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An integrated software architecture for a highly parallel mu}ﬁprocessor system having multiple tightly-coupled processors
(10) that share a common memory (14) efficiently controls the interface with and execution of programs on such a multiprocessor
system. The software architecture combines a symmetrically integrated multithreaded operating system (1000) and an integrated
parallel user environment (2000). The operating system distributively implements an anarchy-based scheduling model for the
scheduling of processes and resources by allowing each processor (10) to access a single image of the operating system (1000)
stored in the common memory that operates on a common set of operating system shared resouces (2500). The user environment
(2000) provides a common visual representation for a plurality of program development tools that provide compilation, execution
and debugging capabilities for multithreaded user programs and assumes parallelism as the standard mode of operation.
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INTEGRATED SOFTWARE ARCHITECTURE FOR A
HIGHLY PARALLEL MULTIPROCESSOR SYSTEM

TECHNICAL FIELD
This invention relates generally to the field of operating system
software and program development tools for computer processing
systems. More particularly, the present invention relates to an integrated
software architecture for a highly parallel multiprocessor system having
multiple, tightly-coupled processors that share a common memory.

BACKGROUND ART

It is well recognized that one of the major impediments to the
effective utilization of multiprocessor systems is the lack of appropriate
software adapted to operate on something other than the traditional von
Neuman computer architecture of the types having a single sequential
processor with a single memory. Until recently, the vast majority of
scientific programs written in the Fortran and C programming languages
could not take advantage of the increased parallelism being offered by new
multiprocessor systems, particularly the high-speed computer processing
systems which are sometimes referred to as supercomputers. It is
particularly the lack of operating system software and program
development tools that has prevented present multiprocessor systems
from achieving significantly increased performance without the need for
user application software to be rewritten or customized to run on such
systems.

Presently, a limited number of operating systems have attempted to
solve some of the problems associated with providing support for parallel
software in a multiprocessor system. To better understand the problems
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associated with supporting parallel software, it is necessary to establish a
common set of definitions for the terms that will be used to describe the
creation and execution of a program on a multiprocessor system. As used
within the present invention, the term program refers to either a user
application program, operating system program or a software
development program referred to hereinafter as a software development
tool. A first set of terms is used to describe the segmenting of the program
into logical parts that may be executed in parallel. These terms relate to
the static condition of the program and include the concepts of threads and
multithreading. A second set of terms is used to describe the actual
assignment of those logical parts of the program to be executed on one or
more parallel processors.  This set of terms relate to the dynamic
condition of the program during execution and include the concepts of
processes, process images and process groups.

A thread is a part of a program that is logically independent from
another part of the program and can therefore be executed in parallel with
other threads of the program. In compiling a program to be run on a
multiprocessor system, some compilers attempt to create multiple threads
for a program automatically, in addition to those threads that are explicitly
identified as portions of the program specifically coded for parallel
execution. For example, in the UNICOS operating system for the Cray X-
MP and Y-MP supercomputers from Cray Research, Inc., the compilers
(one for each programming langauge) attempt to create multiple threads
for a program using a process referred to by Cray Research as
Autotasking®. In general, however, present compilers have had limited
success in creating multiple threads that are based upon on analysis of the
program structure to determine whether multithreading is appropriate
and that will result in reduction in execution time of the multithreaded
program in proportion to the number of additional processors applied to
the multithreaded program.

The compiler will produce an object code file for each program
module. A program module contains the source code version for all or
part of the program. A program module may also be referred to as a
program source code file. The object code files from different program
modules are linked together into an executable file for the program. The
linking of programs together is a common and important part of large

-
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scale user application programs which may consist of many program
modules, sometimes several hundred program modules. '
The executable form of a multithreaded program consists of
multiple threads that can be executed in parallel. In the operating system,
the representation of the executable form of a program is a process. A
process executes a single thread of a program during a single time period.
Multiple processes can each execute a different thread or the same thread
of a multithreaded program. When multiple processes executing multiple
threads of a multithreaded program are simultaneously executing on
multiple processors, then parallel processing of a program is being
performed. When multiple processes execute multiple threads of a
multithreaded program, the processes share a single process image and are
referred to as shared image processes. A process image is the
representation in the operating system of the resources associated with
process. The process image includes the instructions and data for the
process, along with the execution context information for the processor
(the values in all of the registers, both control registers and data registers,
e.g., scalar registers, vector registers, and local registers) and the execution
context information for operating system routines called by the process.

In present multiprocessor systems, the operating system is generally
responsible for assigning processes to the different processors for
execution. One of the problems for those prior art operating systems that
have attempted to provide support for multithreaded programs is that the
operating systems themselves are typically centralized and not
multithreaded. Although a centralized, single threaded operating system
can schedule multiple processes to execute in multiple processors in
multiprocessor systems having larger numbers of processors, the
centralized, single threaded operating system can cause delays and
introduce bottlenecks in the operation of the multiprocessor system.

One method of minimizing the delays and bottlenecks in the
centralized operating system utilizes the concept of a lightweight process.
A lightweight process is a thread of execution (in general, a thread from a
multithreaded program) plus the context for the execution of the thread.
The term lightweight refers to the relative amount of context information
for the thread. A lightweight process does not have the full context of a
process (e.g., it often does not contain the full set of registers for the
processor) A lightweight process also does not have the full flexibility of a
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process. The execution of a process can be interrupted at any time by the
operating system. When the operating system stops execution of a process,
for example in response to an interrupt, it saves the context of the
currently executing process so that the process can be restarted at a later
time at the same point in the process with the same context. Because of
the limited context information, a lightweight process should not be
interrupted at an arbitrary point in its execution. A lightweight process
should only be interrupted at a specific point in its execution. At these
specific points, the amount of context that must be saved to restart the
lightweight process is known. The specific points at which the lightweight
process may be interrupted are selected so that the amount of context that
must be saved is small. For example, at certain points in the execution of a
lightweight process, it is known which registers do not have values in
them such that they would be required for the restart of the lightweight
process.

Lightweight processes are typically not managed by the operating
system, but rather by code in the user application program. Lightweight
processes execute to completion or to points where they cannot continue
without some execution by other processes. At that point, the lightweight
processes are interrupted by the code in the user's application program and
another lightweight process that is ready to execute is started (or restarted).
The advantage of present lightweight processes is that the switching
between the lightweight processes is not done by the operating system,
thus avoiding the delays and bottlenecks in the operating system. In
addition, the amount of context information necessary for a lightweight
process is decreased, thereby reducing the time to switch in and out of a
lightweight process. Unfortunately, the handling of lighweight processes
must be individually coded by the user application program.

Another problem for prior art operating systems that have
attempted to provide support for multithreaded programs is that the
operating systems are not designed to minimize the overhead of different
types of context switching that can occur in fully optimized multiprocessor
system. To understand the different types of context switching that can
occur in a multiprocessor system, it is necessary to define additional terms
that describe the execution of a group of multithreaded processes.

Process Group - For Unix® and other System V operating systems,
the kernel of the operating system uses a process group ID to identify
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groups of related processes that ghould receive a common signal for
certain events. Generally, the processes that execute the threads of a single
program are referred to a process group.

Process Image - Associated with a process is a process image. A
process image defines the system resources that are attached to a process.
Resources include memory being used by the process and files that the
process currently has open for input or output.

Shared Image Processes - These are processes that share the same
process image (the same memory space and file systems). Signals (of the
traditional System V variety) and semaphores synchronize shared image
processes. Signals are handled by the individual process or by a signal
processing group leader, and can be sent globally or targeted to one or
more processes. Semaphores also synchronize shared image processes.

Multithreading - Multiple threads execute in the kernel at any time.
Global data is protected by spin locks and sleeping locks (Dijkstra
semaphores). The type of lock used depends upon how long the data has
to be protected.

Spin Locks - Spin locks are used during very short periods of
protection, as an example, for memory references. A spin lock does not
cause the locking or waiting process to be rescheduled.

Dijkstra Semaphores - Dijkstra semaphores are used for locks which
require an exogenous event to be released, typically an input/output
completion. They cause a waiting process to discontinue running until
notification is received that the Dijkstra semaphore is released.

Intra-Process Context Switch - a context switch in which the
processor will be executing in the same shared process image or in the
operating system kernel.

Inter-Process Context Switch - a context switch in which the
processor will be executing in a different shared process image.
Consequently, the amount of context information that must be saved to
effect the switch is increased as the processor must acquire all of the
context information for the process image of the new shared image
process.

Lightweight Process Context Switch - a context switch executed
under control of a user program that schedules a lightweight process to be
executed in another processor and provides only a limited subset of the
intra-process context information. In other words, the lightweight process
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context switch is used when a process has a small amount of work to be
done and will return the results of the work to the user program that
schedule the lightweight process.

Prior art operating systems for minimally parallel supercomputers
(e.g., UNICOS) are not capable of efficiently implementing context
switches because the access time for acquiring a shared resource necessary
to perform a context switch is not bounded. In other words, most prior art
supercomputer operating systems do not know how long it will take to
make any type of context switch. As a result, the operating system must
use the most conservative estimate for the access time to acquire a shared
resource in determining whether to schedule a process to be executed.
This necessarily implies a penalty for the creation and execution of
multithreaded programs on such systems because the operating system
does not efficiently schedule the multithreaded programs. Consequently,
in prior art supercomputer operating systems a multithreaded program
may not execute significantly faster than its single-threaded counter part
and may actually execute slower.

Other models for operating systems that support multithreaded
programs are also not effective at minimizing the different types of context
switching overheads that can occur in fully optimized multithreaded
programs. For example, most mini-supercomputers create an
environment that efficiently supports intra-process context switching by
having a multiprocessor system wherein the processors operate at slower
speeds so that the memory access times are the same order of magnitude
as the register access times. In this environment, an intra-process context
switch among processes in a process group that shares the same process
image incurs very little context switch overhead. Unfortunately, because
the speed of the processors is limited to the speed of the memory accesses,
the system incurs a significant context switch overhead in processing
inter-process context switches. On the other hand, one of the more
popular operating systems that provides an efficient model for
inter-process context switches is not capable of performing intra-process
context switches. In a virtual machine environment where process
groups are divided among segments in a virtual memory, inter-process
context switches can be efficiently managed by the use of appropriate
paging, look-ahead and caching schemes. However, the lack of a real
memory environment prevents the effective scheduling of intra-process
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context switches because of the long delays in updating virtual memory
and the problems in managing cache coherency. '

One example of an operating system that schedules multithreaded
programs is Mach, a small single-threaded monitor available from
Carnegie Mellon University. Mach is attached to a System V-type
operating system and operates in a virtual memory environment. The
Mach executive routine attempts to schedule multithreaded programs;
however, the Mach executive routine itself is not multithreaded. Mach is
a centralized executive routine that operates on a standard centralized,
single-threaded operating system. As such, a potential bottleneck in the
operating system is created by relying on this single-threaded executive to
schedule the multithreaded programs. Regardless of how small and
efficient the Mach executive is made, it still can only schedule
multithreaded programs sequentially.

Another example of a present operating system that attempts to
support multithreading is the Amoeba Development, available from
Amersterdam University. The Amoeba Development is a message
passing-based operating system for use in a distributed network
environment Generally, a distributed computer network consists of
computers that pass messages among each other and do not share
memory. Because the typical user application program (written in
Fortran, for example) requires a processing model that includes a shared
memory, the program cannot be executed in parallel without significant
modification on computer processing systems that do not share memory.

The Network Livermore Time Sharing System (NLTSS) developed
at the Lawrence Livermore National Laboratory is an example of a
message passing, multithreaded operating system. NLTSS supports a
distributed computer network that has a shared memory multiprocessor
system as one of the computers on the network. Multiprocessing that was
done on the shared memory multiprocessor system in the distributed
network was modified to take advantage of the shared memory on that
system. Again, however, the actual scheduling of the multithreaded
programs on the shared memory multiprocessor system was accomplished
using a single-threaded monitor similar to the Mach executive that relies
on a critical region of code for scheduling multiple processes.

The Dynix operating system for the Sequent Balance 21000 available
from Sequent Computer Systems, Inc. is a multithreaded operating system
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that uses bus access to common memory, rather than arbitration ‘access.
Similarily, the Amdahl System V-based UTS operating system available
from Amdahl Computers is also multithreaded; however, UTS uses a full
cross bar switch and a hierarchical cache to access common memory.
Although both of these operating system are multithreaded in that each
has multiple entry points, in fact, both operation systems use a critical
region, like the single-threaded monitor of Mach, to perform the
scheduler allocation. Because of the lack of an effective lock mechanism,
even these supposedly multithreaded operating systems must perform
scheduling as a locked activity in a critical region of code.

The issue of creating an efficient environment for multiprocessing
of all types of processes in a multiprocessor system relates directly to the
communication time among processors. If the time to communicate is a
significant fraction of the time it takes to execute a thread, then
multiprocessing of the threads is less beneficial in the sense that the time
saved in executing the program in parallel on multiple processors is lost
due to the communication time between processors. For example, if it
takes ten seconds to execute a multithreaded program on ten processors
and only fifteen seconds to execute a single-threaded version of the same
program on one processor, then it is more efficient to use the
multiprocessor system to execute ten separate, single-threaded programs
on the ten processors than to execute a single, multithreaded program.

The issue of communication time among processors in a given
multiprocessor system will depend upon a number of factors. First, the
physical distance between processors directly relates to the time it takes for
the processors to communicate. Second, the architecture of the
multiprocessor system will dictate how some types of processor
communication are performed. Third, the types of resource allocation
mechanisms available in the multiprocessor (e.g., semaphore operators)
determines to a great degree how processor communication will take
place. Finally, the type of processor communication (i.e., inter-process
context switch, intra-process context switch or lightweight process) usually
determines the amount of context information that must be stored, and,
hence, the time required for processor communication. When all of these
factors are properly understood, it will be appreciated that, for a
multiprocessor system consisting of high performance computers, the
speed of the processors requires that lightweight context switches have
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small communication times in order to efficiently multiprocess these
lightweight processes. Thus, for high performance multiprocessors, only
tightly-coupled multiprocessor systems having a common shared memory
are able to perform efficient multiprocessing of small granularity threads.

Another consideration in successfully implementing
multiprocessing, and in particular lightweight processing, relates to the
level of multithreading that is performed for a program. To minimize the
amount of customization necessary for a program to efficiently execute in
parallel, the level of multithreading that is performed automatically is a
serious consideration for multiprocessor systems where the processors can
be individually scheduled to individual processes.

Still another problem in the prior art is that some present operating
systems generally schedule multiple processes by requesting a fixed
number N of processors to work on a process group. This works well if
the number N is less than the number of processors available for work;
however, this limitation complicates the scheduling of processes if two or
more process group are simultaneously requesting multiple processors.
For example, in the Alliant operating system, the operating system will
not begin execution of any of the processes for a shared image process
group until all N of the requested processor are available to the process
group.

An additional problem in present multiprocessor operating systems
is the lack of an efficient synchronization mechanism to allow processors
to perform work during synchronization. Most prior art synchronization
mechanisms require that a processor wait until synchronization is
complete before continuing execution. As a result, the time spent waiting
for the synchronization to occur is lost time for the processor.

In an effort to increase the processing speed and flexibility of
supercomputers, the cluster architecture for highly parallel
multiprocessors described in the previously filed parent application
entitted CLUSTER ARCHITECTURE FOR A HIGHLY PARALLEL
SCALAR/VECTOR MULTIPROCESSOR SYSTEM, PCT Serial No.:
PCT/US90/07655, provides an architecture for supercomputers wherein
multiple processors and external interfaces can make multiple and
simultaneous requests to a common set of shared hardware resources,
such as main memory, global registers and interrupt mechanisms.
Although this new cluster architecture offers a number of solutions that
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can increase the parallelism of supercomputers, these solutions will not be
utilized by the vast majority of users of such systems without software that
implements parallelism by default in the user environment and provides
an operating system that is fully capable of supporting such a user
environment. Accordingly, it is desirable to have a software architecture
for a highly parallel multiprocessor system that can take advantage of the
parallelism in such a system.

SUMMARY OF THE INVENTION

The present invention is an integrated software architecture that
efficiently controls the interface with and execution of programs on a
highly parallel multiprocessor system having multiple tightly-coupled
processors that share a common memory. The software architecture of the
present invention combines a symmetrically integrated multithreaded
operating system and an integrated parallel user environment. The
operating system distributively implements an anarchy-based scheduling
model for the scheduling of processes and resources by allowing each
processor to access a single image of the operating system stored in the
common memory that operates on a common set of operating system
shared resources. The user environment provides a common visual
representation for a plurality of program development tools that provide
compilation, execution and debugging capabilities for parallel user
application programs and assumes parallelism as the standard mode of
operation.

The major problem with the present software associated with
multiprocessor systems is that the prior art for high performance
multiprocessor systems is still relatively young. As a result, the software
problems associated with such systems have been only partially solved,
either as an after-thought or in a piece-meal, ad hoc manner. This is
especially true for the problems associated with parallel execution of
software programs. The present invention approaches the problem of
software for multiprocessor systems in a new and fully integrated manner.
The parallel execution of software programs in a multiprocessor system is
the primary objective of the software architecture of the present
invention.

