WO 2004/046910 A1 ||| 08000 000 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
3 June 2004 (03.06.2004)

AT O Y0 00O O

(10) International Publication Number

WO 2004/046910 Al

(51) International Patent Classification’: GO6F 7/00,
17/30, 9/44
(21) International Application Number:
PCT/US2003/037001

(22) International Filing Date:
18 November 2003 (18.11.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/298,458 18 November 2002 (18.11.2002) US

(71) Applicant: DOONGO TECHNOLOGIES, INC.
[US/US]; 2130 Gold Street, Suite 200, Alviso, CA 95002
(Us).

(72) Inventor: LUOSHENG, Peng; 2130 Gold Street, Suite
200, Alviso, CA 95002 (US).

(74) Agents: GREGORY, Richard, L., Jr. et al.; Shemwell
Gregory & Courtney LLP, 4880 Stevens Creek Blvd., Suite
201, San Jose, CA 95129 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BFE, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DEVICE MEMORY MANAGEMENT DURING ELECTRONIC FILE UPDATING

Original File New File
File Differencing 114
Algorithm
| Delta File 116 | 102
\/Klos
N\
Hosted Delta File
Original File
110 116
File Updating |
Algorithm
118
Upgrade Client 130
Device Memory 300
lCopy of New File 112 ’ 104

(57) Abstract: In performing memory management, an
upgrade client (130) of a host device identifies and reserves
memory blocks large enough to accommodate new software
components by performing sequential searches of first and
second memory areas. The new software components are
updated versions of components of original software files
(110). When the new component size exceeds that of available
blocks of the first and second memory areas, the upgrade
client (130) rewrites the first memory area to eliminate unused
memory blocks, reapportions the first and second memory
areas, writes the new component to the second memory area,
and updates a vector table. To access host device software
components, the upgrade client receives a function call from the
main program of the host device (104) including identification
information of corresponding software files, reads a start
address of the corresponding software files from the vector
table, and generates a call for the corresponding software files.

WO 2004/046910 A1 II}H1I0 Y A0VOH0 T 0000 0.0 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments

10

15

20

WO 2004/046910 PCT/US2003/037001

Device Memory Management During Electronic File Updating

Inventor: Luosheng Peng

RELATED APPLICATIONS

This application is related to the following United States Patent Applications:
Application Number 10/146,545, filed May 13, 2002; Application Number
10/261,153, filed September 30, 2002; Application Number 10/292,245, filed
November 12, 2002; Application Number 10/298,393, filed November 18, 2002;
Application Number 10/298,863, filed November 18, 2002; Application Number
10/298,862, filed November 18, 2002; and Application Number 10/298,896, filed
November 18, 2002, all of which are currently pending.

TECHNICAL FIELD

The disclosed embodiments relate to memory management during electronic

file updating.

BACKGROUND
Software that runs on a Central Processing Unit (CPU) in order to fulfill

certain functionality of the host device often changes over time. The changes may
result from the need to correct software bugs, adapt to evolving technologies, or add
new features to the host device. In particular, embedded software in mobile wireless

devices like cellular telephones often includes more bugs than other portat;le devices

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

or processing systems and generally requires more frequent updates to add new
features to the device.

Software includes one or more files which can be in the form of American
Standard Code for Information Interchange (ASCII) plain text files or binary code.
Software files can be divided into smaller units that are often referred to as
components or modules. In the current art, a UNIX platform or Personal Computer
(PC) includgs multiple software components, and each of the software components is

managed and updated independently through a file system supported by a

corresponding Operating System (OS). Information used to update software files or

software components hosted on UNIX platforms or PCs can be transferred through
the Internet or loaded from a secondary storage medium such as a floppy disk, a
cémpact disk read-only memory (CD-ROM), or a compact flash card.

In contrast, in most mobile wireless devices, a real-time OS (RTOS) is
typically used in which all software components are linked as a single large file.
Further, no file system support is typically provided in these mobile wireless devices.
In addition, the single large file needs to be preloaded, or embedded, into the device
using a slow communicatioﬁ link like a radio, infrared, or serial link.

Obstacles to the update of large files via slow communication links include the
time of delivering the updated file to the device. In cases where a difference file is
transferred to the device hosting the files targeted for update/revision, this time
includes both the communication time to transfer the difference file and the time used
by the receiving device to process the difference file and update/revise the targeted
files, referred to herein as the host device processing time. While use of a delta file to
transfer updated software file or software component information significantly
reduces the communication time, as described in the Related Applications, reduction
of the host device processing time is dictated at least in part by the host device
architecture. _)

The host device can be any of a number of processor-based devices, including
cellular telephones and other mobile communication devices, personal digital
assistants (PDAS), and personal computers. Using cellular telephones as an example,
the typical cellular telephone architecture includes flash read-only memory (ROM),
referred to herein as flash ROM or flash menﬁory, and an RTOS. Both the flash

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

memory and the RTOS potentially introduce obstacles to the goal of reducing the host
device processing time.

