <212> TYF <213> ORG <220> FEA <223> OTH	GTH: PE: E SANIS ATURE IER I	: 146 PRT SM: A E: INFOR	57 Artii RMAT:			-		lbum:	in				

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu

												COII	C 1111	aca	
1				5					10					15	
Ala	Pro	Gly	Ala 20	Lys	Gln	Gly	Ser	Сув 25	Arg	Lys	ГÀз	СЛа	Phe 30	Asp	Ala
Ser	Phe	Arg 35	Gly	Leu	Glu	Asn	Cys 40	Arg	Сла	Asp	Val	Ala 45	СЛа	Lys	Asp
Arg	Gly 50	Asp	CAa	СЛа	Trp	Asp 55	Phe	Glu	Asp	Thr	60 CAa	Val	Glu	Ser	Thr
Arg 65	Ile	Trp	Met	Сув	Asn 70	Lys	Phe	Arg	Сув	Gly 75	Glu	Arg	Leu	Glu	Ala 80
Ser	Leu	Сла	Ser	Сув 85	Ser	Asp	Asp	Cys	Leu 90	Gln	Arg	Lys	Asp	Сув 95	Cys
Ala	Asp	Tyr	Lys 100	Ser	Val	CÀa	Gln	Gly 105	Glu	Thr	Ser	Trp	Leu 110	Glu	Glu
Asn	CÀa	Asp 115	Thr	Ala	Gln	Gln	Ser 120	Gln	Cys	Pro	Glu	Gly 125	Phe	Asp	Leu
Pro	Pro 130	Val	Ile	Leu	Phe	Ser 135	Met	Asp	Gly	Phe	Arg 140	Ala	Glu	Tyr	Leu
Tyr 145	Thr	Trp	Asp	Thr	Leu 150	Met	Pro	Asn	Ile	Asn 155	ГÀз	Leu	Lys	Thr	Cys 160
Gly	Ile	His	Ser	Lув 165	Tyr	Met	Arg	Ala	Met 170	Tyr	Pro	Thr	Lys	Thr 175	Phe
Pro	Asn	His	Tyr 180	Thr	Ile	Val	Thr	Gly 185	Leu	Tyr	Pro	Glu	Ser 190	His	Gly
Ile	Ile	Asp 195	Asn	Asn	Met	Tyr	Asp 200	Val	Asn	Leu	Asn	Lys 205	Asn	Phe	Ser
Leu	Ser 210	Ser	Lys	Glu	Gln	Asn 215	Asn	Pro	Ala	Trp	Trp 220	His	Gly	Gln	Pro
Met 225	Trp	Leu	Thr	Ala	Met 230	Tyr	Gln	Gly	Leu	Lys 235	Ala	Ala	Thr	Tyr	Phe 240
Trp	Pro	Gly	Ser	Glu 245	Val	Ala	Ile	Asn	Gly 250	Ser	Phe	Pro	Ser	Ile 255	Tyr
Met	Pro	Tyr	Asn 260	Gly	Ser	Val	Pro	Phe 265	Glu	Glu	Arg	Ile	Ser 270	Thr	Leu
Leu	Lys	Trp 275	Leu	Asp	Leu	Pro	Lys 280	Ala	Glu	Arg	Pro	Arg 285	Phe	Tyr	Thr
Met	Tyr 290		Glu	Glu	Pro	Asp 295			_		Ala 300	_	Gly	Pro	Val
Ser 305	Ala	Arg	Val	Ile	Lys 310	Ala	Leu	Gln	Val	Val 315	Asp	His	Ala	Phe	Gly 320
Met	Leu	Met	Glu	Gly 325	Leu	ГÀа	Gln	Arg	Asn 330	Leu	His	Asn	CÀa	Val 335	Asn
Ile	Ile	Leu	Leu 340	Ala	Asp	His	Gly	Met 345	Asp	Gln	Thr	Tyr	350	Asn	Lys
Met	Glu	Tyr 355	Met	Thr	Asp	Tyr	Phe 360	Pro	Arg	Ile	Asn	Phe 365	Phe	Tyr	Met
Tyr	Glu 370	Gly	Pro	Ala	Pro	Arg 375	Ile	Arg	Ala	His	Asn 380	Ile	Pro	His	Asp
Phe 385	Phe	Ser	Phe	Asn	Ser 390	Glu	Glu	Ile	Val	Arg 395	Asn	Leu	Ser	Сув	Arg 400
Lys	Pro	Asp	Gln	His 405	Phe	Lys	Pro	Tyr	Leu 410	Thr	Pro	Asp	Leu	Pro 415	Lys

_															
Arg	Leu	His	Tyr 420	Ala	Lys	Asn	Val	Arg 425	Ile	Asp	Lys	Val	His 430	Leu	Phe
Val	Asp	Gln 435	Gln	Trp	Leu	Ala	Val 440	Arg	Ser	Lys	Ser	Asn 445	Thr	Asn	CAa
Gly	Gly 450	Gly	Asn	His	Gly	Tyr 455	Asn	Asn	Glu	Phe	Arg 460	Ser	Met	Glu	Ala
Ile 465	Phe	Leu	Ala	His	Gly 470	Pro	Ser	Phe	Lys	Glu 475	Lys	Thr	Glu	Val	Glu 480
Pro	Phe	Glu	Asn	Ile 485	Glu	Val	Tyr	Asn	Leu 490	Met	Cys	Asp	Leu	Leu 495	Arg
Ile	Gln	Pro	Ala 500	Pro	Asn	Asn	Gly	Thr 505	His	Gly	Ser	Leu	Asn 510	His	Leu
Leu	Lys	Val 515	Pro	Phe	Tyr	Glu	Pro 520	Ser	His	Ala	Glu	Glu 525	Val	Ser	ГЛа
Phe	Ser 530	Val	Cys	Gly	Phe	Ala 535	Asn	Pro	Leu	Pro	Thr 540	Glu	Ser	Leu	Asp
Cys 545	Phe	Cys	Pro	His	Leu 550	Gln	Asn	Ser	Thr	Gln 555	Leu	Glu	Gln	Val	Asn 560
Gln	Met	Leu	Asn	Leu 565	Thr	Gln	Glu	Glu	Ile 570	Thr	Ala	Thr	Val	Lys 575	Val
Asn	Leu	Pro	Phe 580	Gly	Arg	Pro	Arg	Val 585	Leu	Gln	Lys	Asn	Val 590	Asp	His
СЛа	Leu	Leu 595	Tyr	His	Arg	Glu	Tyr 600	Val	Ser	Gly	Phe	Gly 605	ГÀз	Ala	Met
Arg	Met 610	Pro	Met	Trp	Ser	Ser 615	Tyr	Thr	Val	Pro	Gln 620	Leu	Gly	Asp	Thr
Ser 625	Pro	Leu	Pro	Pro	Thr 630	Val	Pro	Asp	Сла	Leu 635	Arg	Ala	Asp	Val	Arg 640
Val	Pro	Pro	Ser	Glu 645	Ser	Gln	ГÀз	Cys	Ser 650	Phe	Tyr	Leu	Ala	Asp 655	Lys
Asn	Ile	Thr	His 660	Gly	Phe	Leu	Tyr	Pro 665	Pro	Ala	Ser	Asn	Arg 670	Thr	Ser
Asp	Ser	Gln 675	Tyr	Asp	Ala	Leu	Ile 680	Thr	Ser	Asn	Leu	Val 685	Pro	Met	Tyr
Glu	Glu 690	Phe	Arg	ГÀа	Met	Trp 695	Asp	Tyr	Phe	His	Ser 700	Val	Leu	Leu	Ile
Lys 705	His	Ala	Thr	Glu	Arg 710	Asn	Gly	Val	Asn	Val 715	Val	Ser	Gly	Pro	Ile 720
Phe	Asp	Tyr	Asn	Tyr 725	Asp	Gly	His	Phe	Asp 730	Ala	Pro	Asp	Glu	Ile 735	Thr
Lys	His	Leu	Ala 740	Asn	Thr	Asp	Val	Pro 745	Ile	Pro	Thr	His	Tyr 750	Phe	Val
Val	Leu	Thr 755	Ser	Cys	Lys	Asn	Lys 760	Ser	His	Thr	Pro	Glu 765	Asn	Cys	Pro
Gly	Trp 770	Leu	Asp	Val	Leu	Pro 775	Phe	Ile	Ile	Pro	His 780	Arg	Pro	Thr	Asn
Val 785	Glu	Ser	Cys	Pro	Glu 790	Gly	Lys	Pro	Glu	Ala 795	Leu	Trp	Val	Glu	Glu 800
Arg	Phe	Thr	Ala	His 805	Ile	Ala	Arg	Val	Arg 810	Asp	Val	Glu	Leu	Leu 815	Thr