In order to successfully implement parallelism by default in a
multiprocessor system it is desirable to maximize the processing speed and
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flexibility of the multiprocessor system. As a result, a balance must be’
maintained among the speed of the processors, the bandwidth of the
memory interface and the input/output interface. If the speed or
bandwidth of any one of these components is significantly slower than the
other components, some portion of the computer processing system will
starve for work and another portion of the computer processing system
will be backlogged with work. If this is the case, there can be no allocation
of resources by default because the user must take control of the
assignment of resources to threads in order to optimize the performance
of a particular thread on a particular system. The software architecture of
the present invention integrates a symmetrical, multithreaded operating
system and a parallel user environment that are matched with the design
of the highly parallel multiprocessor system of the preferred embodiment
to achieve the desired balance that optimizes performance and flexibility
without the need for user intervention.

The integrated software architecture of the present invention
decreases overhead of context switches among a plurality of processes that
comprise the multithreaded programs being executed on the
multiprocessor system. Unlike prior supercomputer operating systems,
user application programs are not penalized for being multithreaded. The
present invention also decreases the need for the user application
programs to be rewritten or customized to execute in parallel on the
particular multiprocessor system. As a result, parallelism by default is
implemented in the highly parallel multiprocessor system of the preferred
embodiment.

The present invention is capable of decreasing the context switch
overhead for all types of context switches because of a highly bounded
switching paradigm of the present invention. The ability to decrease
context switching in a supercomputer is much more difficult than for a
lower performance multiprocessor system because, unlike context
switching that takes place in non-supercomputers, the highly parallel
multiprocessor of the present invention has hundreds of registers and
data locations that must be saved to truly save the "context" of a process
within a processor. To accommodate the large amount of information
that must be saved and still decrease the context switch overhead, the
operating system operates with a caller saves paradigm where each routine
saves its context on a activation record stack like an audit trail. Thus, to
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restore the entire context for a progess, the operating system need only
save the context of the last routine and then unwind the activation record
stack. The caller saves paradigm represents a philosophy implemented
throughout the multiprocessor system of never being in a situation where
it is necessary to save all of those hundreds of registers for a context switch
because the operating system did not know what was going on in the
processor at the time that a context switch was required.

In addition to decreasing the overhead of context switches, the
preferred embodiment of the present invention increases the efficiency of
all types of context switches by solving many of the scheduling problems
associated with scheduling multiple processes in multiple processors. The
present invention implements a distributed, anarchy-based scheduling
model and improves the user-side scheduling to takes advantage of an
innovation of the present invention referred to as microprocesses
(mprocs). Also new to the preferred embodiment is the concept of a User-
Side Scheduler (USS) that can both place work in the request queues in the
OSSR and look for work to be done in the same request queues. The order
of the work to be done in the request queue is determined by a
prioritization of processes.

The User-Side Scheduler (USS) is a resident piece of object code
within each multithreaded program. Its purpose is manyfold: 1) request
shared image processes from the operating system and schedule them to
waiting threads inside the multithreaded program, 2) detach shared image
processes from threads that block on synchronization, 3) reassign these
shared image processes to waiting threads, 4) provide deadlock detection,
5) provide a means to maximize efficiency of thread execution via its
scheduling algorithm, and 6) return processors to the operating system
when they are no longer needed.

The present invention improves the user-side scheduler to address
these issues. The USS requests a processor by incrementing a shared
resource representing a request queue using an atomic resource allocation
mechanism. Processors in the operating system detect this request by
scanning the request queues in the shared resources across the
multiprocessor system. When a request is detected that the processor can
fulfill, it does so and concurrently decrements the request count using the
same atomic resource allocation mechanism. The USS also uses this
request count when reassigning a processor. The request count is checked
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and decremented by the USS. This check and decrement by the processors
in the operating system and the USS are done atomically. This allows a
request for a processor to be retracted, thereby reducing the unnecessary
scheduling of processors.

The improvement to the USS is particularly useful with the
scheduling of microprocesses (mprocs). Microprocesses are a type of
lightweight process that have a very low context switch overhead because
the context of the microprocess of the present invention is discardable
upon exit. In other words, microprocesses are created as a means for
dividing up the work to be done into very small segments that receive
only enough context information to do the work required and return only
the result of the work with no other context information. In this sense,
the mprocs can be thought of as very tiny disposable tools or building
blocks that can be put together in any fashion to build whatever size and
shape of problem-solving space is required.

Another important advantage of the mprocs of the present
invention is that, while they are disposable, they are also reusable before
being disposed. In other words, if the USS requests a processor to be set up
to use a mproc to perform a first small segment of work, the USS (and for
that matter, any other requestor in the system via the operating system)
can use that same mproc to perform other small segments of work until
such time as the processor with the mproc destroys the mproc because it is
scheduled or interrupted to execute another process.

Another way in which the scheduling of the operating system of the
present invention is improved is that the operating system considers
shared image process groups when scheduling processes to processors. For
example, if a process is executing, its process image is in shared memory.
The operating system may choose to preferentially schedule other
processes from the same group to make better use of the process image. In
this sense, any process from a process group may be executed without
requiring that all of the processes for a process group be executed. Because
of the way in which the anarchy-based scheduling model uses the request
queues and the atomic resource allocation mechanism, and the way in
which the operating system considers shared image process groups, the
present invention does not suffer from a lockout condition in the event
that more than one shared image process group is requesting more than
the available number of processors.
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The supercomputer symmetrically integrated, multithreaded
operating system (SSI/mOS) controls the operation and execution of one
or more user application programs and software development tools and is
capable of supporting one or more shared image process groups that
comprise such multithreaded programs. SSI/mOS is comprised of a
multithreaded operating system kernel for processing multithreaded
system services, and an input/output section for processing distributed,
multithreaded input/output services.

The operating system of this invention differs from present
operating systems in the way in which interrupts and system routines are
handled. In addition to the procedure (proc) code within the kernel of the
operating system, the kernel also includes code for multithreaded parallel
interrupt procedures (iprocs) and multithreaded parallel system
procedures (kprocs). In the present invention, interrupts (signals) are
scheduled to be handled by the iproc through a level 0 interrupt handler,
rather than being immediately handled by the processor. This allows idle
or lower priority processors to handle an interrupt for a higher priority
processor. Unlike prior art operating systems, the kprocs in the present
invention are not only multithreaded in that multiple processors may
execute the system procedures at the same time, but the kprocs are
themselves capable of parallel and asynchronous execution. In this sense,
kprocs are treated just as any other type of procedure and can also take
advantage of the parallel scheduling innovations of the present
invention.

The operating system kernel includes a parallel process scheduler, a
parallel memory scheduler and a multiprocessor operating support
module. The parallel process scheduler schedules multiple processes into
multiple processors. Swapping prioritization is determined by first
swapping the idle processors and then the most inefficient processors as
determined by the accounting support. The parallel memory scheduler
allocates shared memory among one or more shared image process groups
and implements two new concepts, partial swapping of just one of the
four memory segments for a processor, and partial swapping within a
single segment. The parallel memory scheduler also takes advantage of
the extremely high swap bandwidth of the preferred multiprocessor
system that is a result of the distributed input/output architecture of the
system which allows for the processing of distributed, multithreaded
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input/output services, even to the same memory segment for a processor.
The multiprocessor operating support module provides accounting,
control, monitoring, security, administrative and operator information
about the processors.

The input/output software section includes a file manager, an
input/output manager, a resource scheduler and a network support
system. The file manager manages directories and files containing both
data and instructions for the programs. The input/output manager
distributively processes input/output requests to peripheral devices
attached to the multiprocessor system. The resource scheduler schedules
processors and allocates input/output resources to those processors to
optimize the usage of the multiprocessor system. The network support
system supports input/output requests to other processors that may be
interconnected with the multiprocessor system.

The program development tools of the integrated parallel user
environment includes a program manager, a compiler, a user interface,
and a distributed debugger. The program manager controls the
development environment for source code files representing a software
program. The compiler is responsible for compiling the source code file to
create an object code file comprised of multiple threads capable of parallel
execution. An executable code file is then derived from the object code
file. The user interface presents a common visual representation of the
status, control and execution options available for monitoring and
controlling the execution of the executable code file on the multiprocessor
system. The distributed debugger provides debugging information and
control in response to execution of the executable code file on the
multiprocessor system.

The compiler includes one or more front ends, a pair of optimizers
and a code generator. The front ends parse the source code files and
generate an intermediate language representation of the source code file
referred to as HiForm (HF). The optimizer includes means for performing
machine-independent restructuring of the HF intermediate language
representation and means for producing a LoForm (LF) intermediate
language representation that may be optimized on a machine-dependent
basis by the code generator The code generator creates an object code file
based upon the LF intermediate language representation, and includes
means for performing machine dependent restructuring of the LF
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intermediate language representation. An assembler for generating object
code from an assembly source code program may also automatically
perform some optimization of the assembly language program. The
assembler generates LoForm which is translated by the code generator into
object code (machine instructions). The assembler may also generate HF
for an assembly language program that provides information so that the
compiler can optimize the assembly language programs by restructuring
the LF. The HF generated assembly language code can also be useful in
debugging assembly source code because of the integration between the HF
representation of a program and the distributed debugger of the present
invention.

The user interface provides means for linking, executing and
monitoring the program. The means for linking the object code version
combines the user application program into an executable code file that
can be executed as one or more processes in the multiprocessor system.
The means for executing the multithreaded programs executes the
processes in the multiprocessor system. Finally, the means for monitoring
and tuning the performance of the multithreaded programs includes
means for providing the status, control and execution options available
for the user. In the preferred embodiment of the user interface, the user is
visually presented with a set of icon-represented functions for all of the
information and options available to the user. In addition, an equivalent
set of command-line functions is also available for the user.

The distributed debugger is capable of debugging optimized parallel
object code for the preferred multiprocessor system. It can also debug
distributed programs across an entire computer network, including the
multiprocessor system and one or more remote systems networked
together with the multiprocessor system. It will be recognized that the
optimized parallel object code produce by the compiler will be
substantially different than the non-optimized single processor code that a
user would normally expect as a result of the compilation of his or her
source code. In order to accomplish debugging in this type of
environment, the distributed debugger maps the source code file to the
optimized parallel object code file of the software program, and vice versa.

The primary mechanism for integrating the multithreaded
operating system and the parallel user environment is a set of data
structures referred to as the Operating System Shared Resources (OSSR)



WO 91/20033 PCT/US91/04066

10

15

20

30

35

17

which are defined in relation to the various hardware shared resources,
particularly the common shared main memory and the global registers.
The OSSRs are used primarily by the operating system, with a limited
subset of the OSSRs available to the user environment. Unlike prior art
operating systems for multiprocessors, the OSSRs are accessible by both the
processors and external interface ports to allow for a distributed
input/output architecture in the preferred multiprocessor system. A
number of resource allocation primitives are supported by the hardware
shared resources of the preferred embodiment and are utilized in
managing the OSSRs, including an atomic resource allocation mechanism
that operates on the global registers.

An integral component of the parallel user environment is the
intermediate language representation of the source code version of the
application or development software program referred to as HiForm (HF).
The representation of the software programs in HF allows the four
components of the parallel user environment, the program management
module, the compiler, the user interface and the distributed debugger to
access a single common representation of the software program, regardless
of the programming langauge in which the source code for the software
program is written.

As part of the compiler, an improved and integrated Inter-
Procedural Analysis (IPA) is used by the parallel user environment to
enhance the value and utilization of the HF representation of a software
program. The IPA analyzes the various relationships and dependencies
among the procedures in the HF representation of a multithreaded
program to be executed using the present invention.

It is an objective of the present invention to provide a software
architecture for implementing parallelism by default in a highly parallel
multiprocessor system having multiple, tightly-coupled processors that
share a common memory.

It is another objective of the present invention to provide a
software architecture that is fully integrated across both a symmetrically
integrated, multithreaded operating system capable of multiprocessing
support and a parallel user environment having a visual user interface.

It is a further objective of the present invention to provide an
operating system that distributively implements an anarchy-based
scheduling model for the scheduling of processes and resources by
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allowing each processor to access a single image of the operating'system
stored in the common memory that operates on a common set of
operating system shared resources.

It is a still further objective of the present invention to provide a
software architecture with a parallel user environment that offers a
common representation of the status, control and execution options
available for user application programs and software development tools,
including a visual user interface having a set of icon-represented
functions and an equivalent set of command-line functions.

These and other objectives of the present invention will become
apparent with reference to the drawings, the detailed description of the
preferred embodiment and the appended claims.

DESCRIPTION OF THE DRAWINGS

Figs. 1a and 1b are simplified schematic representations of the prior
art attempts at multischeduling and multischeduling in the present
invention.

Fig. 2 is a simplified schematic representation showing the
multithreaded operating system of the present invention.

Fig. 3 is a representation of the relative amount of context switch
information required to perform a context switch in a multiprocessor
system.

Figs. 4a and 4b are simplified schematic representations of the prior
art lightweight scheduling and microprocess scheduling in the present
invention.

Fig. 5 is a block diagram of the preferred embodiment of a single
multiprocessor cluster system for executing the software architecture of
the present invention.

Figs. 6a and 6b are a block diagram of a four cluster implementation
of the multiprocessors cluster system shown in Fig. 5.

Fig. 7 is a pictorial representation of a four cluster implementation
of the multiprocessors cluster system shown in Figs. 6a and 6b.

Figs. 8a and 8b are an overall block diagram of the software
architecture of the present invention showing the symmetrically
integrated, multithreaded operating system and the integrated parallel
user environment.
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Figs. 9a and 9b are a block diagram showing the main components
of the operating system kernel of the present invention. '

Figs. 10a and 10b is a schematic flow chart showing the processing of
context switches by the interrupt handler of the present invention.

Fig. 11 is a simplified schematic diagram showing how background
processing continues during an interrupt.

Fig. 12 is a block diagram of the scheduling states for the dispatcher
of the present invention.

Fig. 13 shows one embodiment of an array file system using the
presenting invention.

Fig. 14 is a block diagram of a swapped segment.

Fig. 15 is a block diagram of memory segment functions.

Fig. 16 is a schematic diagram showing the selection of adjacent
swap out candidates.

Fig. 17 is a schematic diagram showing the process of splitting
memory segments.

Fig. 18 is a schematic diagram showing the process of coalescing
memory segments.

Fig. 19 is a schematic diagram showing the process of splitting
memory segments.

Fig. 20 is a schematic diagram showing the oversubscription of the
SMS. ‘

Fig. 21 is a schematic diagram showing a version of STREAMS
based TCP/IP implemented using the present invention.

Fig. 22 is a block diagram showing the kernel networking
environment and support of the present invention. '

Figs. 23a and 23b are a pictorial representation of the programming
environment as seen by a programmer.

Fig. 24 is a simplified block diagram of the preferred design of the
ToolSet shown in Fig. 23 as implemented on top of present software.

Fig. 25a is a block diagram of the compiler of the present invention.

Figs. 25b-1, 25b-2, 35b-3 and 25b-4 are a pictorial representation of a
common user interface to the compiler shown in Fig. 25a.

Figs. 26a and 26b are functional and logical representations of an
example of the basic unit of optimization in the present invention

referred to as a basic block.
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Figs. 27a and 27b show two examples of how control flow can be
used to visualize the flow of control between basic blocks in the program
unit.

Figs. 28a, 28b, 28c, 28d and 28e are tree diagrams of the constant
folding optimization of the compiler of the present invention.

Figs. 29a, 29b, 29c and 29d are pictorial representation of a multiple
window user interface to the distributed debugger of the present
invention.

Fig. 30 is a schematic representation of the information utilized by
the distributed debugger as maintained in various machine
environments.

DESCRIPTION OF THE PREFERRED EMBODIMENT

To aid in the understanding of the present invention, a general
overview of how the present invention differs from the prior art will be
presented. In addition, an analogy is presented to demonstrate why the
present invention is a true software architecture for generating and
executing multithreaded programs on a highly parallel multiprocessor
system, as compared to the loosely organized combination of individual
and independent software development tools and operating system
software that presently exists in the prior art.

Referring now to Fig. 1a, a schematic representation is shown of
how most of the prior art operating systems attempted multischeduling of
multiple processes into multiple processors. The requests for multiple
processes contained in a Request Queue are accessed sequentially by a
single Exec Scheduler executing in CPU-0. As a result, the multiple
processes are scheduled for execution in CPU-1, CPU-2, CPU-3 and CPU-4
in a serial fashion. In contrast, as shown in Fig. 1b, the present invention,
all of the CPU's (CPU-0, CPU-1, CPU-2, CPU-3, CPU~4 and CPU-5) and all
of the I/O controllers (I/O-1 and I/0-2) have access to a common set of data
structures in the Operating System Shared Resources (OSSR), including a
Work Request Queue. As a result, more than one CPU can
simultaneously execute a shared image of the operating system (OS) code
to perform operating system functions, including the multithreaded
scheduling of processes in the Work Request Queue. Also unlike the
prior art, the present invention allow the I/O controllers to have access to
the OSSRs so that the I/O conirollers can handle input/output operations
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without requiring intervention from a CPU. This allows 1/0-2, for
example, to also execute the Multi-Scheduler routines of the Operating
System to perform scheduling of input/output servicing.