Gly	Leu	Aap	Phe 820	Tyr	Gln	Asp	Lys	Val 825	Gln	Pro	Val	Ser	Glu 830		Leu
Gln	Leu	Lys 835	Thr	Tyr	Leu	Pro	Thr 840	Phe	Glu	Thr	Thr	Ile 845	Gly	Gly	Gly
Ser	Gly 850	Gly	Gly	Gly	Ser	Gly 855	Gly	Gly	Gly	Ser	Met 860	Lys	Trp	Val	Thr
Phe 865	Leu	Leu	Leu	Leu	Phe 870	Val	Ser	Gly	Ser	Ala 875	Phe	Ser	Arg	Gly	Val 880
Phe	Arg	Arg	Glu	Ala 885	His	Lys	Ser	Glu	Ile 890	Ala	His	Arg	Tyr	Asn 895	Asp
Leu	Gly	Glu	Gln 900	His	Phe	Lys	Gly	Leu 905	Val	Leu	Ile	Ala	Phe 910		Gln
Tyr	Leu	Gln 915	Lys	Cys	Ser	Tyr	Asp 920	Glu	His	Ala	Lys	Leu 925	Val	Gln	Glu
Val	Thr 930	Asp	Phe	Ala	Lys	Thr 935	Cys	Val	Ala	Asp	Glu 940	Ser	Ala	Ala	Asn
Cys 945	Asp	Lys	Ser	Leu	His 950	Thr	Leu	Phe	Gly	Asp 955	Lys	Leu	Cys	Ala	Ile 960
Pro	Asn	Leu	Arg	Glu 965	Asn	Tyr	Gly	Glu	Leu 970	Ala	Asp	Cys	Cys	Thr 975	Lys
Gln	Glu	Pro	Glu 980	Arg	Asn	Glu	СЛв	Phe 985	Leu	Gln	His	Lys	Asp	_	Asn
Pro	Ser	Leu 995	Pro	Pro	Phe	Glu	Arg		o Glu	ı Al	a Gl	u Al 10		et C	ys Thr
Ser	Phe 1010		g Glu	ı Asr	n Pro	Th:		nr Pl	ne Me	et G	ly H	is 020	Tyr	Leu	His
Glu	Val 1025		a Arç	g Arg	His	Pro 103		yr Pl	ne Ty	yr A	la P	ro 035	Glu	Leu	Leu
Tyr	Tyr 1040		a Glu	ı Glr	туг	Asr 104		lu I	le Le	eu Ti	hr G	ln 050	Cys	Cys .	Ala
Glu	Ala 1055	_	Lys	Glu	ı Ser	Cys 106		∋u Tl	nr Pi	ro L	ys L	eu . 065	Asp	Gly	Val
Lys	Glu 1070	_	a Ala	ı Lev	ı Val	Sei 107		er Va	al Ai	rg G	ln A	rg 080	Met	ràa	CÀa
Ser	Ser 1085		Glr	ı Lys	Phe	Gly 109		lu Ai	rg A	la Pi	he Ly	ys 095	Ala	Trp .	Ala
Val	Ala 1100		j Leu	ı Ser	Glr	110	_	ne Pi	ro As	sn A	la A	sp 110	Phe .	Ala	Glu
Ile	Thr 1115		Leu	ı Ala	Thr	Asp 112		∋u Tl	nr Ly	ys V	al A	sn 125	Lys	Glu	CÀa
Cys	His 1130	-	Asp	Leu	ı Lev	1 Glu 113		ys Ai	la As	ab Y	sp A:	rg 140	Ala	Glu	Leu
Ala	Lys 1145		: Met	Су Е	s Glu	ı Asr 115		ln A	la Ti	nr I	le S	er 155	Ser	Lys	Leu
Gln	Thr 1160		c Cys	s Asp	Lys	Pro		eu Le	eu Ly	ys L	ys A	la 170	His	CAa	Leu
Ser	Glu 1175		. Glu	ı His	s Asp	Th:		et Pi	ro Al	la A	sp L	eu 185	Pro .	Ala	Ile
Ala	Ala 1190	_) Phe	⊵ Val	. Glu	. Ası		ln G	lu Va	al C	ys L:	ys . 200	Asn	Tyr .	Ala
Glu	Ala	Lys	a Asp	Val	. Phe	e Lei	ı G	ly Ti	nr Pl	ne L	eu T	yr	Glu	Tyr	Ser

-continued

											-co	ntir	iuec	1	 	
	1205					1210					1215					
Arg	Arg 1220		Pro	Asp	Tyr	Ser 1225		Ser	Leu	Leu	Leu 1230	_	Leu	Ala		
Lys	Lys 1235	-	Glu	Ala	Thr	Leu 1240		Lys	CAa	CAa	Ala 1245		Ala	Asn		
Pro	Pro 1250		Cys	Tyr	Gly	Thr 1255		Leu	Ala	Glu	Phe 1260		Pro	Leu		
Val	Glu 1265	Glu	Pro	Lys	Asn	Leu 1270		Lys	Thr	Asn	Cys 1275	_	Leu	Tyr		
Glu	Lys 1280	Leu	Gly	Glu	Tyr	Gly 1285		Gln	Asn	Ala	Ile 1290		Val	Arg		
Tyr	Thr 1295	Gln	Lys	Ala	Pro	Gln 1300		Ser	Thr	Pro	Thr 1305		Val	Glu		
Ala	Ala 1310	Arg	Asn	Leu	Gly	Arg 1315		Gly	Thr	ГÀа	Cys 1320	-	Thr	Leu		
Pro	Glu 1325	Asp	Gln	Arg	Leu	Pro 1330	_	Val	Glu	Asp	Tyr 1335		Ser	Ala		
Ile	Leu 1340	Asn	Arg	Val	Cys	Leu 1345		His	Glu	Lys	Thr 1350	Pro	Val	Ser		
Glu	His 1355	Val	Thr	. Lys	Cys	Cys 1360		Gly	Ser	Leu	Val 1365	Glu	Arg	Arg		
Pro	Cys 1370	Phe	Ser	Ala	Leu	Thr 1375		Asp	Glu	Thr	Tyr 1380	Val	Pro	ГЛа		
Glu	Phe 1385	rys	Ala	Glu	Thr	Phe 1390		Phe	His	Ser	Asp 1395	Ile	Cya	Thr		
Leu	Pro 1400	Glu	Lys	Glu	Lys	Gln 1405		Lys	Lys	Gln	Thr 1410	Ala	Leu	Ala		
Glu	Leu 1415	Val	Lys	His	Lys	Pro 1420	_	Ala	Thr	Ala	Glu 1425	Gln	Leu	ГÀа		
Thr	Val 1430	Met	Asp	Asp	Phe	Ala 1435		Phe	Leu	Asp	Thr 1440	_	Cys	ГÀа		
Ala	Ala 1445	Asp	Lys	Asp	Thr	Сув 1450		Ser	Thr	Glu	Gly 1455	Pro	Asn	Leu		
Val	Thr 1460	Arg	CAa	Lys	Asp	Ala 1465		Ala								
<21 <21 <21 <22 <22	0 > SE0 1 > LE1 2 > TY1 3 > OR0 0 > FE. 3 > OT1	NGTH PE: GANI ATUR HER	: 14 PRT SM: E: INFO	69 Arti RMAT			_		lbum:	in s	equen	ce				
	0> SE				Leu	Leu V	al S	er Pl	ne I	le L	eu Al	a Ala	a Let	ı Ser		
1	Ser '			5				1)				15			
	Ala		20				2	5				30				
-		35			-	4	0		•		45			-		
ГЛа	Asp .	Arg (чТĀ	Aap	_	Cys T	rp A	sp Pl	ne G	lu A 6	_	r Cys	₹ Val	ı Glu		

Ser Thr Arg Ile Trp Met Cys Asn Lys Phe Arg Cys Gly Glu Arg Leu

65					70					75					80
	Ala	Ser	Leu	Сув 85	Ser	СЛа	Ser	Asp	Asp 90		Leu	Gln	Arg	Lys 95	
СЛа	Сла	Ala	Asp 100	Tyr	Lys	Ser	Val	Сув 105	Gln	Gly	Glu	Thr	Ser 110	Trp	Leu
Glu	Glu	Asn 115	Сув	Asp	Thr	Ala	Gln 120	Gln	Ser	Gln	СЛа	Pro 125	Glu	Gly	Phe
Asp	Leu 130	Pro	Pro	Val	Ile	Leu 135	Phe	Ser	Met	Asp	Gly 140	Phe	Arg	Ala	Glu
Tyr 145	Leu	Tyr	Thr	Trp	Asp 150	Thr	Leu	Met	Pro	Asn 155	Ile	Asn	Lys	Leu	Lys 160
Thr	Сув	Gly	Ile	His 165	Ser	Lys	Tyr	Met	Arg 170	Ala	Met	Tyr	Pro	Thr 175	Lys
Thr	Phe	Pro	Asn 180	His	Tyr	Thr	Ile	Val 185	Thr	Gly	Leu	Tyr	Pro 190	Glu	Ser
His	Gly	Ile 195	Ile	Asp	Asn	Asn	Met 200	Tyr	Asp	Val	Asn	Leu 205	Asn	Lys	Asn
Phe	Ser 210	Leu	Ser	Ser	Lys	Glu 215	Gln	Asn	Asn	Pro	Ala 220	Trp	Trp	His	Gly
Gln 225	Pro	Met	Trp	Leu	Thr 230	Ala	Met	Tyr	Gln	Gly 235	Leu	Lys	Ala	Ala	Thr 240
Tyr	Phe	Trp	Pro	Gly 245	Ser	Glu	Val	Ala	Ile 250	Asn	Gly	Ser	Phe	Pro 255	Ser
Ile	Tyr	Met	Pro 260	Tyr	Asn	Gly	Ser	Val 265	Pro	Phe	Glu	Glu	Arg 270	Ile	Ser
Thr	Leu	Leu 275	Lys	Trp	Leu	Asp	Leu 280	Pro	Lys	Ala	Glu	Arg 285	Pro	Arg	Phe
Tyr	Thr 290	Met	Tyr	Phe	Glu	Glu 295	Pro	Asp	Ser	Ser	Gly 300	His	Ala	Gly	Gly
Pro 305	Val	Ser	Ala	Arg	Val 310	Ile	Lys	Ala	Leu	Gln 315	Val	Val	Asp	His	Ala 320
Phe	Gly	Met	Leu	Met 325	Glu	Gly	Leu	Lys	Gln 330	Arg	Asn	Leu	His	Asn 335	Cys
Val	Asn	Ile	Ile 340	Leu	Leu	Ala	Asp	His 345	Gly	Met	Asp	Gln	Thr 350	Tyr	Cys
Asn	Lys	Met 355	Glu	Tyr	Met	Thr	Asp	Tyr	Phe	Pro	Arg	Ile 365	Asn	Phe	Phe
Tyr	Met 370	Tyr	Glu	Gly	Pro	Ala 375	Pro	Arg	Ile	Arg	Ala 380	His	Asn	Ile	Pro
His 385	Asp	Phe	Phe	Ser	Phe 390	Asn	Ser	Glu	Glu	Ile 395	Val	Arg	Asn	Leu	Ser 400
Cys	Arg	Lys	Pro	Asp 405	Gln	His	Phe	Lys	Pro 410	Tyr	Leu	Thr	Pro	Asp 415	Leu
Pro	Lys	Arg	Leu 420	His	Tyr	Ala	Lys	Asn 425	Val	Arg	Ile	Asp	Lys 430	Val	His
Leu	Phe	Val 435	Asp	Gln	Gln	Trp	Leu 440	Ala	Val	Arg	Ser	Lys 445	Ser	Asn	Thr
Asn	Суз 450	Gly	Gly	Gly	Asn	His 455	Gly	Tyr	Asn	Asn	Glu 460	Phe	Arg	Ser	Met
Glu 465	Ala	Ile	Phe	Leu	Ala 470	His	Gly	Pro	Ser	Phe 475	Lys	Glu	Lys	Thr	Glu 480

Val	Glu	Pro	Phe	Glu 485	Asn	Ile	Glu	Val	Tyr 490	Asn	Leu	Met	Cys	Asp 495	Leu
Leu	Arg	Ile	Gln 500	Pro	Ala	Pro	Asn	Asn 505	Gly	Thr	His	Gly	Ser 510	Leu	Asn
His	Leu	Leu 515	ГÀа	Val	Pro	Phe	Tyr 520	Glu	Pro	Ser	His	Ala 525	Glu	Glu	Val
Ser	Lys 530	Phe	Ser	Val	CÀa	Gly 535	Phe	Ala	Asn	Pro	Leu 540	Pro	Thr	Glu	Ser
Leu 545	Asp	Сла	Phe	СЛа	Pro 550	His	Leu	Gln	Asn	Ser 555	Thr	Gln	Leu	Glu	Gln 560
Val	Asn	Gln	Met	Leu 565	Asn	Leu	Thr	Gln	Glu 570	Glu	Ile	Thr	Ala	Thr 575	Val
ГÀа	Val	Asn	Leu 580	Pro	Phe	Gly	Arg	Pro 585	Arg	Val	Leu	Gln	Lys 590	Asn	Val
Asp	His	Сув 595	Leu	Leu	Tyr	His	Arg 600	Glu	Tyr	Val	Ser	Gly 605	Phe	Gly	Lys
Ala	Met 610	Arg	Met	Pro	Met	Trp 615	Ser	Ser	Tyr	Thr	Val 620	Pro	Gln	Leu	Gly
Asp 625	Thr	Ser	Pro	Leu	Pro 630	Pro	Thr	Val	Pro	Asp 635	Cys	Leu	Arg	Ala	Asp 640
Val	Arg	Val	Pro	Pro 645	Ser	Glu	Ser	Gln	Lys 650	СЛа	Ser	Phe	Tyr	Leu 655	Ala
Asp	Lys	Asn	Ile 660	Thr	His	Gly	Phe	Leu 665	Tyr	Pro	Pro	Ala	Ser 670	Asn	Arg
Thr	Ser	Asp 675	Ser	Gln	Tyr	Asp	Ala 680	Leu	Ile	Thr	Ser	Asn 685	Leu	Val	Pro
Met	Tyr 690	Glu	Glu	Phe	Arg	Lys 695	Met	Trp	Asp	Tyr	Phe 700	His	Ser	Val	Leu
Leu 705	Ile	Lys	His	Ala	Thr 710	Glu	Arg	Asn	Gly	Val 715	Asn	Val	Val	Ser	Gly 720
Pro	Ile	Phe	Asp	Tyr 725	Asn	Tyr	Asp	Gly	His 730	Phe	Asp	Ala	Pro	Asp 735	Glu
Ile	Thr	Lys	His 740	Leu	Ala	Asn	Thr	Asp 745	Val	Pro	Ile	Pro	Thr 750	His	Tyr
Phe	Val	Val 755	Leu	Thr	Ser	Cys	Lys 760	Asn	Lys	Ser	His	Thr 765	Pro	Glu	Asn
Cya	Pro 770	Gly	Trp	Leu	Asp	Val 775	Leu	Pro	Phe	Ile	Ile 780	Pro	His	Arg	Pro
Thr 785	Asn	Val	Glu	Ser	Cys 790	Pro	Glu	Gly	Lys	Pro 795	Glu	Ala	Leu	Trp	Val 800
Glu	Glu	Arg	Phe	Thr 805	Ala	His	Ile	Ala	Arg 810	Val	Arg	Asp	Val	Glu 815	Leu
Leu	Thr	Gly	Leu 820	Asp	Phe	Tyr	Gln	Asp 825	Lys	Val	Gln	Pro	Val 830	Ser	Glu
Ile	Leu	Gln 835	Leu	ГЛа	Thr	Tyr	Leu 840	Pro	Thr	Phe	Glu	Thr 845	Thr	Ile	Gly
Gly	Gly 850	Ser	Gly	Gly	Gly	Gly 855	Ser	Gly	Gly	Gly	Gly 860	Ser	Met	Lys	Trp
Val 865	Thr	Phe	Leu	Leu	Leu 870	Leu	Phe	Val	Ser	Gly 875	Ser	Ala	Phe	Ser	Arg 880