Because the operating system of the present invention is both
distributed and multithreaded, it allows the multiprocessor system to
assume the configuration of resources (i.e,, CPU's , I/O controllers and
shared resources) that is, on average, the most efficient utilization of those
resources. As shown in Fig. 2, the supercomputer, symmetrically
integrated, multithreaded operating system (SSI/mOS) can be executed by
each of the CPU's and the I/O controllers from a common shared image
stored in main memory (not shown) and each of the CPU’s and the I/O
controller can access the common OSSR's. In the software architecture of
the present invention, additional CPU's (e.g., CPU-1) and I/0O controllers
(e.g., IOC-1) can be added to the multiprocessor system without the need to
reconfigure the multiprocessor system. This allows for greater flexibility
and extensibility in the control and execution of the multiprocessor system
because the software architecture of the present invention uses an anarchy-
based scheduling model that lets the CPU's and IOC's individually
schedule their own work. If a resource (CPU or IOC) should be
unavailable, either because it has a higher priority process that it is
executing, or, for example, because an error has been detected on the
resource and maintenance of the resource is required, that resource does
not affect the remaining operation of the multiprocessor system. It will
also be recognized that additional resources may be easily added to the
multiprocessor system without requiring changes in the user application
programs executing on the system.

Referring now to Fig. 3, a simplified representation of the relative
amounts of context switch information is shown for the three types of
context switches: lightweight processes, intra-process group switches and
inter-process group switches. Based upon this representation, it is easy to
understand that the best way to minimize total context switch overhead is
to have the majority of context switches involve lightweight processes.
Unfortunately, as shown in Fig. 4a, the prior art scheduling of lightweight
processes is a cumbersome one-way technique wherein the user program
determines the type of lightweight processes it wants to have scheduled
based on its own independent criteria using data structures in the main
memory that are unrelated to the other operating system scheduling that
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may be occurring in the multiprocessor. Because the user-side scheduling
of such lightweight processes and the operating system are not integrated,
the context switch overhead for lightweight process context switches is
increased. In the present invention, shown in Fig. 4b, both the user-side
scheduler and the operating system operate on the same set of OSSR's that
use both shared common memory and global registers. As a result, there
is a two-way communication between the operating system and the user-
side scheduler that allows the present invention to decrease the context
switch overhead associated with lightweight processes, and in particular,
with a new type of lightweight process referred to as a microprocess.

An analogy that may be helpful in understanding the present
invention is to visualize the software architecture of the present
invention in terms of being a new and integrated approach to constructing
buildings. In the prior art, construction of a building is accomplished by
three different and independent entities: the customer with the idea for
the type of building to be built, the architect who takes that idea and turns
it into a series of blueprints and work orders, and the contractor who uses
the blueprints and work orders to build the building. By analogy, the user
application program is the customer with the idea and requirements for
the program to be built, the program development tools such as the
compiler are the architect for creating the blueprints and work orders for
building the program, and the operating system is the contractor using the
blueprints and work orders to build (execute) the program.

Presently, the customer, architect and contractor do not have a
common language for communicating the ideas of the customer all the
way down the work orders to be performed by the construction workers.
The customer and the architect talk verbally and may review models and
written specifications. The architect produces written blue prints and
work orders that must then be translated back into verbal work
instructions and examples that are ultimately given to the construction
workers. In addition, the communication process is inefficient because of
the time delays and lack of an integrated, distributed mechanism for
communication among all of the people involved. For example, assume
that the foreman who is responsible for scheduling all of the work to be
performed on a job site has extra sheet rock workers on a given day
because a shipment of sheet rock did not arrive. It is not easy for the
foreman to reschedule those sheet rock workers, either within the
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foreman's own job site or maybe to another job site also being constructed
by the same contractor. If the sheet rockers can only do sheet rocking, it is
not possible to have them do other work on the job site. To move the
workers to another site will take time and money and coordination with
the contractor's central office and the foreman at the other job site. The
end result is that often it is easier and more "efficient” to just let the
workers sit idle at the present job site, than it is to find "other" work for
them to do. Similarly, the lack of efficient communication may mean that
it could take weeks for a decision by the customer to change part of the
building to be communicated to the workers at the construction site.

The present invention is an entirely integrated approach to
construction that has been built from the ground up without having to
accommodate to any existing structure or requirements. All of the entities
in this invention are completely integrated together and are provided
with a common communication mechanism that allows for the most
efficient communication among everyone and the most efficient
utilization of the resources. In this sense, the present invention is as if the
customer, architect and contractor all worked together and are all linked
together by a single communication network, perhaps a multiprocessor
computer system. The customer communicates her ideas for the building
by entering them into the network, the architect modifies the ideas and
provides both the customer and the contractor with versions of the blue
prints and work orders for the building that are interrelated and the each
party can understand. The contractors workers do not have a centralized
foreman who schedules work. Instead, each worker has access to a single
job list for each of the job sites which the contractor is building. When a
worker is idle, the worker examines the job list and selects the next job to
be done. The job list is then automatically updated so that no other
workers will do this job. In addition, if a worker finds out that he or she
needs additional help in doing a job, the worker may add jobs to the job
list. If there are no more available jobs for a given job site, the worker can
immediately call up the job list for another job site to see if there is work
to be done there. Unlike the prior situation where the foreman had to
first communicate with the central office and then to another job site and
finally back to the foreman at the first job site before it was possible to
know if there was work at the second site, the present invention allows
the worker to have access to the job list at the second site. If the worker
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feels that there is sufficient work at the second job site to justify traveling
back and forth to that job site, then the worker can independently decide to
go to the second job site.

As with the integrated communication network and distributed job
list in the construction analogy, the present invention provides a similar
integrated communication network and distributed job list for controlling
the execution of programs on a multiprocessor system. As the architect,
the integrated parallel user environment of the present invention
provides a common visual representation for a plurality of program
development tools that provide compilation, execution and debugging
capabilities for multithreaded programs. Instead of relying on the present
patch-work of program development tools, some which were developed
before the onset of parallelism, the present invention assumes parallelism
as the standard mode of operation for all portions of the software
architecture. As the contractor, the operating system of the present
invention distributively schedules the work to be done using an anarchy-
based scheduling model for a common work request queue maintained in
the data structures that are part of the OSSR's resident in the shared
hardware resources. The anarchy-based scheduling model is extended not
only to the operating system (the contractor and foreman), but also to the
processes (the workers) in the form of user-side scheduling of
microprocesses. Efficient interface to the request queue and other OSSRs
by both the processes and the operating system is accomplished by the
distributed use of a plurality of atomic resource allocation mechanisms
that are implemented in the shared hardware resources. The present
invention uses an intermediate language referred to as HiForm (HF) as
the common language that is understood by all of the participants in the
software architecture. The end result is that the present invention
approaches the problem of software for multiprocessor systems in a new
and fully integrated manner with the primary objective of the software
architecture being the implementation of parallelism by default for the
paraltel execution of software programs in a multiprocessor system.

Preferred Multiprocessor System
Although it will be understood that the software architecture of the

present invention is capable of operating on any number of
multiprocessor systems, the preferred embodiment of a multiprocessor
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cluster system for executing the software architecture of the present
invention is briefly presented to provide a common reference for .
understanding the present invention.

Referring now to Fig. 5, a single multiprocessor cluster of the
preferred embodiment of the multiprocessor cluster system for executing
the present invention is shown having a plurality of high-speed
processors 10 sharing a large set of shared resources 12 (e.g., main memory
14, global registers 16, and interrupt mechanisms 18). In this preferred
embodiment, the processors 10 are capable of both vector and scalar
parallel processing and are connected to the shared resources 12 through
an arbitration node means 20. The processors 10 are also connected
through the arbitration node means 20 and a plurality of external interface
ports 22 and input/output concentrators (IOC) 24 to a variety of external
data sources 26. The external data sources 26 may include a secondary
memory system (SMS) 28 linked to the input/output concentrator means
24 via one or more high speed channels 30. The external data sources 26
may also include a variety of other peripheral devices and interfaces 32
linked to the input/output concentrator via one or more standard
channels 34. The peripheral device and interfaces 32 may include disk
storage systems, tape storage systems, terminals and workstations, printers,

and communication networks.
Referring now to Figs. 6a and 6b, a block diagram of a four cluster

version of the multiprocessor system is shown. Each of the clusters 40a,
40b, 40c and 40d physically has its own set of processors 10, shared
resources 12, and external interface ports 22 (not shown) that are associated
with that cluster. The clusters 40a, 40b, 40c and 40d are interconnected
through a remote cluster adapter means (not shown) that is an integral
part of each arbitration node means 20 as explained in greater detail in the
parent application. Although the clusters 40a, 40b, 40c and 40d are
physically separated, the logical organization of the clusters and the
physical interconnection through the remote cluster adapter means
enables the desired symmetrical access to all of the shared resources 12
Referring now to Fig. 7, the packaging architecture for the
four-cluster version of the preferred embodiment will be described, as it
concerns the physical positions of cluster element cabinets within a
computer room. The physical elements of the multiprocessor system
include a mainframe 50 housing a single cluster 40, a clock tower for
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providing distribution of clock signals to the multiprocessor system, an
Input/Output Concentrator (IOC) 52 for housing the input/ output
concentrator means 24 and a Seconday Memory System storage 53 for
housing the SMS 28.  In the preferred embodiment, an input/output
concentrator means 24a, 24b, 24c and 24d in the IOC 52 and a SMS 28a, 28b,
28c and 28d in the SMS storage 53 are each associated with two of the
clusters 40a, 40b, 40c and 40d to provide redundant paths to those external
resources

The multiprocessor cluster system of the preferred embodiment
creates a computer processing environment in which parallelism is
favored. Some of mechanisms in the multiprocessor cluster system which
aid the present invention in coordinating and synchronizing the parallel
resources of such a multiprocessor system include, without limitation: the
distributed input/output subsystem, including the signaling mechanism,
the fast interrupt mechanism, and the global registers and the atomic
operations such as TAS, FAA, FCA and SWAP that operate on the global
registers; the mark instructions, the loadf instruction, the accounting
registers and watchpoint addresses; and the various mechanism that
support the pipelined operation of the processors 10, including the
instruction cache and the separate issue and initiation of vector
instructions. Together, and individually, these mechanisms support the
symmetric access to shared resources and the multi-level pipeline
operation of the preferred multiprocessor system.

Referring now to Figs. 8a and 8b, the software architecture of the
present invention is comprised of a SSI/mOS 1000 capable of supporting
shared image process groups and an integrated parallel user environment
2000 having a common visual user interface. The software architecture of
the present invention makes use of the features of the preferred
multiprocessor system in implementing parallelism by default in a
multiprocessor environment. It will be recognized that although the
present invention can make use of the various features of the preferred
multiprocessor system, the software architecture of the present invention
is equally applicable to other types of multiprocessor systems that may or
may not incorporate some or all of the hardware features described above
for supporting parallelism in a multiprocessor system.

The SSI/mOS 1000 controls the operation and execution of one or
more application and development software programs and is capable of
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supporting one or more multithreaded programs that comprise such
software programs. The SSI/mOS 1000 is comprised of a multithreaded
operating system kernel 1100 for processing multithreaded system
services, and an input/output section 1200 for processing distributed,
multithreaded input/output services. A single image of the SSI/mOs 1000
is stored in the main memory 14 of each cluster 40.

The operating system kernel 1100 includes a parallel process
scheduler 1110, a parallel memory scheduler 1120 and a multiprocessor
operating support module 1130. The parallel process scheduler 1110
schedules multiple processes into multiple processors 10. The parallel
memory scheduler 1120 allocates shared memory among one or more
multiple processes for the processor 10. The multiprocessor operating
support module 1130 provides accounting, control, monitor, security,
administrative and operator information about the processor 10.
Associated with the operating system kernel 1100 is a multithreaded
interface library (not shown) for storing and interfacing common
multithreaded executable code files that perform standard programming
library functions.

The input/output section 1200 includes a file manager 1210, an
input/output manager 1220, a resource scheduler 1230 and a network
support system 1240. The file manager 1210 manages files containing both
data and instructions for the software programs. The input/output
manager 1220 distributively processes input/output requests to peripheral
devices 32 attached to the multiprocessor system. The resource scheduler
1230 schedules processes and allocates input/output resources to those
processes to optimize the usage of the multiprocessor system. The
network support system 1240 supports input/output requests to other
processors (not shown) that may be interconnected with the
multiprocessor system. In the preferred embodiment, the file manager
1210 includes a memory array manager 1212 for managing virtual
memory arrays, an array file manager 1214 for managing array files having
superstriping, and a file cache manager1216 for managing file caching,

The integrated parallel user environment 2000 is used to develop,
compile, execute, monitor and debug parallel software code. It will be
understood that with the integrated parallel user environment 2000 of the
present invention the entire program need not be executed on a
multiprocessor system, such as the clusters 40 previously described. For
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example, the development of the parallel software code may occur using a
distributed network with a plurality of workstations, each workstation
(not shown) capable of executing that portion of the integrated parallel
user environment necessary to develop the source code for the parallel
software code. Similarly, if the source code for a particular software
program is not large, or if compilation time is not a critical factor, it may be
possible to compile the source code using a workstation or other front-end
processor. Other types of software programs may have only a portion of
the source code adapted for execution on a multiprocessor system.
Consequently, the user application program may simultaneously be
executing on a workstation (e.g., gathering raw data) and a multiprocessor
system (e.g., processing the gathered data). In this situation, it is necessary
for the execution, monitoring and debugging portions of the integrated
parallel user environment 2000 to be able to act in concert so that both
portions of the software program can be properly executed, monitored and
debugged.

The integrated parallel user environment 2000 includes a program
manager 2100, a compiler 2200, a user interface 2300, and a distributed
debugger 2400. The program manager 2100 controls the development
environment for a source code file representing a software program. The
compiler 2200 is responsible for compiling the source code file to create an
object code file comprised of one or more threads capable of parallel
execution. The user interface 2300 presents a common visual
representation to one or more users of the status, control and execution
options available for executing and monitoring the executable code file
during the time that at least a portion of the executable code file is
executed on the multiprocessor system. The distributed debugger 2400
provides debugging information and control in response to execution of
the object code file on the multiprocessor system.

The compiler 2200 includes one or more front ends 2210 for parsing
the source code file and for generating an intermediate language
representation of the source code file, an optimizer 2220 for optimizing the
parallel compilation of the source code file, including means for
generating machine independent optimizations based on the intermediate
language representation, and a code generator 2230 for generating an object
code file based upon the intermediate language representation, including
means for generating machine dependent optimizations.
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The user interface 2300 includes link means 2310 for linking the
object code version of the user application software program into an
executable code file to be executed by the multiprocessor system, execution
means 2320 for executing the multithreaded executable code file in the
multiprocessor system, and monitor means 2330 for monitoring and
tuning the performance of the multithreaded executable code files,
including means for providing the status, control and execution options
available for the user. In the preferred embodiment of the user interface
2300, the user is visually presented with a set of icon-represented functions
for all of the information and options available to the user. In addition,
an equivalent set of command-line functions is also available for the user.

The distributed debugger 2400 is capable of debugging optimized
parallel executable code across an entire computer network, including the
multiprocessor system and one or more remote processors networked
together with the multiprocessor system. It will be recognized that the
optimized parallel object code produce by the compiler 2200 will be
substantially different than the non-optimized single processor object code
that a user would normally expect as a result of the compilation of his or
her source code. In order to accomplish debugging in this type of
distributed environment, the distributed debugger 2400 includes first map
means 2410 for mapping the source code file to the optimized parallel
executable code file of the software program, and second map means 2420
for mapping the optimized parallel executable code file to the source code
file of the software program.

The primary mechanism for integrating the multithreaded
operating system 1000 and the parallel user environment 2000 is a set of
data structures referred to as the Operating System Shared Resources
(OSSR) 2500 which are defined in relation to the various hardware shared
resources 12, particularly the common shared main memory 14 and the
global registers 16. The OSSR 2500 is a set of data structures within the
SSI/mOS 1000 that define the allocation of global registers 16 and main
memory 14 used by the operating system 1000, the parallel user
environment 2000, the distributed input/output architecture via the
external interfaces 22 and the main memory 14.

When a shared image process group is created, part of context of the
shared image process group is a dynamically allocated set of global registers
that the shared image process group will use. Each shared image process
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group is allocated one or more work request queues in the set of global
registers. In the preferred embodiment, the sets of global registers are
defined by the operating system in terms of absolute addresses to the global
registers 16. One of the global registers is designated as the total of all of
the outstanding help requests for that shared image process group. By
convention, the help request total is assigned to GO in all sets of global
registers. In the situation where the processor looking for work is
executing a microprocess or a process that is assigned to the same shared
image process group as the global register with the help request total (i.e.,
intra-process context switch), the resulting switch overhead is minimal as
no system related context expense is required to perform the requested
work. If the processor looking for work in a given help request total (G0)
is executing a microprocess not assigned to the same shared image process
group, the processor executing the microprocess must first acquire the
necessary microprocess context of the shared image process group for this
global register set before examining the help request queues.

In the preferred embodiment, the OSSR 2500 is accessible by both
the processors 10 and the external interface ports 22. The accessibility of
the OSSR 2500 by the external interface ports 22 enables the achievement
of a distributed input/output architecture for the preferred multiprocessor
clusters 40. While it is preferred that the multiprocessor system allow the
external interface ports 22 to access the OSSR 2500, it will also be
recognized that the OSSR 2500 may be accessed by only the processors 10
and still be within the scope of the present invention.

An integral component of the parallel user environment 2000 is the
intermediate language representation of the object code version of the
application or development software program referred to as HiForm (HF)
2600. The representation of the software programs in the intermediate
langauge HF 2600 allows the four components of the parallel user
environment, the program management module 2100, the compiler 2200,
the user interface 2300 and the distributed debugger 2400 to access a single
common representation of the software program, regardless of the
programming langauge in which the source code for the software program
is written.

As part of the compiler 2200, an enhanced Inter-Procedural Analysis
(IPA) 2700 is used by the parallel user environment 2000 to increase the
value and utilization of the HF representation 2500 of a software program.
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The IPA 2700 analyzes the various relationship and dependencies among
the procedures that comprise the HF representation 2500 of a software
program to be executed using the present invention.

Unlike prior art operating systems, the present invention can
perform repeatable accounting of parallel code execution without
penalizing users for producing parallel code. Also, unlike prior art user
interfaces, the present invention provides a parallel user environment
with a common visual user interface that has the capability to effectively
monitor and control the execution of parallel code and effectively debug
such parallel code. The end result is that the software architecture of the
present invention can provide consistent and repeatable answers using
traditional application programs with both increased performance and
throughput of the multiprocessor system, without the need for extensive
rewriting or optimizing the application programs. In other words, the
software architecture implements parallelism by default for a
multiprocessor system

Because of the complexity and length of the preferred embodiment
of the present invention, a table of contents identifying the remaining
section headings is presented to aid in understanding the description of

the preferred embodiment.

1.0 OPERATING SYSTEM
11 SSI/mOS Kernel Overview
1.2 Process Management
1.2.1 Elements of System V Processes
1.2.2 Architectural Implications
1.2.3 SSI/mOS Implementation of Processes
1.3 File Management
1.3.1 Elements of System V File Management
1.3.2 Architectural Implications
1.3.3 SSI/mOS Implementation of Files
1.4 Memory Management ’
1.4.1 Elements of System V Memory Management
1.4.2 Management of Main Memory
1.4.3 Management of Secondary Memory Storage
1.5 Input/Output Management
1.5.1 Elements of System V Input/Output Management
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1.5.2 Architectural Implications
1.5.3 SSI/mOS Input/Output Management

1.6 Resource Management and Scheduling
1.6.1 Introduction

5 1.6.2 Role of the Network Queuing System
1.6.3 Resource Categories
1.6.4 Resource Management
1.6.5 Resource Scheduling
1.6.6 Requirements
10 1.7 Network Support
1.8 Administrative and Operator Support
1.9 Guest Operating System Support

2.0 PARALLEL USER ENVIRONMENT
15 2.1 User Interface
2.2. Program Management
2.3 Compiler
2.3.1 Front Ends
2.3.2 Parsing
20 2.3.3 HiForm (HF) Intermediate Language
2.3.4 Optimizer
2.3.4.1 Scalar Optimizations
2.3.4.2 Control Flow Graph
2.34.3 Local Optimizations
25 23.4.4 Global Optimizations
2.3.4.5 Vectorization
2.3.4.6 Automatic Multithreading

2.34.7 In-lining
2.34.8 Register and Instruction Integration
30 2.34.9 Look Ahead Scheduling

2.3.4.10  Pointer Analysis
2.3.4.11 Constant Folding
2.3.4.12  Path Instruction
2.3.4.13  Variable to Register Mapping
35 2.3.5 Interprocedural Analysis (IPA)
2.3.6 Compilation Advisor
2.4 Debugger
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2.4.1 Distributed Design for Debugger

2.4.2 Use of Register Mapping by Debugger
2.4.3 Mapping Source Code to Executable Code
2.4.4 Debugging Inlined Procedures

2.4.5 Dual Level Parsing

1.0 - THE OPERATING SYSTEM

The operating system component of the software architecture of the
present invention is a SSI/mOS that is fully integrated and capable of
multithreading support. The preferred embodiment of the operating
system of the present invention is based on a Unix System V operating
system, AT&T Unix, System V, Release X, as validated by the System V
Validation Suite (SVVS). For a more detailed understanding of the
operation of the standard AT&T Unix operating system, reference is made
to Bach, M., The Design of the Unix Operating System (Prentice Hall 1988).
Although the preferred embodiment of the present invention is described
in terms of its application to a System V-based operating system, it will be
recognized that the present invention and many of the components of the
present invention are equally applicable to other types of operating
systems where parallelism by default in a multiprocessor operation is
desired.

Traditional System V operating systems are based on a kernel
concept. The extensions to the traditional System V kernel that comprise
the operating system of the present invention include kernel
enhancements and optimizations to support multiple levels of parallel
processing. The operating system of the present invention also contains
additions required for the management and administration of large
multiprocessor systems. For example, the operating system can manage
large production runs that use significant amounts of system resources
and require advanced scheduling, reproducible accounting, and
administrative tools. Each processor 10 in an cluster 40 runs under the
same Supercomputer Symmetrically Integrated, multithreaded Operating
System (hereinafter referred to as SSI/mOS). There is one instance of
SSI/mOS stored in the main memory 14, portions of which can execute on
any number of processors 10 at any one time. For increased efficiency in a
multi-cluster embodiment of the preferred embodiment, a copy of the
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instance of SSI/mOS is maintained in the physical portion of main
memory 14 for each cluster 40.

SSI/mOS fully supports parallel processing, multithreading, and
automatic multithreading. Its multithreaded kernel efficiently schedules
multiple parallel processors 10 and synchronizes their access to shared
resources 12. Additions to the System V kernel include extended
concurrency and several new types of processes; shared image processes,
cooperating processes, multithreaded, parallel system processes (kprocs),
interrupt processes (iprocs), and microprocesses (mprocs). The SSI/mOS
kernel protects internal data structures while kernel operations are
occurring simultaneously in two or more processors 10. As a result,
individual system requests can take advantage of multiple processors 10,
and system functions can be distributed among the available processors 10.

SSI/mOS also significantly extends the System V memory
scheduling mechanism by implementing a selective swapping feature.
The selective swapping feature of the present invention reduces swapping
overhead by swapping out only those processes which will facilitate
swapping in another process. As described in greater detail hereinafter,
partial swapping allows mixing of very large memory processes with
smaller ones. This happens without causing undue system overhead
when large processes are completely swapped.

In the distributed input/output architecture associated with the
preferred embodiment of SSI/mOS, device driver software connects the
peripheral devices and interfaces 32 such as networks, tape units, and disk
drives, to the multiprocessor cluster 40. Operating system driver code also
communicates with various network interfaces. The SSI/mOS supports
Terminal Communication Protocol/Inter Process (TCP/IP) for connections
to other systems supporting TCP/IP. SSI/mOS provides a Network File
System for efficient file sharing across systems. While the operating
system driver code is fully integrated into the SSI/mOS operating system,
all device drivers in the preferred embodiment are based on established
software technology.

11 SSI/mOS Kernel Overview

Referring now to Figs. 9a and 9b, the main components in the
SSI/mOS 1100 are shown in relation to traditional System V-like
functions. In this block diagram, the user environment 2000 is
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represented at the top of the diagram and the hardware associated with the
preferred embodiment of the multiprocessor system represented at the
bottom, with the operating system 1000 shown in between, The operating
system kernel 1100 is generally shown on the right of SSI/mOS 1000 and
the input/output section 1200 is shown on the left of S5I/mOS 1000.

The executable code file SSI/mOS operating system kernel 1100 is
always resident in the main memory 14. In those situations where the
user application programs requires an operating system function, it is
necessary to perform a context switch from the user application program
to the operating system kernel 1100. There are a limited number of
situations when the program flow of a user application program running
in the processor 10 will be switched to the SSI/mOS kernel 1100. Three
events can cause a context switch from an application program into the
SSI/mOS kernel 1100: interrupts, exceptions, and traps.

Interrupts are events which are outside the control of the currently
executing program, and which preempt the processor 10 so that it may be
used for other purposes. In the preferred embodiment, an interrupt may
be caused by: (1) an input/output device; (2) another processor, via the
signal instruction; or (3) an interval timer (IT) associated with the
processor 10 reaching a negative value. In the preferred processor 10,
interrupts may be masked via a System Mask (SM) register. If so, pending
interrupts are held at the processor until the mask bit is cleared. If
multiple interrupts are received before the first one takes effect, the
subsequent interrupts do not have any additional effect. Interrupt-
handling software in the SSI/mOS kernel 1000 determines via software
convention the source of an interrupt from other processors 10 or from
external interface ports 22. In the preferred embodiment, the SSI/mOS
kernel 1100 supports both event-driven and polling-derived interrupts.

An exception terminates the currently executing program because of
some irregularity in its execution. As described in greater detail in the
parent application, the various causes for an exception in the preferred
embodiment are: (1) Operand Range Error: a data read or write cannot be
mapped; (2) Program Range Error: an instruction fetch cannot be mapped;
(3) Write Protect violation: a data write is to a protected segment; 4)
Double bit ECC error; (5) Floating-point exception; (6) Instruction
protection violation: an attempt to execute certain privileged instructions
from non-privileged code; (7) Instruction alignment error: a two-parcel




WO 91/20033 PCT/US91/04066

10

15

20

30

35

36

instruction in the lower parcel of a word; and (8) Invalid value in the SM
(i.e., the valid bit not set.) In general, exceptions do not take effect
immediately; several instructions may execute after the problem
instruction before the context switch takes place. In the preferred
processor 10, an exception will never be taken between two one-parcel
instructions in the same word. Some exceptions may be controlled by bits
in the User Mode register. If masked, the condition does not cause an
exception.

A voluntary context switch into the SSI/mOS kernel 1100 can be
made via the trap instruction. In the preferred embodiment, a System Call
Address (SCA) register provides a base address for a table of entry points,
but the entry point within the table is selected by the 't' field of the
instruction. Thus, 256 separate entry points are available for operating
system calls and other services requiring low latency access to privileged
code. The SSI/mOS kernel 1100 takes advantage of this hardware feature
to execute system calls with a minimum of overhead due to context
saving. Some system calls can be trapped such that context is saved. Traps
also facilitate a Fastpath to secondary memory. Unlike interrupts and
exceptions, a trap is exact; that is, no instructions after the trap will be
executed before the trap takes effect. The operating system returns to the
program code via the trap return. The trap return operation, caused by the
rit instruction, is also used whenever the operating system wishes to cause
a context switch to do any of the following: (1) Restart a program that was
interrupted or had an exception; (2) Return to a program that executed a
trap instruction; (3) Initiate a new user program; and (4) Switch to an
unrelated system or user mode thread.

An interrupt takes precedence over an exception if: (1) an interrupt
occurs at the same time as an exception; (2) an interrupt occurs while
waiting for current instructions to complete after an exception; (3) an
exception occurs while waiting for instructions to complete after an
interrupt. In these cases, the cause of the exception will be saved in the ES
(Exception Status) register. If the interrupt handler in the SSI/mOS kernel
1100 re-enables exceptions, or executes an rtt instruction, which re-enables
exceptions, the exception will be taken at that time.

There is a common method of responding to interrupts, exceptions,
and traps. Figs. 10a and 10b show how a handler routine 1150 handles a
context switch. At step 1151, the handler routine 1150 saves the registers
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in the processor 10 that the handler routine 1150 is to use, if it is to return
to the suspended program with those registers intact. In the preferred
embodiment, this includes either a selected group of registers or all of the
registers for the processor, depending upon the type of process executing in
the processor 10. At step 1152, the handler routine 1150 waits for a word
boundary or completion of a delayed jump. That is, if the next instruction
waiting to issue is the second parcel of a word, or is a delay instruction
following a delayed jump, it waits until it issues. (This step is not done for
trap instructions.) At step 1153, the handler routine 1150 moves the
Program Counter (PC) register (adjusted so that it points to the next
instruction to be executed) into the Old Program Counter (OPC) register,
and the System Mask (SM) register into the Old System Mask (OSM)
register. At step 1154, the handler routine 1150 loads the PC register from
the Interrupt Address (IAD) register, the Exception Address (EAD) register,
or the System Call (SCA) register, depending upon which type of context
switch is being processed. (If the SCA register is selected, the shifted 't
field in the instruction to form one of 256 possible entry points). At step,
1155, the SM register are set to all ones. This disables interrupts and
exceptions, disables mapping of instructions and data, and sets privileged
mode. At step 1156, execution is resumed at the new address pointed to by

the PC register.

12  Process Management
Section 1.2 describes processes and process management under

SSI/mOS. This information is presented in three sections. Section 1.2.1
briefly describes the standard functions and characteristics of System V
processes and their management retained in SSI/mOS. Section 1.2.2 lists
those features and functions of the cluster architecture of the preferred
embodiment of the multiprocessor system that impose special operating
system requirements for processes and process management. Section 1.2.3
describes the additions and extensions developed within SSI/mOS as part
of the objectives of the present invention.

1.2.1 Elements of System V Processes

In addition to being validated by the System V Validation Suite
(SVVS), SSI/mOS provides System V functionality for processes. A single
thread runs through each process. A process has a process image,




WO 91/20033 PCT/US91/04066

10

15

20

30

35

38

memory, and files. Each standard process has a unique hardware context;
registers and memory are not shared except during inter-process
communications (IPC). Standard process states exist (user, kernel,
sleeping). Finally, System V IPC elements are used.

1.2.2 Architectural Implications

The design of the cluster architecture of the preferred embodiment
focuses on providing the most efficient use of system resources. Several
architectural features have direct implications for processes and their
management. For example, multiple processors 10 are available per cluster
40 to do work on a single program using the mechanisms of
microprocesses and shared image processes. One or more processors work
on one or more microprocesses initiated by a single program. The
processors 10 are tightly coupled processor and share a common main
memory 14 to enhance communications and resource sharing among
different processes.

Another important architectural feature is that multiple
input/output events go on within a single process image. The concurrent
processing of interrupts is an example. As shown in Fig. 11, an interrupt
causes the processor to branch to a computational path while the interrupt
is processed. Although the processor is idled (sleeps) during the actual
data transfer, there is no switch, computations continue and the new data
is available and used after the paths are synchronized. Input/output
events are initiated in parallel with each other and/or with other
computational work.

The present invention allows for processes at a small level of
granularity to obtain the most effective use of the system's multiple
processors, architecture, and instruction set. For example, small
granularity threads are scheduled into small slots of available processor
time, thereby maximizing utilization of the processors. This is
accomplished by the use of the mprocs as described in greater detail
hereinafter.

The cluster architecture of the preferred embodiment also allows
the operating system of the present invention to save a number of context
switches by minimizing the size of context interrupts and by delaying
context switches. Major context switches are deferred to process switch
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times. The amount of context saved at trap (system call) or interrupt time
is minimized. -

1.2.3 SSI/mOS Implementation of Processes

To support a multiprocessing kernel, SSI/mOS redefines several
System V process-related elements. In addition to the types of processes
and process-related elements previously defined, the present invention
implements several new process related elements, as well as improving
several present process related elements, including:

Microprocess (mproc) - A microprocess is created by a help request
from an existing process. A typical example of a microprocess is a thread
of execution being initiated by the user-side scheduler (USS). To
minimize overhead, a microprocess does not sleep (i.e., is not rescheduled
by System V), because it is expected to have a relatively short life span.
When an event occurs that requires a microprocess to go to sleep (such as
a blocking system call), then the system converts the microprocess to a full
context process and reschedules it via the usual kernel process scheduling
mechanisms. After a microprocess begins execution on a processor, its
context consists primarily of the current contents of the processor registers.
As previously stated, SSI/mOS kernel code executed on behalf of a
microprocess will force its conversion into a full context process should
the microprocess block for any reason.

Shared Image Processes - In addition to the definition previously set
forth, it will be recognized that both processes and microprocesses can be
shared image processes. Processes have full context as opposed to
microprocesses that have a minimum context.

Cooperating Process - This term is used to identify those processes
that are sharing (and are thus synchronizing through) a single set of global
registers. This means the value in the global register control register is the
same for each cooperating process. By default, each microprocess is a
cooperating process with its respective initiating process. Shared image
processes may or may not be cooperating processes, although by default
they are. Through the use of system calls, non-shared image processes can
become cooperating processes.

Processor Context - Each process has processor context. In the
preferred embodiment, processor context includes the scalar, vector, and
global registers being used by the process or microprocess, plus the control
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register settings that currently dictate the execution environment. To
allow the process to continue executing at its next scheduling interval, a
subset of this processor context is saved across interrupts, exceptions, and
traps. Exactly what is saved depends on the source of the event triggering
the context switch.

Switch Lock - Switch locks are used for longer locks in the kernel
proper, but not for locks that require an interrupt to be released. A switch
lock causes a waiting process to stop executing but places it on the run
queue for immediate rescheduling.