Gly	Val	Phe	Arg	Arg 885	Glu	Ala	His	Lys	89		lu 1	le	Ala	His	895	g Tyr 5
Asn	Asp	Leu	Gly 900	Glu	Gln	His	Phe	Lys		y L	eu V	/al	Leu	. Ile 910		a Phe
Ser	Gln	Tyr 915	Leu	Gln	Lys	Сув	Ser 920	Tyr	: As	p G	lu F		Ala 925		s Let	ı Val
Gln	Glu 930	Val	Thr	Asp		Ala 935	Lys	Thr	су	s V		Ala 940	Asp	Glu	ı Sei	r Ala
Ala 945	Asn	Сув	Asp	Lys	Ser 950	Leu	His	Thr	Le		he 0	Hy	Asp	Lys	s Let	1 CA2
Ala	Ile	Pro	Asn	Leu 965	Arg	Glu	Asn	Tyr	Gl 97		lu I	eu	Ala	. Ası	975	g Cya
Thr	Lys	Gln	Glu 980	Pro	Glu	Arg	Asn	Glu 985		s P	he I	eu	Gln	His 990		a Aap
Asp	Asn	Pro 995	Ser	Leu	Pro	Pro	Phe		u A	rg	Pro	Glu		a (Glu A	Ala Met
Càa	Thr 1010		r Phe	e Lys	s Glu	Ası 101		ro T	'hr	Thr	Phe		t 20	Gly	His	Tyr
Leu	His 1025		ı Val	l Alá	a Arg	103		is P	ro	Tyr	Phe		r 35	Ala	Pro	Glu
Leu	Leu 1040	_	ту1	r Ala	a Glu	104		yr A	sn	Glu	. Ile		u 50	Thr	Gln	Cys
Cys	Ala 1055		ı Ala	a Asp	p Lys	Gl:		er C	'ys	Leu	Thi		o 165	Lys	Leu	Asp
Gly	Val 1070		g Glu	ı Lys	s Ala	Le:		al S	er	Ser	Va]		80 g	Gln	Arg	Met
Lys	Сув 1085		s Sei	r Met	: Gln	. Ly:		he G	ly	Glu	. Arç		.a 195	Phe	Lys	Ala
Trp	Ala 1100		L Ala	a Arg	g Leu	Ser 110		ln T	'hr	Phe	Pro		n 10	Ala	Asp	Phe
Ala	Glu 1115		e Thi	r Lys	s Leu	112		hr A	ap	Leu	. Thi		າສ .25	Val	Asn	Lys
Glu	Сув 1130		s His	s Gl∑	y Asp	Let 113		eu G	lu	Сув	Ala		p 40	Asp	Arg	Ala
Glu	Leu 1145		a Lys	з Туі	r Met	Cys 115		lu A	sn	Gln	Ala		r .55	Ile	Ser	Ser
Lys	Leu 1160		n Thi	r Cys	з Сув	Asp 110		ys P	ro	Leu	. Leu		າສ .70	Lys	Ala	His
Càa	Leu 1175		Glu	ı Val	l Glu	Hi:		ap T	hr	Met	Pro		.a .85	Asp	Leu	Pro
Ala	Ile 1190		a Ala	a Asp	Phe	Va:		lu A	ap	Gln	Glu		00	CÀa	Lys	Asn
Tyr	Ala 1205		ı Ala	a Lys	a Asp	Va:		he L	eu	Gly	Thi		ie 15	Leu	Tyr	Glu
Tyr	Ser 1220		g Arg	g His	s Pro	As ₁		yr S	er	Val	Sei		u 30	Leu	Leu	Arg
Leu	Ala 1235	-	s Lys	з Туг	r Glu	1 Ala		hr L	eu	Glu	. Lys	•	າສ :45	Cys	Ala	Glu
Ala	Asn 1250) Pro	o Ala	a Cys	Ty:		ly T	hr	Val	Leu		a 60	Glu	Phe	Gln
Pro	Leu	Va]	l Glu	ı Glu	ı Pro	ь Гу:	s A	sn L	eu	Val	Lys	Th	ır	Asn	Cys	Asp

_	con	t	1	n	u	е	α

Concinaca
1265 1270 1275
Leu Tyr Glu Lys Leu Gly Glu Tyr Gly Phe Gln Asn Ala Ile Leu 1280 1285 1290
Val Arg Tyr Thr Gln Lys Ala Pro Gln Val Ser Thr Pro Thr Leu 1295 1300 1305
Val Glu Ala Ala Arg Asn Leu Gly Arg Val Gly Thr Lys Cys Cys 1310 1315 1320
Thr Leu Pro Glu Asp Gln Arg Leu Pro Cys Val Glu Asp Tyr Leu 1325 1330 1335
Ser Ala Ile Leu Asn Arg Val Cys Leu Leu His Glu Lys Thr Pro 1340 1345 1350
Val Ser Glu His Val Thr Lys Cys Cys Ser Gly Ser Leu Val Glu 1355 1360 1365
Arg Arg Pro Cys Phe Ser Ala Leu Thr Val Asp Glu Thr Tyr Val 1370 1375 1380
Pro Lys Glu Phe Lys Ala Glu Thr Phe Thr Phe His Ser Asp Ile 1385 1390 1395
Cys Thr Leu Pro Glu Lys Glu Lys Gln Ile Lys Lys Gln Thr Ala
Leu Ala Glu Leu Val Lys His Lys Pro Lys Ala Thr Ala Glu Gln
Leu Lys Thr Val Met Asp Asp Phe Ala Gln Phe Leu Asp Thr Cys
1430 1435 1440 Cys Lys Ala Ala Asp Lys Asp Thr Cys Phe Ser Thr Glu Gly Pro
1445 1450 1455
Asn Leu Val Thr Arg Cys Lys Asp Ala Leu Ala 1460 1465
<210> SEQ ID NO 27 <211> LENGTH: 3447 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Nucleotide sequence of NPP121-NPP3-Fc
<400> SEQUENCE: 27
atggaaaggg acggatgcgc cggtggtgga tctcgcggag gcgaaggtgg aagggcccct 60
agggaaggac ctgccggaaa cggaagggac aggggacgct ctcacgccgc tgaagctcca 120
ggcgaccete aggcegetge etetetgetg getectatgg acgteggaga agaacceetg 180
gaaaaggccg ccagggccag gactgccaag gaccccaaca cctacaagat catctccctc 240
ttcactttcg ccgtcggagt caacatctgc ctgggattca ccgccgaaaa gcaaggcagc 300
tgcaggaaga agtgctttga tgcatcattt agaggactgg agaactgccg gtgtgatgtg 360
gcatgtaaag accgaggtga ttgctgctgg gattttgaag acacctgtgt ggaatcaact 420
cgaatatgga tgtgcaataa atttcgttgt ggagagacca gattagaggc cagcctttgc 480
tettgtteag atgaetgttt geagaggaaa gattgetgtg etgaetataa gagtgtttge 540
caaggagaaa cctcatggct ggaagaaaac tgtgacacag cccagcagtc tcagtgccca 600
gaagggtttg acctgccacc agttatcttg ttttctatgg atggatttag agctgaatat 660
ttatacacat gggatacttt aatgccaaat atcaataaac tgaaaacatg tggaattcat 720

tcaaaataca tgagagctat gtatcctacc aaaaccttcc caaatcatta caccattgtc

acgggcttgt	atccagagtc	acatggcatc	attgacaata	atatgtatga	tgtaaatctc	840
aacaagaatt	tttcactttc	ttcaaaggaa	caaaataatc	cagcctggtg	gcatgggcaa	900
ccaatgtggc	tgacagcaat	gtatcaaggt	ttaaaagccg	ctacctactt	ttggcccgga	960
tcagaagtgg	ctataaatgg	ctcctttcct	tccatataca	tgccttacaa	cggaagtgtc	1020
ccatttgaag	agaggatttc	tacactgtta	aaatggctgg	acctgcccaa	agctgaaaga	1080
cccaggtttt	ataccatgta	ttttgaagaa	cctgattcct	ctggacatgc	aggtggacca	1140
gtcagtgcca	gagtaattaa	agccttacag	gtagtagatc	atgcttttgg	gatgttgatg	1200
gaaggcctga	agcagcggaa	tttgcacaac	tgtgtcaata	tcatccttct	ggctgaccat	1260
ggaatggacc	agacttattg	taacaagatg	gaatacatga	ctgattattt	tcccagaata	1320
aacttcttct	acatgtacga	agggcctgcc	ccccgcatcc	gagctcataa	tatacctcat	1380
gactttttta	gttttaattc	tgaggaaatt	gttagaaacc	tcagttgccg	aaaacctgat	1440
cagcatttca	agccctattt	gactcctgat	ttgccaaagc	gactgcacta	tgccaagaac	1500
gtcagaatcg	acaaagttca	tetetttgtg	gatcaacagt	ggetggetgt	taggagtaaa	1560
tcaaatacaa	attgtggagg	aggcaaccat	ggttataaca	atgagtttag	gagcatggag	1620
gctatctttc	tggcacatgg	acccagtttt	aaagagaaga	ctgaagttga	accatttgaa	1680
aatattgaag	tctataacct	aatgtgtgat	cttctacgca	ttcaaccagc	accaaacaat	1740
ggaacccatg	gtagtttaaa	ccatcttctg	aaggtgcctt	tttatgagcc	atcccatgca	1800
gaggaggtgt	caaagttttc	tgtttgtggc	tttgctaatc	cattgcccac	agagtctctt	1860
gactgtttct	gccctcacct	acaaaatagt	actcagctgg	aacaagtgaa	tcagatgcta	1920
aatctcaccc	aagaagaaat	aacagcaaca	gtgaaagtaa	atttgccatt	tgggaggcct	1980
agggtactgc	agaagaacgt	ggaccactgt	ctcctttacc	acagggaata	tgtcagtgga	2040
tttggaaaag	ctatgaggat	gcccatgtgg	agttcataca	cagtccccca	gttgggagac	2100
acatcgcctc	tgcctcccac	tgtcccagac	tgtctgcggg	ctgatgtcag	ggttcctcct	2160
tctgagagcc	aaaaatgttc	cttctattta	gcagacaaga	atatcaccca	cggcttcctc	2220
tatcctcctg	ccagcaatag	aacatcagat	agccaatatg	atgctttaat	tactagcaat	2280
ttggtaccta	tgtatgaaga	attcagaaaa	atgtgggact	acttccacag	tgttcttctt	2340
ataaaacatg	ccacagaaag	aaatggagta	aatgtggtta	gtggaccaat	atttgattat	2400
aattatgatg	gccattttga	tgctccagat	gaaattacca	aacatttagc	caacactgat	2460
gttcccatcc	caacacacta	ctttgtggtg	ctgaccagtt	gtaaaaacaa	gagccacaca	2520
ccggaaaact	gccctgggtg	gctggatgtc	ctacccttta	tcatccctca	ccgacctacc	2580
aacgtggaga	gctgtcctga	aggtaaacca	gaagctcttt	gggttgaaga	aagatttaca	2640
gctcacattg	cccgggtccg	tgatgtagaa	cttctcactg	ggcttgactt	ctatcaggat	2700
aaagtgcagc	ctgtctctga	aattttgcaa	ctaaagacat	atttaccaac	atttgaaacc	2760
actattgaca	aaactcacac	atgcccaccg	tgcccagcac	ctgaactcct	ggggggaccg	2820
tcagtcttcc	tetteecec	aaaacccaag	gacaccctca	tgatctcccg	gacccctgag	2880
gtcacatgcg	tggtggtgga	cgtgagccac	gaagaccctg	aggtcaagtt	caactggtac	2940
gtggacggcg	tggaggtgca	taatgccaag	acaaagccgc	gggaggagca	gtacaacagc	3000
acgtaccgtg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	tggcaaggag	3060
		-	-	-		

-continued	
tacaagtgca aggtotocaa caaagcooto ocagooocca togagaaaac catotocaaa	3120
gccaaagggc agccccgaga accacaggtg tacaccctgc ccccatcccg ggaggagatg	3180
accaagaacc aggtcagect gacetgeetg gtcaaagget tetateecag egacategee	3240
gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg	3300
gactocgacg geteettett eetetatage aageteaceg tggacaagag eaggtggeag	3360
caggggaacg tetteteatg etcegtgatg catgaggete tgeacaacea etacaegeag	3420
aagageetet eeetgteeee gggtaaa	3447
<210> SEQ ID NO 28 <211> LENGTH: 4638 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Nucleotide sequence of NPP121-NPP3-Fc	
<400> SEQUENCE: 28	
atggaaaggg acggatgcgc cggtggtgga tctcgcggag gcgaaggtgg aagggcccct	60
agggaaggac ctgccggaaa cggaagggac aggggacgct ctcacgccgc tgaagctcca	120
ggcgaccete aggccgetge etetetgetg getectatgg aegteggaga agaacceetg	180
gaaaaggccg ccagggccag gactgccaag gaccccaaca cctacaagat catctccctc	240
ttcactttcg ccgtcggagt caacatctgc ctgggattca ccgccgaaaa gcaaggcagc	300
tgcaggaaga agtgctttga tgcatcattt agaggactgg agaactgccg gtgtgatgtg	360
gcatgtaaag accgaggtga ttgctgctgg gattttgaag acacctgtgt ggaatcaact	420
cgaatatgga tgtgcaataa atttcgttgt ggagagacca gattagaggc cagcctttgc	480
tottgttoag atgactgttt goagaggaaa gattgotgtg otgactataa gagtgtttgo	540
caaggagaaa cctcatggct ggaagaaaac tgtgacacag cccagcagtc tcagtgccca	600
gaagggtttg acctgccacc agttatcttg ttttctatgg atggatttag agctgaatat	660
ttatacacat gggatacttt aatgccaaat atcaataaac tgaaaacatg tggaattcat	720
tcaaaataca tgagagctat gtatcctacc aaaaccttcc caaatcatta caccattgtc	780
acgggcttgt atccagagtc acatggcatc attgacaata atatgtatga tgtaaatctc	840
aacaagaatt tttcactttc ttcaaaggaa caaaataatc cagcctggtg gcatgggcaa	900
ccaatgtggc tgacagcaat gtatcaaggt ttaaaagccg ctacctactt ttggcccgga	960
tcagaagtgg ctataaatgg ctcctttcct tccatataca tgccttacaa cggaagtgtc	1020
ccatttgaag agaggatttc tacactgtta aaatggctgg acctgcccaa agctgaaaga	1080
cccaggtttt ataccatgta ttttgaagaa cctgattcct ctggacatgc aggtggacca	1140
gtcagtgcca gagtaattaa agccttacag gtagtagatc atgcttttgg gatgttgatg	1200
gaaggootga agoagoggaa tttgoacaao tgtgtoaata toatoottot ggotgacoat	1260
ggaatggacc agacttattg taacaagatg gaatacatga ctgattattt tcccagaata	1320
aacttettet acatgtaega agggeetgee eeeegeatee gageteataa tataeeteat	1380
gactttttta gttttaattc tgaggaaatt gttagaaacc tcagttgccg aaaacctgat	1440
cagcatttca agccctattt gactcctgat ttgccaaagc gactgcacta tgccaagaac	1500
gtcagaatcg acaaagttca tctctttgtg gatcaacagt ggctggctgt taggagtaaa	1560

tcaaatacaa	attgtggagg	aggcaaccat	ggttataaca	atgagtttag	gagcatggag	1620
gctatctttc	tggcacatgg	acccagtttt	aaagagaaga	ctgaagttga	accatttgaa	1680
aatattgaag	tctataacct	aatgtgtgat	cttctacgca	ttcaaccagc	accaaacaat	1740
ggaacccatg	gtagtttaaa	ccatcttctg	aaggtgcctt	tttatgagcc	atcccatgca	1800
gaggaggtgt	caaagttttc	tgtttgtggc	tttgctaatc	cattgcccac	agagtctctt	1860
gactgtttct	gccctcacct	acaaaatagt	actcagctgg	aacaagtgaa	tcagatgcta	1920
aatctcaccc	aagaagaaat	aacagcaaca	gtgaaagtaa	atttgccatt	tgggaggcct	1980
agggtactgc	agaagaacgt	ggaccactgt	ctcctttacc	acagggaata	tgtcagtgga	2040
tttggaaaag	ctatgaggat	gcccatgtgg	agttcataca	cagtccccca	gttgggagac	2100
acatcgcctc	tgcctcccac	tgtcccagac	tgtctgcggg	ctgatgtcag	ggttcctcct	2160
tctgagagcc	aaaaatgttc	cttctattta	gcagacaaga	atatcaccca	cggcttcctc	2220
tatcctcctg	ccagcaatag	aacatcagat	agccaatatg	atgctttaat	tactagcaat	2280
ttggtaccta	tgtatgaaga	attcagaaaa	atgtgggact	acttccacag	tgttcttctt	2340
ataaaacatg	ccacagaaag	aaatggagta	aatgtggtta	gtggaccaat	atttgattat	2400
aattatgatg	gccattttga	tgctccagat	gaaattacca	aacatttagc	caacactgat	2460
gttcccatcc	caacacacta	ctttgtggtg	ctgaccagtt	gtaaaaacaa	gagccacaca	2520
ccggaaaact	gccctgggtg	gctggatgtc	ctacccttta	tcatccctca	ccgacctacc	2580
aacgtggaga	gctgtcctga	aggtaaacca	gaagctcttt	gggttgaaga	aagatttaca	2640
gctcacattg	cccgggtccg	tgatgtagaa	cttctcactg	ggcttgactt	ctatcaggat	2700
aaagtgcagc	ctgtctctga	aattttgcaa	ctaaagacat	atttaccaac	atttgaaacc	2760
actattggtg	gaggaggete	tggtggaggc	ggtagcggag	geggagggte	gatgaagtgg	2820
gtaaccttta	tttcccttct	ttttctcttt	ageteggett	attccagggg	tgtgtttcgt	2880
cgagatgcac	acaagagtga	ggttgctcat	cggtttaaag	atttgggaga	agaaaatttc	2940
aaagccttgg	tgttgattgc	ctttgctcag	tatcttcagc	agtgtccatt	tgaagatcat	3000
gtaaaattag	tgaatgaagt	aactgaattt	gcaaaaacat	gtgttgctga	tgagtcagct	3060
gaaaattgtg	acaaatcact	tcataccctt	tttggagaca	aattatgcac	agttgcaact	3120
cttcgtgaaa	cctatggtga	aatggctgac	tgctgtgcaa	aacaagaacc	tgagagaaat	3180
gaatgcttct	tgcaacacaa	agatgacaac	ccaaacctcc	cccgattggt	gagaccagag	3240
gttgatgtga	tgtgcactgc	ttttcatgac	aatgaagaga	catttttgaa	aaaatactta	3300
tatgaaattg	ccagaagaca	tccttacttt	tatgccccgg	aactcctttt	ctttgctaaa	3360
aggtataaag	ctgcttttac	agaatgttgc	caagctgctg	ataaagctgc	ctgcctgttg	3420
ccaaagctcg	atgaacttcg	ggatgaaggg	aaggettegt	ctgccaaaca	gagactcaag	3480
tgtgccagtc	tccaaaaatt	tggagaaaga	gctttcaaag	catgggcagt	agctcgcctg	3540
agccagagat	ttcccaaagc	tgagtttgca	gaagtttcca	agttagtgac	agatettace	3600
aaagtccaca	cggaatgctg	ccatggagat	ctgcttgaat	gtgctgatga	cagggcggac	3660
cttgccaagt	atatctgtga	aaatcaagat	tcgatctcca	gtaaactgaa	ggaatgctgt	3720
gaaaaacctc	tgttggaaaa	atcccactgc	attgccgaag	tggaaaatga	tgagatgcct	3780
gctgacttgc	cttcattagc	tgctgatttt	gttgaaagta	aggatgtttg	caaaaactat	3840
	,		-			