Autothreads - Autothreads are part of the automatic parallelization
that is a product of the compiler as discussed in greater detail hereinafter.
An autothread within compiled code makes a SSI/mOS kernel request for
specified numbers of microprocesses. The number given is based on the
currently available number of processors. A processor can serially run
several autothreads in the same microprocess without going back to the
autothread request stage. This is very efficient since it results in fewer
kernel requests being made. If an autothread requests system work which
requires a context switch, then the autothreads are scheduled into shared
image processes. Short-lived, computation-only autothreads do not
assume the overhead of process initialization. Minimizing overhead
provides additional support for small granularity parallel performance.
The operating system can automatically convert autothreads into shared
image processes, depending on the functions and duration of the
autothread.

System Process (kproc) - A kproc is a process that facilitates the
transmission of asynchronous system calls. When system call code is
running in another processor, or has been initiated by user code via the
system call interface, kprocs enable system call code and user code to run
in parallel.

Interrupt Process (iproc) - An iproc may be a process that acts as a
kernel daemon. It wakes up to process the work created when an
interrupt occurs, such as a series of threads that must be performed in
response to an interrupt sent by an external processor or device.
Alternatively, an iproc is initiated when an interrupt occurs.
Traditionally, this interrupt processing has been done by input/output
interrupt handlers.
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In the present invention, microprocesses are created as an
automatically multithreaded program is executed. An existing process
posts a request in a global register asking that a microprocess or
microprocesses be made available. At this point, any available processor
can be used as a microprocess. It will be noted that System V mechanisms
can also create microprocesses, iprocs, kprocs, and shared image processes
as well as traditional System V processes using the present invention.

When an exception occurs in SSI/mOS, the user can control the
termination of multiple processes. In the preferred embodiment, the
default is the traditional System V procedure, that is, to terminate all
processes on an exception.

The SSI/mOS scheduler is a multithreaded scheduler called the
dispatcher 1112 (Fig. 9). There is no preferential scheduling of processes.
The scheduling uses an anarchy based scheme: an available processor
automatically looks for work. As a result, several processors may be trying
to schedule work for themselves at any one time, in parallel.

The dispatcher 1112 manages the progress of processes through the
states as shown in Fig. 12. Processors 10 use the dispatcher portion of
SSI/mOS to check for the highest priority process or microprocess that is
ready to run. Kprocs, iprocs, and mprocs will each be a separate scheduling
class. Requests by a process (usually a shared image process group) for
work to be scheduled will increment a value in one of the global registers
16 that is associated with that process. The specified global register is
chosen by convention as described in greater detail hereinafter and will be
referred to for the description of Fig. 12 as the Help Request Register
(HRR). The increment of the HRR is an atomic action accomplished by
use of one of the atomic resource allocation mechanisms associated with
the OSSR's. At state 1163, the operating system 1000 has a processor 10 that
can be scheduled to do new work. Based on site selectable options, the
operating system can either (1) always choose to schedule processes first to
state 1162 for traditional process scheduling and only if no executable
process is found check the HRR in state 1165; or (2) always schedule some
portion of the processors 10 to check the HRR in state 1165 to support
parallel processing (and, in particular, the processing of mprocs) and
schedule the remainder of the processors 10 to state 1162 for traditional
process scheduling. This assignment balance between state 1162 and 1165 is
modified in real time in accordance with a heuristic algorithm to optimize
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the use of the multiprocessor system based on predictive resource
requirements obtained from the accounting registers in the processor 10.
For example, all other conditions being equal, an available processor will
be assigned to threads executing at the highest computation rate, i.e. the
most efficient processors.

Processes that are sent to state 1165 and do not have any context to
be saved at the point they reach state 1165 can become microprocesses. In
state 1165, the microprocesses examine each group of global registers
assigned to a shared image process group and, specifically, examine the
HRR global register for that shared image process group. If the HRR
register is positive, then the shared image process group has requested
help. The microprocess automatically decrements the count in the HRR
(thus indicating that one of the request made to the HRR has been
satisfied) and proceeds to state 1169 for scheduling by the User-Side
Scheduler.

Shared image processes in a multithreaded program that have
completed their current thread of execution will also check the HRR for
additional threads to execute. Such processes that do not immediately find
additional threads to execute will continue to check the HRR for a period
of time that is set by the system, but modifiable by the user. In essence, this
is the period of time during which it is not efficient to perform a context
switch. If no requests to execute threads are found in the HRR for the
shared image process group to which the process is presently scheduled,
the process returns to the operating system through state 1164 and into
state 1165 for normal process scheduling.

It will be noted that a multithreaded program will generally have
different numbers of threads during different point in the execution of
that program and therefore will be able to utilize different numbers of
processors during the entire period of execution of the program. A feature
of the present invention is the ability to efficiently gather additional
processors from the operating system to be applied to a multithreaded
program when that program has more threads than processors and to
return processors to the operating system when there are more processors
than threads. When a processor enters a region where additional threads
are available for execution, the processor 10 makes a request for additional
processors 10 by incrementing the HRR and then proceeds to start
executing the threads for which it requested assistance. Processors that are
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executing in the same shared image process group and that are available to
execute another thread check the value of the HRR to determine what
available threads exist for execution in that shared image process group.
Microprocesses in the operating system will also examine the HRR for all
of the shared image process groups executing in the multiprocessor system
looking for microprocess threads to execute. As previously mentioned,
microprocesses have no context that must be saved because they are
destructible upon exit and also require only a minimum amount of
context in order to join in the execution of a multithreaded program as a
microprocess. Microprocesses can thus be quickly gathered into the
execution of a multithreaded program that has available work requests
present in the HRR. Processors that are executing a multithreaded
program but have no threads to execute will continue to look for
additional threads in the shared image process group for the selectable
period of time previously described. If a processor does not find additional
threads in the allotted time, the processor performs a lightweight context
switch to return to the operating system for the purpose of becoming
available to execute microprocesses for other shared image process groups.

13  File Management

Section 1.3 describes files and file management under SSI/ mOS
This information is presented in three sections. Section 1.3.1 briefly
describes the System V file functions and characteristics retained in
SSI/mOS. Section 1.3.2 lists those features and functions of the cluster
architecture that impose special operating system requirements for files
and file management. Section 1.3.3 describes the additions and extensions
developed within SSI/mOS to satisfy cluster architectural requlrements

for files and file management.

1.3.1 Elements of System V File Management
SSI/mOS implements the System V tree file system by supporting
file access/transfer to all standard networks supporting standard character

and block device drivers

1.3.2 Architectural Implications
The cluster architecture supports multiple input/output streams,
thus supporting disk striping and multiple simultaneous paths of access to
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the Secondary Memory System (SMS). The input/output concentrator
(IOC) 24 distributes work across processors 10 and input/output logical
devices 30. Low level primitives in the IOC 24 expose memory 14, SMS 28,
and the global registers 16 to the system's device controllers. All the SMS
transfer channels can be busy at the same time. The cluster architecture
also provides an optional expanded caching facility through the high
bandwidth SMS, using the SMS to cache.

13.3 SSI/mOS Implementation of Files

SSI/mOS has two types of file systems. In addition to a System V
tree system referred to in section 1.3.1, an array file system may also be
implemented. The second type of file system is structured as an array file
system. By adding a high performance array file system, SSI/mOS takes
advantage of the multiple input/output streams provided in the cluster
architecture, allowing optimal configurations of storage based on
application characteristics. The array file system allows users to request,
through the resource manager, enough space to run their applications,
configured as to allow maximum input/output throughput. Other
features include: support for large batch users; support for a large number
of interactive users; and enhanced support for parallel access to multiple
disks within a single file system, i.e. disk striping.

Referring now to Fig. 13, one embodiment of the SSI/mOS array file
system is shown. The size of the file system block is 32 kilobytes.
Allocation of space is controlled by the resource manager. Users can access
data via System V read and write calls. The present invention also
supports disk striping, whereby large blocks of data can be quickly read
from/written to disk through multiple concurrent data transfers.

14 Memory Management

Section 1.4 describes memory and memory management under
SSI/mOS. This information is presented in three sections. Section 1.4.1
briefly describes the standard functions of memory management that are
retained in SSI/mOS. Section 1.4.2 describes the additions and extensions
developed within SSI/mOS to satisfy cluster architectural requirements
for the management of main memory. Section 1.4.3 describes the
additions and extensions developed within SSI/mOS to satisfy cluster
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architectural requirements for the management and utilization of the
Secondary Memory System 28. ‘

14.1 Elements of System V Memory Management
Although many tables and other memory-related elements are
retained, the basic System V memory managing scheme has been replaced.

14.2 Management of Main Memory

Major changes have been made in the allocation and scheduling of
memory in SSI/mOS as compared to standard System V. Before
implementing a memory manager in the SSI/mOS kernel, the paging
code in the original System V kernel is removed. This code is replaced by
a memory manager which assumes a flat memory architecture. The
memory manager tracks the current status of memory by mapping
through the segment table entries. A set of routines are used to change
that status.

The System V swapper has been optimized to reduce swapping
overhead and to make use of the multiple data control registers. The role
of swapper is to determine which process images will be in memory at any
given time. As shown in Fig. 14, the swap map parallels the memory
map.

Segment code manages the sections of memory that contain a user's
text, data, and shared memory. The segment code splits the segments to
effectively use the multiple data segments in the control registers. If not
enough contiguous memory is available to satisfy a request, then multiple
data segments of smaller size are used. Segments are doubly linked by
location and size. Fig. 15 shows how memory segments function.

Memory is managed via three doubly linked lists: (1) sloc - a
dummy node heading a list of all memory segments whether active or
available; ordered by location; (2) savail - a dummy node heading a list of
memory segments available to be allocated, ordered by descending size;
and (3) sactive - a dummy node heading a list of allocated memory
segments, ordered by descending size. It will be noted that ravail and
ractive are mutually exclusive.

Referring now to Fig. 16, the selection of swap out candidates will be
described. The swapping overhead is reduced by making intelligent
choices of processes to swap out. The System V swapping algorithm swaps
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out processes based strictly on prigrity and age, regardless of whether
enough memory will be freed for the incoming process. The SSI/mOS
swapper only swaps out processes which free the needed amount of
memory. This is done by adding location and size to the criteria used for
determining swap out candidates. Multiple adjacent processes may be
swapped out if together they free the amount of memory needed. System
load and processor usage are criteria for choosing swap candidates.
Normally it is not efficient to swap out a very large process. However, if
the system load is light, multiple processors can speed swapping out a
large process so that many smaller processes can be efficiently swapped in
and run. Processes that are not efficiently using their processors will be
chosen to be swapped out before an equal priority process that is efficiently
using its processors.

Referring now to Fig. 17, the process of splitting memory segments
will be described. The swapper is modified to take advantage of the
multiple data control registers. If enough memory is available for a given
data segment, but is fragmented so that contiguous space cannot be
allocated for the segment, the segment may be split into multiple pieces
that can be allocated. The extra control registers are used to map the splits
so that the user still sees one contiguous segment.

Fig. 18 shows the process of coalescing memory. The memory splits
created above are merged back into one contiguous segment when they are
swapped out. This process allows the segment to be resplit according to
the configuration of memory at the time it is swapped in.

Referring now to Fig. 19, the concept of dual memory segments is
illustrated. The swapping overhead is also reduced by keeping dual
images of the process as long as possible. The swap image of the process is
removed when the entire process is in memory, or when swap space is
needed for another process to be swapped out. Dual image processes are
prime candidates for swap out because their memory image may be freed
without incurring the overhead of copying it out to the swap device.

Partial swapping is accomplished in SSI/mOS by the swapper
routine. Partial swapping allows a portion of a very large job to be
swapped out for a smaller process that is to be swapped in. When the
smaller process finishes or is swapped out, the swapped portion is
returned to its original location so that the larger job can proceed.
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14.3 Management of Secondary Memory Storage

SSI/mOS provides an assortment of simple primitives that allow
applications, in conjunction with the compiler and runtime libraries, to
fully use the SMS 28. SSI/mOS provides a range of support for SMS usage
in: a standard file system resident on secondary memory; an extended
memory functionality for exceptional users; support for virtual arrays;
support for mapped files; file staging from high performance disk to SMS;
and file staging from archival storage to high performance disk.

Some applications need the SMS 28 to function like a disk with a
file/inode orientation and System V interfaces. The resource manager
allocates space for a file system on a per job basis. Optional disk image
space is also available as are the write-through attributes that make such
space useful.

Other applications need the SMS 28 to function as an extended
memory. This type of large allocation access to the SMS 28 is at the library
level and very fast, exposing the power of the hardware to the user.
Consequently, there is a need to get away from the file/inode orientation.
As an extended memory, the latency between the SMS 28 and the main
memory 14 is several microseconds. Compared to disk, SMS 28 is
microseconds away rather than seconds away.

A secondary memory data segment (SMDS) has been added to the
SSI/mOS procesls model. An SMDS is a virtual address space. When a
process is created, a data segment of zero length is created for it. The data
segment defines some amount of area in secondary memory. Although
the length of the originally issued data segment is 0, the programmer can
use system calls to grow the data segment to the required size. Limits to
the size of a data segment are controlled by the operating system and are
site-tunable. The new system calls developed for SMS are described below
in the System Calls section.

Since the SMS 28 in the preferred embodiment is volatile, that is
vulnerable to system power and connection failures, users can specify a
write-through to disk. The files that are specified as write-through are first
transferred to the SMS 28 and then written onto disk. Secondary memory
is attached to a process in the same fashion as is main memory, and
operates in much the same way. The user can alter and access SMS data
segments through a series of new system calls.
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New versions of system break calls (i.e., the brk and sbrk calls) allow
processes to dynamically change the size of the SMS data segment by
resetting the process's SMS break value and allocating the appropriate
amount of space. The SMS break value is the address of the first byte
beyond the end of the secondary memory data segment. The amount of
allocated space increases as the break value increases. Newly allocated
space is set to zero. If, however, the same memory space is reallocated to
the same process, its contents are undefined. SMSbrk can decrease the
amount of allocated space.

One set of put/get system calls move data between the expanded
SMS data segment and main memory in the normal way. A second set of
put/get calls uses the Fastpath mechanism to transfer data between a
buffer and an SMS data segment. Fastpath allows a data transfer to occur
without the process having to give up the processor 10, and is used for
small transfers when very low latency is required; both processes and
microprocesses can transfer via Fastpath.

Mapped files are supported through the mmap system call. Because
there are a limited number of base and bounds registers, this may place
some restrictions on the number of shared memory segments that a
program can access at one time. Otherwise, these calls are supported as
defined. This is System V except for the shared segments restriction.

 Because the cluster architecture of the preferred embodiment does
not have a virtual memory, the process text and data segments for all jobs
have to fit into memory. To do this, the present invention provides
mapped files and virtual arrays. As shown in Fig. 20, use of virtual file
systems allows oversubscription of the SMS 28 and keeps oversubscription
manageable. Because the preferred multiprocessor system does not have
hardware paging, software places a named object (an array or common
block) into virtual memory. On multiprocessor systems with SMS 28,
software pages this object from SMS. Via this mechanism, the program
and the virtual array/common blocks may exceed the size of memory. If a
multiprocessor system lacks an SMS 28, paging is accomplished from a file.
This is an extension to the C and Fortran languages and is non-System V.

' The SMS 28 can be used to stage files. Users first stage their files to
the SMS 28, then they issue reads from SMS 28. For example, a file is
moved from the disk subsystem into an SMS buffer. Files written to the
SMS 28 from main memory 14 can be staged for archival stores into fast
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disk. Archival file staging is also available. Data is moved from remote
archival storage to the SMS 28, and from there to high performance disks."

15 Input/Output Management

Section 1.5 describes the management of input/output under
SSI/mOS. This information is presented in three sections. Section 1.5.1
briefly describes the standard elements of input/output management
retained in SSI/mOS. Section 1.5.2 lists those features of the cluster
architecture that impose special input/output requirements. Section 1.5.3
describes additions and extensions developed within SSI/mOS to satisfy
architectural requirements for input/output management.

1.5.1 Elements of System V Input/Output Management

System V input/output management has been retained as follows:
support for the standard block and character device interfaces; support for
STREAMS connections; support for standard networking protocols,
specifically TCP/IP; and support for ttys through rlogin and telnet; user
logins are fairly standard, but the distributed input/output architecture
realistically precludes the notion of a directly connected *dumb' terminal

in the preferred multiprocessor system.

1.5.2 Architectural Implications

The distributed input/output architecture of the preferred
embodiment places certain requirements on the way peripheral devices
interact with the operating system.

The primary connection to the clusters 40 is through a 100 or 200
megabyte/sec HiPPI (High Performance Parallel Interface) channel adaptor.
This adaptor serves as the interface between the cluster 40 and the ANSI
standard HiPPI protocol. A special optical fiber version of the HiPPI
adaptor allows peripherals to be connected in units of miles rather than
feet. This adaptor is implemented according to the HiPPI optical fiber
specification. Differences in adaptor requirements are handled by changes
to on-board microcode rather than changes to system software.

As a result of the HiPPI channel implementation, peripheral
devices have a pipe directly into main memory that is similar to a DMA
component. Devices also have direct access to the multiprocessor system'’s
global registers and operations, and they are able to directly read/write data
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to the SMS system. As a result, software running on peripheral devices
can in most cases be considered as a logical extension of the operating
system. Some implications of the input/output channel design are that
peripheral device controllers have to be intelligent and programmable,
and they must implement a low level HiPPI command protocol.

153 SSI/mOS Implementation of Input/Output Management

A number of enhancements are made to SSI/mOS to exploit the
distributed input/output and channel architecture.

A second level cache is part of the SSI/mOS buffer caching scheme.
This implementation provides two levels of caching to keep a maximum
amount of data in close proximity to the central processors. Level one is
the System V buffer caching scheme. Level two is comprised of larger,
slower buffers on the SMS 28. The operating system directs the cache level
used by an application according to the nature of its input/output
requirements. The two-level cache would be transparent to the
application. The distributed device drivers of the present invention are
programmed so that some typical driver functions will execute in the
peripheral device controller. This model is sometimes preferable, and is
made possible by the fact that peripheral device controllers have access to
kernel signals, main memory, secondary memory, and global registers.

Additional elements of System V input/output systems that have
been modified in the present invention to achieve parallelism by default
include: STREAMS, protocol implementations, and device drivers which
are all multithreaded in SSI/mOS.

The peripheral controllers in the preferred embodiment can no
longer be passive devices and are custom designed. Device controllers
need to manipulate and access operating system data in main memory.
For example, an intelligent device controller is able to process a signal
instruction from the operating system, read an operating system
command block in main memory, and then write completion status into
the command block upon completion of the operation. The main
memory address of the controller's command block is installed during
system boot and initialization.

As shown in Fig. 21, SSI/mOS provides capabilities to build
networking services using the STREAMS facilities. System V STREAMS
have been multithreaded, adding multiprocessor support. The SSI/mOS
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version of the STREAMS product provides network capability with the
network modules shown in Fig. 21. The TCP/IP code provides drivers,
libraries and user commands. Host network connections are supported by
linking device specific drivers to the protocol modules using STREAMS.
1.6  Resource Management and Scheduling

1.6.1 Introduction.

The resource manager is a set of utilities that schedule jobs and
allocate resources to them in such as way as to optimize the usage of the
multiprocessor cluster 40. The resource manager allows system resources
to be overcommitted without deadlocking and without aborting jobs. Jobs
that do not have enough resources are held until resources become
available. In this context, a job is a user's request to execute one or more
processes any of which may require system resources such as tape or disk
drives, memory, processors, and so on.

The resource manager has two requirements of users: (1) the
amount of resources that will be needed are specified in advance (statistics
provided by the resource manager help users estimate the required
resources); and (2) additional resources will not be requested until all
currently held resources are released.

1.6.2 Role of the Network Queuing System (NQS)

Traditional supercomputer operating systems create a batch user
and execution environment. Because System V operating systems create
an interactive user and execution environment, their implementation on
supercomputers requires the addition of support for the traditional batch
user.

NQS is a suite of programs for the submission of jobs in a batch
manner that can be done from any site across a network. NQS runs on a
variety of hardware platforms (e.g.,, IBM 3090 computers, Sun
workstations, DEC Vax computers). If all platforms are running NQS,
then anyone at any node can submit a batch job from a terminal. In this
way NQS creates a networked batch user environment that complements
the System V networked interactive environment. NQS and any
associated resource management support jobs that require lots of compute
time and many resources. Power users will want large amounts of the
machine in off hours, and if five or six power users demand 75% of the
system at once, it is the function of the resource manager to make sure
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that each user gets what they want. And to so do in such a manner that
guarantees no deadlocks. Other kinds of jobs, jobs that do not require
resources above a certain level, will run in the normal System V manner.

1.6.3 Resource Categories

Private resources are not shared. Examples include: tapes,
cartridges, graphics terminals, specialized imaging hardware (medical,
radar, ultrasonic), and other highly specialized devices. Semi-private
Resources are those such as optical disks and drives, and compact disks.
Public Resources are fully shared. Examples include processors, System V
file systems, disks, main memory, secondary memory, and input/output
channels. The resource manager is concerned primarily with non-shared
resources.

164 Resource Management

A resource database map can be allocated dynamically. The resource
database is alterable on the fly, and this bit-wise database map that is a part
of the OSSR 2500 is owned by the resource manager and is usable only at
privileged levels. The operating system and the resource manager share
the database. Either one can add or delete system resources during
operation. Large sections of each disk (areas other than those required by
the file system and swap area) are used like memory. Tapes, memory,
processors, input/output devices and channels are allocated or
de-allocated as necessary. Disk space is allocated by specific user request,
rounded up to the nearest 32K block size for efficiency. Space is released as
required or upon abort and the area is patterned with a constant pattern.

The only time that a job will need to be restarted is due to the
physical failure of a resource, for example, when a disk or tape drive is
disabled. Access failures are treated similarly, and may require
rescheduling of a job. The resource manager provides for de-allocation in
case any resource is temporarily unavailable.

1.6.5 Resource Scheduling
Some jobs, usually small, may be finished in minutes or a few hours.
These jobs are scheduled interactively. High priority jobs, large or small,
are scheduled when the user does not care how much it costs and is
willing to pay any amount to get the job completed. If the user does not
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use the resource manager, these jobs may not run optimally.
Deadline-scheduled jobs may be scheduled hours, days, or weeks in
advance. This kind of scheduling works well with Dijkstra's "Banker's
Algorithm," where it is known in advance the amount and kinds of
resources required.

Several scheduling assumptions are used by the resource manager,
including: some threads are purely computational and do not explicitly
require automatic scheduling of resources, and are scheduled first; among
jobs scheduled through the resource manager, shorter jobs requiring fewer
resources generally run first; the largest jobs, i.e., those the scheduler
postpones, run only when the system has enough resources, and smaller
jobs are interleaved whenever possible; and priority of deadline-scheduled
jobs increases as the deadline approaches, assuming that the deadline is
reasonable.

To the degree possible, the resource manager schedules the mix of
jobs that uses the maximum number of resources at all times. All jobs
entered via the resource manager are tracked for both accounting and
security purposes. The record keeping feature provides cost/use
information on a per-user and per-job basis. The resource manager allows
the user or authorized personnel to cancel or alter the status of a job, for
example, to restart a job or change its priority. It also allows the system
administrator to increase the priority of a job in emergency circumstances.

As described in greater detail hereinafter, a screen-orientated
interface is standardly, available to help the user easily use the resource
manager for scheduling jobs and for the presentation of any data requested
by the user that involves his job.

1.6.6 Requirements

Using a resource manager sharply increases the performance for all
jobs, especially large jobs. Therefore, the resource manager must be easy to
use and have the features users need. The resource manager supports
device requests in batch mode and batch jobs requiring no devices, such as
processor-intensive jobs. The resource manager allows users to interact
with their jobs and allows the system administrator to add or delete of
resources as necessary. Subsystem databases and binary and ASCII header
files that are a part of the OSSR 2500 are subsequently updated. The
resource database subsystem will allow the addition or deletion of
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resources without interfering with the continued execution of the
resource manager. Either the operator of the subsystem or the system
administrator may restart, modify, prioritize jobs, or schedule controlled
resources using the resource manager. The resource manager supports
queue access restrictions, deadline scheduling, and networked output,
where the stdout and stderr output of any request can be returned to any
station. A status report of all machine operations to trace activity, for
debugging, accounting, and security purposes. The resource manager also
supports clearing any temporarily reserved media such as disk, CDs,
memory for security.

In the preferred embodiment, the resource manager runs across all
nodes, workstations, and all networked machines. If a cluster shuts down
when jobs are running, the processes are suspended or switched to other
clusters. The user has the option, in most cases, to decide to suspend his
process or to switch it to another cluster. The resource manager can
display network status and use information upon request or every five
minutes. This information is logged and available to any user. Any
security-sensitive thread is listed in a protected manner and will not
appear in the status report. Consistent with the common visual interface
2300, the resource manager provides a screen-oriented, visual interface.
Shell scripts are an alternate means of defining the jobs for the resource
manager. In the preferred embodiment, the resource manager uses the
NQS-based algorithms that guarantee consistency of files across network
configurations in the event of any system failure.

17 Network Support

Referring now to Fig. 22, the operating system networking
environment 2800 is described. The block 2820 below the System V kernel
2810 represents the various physical access methods, most of them are
High Performance Parallel Interfaces (HiPPI) adapters that are data links to
front end networks such as UltraNet. The blocks 2830-2870 above the
kernel represent user level features and facilities which utilize System V
networking. XDR and RPC module 2850 are included in this group. XDR
2860 encapsulates data so it can be understood by heterogenous machines.
RPC 2850 invokes procedures on remote machines. Together, these two
modules provide a facility for distributing applications in a heterogenous
network environment.
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Within the kernel 2810 are RFS and NFS. They provide transparent
file access across a network. Both NFS and RFS come standard with AT
&T Unix System V release 4.0. In addition to RFS, NFS, RPC, and XDR,
there are the standard Berkeley networking utilities 2840 which depend
upon the kernel's Berkeley Sockets facility. These include rlogin (remote
login), rcp (remote copy), and inetd (the Internet demon that watches for
users trying to access the preferred multiprocessor and spawns various
networking services accordingly).

Block 2830 represents networking utilities which depend upon the
AT&T Unix Transport Level Interface (TLI) library. The TLI is the main
interface between user level programs and streams based networking
facilities. Two of the utilities in this block are FTP (File Transport Protocol)
and Telnet (the ARPANET remote login facility), both of which may also
exist as Berkeley utilities and therefore run on top of the socket interface
rather than the TLI interface. The network modules provide high level
input/output support for the external device drivers. These modules
supply the drivers with a list of transfers to perform. When the data
arrives, the driver notifies the module and the data is then sent

‘upstream' to the user level.

1.8 Administrative and Operator Support

The administrative and operator support in the present invention
includes support for accounting, security, administrative scheduling of the
multiprocessor system and support for the operators of the multiprocessor
installation.

In the preferred embodiment of the present invention, there are
two methods of accounting. One method of accounting is based on the
time of processor assignment, using the real time clock. The second
derives from a work metric calculated from the processor activity counts
(memory references, instructions issued and functional unit results). Both
accounting methods are needed to develop reproducible charges and to
collect performance statistics that enable code optimization and system
tuning. In addition to System V accounting, the present invention
provides for dev/sessionlog and dev/systemlog reporting. Dev/sessionlog
includes a history with accounting stamps, a unique record per login, batch
run, shared image process group, and a history of shell-emitted
transactions and other items of interest. Dev/systemlog includes a history
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with accounting stamps, unique per security level. The types of
accounting stamps include: begin/end timestamp, all metrics, process
name, some arguments, and the like.

Multilevel security is implemented at several levels: network
security, user-level security, and administration utilities and commands to
support security.

In addition to the standard administrative support available for any
large computer processing system or supercomputer, the present
invention provides for "fair share" scheduling and predictive, heuristic
scheduling of processes to meet administratively defined utilization goals
for the multiprocessor system, including: input/ output, memory, remote
procedure call (RPC), interactive response time, and the like.

The operator environment is a superset of the user's environment
as described in greater detail hereinafter. It requires standard capabilities
plus display of "operator” log(s) and dynamic display replacement for "ps".
Ps is a visual metaphor for multiprocessor execution or run-time
environment and includes multiwindow, point and click for more or less
information with "real time" refresh. The displays include: queue
displays, process displays, displays for a processor in a running process,
memory displays, and resource allocation tables. The queue displays
include: input, swapped (and why), running, output. The processes
displays include 'status, resources assigned, resource status fds (path, size,
position, function, ...), cluster and processor usage, memory size, the last
few sessionlog entries, the current command, the next few commands (if
script, and cooperating shell), and an "operator" message area. The
displays for a processor in a running process include the PC register of the
processor, the processor registers (hex + ascii) and the last system call. The
memory displays include user areas, system areas and system tables. The
resource allocation tables have investigative access showing all open files
and all connection activities.

As users to their own processes, operators require commands that
provide the capability to change priorities, limits, suspend, abort, arbitrary
signal, checkpoint, change memory, set sense switches, communicate with
process requesting operator action or response, insert "next" command
(requires cooperating shell), and insert comments in user/system log(s).

19  Guest Operating System Support
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The present invention containg support for executing itself or other
operating systems as a guest, i.e. as a user program. This capability
includes the establishment of virtual processes and virtual external
devices as well as facilities to emulate the trap, interrupt and exception
capabilities of the preferred multiprocessor system. The guest operating
system support feature takes advantage of the facilities describes in
Sections 1.2.3, SSI/mOS Implementation of Processes; 1.4.3, Management
of Main Memory, and 1.7, Network Support.

2.0 - PARALLEL USER ENVIRONMENT

The architecture of the present invention accomplishes an
integrated hardware and software system. A major part of the software
system is the programming environment package of integrated
development tools designed to bring the full capabilities of the clusters 40
of the preferred multiprocessor to the programmer. Referring again to
Figs. 8a and 8b, the four major components of the parallel user
environment of the present invention are shown. The program
management module 2100 controls the development environment for a
source code file representing a software program for which parallel
software code is desired. The compiler 2200 provides support for all of the
features that allow for parallelism by default to be implemented in the
present inventioln. The user interface 2300 presents a common visual
representation to one or more users of the status, control and execution
options available for executing and monitoring the executable code file
during the time that the executable code file is executed. User interface
2300 includes a common set of visual/icon functions and a common set of
command line functions and common tools for showing a dynamic view
of user application program and system performance. The user interface
2300 also supports a limited subset of the online process scheduling
functions to the user and reconfiguration of shared resources and system
parameters in coordination with the resource manager in the operating
system 1000. Finally, the debugger 2400 allows for effective and distributed

debugging of parallel program code.

21  Visual User Interface
Referring now to Figs. 23a and 23b, a pictorial representation of the

programming environment as seen by a programmer is shown. The
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programming environment that comprises the visual user interface 2300
of the present invention provides for a common windowed interface to a
ToolSet 2351, that is a complete set of utilities that facilitate the production
of efficient, bug-free software programs. The major tools in the set are
available through windowed interfaces in a desktop environment
accessible on a distributed network. In the preferred embodiment, the
ToolSet 2351 organizes the tools into drawers. When open, a drawer
displays the set of icon for the tools it contains. Programmers may
organize the ToolSet 2351 as desired and may also add their own tool icons
as desired. All the tools are also available with the command line
interface.

In the embodiment shown in Fig. 23, a programmer may select any
of the icons representing one of the tools of the ToolSet 2351 to open a
window 2352 associated with that particular tool. The Filer icon 2353
allows the programmer to see his files in icon form. The Compiler icon
2354 allows the programmer to elect compile options and compile the
software program. The Compilation Advisor icon 2355 allows the
programmer to interact with the compiler 2200 through an interactive
interface that enables the programmer to conveniently supply additional
optimization information to the module compiler 2200. The compilation
advisor icon 2355 can also be used to display dependency information that
is gathered by the compiler. Dependencies in a program inhibit
optimization and the programmer can use the compilation advisor to
study the dependencies for possible removal. The program analyzer (not
shown in the figure) gathers interprocedural information about an entire
program which is used to support the optimization by the compiler 2200
and to check that procedure interfaces are correct.

The Defaults icon 2356 allows the programmer to set the various
defaults for the ToolSet 2351, including invoking different levels of
interprocedural analysis and selecting link options. For example, the
programmer can select a default option to start a text editor if there is an
error during compilation, with the text editor beginning where the
compilation error occurred. The programmer might also tell the ToolSet
to automatically start the debugger if an error occurs during program
execution.

The Debugger icon 2357 invokes the debugger 2400. The
Performance Analyzer icon 2358 allows the programmer to optionally
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collect performance data on the execution of a particular software
program. The Help icon 2359 invokes a help menu that provides online
assistance and documentation for the programmer. The Graphtool icon
2360 allows the programmer to display information in graphical form.
The programmer can use the CallGraph feature as described in greater
detail hereinafter to control the interprocedural analysis done on a
program. The Debugger icon 2357 can be used to visualize a
representation of the threads that have been created in the program and to
monitor the processes and processors that are executing the program. An
assembler tool (not shown) enables the programmer to use a symbolic
language to generate object code. Finally, the Resource Mgr icon 2361
allows the programmer to identify the system resources that will be
required by the software programmer. This information is also used by
the operating system 1000 as previously described. A programmer can also
use a command line interface to perform the activities without the using
the icons for ToolSet 2351.

After editing a program, the programmer can compile, link, and
then execute a program by selecting the appropriate icon. The
programmer may tailor the ToolSet 2351 to his or her particular needs.
The ToolSet 2351 builds on existing System V utilities such as the macro
processor and text editors. The ToolSet also allows the programmer to
create separate input windows and output windows for the program. This
is useful when a program generates a large amount of output and the user
needs to see the program input. Traditionally, missing procedures are not
detected until a program is linked. The programmer can use the Program
Analyzer (not shown) to determine if all procedures are available before
trying to link the program.

Referring now to Fig. 24, the preferred design of the ToolSet 2351 as
built on top of standard software is shown. The ToolSet 2351 features are
implemented in an OPEN LOOK-style user interface based on the
X-Windows System available from MIT. The parallel user environment
as implemented through the ToolSet 2351 is integrated according the
InterClient Communication Convention Manual (ICCCM) specification
with a limited number of extensions that are described elsewhere.