-continued

gctgaggcaa	aggatgtctt	cctgggcatg	tttttgtatg	aatatgcaag	aaggcatcct	3900
gattactctg	tegtgetget	gctgagactt	gccaagacat	atgaaaccac	tctagagaag	3960
tgctgtgccg	ctgcagatcc	tcatgaatgc	tatgccaaag	tgttcgatga	atttaaacct	4020
cttgtggaag	agcctcagaa	tttaatcaaa	caaaattgtg	agctttttga	gcagcttgga	4080
gagtacaaat	tccagaatgc	gctattagtt	cgttacacca	agaaagtacc	ccaagtgtca	4140
actccaactc	ttgtagaggt	ctcaagaaac	ctaggaaaag	tgggcagcaa	atgttgtaaa	4200
cateetgaag	caaaaagaat	gccctgtgca	gaagactatc	tatccgtggt	cctgaaccag	4260
ttatgtgtgt	tgcatgagaa	aacgccagta	agtgacagag	tcaccaaatg	ctgcacagaa	4320
tccttggtga	acaggcgacc	atgcttttca	gctctggaag	tcgatgaaac	atacgttccc	4380
aaagagttta	atgctgaaac	attcaccttc	catgcagata	tatgcacact	ttctgagaag	4440
gagagacaaa	tcaagaaaca	aactgcactt	gttgagctcg	tgaaacacaa	gcccaaggca	4500
acaaaagagc	aactgaaagc	tgttatggat	gatttcgcag	cttttgtaga	gaagtgctgc	4560
aaggctgacg	ataaggagac	ctgctttgcc	gaggagggta	aaaaacttgt	tgctgcaagt	4620
caagetgeet	taggctta					4638
<220> FEAT	TH: 8852 : DNA NISM: Artif: URE: R INFORMATIO	-		∍ of hNPP3-h	nFc-pcDNA3	
<400> SEQU						60
	gagatetece					120
	aagccagtat ttaagctaca					180
	gcgttttgcg					240
	tagttattaa					300
	cgttacataa					360
	gacgtcaata					420
	atgggtggac					480
	aagtacgccc					540
	catgacetta					600
tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
	acggtgggag					840
	gcttatcgaa	_				900
	gcgccggtgg					960
	gaaacggaag					1020
						1020
cereaggeeg	ctgcctctct	gerggereer	arggacgtcg	yayaayaacc	corggaaaag	T090

gccgccaggg ccaggactgc caaggacccc aacacctaca agatcatctc cctcttcact 1140

ttegeegteg	gagtcaacat	ctgcctggga	ttcaccgccg	aaaagcaagg	cagctgcagg	1200
aagaagtgct	ttgatgcatc	atttagagga	ctggagaact	gccggtgtga	tgtggcatgt	1260
aaagaccgag	gtgattgctg	ctgggatttt	gaagacacct	gtgtggaatc	aactcgaata	1320
tggatgtgca	ataaatttcg	ttgtggagag	accagattag	aggccagcct	ttgctcttgt	1380
tcagatgact	gtttgcagag	gaaagattgc	tgtgctgact	ataagagtgt	ttgccaagga	1440
gaaacctcat	ggctggaaga	aaactgtgac	acagcccagc	agtctcagtg	cccagaaggg	1500
tttgacctgc	caccagttat	cttgttttct	atggatggat	ttagagctga	atatttatac	1560
acatgggata	ctttaatgcc	aaatatcaat	aaactgaaaa	catgtggaat	tcattcaaaa	1620
tacatgagag	ctatgtatcc	taccaaaacc	ttcccaaatc	attacaccat	tgtcacgggc	1680
ttgtatccag	agtcacatgg	catcattgac	aataatatgt	atgatgtaaa	tctcaacaag	1740
aatttttcac	tttcttcaaa	ggaacaaaat	aatccagcct	ggtggcatgg	gcaaccaatg	1800
tggctgacag	caatgtatca	aggtttaaaa	gccgctacct	acttttggcc	cggatcagaa	1860
gtggctataa	atggctcctt	tccttccata	tacatgcctt	acaacggaag	tgtcccattt	1920
gaagagagga	tttctacact	gttaaaatgg	ctggacctgc	ccaaagctga	aagacccagg	1980
ttttatacca	tgtattttga	agaacctgat	tcctctggac	atgcaggtgg	accagtcagt	2040
gccagagtaa	ttaaagcctt	acaggtagta	gatcatgctt	ttgggatgtt	gatggaaggc	2100
ctgaagcagc	ggaatttgca	caactgtgtc	aatatcatcc	ttctggctga	ccatggaatg	2160
gaccagactt	attgtaacaa	gatggaatac	atgactgatt	attttcccag	aataaacttc	2220
ttctacatgt	acgaagggcc	tgeeeeeege	atccgagctc	ataatatacc	tcatgacttt	2280
tttagtttta	attctgagga	aattgttaga	aacctcagtt	gccgaaaacc	tgatcagcat	2340
ttcaagccct	atttgactcc	tgatttgcca	aagcgactgc	actatgccaa	gaacgtcaga	2400
atcgacaaag	ttcatctctt	tgtggatcaa	cagtggctgg	ctgttaggag	taaatcaaat	2460
acaaattgtg	gaggaggcaa	ccatggttat	aacaatgagt	ttaggagcat	ggaggctatc	2520
tttctggcac	atggacccag	ttttaaagag	aagactgaag	ttgaaccatt	tgaaaatatt	2580
gaagtctata	acctaatgtg	tgatcttcta	cgcattcaac	cagcaccaaa	caatggaacc	2640
catggtagtt	taaaccatct	tctgaaggtg	cctttttatg	agccatccca	tgcagaggag	2700
gtgtcaaagt	tttctgtttg	tggctttgct	aatccattgc	ccacagagtc	tcttgactgt	2760
ttctgccctc	acctacaaaa	tagtactcag	ctggaacaag	tgaatcagat	gctaaatctc	2820
acccaagaag	aaataacagc	aacagtgaaa	gtaaatttgc	catttgggag	gcctagggta	2880
ctgcagaaga	acgtggacca	ctgtctcctt	taccacaggg	aatatgtcag	tggatttgga	2940
aaagctatga	ggatgcccat	gtggagttca	tacacagtcc	cccagttggg	agacacatcg	3000
cctctgcctc	ccactgtccc	agactgtctg	cgggctgatg	tcagggttcc	tccttctgag	3060
agccaaaaat	gttccttcta	tttagcagac	aagaatatca	cccacggctt	cctctatcct	3120
cctgccagca	atagaacatc	agatagccaa	tatgatgctt	taattactag	caatttggta	3180
cctatgtatg	aagaattcag	aaaaatgtgg	gactacttcc	acagtgttct	tcttataaaa	3240
catgccacag	aaagaaatgg	agtaaatgtg	gttagtggac	caatatttga	ttataattat	3300
gatggccatt	ttgatgctcc	agatgaaatt	accaaacatt	tagccaacac	tgatgttccc	3360
atcccaacac	actactttgt	ggtgctgacc	agttgtaaaa	acaagagcca	cacaccggaa	3420