22, Program Management
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The program management module 2100 controls modifications to
source code files that comprise a software program. The software program
may result in either serial or parallel software code. A fine level of control
of modifications to source code files is desirable for an efficient
development environment. This is especially true for large source code
programs. For example, every time a one-line change is made to a source
code program, it would be very inefficient to recompile and relink the
entire source code program. The program management module 2100
interacts with the compiler 2200 and the IPA 2700 to determine which
procedures in the source code have been changed and/or affected by a
change and, as a result, which procedure will need to be recompiled,
reoptimized and/or relinked. In this sense, the program management
module 2100 is similar to the make utility in System V, except that the
control of recompilation is on the procedure level instead of on the file
level.

Interprocedural optimization introduces dependencies among
procedures and makes minimum recompilation a concern. For example,
the module compiler uses information about procedure B when
compiling procedure A. Later, procedure B is modified and recompiled.
Does module A also need to be recompiled? The compilation system
keeps information about procedure dependencies and recompiles
procedure A only when needed. Recompiling only the necessary set of
procedures saves time.

The programmer can use the interprocedural assembler support
tool of the program management module 2100 to add interprocedural
information about assembly language programs. This information
includes the number and type of formal parameters and the local use and
definition of formal parameters and global variables.

The program composer of the program management module 2100
aids a programmer in maintaining different versions of a program. As
discussed above, use of interprocedural information for optimization
introduces dependencies among procedures. To generate correct executable
programs, the correct versions of all procedures must be linked into that
program. This introduces the need to uniquely identify different versions
of a procedure. The program composer makes this version control
available to the programmer for the maintenance of different versions of a
program.
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23  Compiler

Referring now to Fig. 25a, the compiler 2300 of the present
invention will be described. A plurality of front-ends modules interface
the compiler 2300 with a variety of presently available programming
languages. The preferred embodiment of the compiler 2300 provides a C
front-end 2701 and a Fortran front-end 2702. The front ends 2701 and 2702
generate a representation of the source code in a single common
intermediate language referred to as HiForm (HF) 2703. The HF 2703 is
user by the optimizer 2704 and the code generator 2705. The optimizer
2704 performs standard scalar optimizations, and detects sections of code
that can be vectorized or automatically threaded and performs those
optimizations. Fig. 25b is a pictorial representation of a common user
interface to the compiler 2300.

23.1 Front Ends

The C compiler front-end 2701 is based on the ANSI X 2.159-1989 C
language standard. Extensions to the C compiler front-end 2701 provide
the same functions to which System V programmers are accustomed in
other C compilers. Additional extensions, in the form of compiler
directives, benefit CPU-intensive or large engineering/scientific
applications. The C compiler front-end 2701 performs macro processing,
saving the definitions of macros for debugging.

The Fortran compiler front-end 2702 is based on ANSI Fortran 77
and contains several extensions for source compatibility with other
vendors' Fortran compilers. All extensions can be used in a program
unless there is a conflict in the extensions provided by two different
vendors

Because the C and Fortran compilers front-ends share the optimizer
2704 and back end, the programmer may easily mix different
programming languages in the same application. Compiler front-ends for
additional languages can conveniently be added to the compiler 2200 and
will share the optimizer 2704 with existing compiler front-ends.

2.3.2 Parsing
Parsing determines the syntactic correctness of source code and

translates the source into an intermediate representation. The front ends
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parse the source code into an intermediate language HiForm (HF). The
parsers in the present invention utilize well known methods of vector
parsing tables, including optimized left-right parsing tables specifically
adapted for the preferred multiprocessors system executing the software
architecture of the present invention.

23.3 HiForm (HF) Intermediate Language

The objective of the front-ends 2701 and 2702 is to produce a
representation of the source code for a software program in a common,
intermediate language referred to as HiForm (HF).

One of the central components of HF is the Definition Use
Dependencies (DUDes). Definition-use information relates a variable's
definition to all the uses of the variable that are affected by that definition.
Use-definition information relates a variable's use to all the definitions of
the variable that affect that use. Definition-definition information relates
a variables definition with all definitions of the variable that are made
obsolete by that definition. The present invention incorporates definition-
use, use-definition and definition-definition information for single and
multiple words variables, equivalenced variable, pointer and procedure
calls (including all potential side effects) into a single representation
(DUDes) that is an integral part of the dependence analysis done for
vectorization and multithreading.

234 Optimizer

The optimizer 2704 improves the intermediate HF code 2703 so that
faster-running object code will result by performing several machine-
independent optimizations. The optimizer 2704 performs aggressive
optimizations, which include automatic threading of source code,
automatic vectorization of source code, interprocedural analysis for better
optimizations, and automatic in-lining of procedures.

The optimizer 2704 performs advanced dependence analysis to
identify every opportunity for using the vector capabilities of the preferred
multiprocessor system. The same dependence analysis is used to do
multithreading, which makes it possible to concurrently apply multiple
processors to a single program. The optimizer also applies a wide range of
scalar optimizations to use the scalar hardware in the most efficient
manner. Scalar loop optimizations, such as strength reduction, induction
variable elimination, and invariant expression hoisting are performed on
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loops that cannot be vectorized or automatically multithreaded. Global
optimizations are performed over an entire procedure. They include:
propagation of constants, elimination of unreached code, elimination of
common subexpressions, and conversion of hand-coded IF loops to
structured loops. In-lining of procedures automatically pulls small,
frequently used procedures inline to eliminate procedure call overhead.

The process of translating the intermediate HF code to machine
dependent instructions also performs machine-dependent
optimizations. These optimizations attempt to make optimum use of
registers, such as keeping the most commonly used variables in registers
throughout a procedure. Other optimizations are as follows. The
instruction scheduler seeks to simultaneously use the multiple functional
units of the machine and minimize the time required to complete a
collection of instructions. Linkage tailoring minimizes procedure call
overhead. Post-scheduling pushes back memory loads as early as possible
and performs bottom loading of loops. Loop unrolling duplicates the body
of the loop to minimize loop overhead and maximize resource usage.

Optimization is a time- and space-intensive process, even when
using efficient algorithms. Selected parts of optimization may be turned
off to provide some of the benefits without all of the cost. For example,
performing vectorization does not require performing scalar global
optimization. However, without the global transformation, some
opportunities for vectorization may be missed. Or, in situations where it is
necessary to have quick compilation, the optimization phase may be
skipped by using a command line option. However, the execution time of
the user's program will be greater.

2.3.4.1 Scalar Optimizations

Scalar optimization reduces execution time, although it does not
produce the dramatic effects in execution time obtained through
vectorization or automatic multithreading. However, the analysis and
transformation of scalar optimization often increase the effectiveness of
vectorization and automatic multithreading. The basic unit of scalar
optimization is called the basic block as shown in Figs. 26a and 26b. The
Basic Block is a sequence of consecutive statements in which flow of
control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end. This segment of code can be
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entered at only one point and exited at only one point. Local (or basic
block) optimizations are confined to a basic block. Global optimizations
have a scope of more than one basic block.

2.3.4.2 Control Flow Graph
A control flow graph indicates the flow of control between basic
blocks in the program unit. Once the basic blocks in the program have
been formed and the control flow connections have been indicated in the
control flow graph, further optimization processing can take place. Fig.
27a is a pictorial representation of a control statement in HiForm and Fig.
27b is the call graph of a program.

2.3.4.3 Local Optimizations

The local optimizations that are performed by the optimizer 2220
are listed. The order of these optimizations does not imply an
implementation order.

Common Subexpression Elimination - If there are multiple
identical expressions whose operands are not changed, the expression can
be computed the first time. Subsequent references to that expression use
the value originally computed.

Forward Substitution - If a variable is defined within the block and
then referenced without an intervening redefinition, the reference can be
replaced with the right-hand side (RHS) expression of the definition.

Redundant Store Elimination - If a variable is defined more than
once in a basic block, all but the last definition can be eliminated.

Constant Folding - If the values of the operands of an expression
are known during compilation, the expression can be replaced by its
evaluation.

Algebraic Simplifications - There are several algebraic
simplifications; for example, removing identity operations, changing
exponentiation to an integer power to multiplies. Other simplifications
(e.g., changing integer multiplies to shifts and adds) are performed by the
code generator.

2.3.4.4 Global Optimizations
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Like local optimization, a brief description for the global
optimizations performed by the optimizer 2220 is set forth. Again, an
implementation order is not implied by the order given below.

Transformation of IF Loops to HF Loops - The control flow graph is
analyzed to find loops constructed from IF and GOTO statements. If
possible, these loops are transformed into the same HiForm
representation as DO loops have. This is not a useful scalar optimization,
per se. It increases the opportunities for vectorization and automatic
multithreading.

Constant Propagation - If a variable is defined with the value of a
constant, then when that variable is referenced elsewhere in the program,
the value of the constant can be used instead. This is, of course, only true
on paths on which the variable has not been redefined.

Dead Store Elimination - If a variable is defined, but it is not an
output variable (e.g., a dummy argument (formal parameter), common
variable, or saved variable), its final value need not be stored to memory.

Dead Code Elimination - Code, the result of which is not needed,
may be eliminated from the intermediate HF text. This can be as little as
an expression or as much as a basic block.

Global Common Subexpression Elimination - Global common
subexpressions are like local common subexpressions except the whole
program graph is examined, rather than a single basic block.

Loop Invariant Expression Hoisting - An expression inside a loop
whose operands are loop invariant may be calculated outside the loop.
The result is then used within the loop. This eliminates redundant
calculations inside the loop.

Induction Variable Strength Reduction - Induction variables,
whose values are changed in the loop by a multiplication operation, may
sometimes be calculated by a related addition operation. Generally, these
kinds of induction variables are not found in the source code, but have
been created to perform address calculations for multidimensional arrays.

Induction Variable Elimination - If there is an induction variable I
within a loop and there is another induction variable J in the same loop
and each time J is assigned, J's value is the same linear function of the
value of I, it is often possible to use only one induction variable instead of
two. Again, this kind of situation most frequently arises due to address

calculation.
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2.3.4.5 Vectorization

During vectorization, loops are analyzed to determine if the use of
vector instructions, rather than scalar instructions, may change the
semantics of the loop. If there is no change to the loop's semantics, the
loops are marked as vectorizable. Some obvious constructs make loops
nonvectorizable, such as calls with side effects and most input/output
operations. Subtle, less obvious constructs are recurrences, which make
loops nonvectorizable. A recurrence occurs when the computation of the
value of a data item depends on a computation performed in an earlier
iteration of the loop.

The term "dependence" is used in the vectorization and automatic
multithreading sections. A dependence is a constraint on the order of two
data item references (use or definition). When two elements of the same
array are referenced, the subscripts must be analyzed to determine
dependence

Statement Reordering - Certain recurrences may be eliminated if
the order of the statements in the loop is changed. Statements may be
reordered only if the change maintains the loop's semantics. The loop
shown in Fig. 26b may be vectorized if the statements are reordered.

Loops with IF statements - The presence of one or more IF
statements in a ioop shall not by itself inhibit vectorization of the loop.
(Note that this includes loops with multiple exits.) The user will be able to
inform the compiler that the IF construct can be more efficiently run with
masked, full VL operations, or compressed operations.

Partial Vectorization/Loop Splitting - Loops that cannot be
vectorized as a whole can sometimes be split into several loops, some of
which can be vectorized. Loop splitting is the term often used when entire
statements are moved into a vector or scalar loop. Partial vectorization is
the term generally used when parts of statements are moved into the
vector or scalar loop.

Loop Reordering - Within a loop nest, loops (i.e., DO statements)
may be reordered to provide better performance. The dependence of a
particular subscript expression is due to a certain loop. An innermost loop
may have a recurrence and be unvectorizable, but if an outer loop is
moved inward, the recurrence may disappear, allowing vectorization. Of
course, all dependencies must be preserved when loops are reordered.
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Loops may also be reordered when an inner loop has a short vector
length, or to allow better vector register allocation. This last reason is
getting rather machine-dependent, but will provide significant
performance improvements on loops like a matrix multiply.

Although a reduction is a recurrence, these may be vectorized to
some extent. It is really handled by partial vectorization, but deserves
special mention because it's been a special case to so many compilers.

2.3.4.6 Automatic Multithreading
Analysis of loop dependencies determines if a loop must be run
sequentially or not. If a loop does not have to be run sequentially, it can be
run equally well using vector instructions or multiple processors,
although synchronization may be required when multiple processors are

used.
Vectorization, rather than automatic multithreading, will be chosen

for inner loops because the loop will execute faster. An outer loop of a
vector or a scalar loop will be autothreaded if the dependence analysis
allows it and if there seems to be enough work inside the loop(s). Exactly
how much is enough is dependent on the loop and the automatic
multithreading implementation. The faster the processes can be created,
the more loops that will benefit from automatic multithreading.

2.3.4.7 Intrinsic Functions

This section sets forth the functional specification for the Intrinsic
Functions Library, a set of routines that are "special” to the compiler. Code
for some of these routines are generated inline by the compiler, others are
called with parameters in registers, still others may be called with the
standard linkage conventions. For access from Fortran, any one of the
intrinsics is available from Foriran simply by making a call. For access
from C, any of the intrinsics is available from C through the directive:
#pragma ssi intrinsic (name), where name is the specific name of the
desired intrinsic. It will be noted that the names of many of the standard C
mathematical functions agree with the specific names of intrinsics. In all
such cases, the C math function and the corresponding intrinsic are
implemented by the same code sequence, so identical results will be
obtained whether the C math function or the intrinsic is called.
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2.3.4.8Register Assignment and Instruction Scheduling
Integration

Integration of register assignment and instruction scheduling is also
available as an optimization. The instruction scheduler notes when the
number of available registers drops below a certain threshold, and
schedules instructions to increase that number of registers. This is done by
looking forward in the resource dependence graph and picking the
instruction sequence which frees the most registers.

The instruction scheduler tries to reorder the instruction sequence
in order to maximize the usage of the various functional units of the
machine. Blindly chasing this goal causes the scheduler to lengthen the
lifetimes of values in registers, and in some cases, causes a shortage of
registers available for expression evaluation. When the number of free
registers available reaches a low threshold, the instruction scheduler stops
reordering to maximize pipeline usage and begins to reorder to free the
most registers. This is done by examining potential code sequences (as
restricted by data dependencies) and choosing sequences that free the
greatest number of registers.

The instruction scheduler and the look ahead scheduler described
in Section 2.3.4.9 also use the mark instructions of the preferred
embodiment of the processor to schedule work to be done during the time
that the processor would otherwise be waiting for a synchronization to
occur. Unlike prior art schemes for marking data as unavailable until a
certain event occurs, the Data Mark mechanism of the preferred
embodiment separates the marking of a shared resource 12 (mark or
gmark) from the wait activity that follows (waitmk). This separation
allows for the scheduling of non-dependent activity in the interim,
thereby minimizing the time lost waiting for marked references to
commit.

2.3.4.9 Look Ahead Scheduling

Vector instructions are scheduled according to their initiation times
while scalar instructions are scheduled with respect to their issue times.
Even though a vector instruction may issue immediately, the scheduler
may delay its issue to minimize the interlocks caused by the init queue.

In the preferred embodiment of the processor 10, vector instructions
can be issued before a functional unit for the vector instruction is
available. After a vector instruction is issued, instructions following it can
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be issued. A vector instruction that has been issued is put into queue until
it can be assigned to a functional unit. The instructions in the "init
queue" are assigned to a functional unit on a first in, first out basis. When
the instruction is assigned to a functional unit, it is said to be initialized.
An instruction may be held in the init queue due to a variety of hardware
interlocks. Once the queue is full, no more vector instructions can be
initialized to that functional unit. The vector instruction scheduler
recognizes the depth of the initialization queue and the interlocks that
may cause the instruction to hold initialization and delays the issue of a
vector instruction if the vector instruction cannot be initialized on a
functional unit until it can initialize without delay.

2.3.4.10 Pointer Analysis

Pointer analysis is performed for vectorization and parallelization
dependence analysis of all forms of pointers, including those within a
structure or union; as well as global pointers, subroutine call side effects
on pointers, non-standard pointer practice, and directly/indirectly
recursive pointers. Pointers are a type of object that is used to point to
another object in a program. Dereferencing a pointer references the object
to which the pointer points. In the most general case, the dereference of a
pointer can reference any object in the program. Dependence analysis for
vectorization and parallelization requires information about what objects
are being referenced (typically within a loop). Without information about
the objects to which a pointer points, the dereference of a pointer must be
considered a reference to any object and thus inhibits vectorization and
parallelization because of the dependence information is imprecise.
Pointer analysis attempts to determine which object or objects a pointer
points to so as to provide more precise information for dependence

analysis.

2.34.11 Constant Folding
Constant folding and algebraic simplification with intrinsic
function evaluation is also performed by the present invention. Constant
folding and algebraic simplification are done together so that expressions
such as 5 * ( x + 12 ) are simplified and folded to 5 * x + 60. Intrinsic
functions involving constants are also simplified. The invention for the
constant folding and algebraic simplification relies on the internal
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representation of the compilation unit which is being compiled (HiForm
or HF). This internal representation represents program statements and
expressions as trees and potentially as DAGs (directed acyclical graphs).
The constant folder and algebraic simplifier are combined into a single
module, which runs down the tree or DAG using recursive descent, and
works bottom up, folding each expression as it rewinds itself back up the
root of the statement/expression. As an example, the statement: i = 2 +j +
6 + k - 15, would be represented in tree form as (root of the tree at the top)
as shown in Fig. 28a. The tree would be algebraically simplified/folded as
shown in Figs. 28b - 28e.

Some of the unique things that are simplified/folded by this
optimization pass are that all expressions and operators written in 'C' or
'FORTRAN77' which involve constant arguments. These are folded and
many algebraic simplifications are performed. This gives the front-ends
the added flexibility of allowing all of these potentially folded operators to
appear in statements or declarators where a constant expression is required
(e.g. data statements, parameter statements, auto initializers, etc.).

23412 Path Instruction

The scheduler estimates issue, initialize, and go times of all vector
instructions. It inserts a "path" instruction before a vector instruction
which will normally dependent initialize on one functional unit but will
have an earlier go on another unit if it doesn't dependent initialize on the
first unit. The architecture of the processor 10 has multiple functional
units of the same kind. When a vector instruction is issued and that
instruction can execute on more than one functional unit, the vector
instruction is normally initialized on the functional unit that least
recently initialized a vector instruction. The path instruction will steer a
vector instruction to initialize on a particular functional unit. The vector
schedular inserts a path instruction when it determines that a vector
instruction will normally dependent initialize on one functional unit but
would actually start earlier on another functional unit and therefore
should be steer to that latter functional unit.

2.3.4.13 Variable to Register Mapping
Ranges during which the value of a variable is kept in a register (as
opposed to the memory location of the variable) are maintained by the
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compiler for use by the debugger. This provides the debugger with the
location of the current value of a variable. In each basic block in a
procedure a variable is assigned to at most one register. For each basic
block the compiler keeps a list (logically) of variables and associated
registers. This information is generated as part of the local register
allocation phase of the compile and is kept for the debugger.

2.3.4 Interprocedural Analysis

When the compiler is processing a procedure, there may be calls to
other procedures. In the traditional software environment, the compiler
has no knowledge of the effects of these other (or called) procedures.
Without such knowledge, the compiler is forced to assume the worst and
inhibit many optimizations that are safe. Interprocedural analysis (IPA) is
the collection and analysis of procedure information. The results of this
analysis allow the compiler to optimize across called procedures. Certain
optimizations can benefit from interprocedural analysis. With the use of
IPA information, the number of instances where an optimization can be
applied should be increased. The optimizations that can benefit from IPA
include: common subexpression elimination, forward substitution,
redundant store elimination, constant folding, constant propagation, dead
code elimination, global common subexpression elimination,
vectorization and automatic multithreading.

In addition, for each procedure in a program, IPA collects a list of
defined or used global variables and counts how many times each variable
is defined or used. IPA sums the number of defines and uses of the global
variables and sorts them into the order of most frequent use. The most
frequently used variables can then be allocated to L registers. The registers
for a called procedure are offset from the calling procedure to reduce the
number of register saves and restores in a procedure call.

There are two types of interprocedural analysis that are well known
in the prior art, exhaustive and incremental. For exhaustive analysis, the
call graph is formed from information in the object code file files and
analyzed. This is the "start from scratch" analysis. For incremental
analysis, the call graph and analysis are assumed to exist from a previous
link of the program, and a small number of modified procedures are
replaced in the call graph. This is the "do as little work as possible"
analysis.
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In the traditional System V environment, a programmer can
modify a procedure, compile, and link a program without having to
recompile any other procedures, since no dependencies exist between
procedures. In an IPA environment, dependencies exist between
procedures since procedures are basing optimizations upon knowledge of
how called procedures behave. Hence when a called procedure is modified
and recompiled, a calling procedure may also need to be recompiled. This
problem is solved by recompiling a procedure when any of the procedures
it calls has changes in its interprocedural information.

23.5 Compilation Advisor

The compilation advisor 2340 as shown in Fig. 23 functions as an
interface between the programmer and the module compiler. It allows the
module information compiler to ask the programmer
optimization-related questions. The module compiler identifies the
information that it needs and formulates questions to ask the
programmer. The module compiler saves these questions so the
programmer can address them through the compilation advisor 2340. The
compilation advisor 2340 relays the programmer's answer back to the
module compiler.

A second role of the compilation advisor 2340 is displaying
dependence information so the programmer can attempt to eliminate
dependencies. Dependencies among expressions in a program inhibit
vectorization and parallelization of parts of the program. Eliminating
dependencies enables the module compiler to generate more efficient
code. When there are no transformations that the compiler can do to
eliminate a dependence, the programmer may be able to change the
algorithm to eliminate it.

24. Debugger

The debugger 2400 is an interactive, symbolic, parallel debugger
provided as part of the parallel user environment. The debugger 2400
contains standard features of debuggers that are commonly available.
These features enable a programmer to execute a program under the
control of the debugger 2400, stop it at a designated location in the
program, display values of variables, and continue execution of the
program.
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The debugger 2400 has several unique features. The combination of '
these innovative capabilities provide the user functionality not generally
found in other debuggers. The debugger 2400 has two user interfaces. The
first, a line-oriented interface, accepts commands familiar to System V
users. The second interface, comprised of windows, is designed to
minimize the learning required to use debugger 2400's capabilities. As
shown in Fig. 29, multiple windows display different types of information.
Windows also provide flexible display and control of objects in a
debugging session and a means for visualizing data graphically.

As shown schematically in Fig. 30, the software architecture of the
present invention maintains the information necessary to display
high-level language source, for the segment of the program being
debugged, in a number of environments (e.g., Machine A, B and C). The
compilation system creates a mapping of the high-level program source
code to machine code and vice versa. One of several capabilities of the
debugger 2400 not found in other debuggers is source-level debugging of
optimized code. The optimizations that can be applied and still maintain
source-level debugging include dead-code elimination, code migration,
code scheduling, vectorization, register assignment and parallelization.

The debugger 2400 supports debugging of parallel code. A display of
the program's dynamic threading structure aids the user in debugging
parallel-processed programs. The user can interrogate individual threads
and processes for information, including a thread's current state of
synchronization. Other commands display the status of standard
synchronization variables such as locks, events, and barriers. The
debugger 2400 provides additional capabilities. ~For example, a
programmer can set breakpoints for data and communication, as well as
code. Macro facilities assign a series of commands to one command.
Control statements in the command language allow more flexibility in
applying debugger commands. Support for distributed processes enables
the programmer to debug codes on different machines simultaneously.
Numerous intrinsic functions, including statistical tools, aid the
programmer in analyzing program data. The debugger 2400 support of
language-specific expressions allows familiar syntax to be used.

24.1 Distributed Debugger Design
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Distributing the functionality of the debugger into unique server
processes localizes the machine dependent parts of the debugger 2400 to
those unique server processes. The debugger 2400 is a distributed
debugger consisting of a Debugger User Interface (DUI) plus a Symbol
Server (SS) and a Debug Host Server (DHS). The DUI parses the
commands from the user and creates an internal representation for the
commands. It then interprets the commands. DUI uses SS to get symbol
information about symbols in the process being debugged. Symbol
information includes type information and storage information about
symbols in the program being debugged. DUI uses DHS to interact with
the process executing the program being debugged. Interaction with the
process includes starting and stopping the execution of the process, reading
the registers in the process, and reading the memory image of the process.
The distributed nature of the debugger aids the debugging of distributed
applications (applications that run on a distributed computer network).
For example, an application running on 3 computers would have 3
instances of DHS running on the 3 computers to interact with the three
different parts of the applications. DUI communicates with SS and DHS
via remote procedure calls.

24.2 Use of Register Mapping for Debugger

The debugger 2400 uses the list of variable and register pairs
associated with each basic block to determine which register holds the live
value of a variable. Each variable resides in only one register in each basic
block. The variable that is held in a register in a basic block either enters
the basic block in that register or is loaded into that register during
execution of the basic block. If the variable is already in the register upon
entry to the basic block, then its value is readily known from the variable-
register pairs maintained by the compiler. If the variable is not in a
register upon entry to the basic block, the debugger 2400 examines a
sequence of code in the basic block to determine at what point the variable
is loaded into the register.

24.3 Mapping Source Code to Executable Code

A mapping of the source code to its executable code (generated from
the source code) and a mapping of the binary code to its source code are
maintained to aid in debugging optimized code. The mappings allow
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setting of breakpoints in the source code and mapping the breakpoints to
the binary code. It also allows recognition of the source code associated
with each binary instruction.

The compilers translate their respective source program into an
intermediate form called HiForm or HF. Contained within the HF is the
source file address of the source code that translated into that HF. The
source file address contains the line number for the source expression, the
byte offset from the beginning of the file to the source expression, and the
path name to the source file. The HF is translated to LoForm or LF. The
LF is a second intermediate form that maps closely to the instruction set of
the preferred embodiment of the processor. The HF maps directly to the
LF that it generates. The LF contains a relative location of the binary
instruction corresponding to the LF.

The debugger matches the line number of a line of source with a
source file address in the HF. The HF points to its corresponding LF and
the LF points to the corresponding location of its binary instruction.

24.4 Debugging Inlined Procedures

The compiler 2200 provides debugging support for in-lined
procedures by marking the HF for any procedure that has been in-lined
and creating a table of source file addresses where in-lining has been done.

The proc[ess of debugging is made more difficult by procedure
in-lining. One problem is that the source code for the program no longer
reflects the executing code for the program because calls to procedures
have been replaced by the code for the procedure. A second problem is
that debugging the code in the procedure that has been in-lined is
complicated by the fact that the code exists in multiple places (wherever it
has been in-line and potentially as a non-in-lined instance of the
procedure. To overcome these difficulties in-lining in the present
invention: 1) sets a bit in every statement node that was created due to
some form of in-lining (also set a field in the statement node to point to
the specific call site that was in-lined); and 2) creates a list of source file
addresses where in-lining has taken place per procedure being inlined, and
attaches that list to the procedure definition symbol.

2.4.5 Dual Level Parsing
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The parser associated with the debugger 2400 consists of multiple
parsers, including: a debugger command language parser, C expression
parser, and Fortran expression parser. The command language parser
executes until it recognizes that the next items to be parsed are expressions
in either C or Fortran. The command language parser knows when to
expect an expression by the structure of the command language. It knows
which language expression to expect because of the language flag that
specifies what language is being processed. The command language parser
then calls either the C expression parser or the Fortran expression parser.
All parsers are built with the YACC parser generating systems with
modifications to the names of the different parsers. Each parser has a
different LEX generated lexical analyzer and each parser has its own
separate parse table. All lexical analyzers also share a common input
stream. The grammar for each of the parsers is made simpler than a single
grammar for the command language, C expressions and Fortran
expressions and the parsing is faster and more efficient.

Although the description of the preferred embodiment has been
presented, it is contemplated that various changes could be made without
deviating from the spirit of the present invention. Accordingly, it is
intended that the scope of the present invention be dictated by the
appended claims rather than by the description of the preferred
embodiment.

We claim:
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CLAIMS
1. An integrated software architecture for controlling a highly parallel
multiprocessor system having multiple tightly-coupled processors that
share a common memory, the integrated software architecture
comprising:
control means for distributively controlling the operation
and execution of multithreaded programs in the multiprocessor
system by implementing an anarchy-based scheduling model for the
scheduling of processes and resources that allows each processor to
access a single image of the operating system stored in the common
memory that operates on a common set of operating system shared
resources; and
interface means operably associated with the control means
for interfacing between user application programs and the control
means so as to present a common visual representation for a
plurality of program development tools for providing compilation,
execution and debugging of multithreaded programs.
2. The integrated software architecture of claim 1 wherein the control
means is a symmetrically integrated multithreaded operating system and
the interface means is an integrated parallel user environment.
3. The integrated software architecture of claim 1 wherein the software
architecture decreases the overhead of context switches among a plurality
of processes that comprise the multithreaded programs being executed on
the multiprocessor system and also decreases the need for the
multithreaded programs to be rewritten or customized to execute in
parallel on the multiprocessor system.
4. The software architecture of claim 2 wherein the symmetrically
integrated multithreaded operating system schedules the execution of
processes by using an atomic resource allocation mechanism to operate on
the operating system shared resources.
5. The software architecture of claim 4 wherein the processes to be
scheduled include one or more microprocesses which have context that is
discardable upon exit.
6. The integrated software architecture of claim 2 wherein the
symmetrically integrated multithreaded operating system means

comprises:



WO 91/20033 PCT/US91/04066

10

15

20

30

35

78

kernel means for processing multithreaded system services;
and
input/output means for processing distributed,
multithreaded input/output services.
7. The integrated software architecture of claim 6 wherein the kernel
means for processing multithreaded system requests comprises:
parallel process scheduler means for scheduling multiple
processes into multiple processors according the anarchy-based
scheduling model;
parallel memory scheduler means for allocating shared
memory among one or more process groups for the processor; and
support means for providing accounting, control, monitor,
security, administrative and operator information about the
processor.
8. The integrated software architecture of claim 6 wherein the
input/output means for processing multithreaded input/output requests
comprises:
file management means for managing files containing both
data and instructions for the user application software programs;
input/output management means for distributively
processing input/output requests to peripheral devices attached to
the multiprocessor system;
resource scheduler means for scheduling processes and
allocating input/output resources to those processes to optimize the
usage of the multiprocessor system; and
network support means for supporting input/output requests
to other processors interconnected with the multiprocessor system.
9. The integrated software architecture of claim 8 wherein the file
management means comprises:
memory array management means for managing virtual
mMemory arrays;
array file management means for managing array files
having superstriping; and
file cache management means for managing file caching.
10. The integrated software architecture of claim 6 wherein the
symmetrically integrated multithreaded operating system means further
comprises:
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multithreaded interface library means for storing and-
interfacing common multithreaded object code files for performing
standard programming library functions.
11. The integrated software architecture of claim 2 wherein the
integrated parallel user environment means comprises:
compilation means for compiling a source code file
representing the user application software program;
program management means for controlling the
development environment for the source code file;
user interface means for presenting a common visual
representation to one or more users of the status, control and
execution options available for the multithreaded programs; and
debugger means for providing debugging information and
control in response to execution of the multithreaded program on
the multiprocessor system.
12. The integrated software architecture of claim 11 wherein the
compilation means comprises: '
one or more front end means for parsing the source code file
and for generating an intermediate language representation of the
source code file;
optimization means for optimizing the parallel compilation
of the source code file, including means for generating machine
independent optimizations based on the intermediate language
representation; and
code generating means for generating an object code file based
upon the intermediate language representation, including means
for generating machine dependent optimizations.
13.  The integrated software architecture of claim 12 wherein the user
interface means comprises:
means for linking the object code version of the
multithreaded program into an executable code file to be executed

by the multiprocessor system;
means for executing the executable code file in the

multiprocessor system; and

means for monitoring and tuning the performance of the
executable code file, including means for providing the status,
control and execution options available for the user.
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14  The integrated software architecture of claim 13 wherein the user
interface means further comprises: ‘
a set of icon-represented functions; and
an equivalent set of command-line functions.
15. The integrated software architecture of claim 12 wherein the
debugger means comprises:
means for mapping the source code file to the optimized
parallel object code file of the multithreaded program; and
means for mapping the optimized parallel object code to the
source code file of the multithreaded program.
16. The integrated software architecture of claim 15 wherein the
debugger further comprises:
means for debugging the optimized parallel object code
executing on the multiprocessor system; and
means for debugging the multithreaded program across an
entire computer network, including the multiprocessor system and
one or more remote processors networked together with the
multiprocessor system.
17. An integrated parallel user environment for developing,
compiling, executing, monitoring and debugging multithreaded programs,
at least a portion of which are to be run on a highly parallel
multiprocessor system having multiple tightly-coupled processors that
share a common memory, the integrated parallel user environment
comprising:
program management means for controlling the
development environment for a source code file representing a
user application software program for which parallel software code
is desired;
compilation means for compiling the source code file to
create an executable code file comprised of multithreaded programs
capable of parallel execution;
user interface means for presenting a common visual
representation to one or more users of the status, control and
execution options available for executing and monitoring the
executable code file during the time that at least a portion of the
object code file is executed on the multiprocessor system; and
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debugger means for providing debugging information and
control in response to execution of the executable code file on the
multiprocessor system.
18.  An integrated software architecture for implementing parallelism
5 by default in a computer processing system comprising:
a highly parallel multiprocessor system having multiple
tightly-coupled processors that share a common memory; and
control means for distributively controlling the operation
and execution of multithreaded programs in the multiprocessor

10 system by implementing an anarchy-based scheduling model for the

scheduling of processes and resources that allows each processor to
access a single image of the operating system stored in the common
memory that operates on a common set of operating system shared
resources.

15 19. A method for controlling a highly parallel multiprocessor system
having multiple tightly-coupled processors that share a common memory
comprising the steps of:

distributively controlling the operation and execution of
multithreaded programs in the multiprocessor system by

20 implementing an anarchy-based scheduling model for the

scheduling of processes and resources that allows each processor to
access a single image of the operating system stored in the common
memory that operates on a common set of operating system shared
resources; and

25 interfacing between user application programs and the

control means so as to present a common visual representation for

a plurality of program development tools for providing

compilation, execution and debugging of multithreaded programs,
such that the overhead of context switches among a plurality

30 of processes that comprise the multithreaded programs being

executed on the multiprocessor system is decreased and the need for
the multithreaded programs to be rewritten or customized to
execute in parallel on the multiprocessor system is also decreased.
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FIG. 26a
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