aactgccctg ggtggct	gga tgtcctaccc	tttatcatcc	ctcaccgacc	taccaacgtg	3480
gagagetgte etgaagg	taa accagaagct	ctttgggttg	aagaaagatt	tacagctcac	3540
attgcccggg tccgtga	tgt agaacttctc	actgggcttg	acttctatca	ggataaagtg	3600
cagcctgtct ctgaaat	ttt gcaactaaag	acatatttac	caacatttga	aaccactatt	3660
gacaaaactc acacatg	ccc accgtgccca	gcacctgaac	tcctgggggg	accgtcagtc	3720
ttcctcttcc ccccaaa	acc caaggacacc	ctcatgatct	cccggacccc	tgaggtcaca	3780
tgcgtggtgg tggacgt	gag ccacgaagac	cctgaggtca	agttcaactg	gtacgtggac	3840
ggcgtggagg tgcataa	tgc caagacaaag	ccgcgggagg	agcagtacaa	cagcacgtac	3900
cgtgtggtca gcgtcct	cac cgtcctgcac	caggactggc	tgaatggcaa	ggagtacaag	3960
tgcaaggtct ccaacaa	agc cctcccagcc	cccatcgaga	aaaccatctc	caaagccaaa	4020
gggcagcccc gagaacca	aca ggtgtacacc	ctgcccccat	cccgggagga	gatgaccaag	4080
aaccaggtca gcctgac	ctg cctggtcaaa	ggcttctatc	ccagcgacat	cgccgtggag	4140
tgggagagca atgggcag	gcc ggagaacaac	tacaagacca	cgcctcccgt	gctggactcc	4200
gacggctcct tcttcct	cta tagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	4260
aacgtcttct catgctc	cgt gatgcatgag	gctctgcaca	accactacac	gcagaagagc	4320
ctctccctgt ccccggg	taa atgaaattct	gcagatatcc	atcacactgg	cggccgctcg	4380
agcatgcatc tagaggg	ccc tattctatag	tgtcacctaa	atgctagagc	tcgctgatca	4440
gcctcgactg tgccttc	tag ttgccagcca	tctgttgttt	geceeteece	cgtgccttcc	4500
ttgaccctgg aaggtgc	cac teceaetgte	ctttcctaat	aaaatgagga	aattgcatcg	4560
cattgtctga gtaggtg	tca ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	4620
gaggattggg aagacaa	tag caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	4680
gcggaaagaa ccagctg	ggg ctctaggggg	tatccccacg	cgccctgtag	cggcgcatta	4740
agcgcggcgg gtgtggt	ggt tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	4800
cccgctcctt tcgcttt	ctt cccttccttt	ctcgccacgt	tcgccggctt	tccccgtcaa	4860
gctctaaatc ggggcat	ecc tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	4920
aaaaaacttg attaggg	tga tggttcacgt	agtgggccat	cgccctgata	gacggttttt	4980
cgccctttga cgttggag	gtc cacgttcttt	aatagtggac	tcttgttcca	aactggaaca	5040
acactcaacc ctatctc	ggt ctattcttt	gatttataag	ggattttggg	gatttcggcc	5100
tattggttaa aaaatga	gct gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	5160
tgtgtcagtt agggtgt	gga aagteeceag	gctccccagg	caggcagaag	tatgcaaagc	5220
atgcatctca attagtca	agc aaccaggtgt	ggaaagtccc	caggeteece	agcaggcaga	5280
agtatgcaaa gcatgca	tct caattagtca	gcaaccatag	tecegeceet	aactccgccc	5340
atcccgcccc taactcc	gcc cagttccgcc	cattctccgc	cccatggctg	actaattttt	5400
tttatttatg cagaggc	ega ggeegeetet	gcctctgagc	tattccagaa	gtagtgagga	5460
ggcttttttg gaggccta	agg cttttgcaaa	aagctcccgg	gagcttgtat	atccattttc	5520
ggatctgatc aagagaca	agg atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	5580
gcaggttete eggeege	ttg ggtggagagg	ctattcggct	atgactgggc	acaacagaca	5640
ateggetget etgatge					5700
		_ 55			

gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcagg	acgaggcagc	geggetateg	5760
tggctggcca	cgacgggcgt	tccttgcgca	gctgtgctcg	acgttgtcac	tgaagcggga	5820
agggactggc	tgctattggg	cgaagtgccg	gggcaggatc	tcctgtcatc	tcaccttgct	5880
cctgccgaga	aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	5940
gctacctgcc	cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcacg	tactcggatg	6000
gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggct	cgcgccagcc	6060
gaactgttcg	ccaggctcaa	ggcgcgcatg	cccgacggcg	aggatctcgt	cgtgacccat	6120
ggcgatgcct	gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	attcatcgac	6180
tgtggccggc	tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	6240
gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	tatcgccgct	6300
cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	agcgggactc	6360
tggggttcga	aatgaccgac	caagcgacgc	ccaacctgcc	atcacgagat	ttcgattcca	6420
ccgccgcctt	ctatgaaagg	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	6480
tectecageg	cggggatctc	atgctggagt	tcttcgccca	ccccaacttg	tttattgcag	6540
cttataatgg	ttacaaataa	agcaatagca	tcacaaattt	cacaaataaa	gcatttttt	6600
cactgcattc	tagttgtggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctgtatac	6660
cgtcgacctc	tagctagagc	ttggcgtaat	catggtcata	gctgtttcct	gtgtgaaatt	6720
gttatccgct	cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaagcctggg	6780
gtgcctaatg	agtgagctaa	ctcacattaa	ttgcgttgcg	ctcactgccc	gctttccagt	6840
cgggaaacct	gtcgtgccag	ctgcattaat	gaatcggcca	acgcgcgggg	agaggcggtt	6900
tgcgtattgg	gegetettee	getteetege	tcactgactc	getgegeteg	gtcgttcggc	6960
tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	7020
ataacgcagg	aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	7080
ccgcgttgct	ggcgttttc	cataggetee	gcccccctga	cgagcatcac	aaaaatcgac	7140
gctcaagtca	gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	7200
gaagctccct	cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	7260
ttctcccttc	gggaagcgtg	gcgctttctc	aatgctcacg	ctgtaggtat	ctcagttcgg	7320
tgtaggtcgt	tcgctccaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	7380
gcgccttatc	cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	7440
tggcagcagc	cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	7500
tcttgaagtg	gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	7560
tgctgaagcc	agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	7620
ccgctggtag	cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	7680
ctcaagaaga	tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	7740
gttaagggat	tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	7800
aaaaatgaag	ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	7860
aatgcttaat	cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	7920
cctgactccc	cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	7980

-continued

ctgcaatgat accgcgagac	ccacgctcac cggctccaga	tttatcagca ataaaccagc	8040
cageeggaag ggeegagege	agaagtggtc ctgcaacttt	atccgcctcc atccagtcta	8100
ttaattgttg ccgggaagct	agagtaagta gttcgccagt	taatagtttg cgcaacgttg	8160
ttgccattgc tacaggcatc	gtggtgtcac gctcgtcgtt	tggtatggct tcattcagct	8220
ccggttccca acgatcaagg	cgagttacat gatcccccat	gttgtgcaaa aaagcggtta	8280
gctccttcgg tcctccgatc	gttgtcagaa gtaagttggc	cgcagtgtta tcactcatgg	8340
ttatggcagc actgcataat	tetettactg teatgecate	cgtaagatgc ttttctgtga	8400
ctggtgagta ctcaaccaag	tcattctgag aatagtgtat	geggegaceg agttgetett	8460
gcccggcgtc aatacgggat	aataccgcgc cacatagcag	aactttaaaa gtgctcatca	8520
ttggaaaacg ttcttcgggg	cgaaaactct caaggatctt	accgctgttg agatccagtt	8580
cgatgtaacc cactcgtgca	cccaactgat cttcagcatc	ttttactttc accagcgttt	8640
ctgggtgagc aaaaacagga	aggcaaaatg ccgcaaaaaa	gggaataagg gcgacacgga	8700
aatgttgaat actcatactc	ttcctttttc aatattattg	aagcatttat cagggttatt	8760
gtctcatgag cggatacata	tttgaatgta tttagaaaaa	taaacaaata ggggttccgc	8820
gcacatttcc ccgaaaagtg	ccacctgacg tc		8852

1. An isolated polypeptide of formula (I), or a pharmaceutical salt or solvate thereof:

wherein:

EXPORT is absent, or a signal export sequence or a biologically active fragment thereof;

PROTEIN is the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment thereof;

- DOMAIN is selected from the group consisting of a human IgG Fc domain and human albumin domain;
- X and Z are independently absent or a polypeptide comprising 1-20 amino acids; and, Y is absent or is a sequence selected from the group consisting of: (DSS)_n (SEQ ID NO:6), (ESS)_n (SEQ ID NO:7), (RQQ)_n (SEQ ID NO:8), (KR)_n (SEQ ID NO:9), (SEQ ID NO:10), (KR)_n (SEQ ID NO:11), DSSSEEKFLRRIGRFG (SEQ ID NO:12), EEEEEEEPRGDT (SEQ ID NO:13), APWHLSSQYSRT (SEQ ID NO:14), STLPIPHEF-SRE (SEQ ID NO:15), VTKHLNQISQSY (SEQ ID NO:16), E_n (SEQ ID NO:17), and D_n (SEQ ID NO:18), wherein each occurrence of n is independently an integer ranging from 1 to 20.
- **2**. The polypeptide of claim **1**, wherein the nuclease domain of the PROTEIN or mutant thereof is absent.
- 3. The polypeptide of claim 1, wherein EXPORT is absent or selected from the group consisting of SEQ ID NOs:2-5.
- **4.** The polypeptide of claim **1**, wherein X and Z are independently selected from the group consisting of: absent, a polypeptide consisting of 20 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 17 amino acids, a polypeptide consisting of 16 amino acids, a polypeptide consisting of 15 amino acids, a polypeptide consisting of 14 amino acids, a polypeptide consisting of 13 amino acids, a

- polypeptide consisting of 12 amino acids, a polypeptide consisting of 11 amino acids, a polypeptide consisting of 10 amino acids, a polypeptide consisting of 9 amino acids, a polypeptide consisting of 8 amino acids, a polypeptide consisting of 6 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 4 amino acids, a polypeptide consisting of 2 amino acids, and a polypeptide consisting of 1 amino acids.
- **5**. The polypeptide of claim **1**, wherein DOMAIN is a human IgG Fc domain selected from the group consisting of IgG1, IgG2, IgG3 and IgG4.
- 6. The polypeptide of claim 5, which is selected from the group consisting of SEQ ID NOs:19, 21 and 22.
- 7. The polypeptide of claim 1, wherein DOMAIN is a human albumin domain.
- **8**. The polypeptide of claim **7**, which is selected from the group consisting of SEQ ID NOs:24, 25 and 26.
- **9**. An isolated polypeptide comprising a soluble region of ENPP3 and lacking a transmembrane domain and a signal peptide, or a fusion protein thereof, wherein the polypeptide reduces cellular calcification when administered to a subject suffering from diseases of calcification and ossification.
- 10. The polypeptide of claim 9, which comprises the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment thereof.
- 11. The polypeptide of claim 10, which consists essentially of SEQ ID NO:1 or a biologically active fragment thereof.
- 12. A method of treating or preventing a disease or disorder associated with pathological calcification or pathological ossification in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of at least one isolated polypeptide of claim 1.

- 13. The method of claim 12, wherein the disease or disorder comprises at least one selected from the group consisting of general arterial calcification of infancy (GACI), idiopathic infantile arterial calcification (IIAC), pseudoxanthoma elasticum (PXE), OPLL, hypophosphatemic rickets, osteoarthritis, calcification of atherosclerotic plaques, pseudoxanthoma elasticum, hereditary and non-hereditary forms of osteoarthritis, ankylosing spondylitis, hardening of the arteries occurring with aging, and calciphylaxis resulting from end stage renal disease (or mineral bone disorder of chronic kidney disease).
- **14**. The method of claim **12**, wherein the nuclease domain of the PROTEIN or mutant thereof is absent.
- **15**. The method of claim **12**, wherein EXPORT is absent or selected from the group consisting of SEQ ID Nos:2-5.
- 16. The method of claim 12, wherein X and Z are independently selected from the group consisting of: absent, a polypeptide consisting of 20 amino acids, a polypeptide consisting of 19 amino acids, a polypeptide consisting of 18 amino acids, a polypeptide consisting of 17 amino acids, a polypeptide consisting of 16 amino acids, a polypeptide consisting of 15 amino acids, a polypeptide consisting of 14 amino acids, a polypeptide consisting of 13 amino acids, a polypeptide consisting of 12 amino acids, a polypeptide consisting of 11 amino acids, a polypeptide consisting of 10 amino acids, a polypeptide consisting of 9 amino acids, a polypeptide consisting of 8 amino acids, a polypeptide consisting of 7 amino acids, a polypeptide consisting of 6 amino acids, a polypeptide consisting of 5 amino acids, a polypeptide consisting of 4 amino acids, a polypeptide consisting of 3 amino acids, a polypeptide consisting of 2 amino acids, and a polypeptide consisting of 1 amino acid.
- 17. The method of claim 12, wherein the at least one polypeptide is administered acutely or chronically to the subject.
- 18. The method of claim 12, wherein the at least one polypeptide is administered locally, regionally or systemically to the subject.
- **19**. The method of claim **12**, wherein DOMAIN is a human IgG Fc domain selected from the group consisting of IgG1, IgG2, IgG3 and IgG4.
- 20. The method of claim 19, wherein the at least one polypeptide is selected from the group consisting of SEQ ID NOs:19, 21 and 22.
- 21. The method of claim 12, wherein DOMAIN is a human albumin domain.
- **22**. The method of claim **21**, wherein the at least one polypeptide is selected from the group consisting of SEQ ID NOs:24, 25 and 26.
- 23. The method of claim 12, wherein the subject is a mammal
- 24. The method of claim 23, wherein the mammal is human.

- 25. A method of reducing or preventing vascular calcification in a subject with low plasma pyrophosphate (PPi) or high serum phosphate (Pi), the method comprising administering to the subject a therapeutically effective amount of an isolated recombinant human soluble ENPP3 fragment or fusion protein thereof, wherein the administered amount raises the level of plasma PPi in the subject to at least about 800 nM.
- 26. The method of claim 25, wherein the administered amount raises the level of plasma PPi in the subject to at least about 1 μM .
- 27. The method of claim 26, wherein the administered amount raises the level of plasma PPi in the subject to at least about 1.5 μ M.
- **28**. The method of claim **25**, wherein the subject has at least one disease selected from a group consisting of GACI, IIAC, PXE, OPLL, MWVC, ARHR2, ESRD, CKD-MBD, XLH, age related osteopenia, CUA and hypophosphatemic rickets.
- 29. The method of claim 25, wherein the soluble ENPP3 fragment or fusion protein thereof comprises the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment thereof.
- **30**. The method of claim **25**, wherein the soluble ENPP3 fragment consists essentially of SEQ ID NO:1 or a biologically active fragment thereof.
- **31**. The method of claim **25**, wherein the soluble ENPP3 fragment or fusion protein thereof lacks a transmembrane domain and a signal peptide.
- **32**. A method of treating of a subject having ENPP1 deficiency or ENPP1-associated disease, the method comprising administering to the subject a therapeutically effective amount of an isolated recombinant human soluble ENPP3 fragment or fusion protein thereof.
- **33**. The method of claim **32**, wherein the subject has at least one disease selected from a group consisting of GACI, IIAC, PXE, OPLL, MWVC, ARHR2, ESRD, CKD-MBD, XLH, age related osteopenia, CUA and hypophosphatemic rickets.
- **34**. The method of claim **32**, wherein the soluble ENPP3 fragment or fusion protein thereof comprises the extracellular domain of ENPP3 (SEQ ID NO:1) or a biologically active fragment thereof.
- **35**. The method of claim **32**, wherein the soluble ENPP3 fragment consists essentially of SEQ ID NO:1 or a biologically active fragment thereof.
- **36**. The method of claim **32**, wherein the soluble ENPP3 fragment or fusion protein thereof lacks a transmembrane domain and a signal peptide.

37-38. (canceled)

* * * * *