The problem that arises with respect to the flash memory in reducing the host
device processing time involves the manner with which writes are performed to flash
memory. Flash memory is allocated in units which are often referred to as blocks,
sectors, or segments, each of which includes numerous bytes. A write (or rewrite) to
the typical flash memory requirg:s erasing and writing (or rewriting) an entire unit,
meaning that single bits or bytes can not be written (or rewritten). Therefore the
update or revision of a byte stored in flash memory requires erasing and rewriting the
entire unit in which the byte is stored. Thus, the time required to update or revise files
stored in flash memory is typically greater than that required to update or revise files
stored in other types of storage or memory in which single bytes can be written (or
rewritten). '

The problem that arises with respect to the RTOS in reducing the host device
processing time involves the manner in which host device software programs are
organized and managed. The RTOS of typical cellular telephones does not support
file management and dynamic address resolution for function calls at runtime.
Therefore, all embedded software components or programs of the cellular telephone
are linked into a single, large host program, and a function within the host program is
called from any part of the host program directly through a precompiled start address
of the function. Thus, in contrast to a typical computer OS in which file management
and dynamic address resolution for function calls are supported, the typical cellular
telephone RTOS does not have the capability to manage multiple software
components as separate files and support the function calls from one of the software
components to another via runtime calling address resolution. Consequently, the host
program of a system including an RTOS manages a single, large program and uses
static addressing to directly access functions of the program.

This typical device architecture can lead to a problem when updating and

* revising software components because when the revision or update results in changes

in host program size there is a resultant change in the start addresses of the software
components that follow the updated/revised software component in the host program.
This change in the start address of a software component results in a need to update

the corresponding calling addresses in the host program and the instruction/data

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

addresses within the software component. This can be expensive in terms of
processing time. Thus, host device processing time associated with embedded
software updates/revisions is due in large part to the inefficient rewriting of data to
flash memory and the fact that a small change to embedded software at ﬂm source
code level can result in a large change to the embedded software at the binary code

level.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a block diagram of a system for updating electronic files using a
byte-level file differencing and updating (FDU) algorithm, under an embodiment.

Figure 2 is a block diagram of a software upgrade system, under an
embodiment.

Figure 3 is a block diagram of the device memory, under an embodiment.

Figure 4 is a flow diagram of a non-critical component update, under an
embodiment. '

Figure 5 is a flow diagram of a critical component update, under an
embodiment.

Figure 6 is a flow diagram of static addressing using reserve memory
allocation for each upgradeable EBSC, under an embodiment.

Figure 7 is a block diagram of a portion of a host device memory configured
to support static addressing memory management, under the embodiment of Figure 6.

Figure 8 is a flow diagram of static addressing using reserve memory
allocation for groups of upgradeable EBSCs, under an embodiment.

Figure 9 is a block diagram of a portion of a host device memory configured
to support static addressing memory management, under the embodiment of Figure 8.

Figure 10 is a block diagram of a client device ROM map supporting static
addressing, under an embodiment.

Figure 11 is a block diagram of an embedded software development and
deployment process using static addressing, under an embodiment.

Figure 12 is a flow diagram for upgrading an EBSC or EBSC group using
dynamic addressing, under an embodiment. |

Figure 13 is a flow diagram of a function call using dynamic addressing,

under an embodiment.

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

Figure 14 is a block diagram of a client device ROM map supporting dynamic
addressing, under an embodiment.

Figure 15 is a block diagram of a host device memory showing an example of
interaction among components of the memory including the upgrade client, the
embedded software area, the DMM library, the vector table, and the garbage table,
under the embodiments of Figures 3 and 14.

Figure 16 is a flow diagram for reserving memory areas to accommodate new
versions of an EBSC using the reservation API, under an embodiment.

Figure 17 is a flow diagram for locating memory areas to accommodate new
versions of an EBSC using the rules of the reservation API, under an embodiment.

Figuré 18 is a flow diagram for colleétion of unused areas of the embedded
software area (garbage collection), under an embodiment.

Figure 19 is a block diagram of an example host device memory before and
after upgrading operations of the reservation AP, under an embodiment.

Figure 20 is a block diagram of the host device memory following upgrading
and garbage collection operations, under an embodiment.

Figure 21 is a block diagram of an embedded software development and
deployment process using dynamic addressing, under an embodiment.

In the drawings, the same reference numbers identify identical or substantially
similar elements or acts. To easily identify the discussion of any particular element or
act, the most significant digit or digits in a reference number refer to the Figure
number in which that element is first introduced (e.g., element 130 is first introduced
and discussed with respect to Figure 1).

Unless described otherwise below, the construction and operation of the
various blocks and structures shown in the Figures are of conventional design. Asa
result, such blocks need not be described in further detail herein, because they will be
understood by those skilled in the relevant art. Such further detail is omitted for
brevity and so as not to obscure the detailed description of the invention. Any
modifications necessary to the Figures can be readily made by one skilled in the

relevant art based on the detailed description provided herein.

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

DETAILED DESCRIPTION

A memory management system and method are described in detail herein. In
performing memory management, an upgrade client of a host device identifies and
reserves memory blocks large enough to accommodate new software components by
performing sequential searches of first and second memory areas. The new software
components are updated or upgraded versions of components of original software
files. When the new component size is equal to or smaller than the size of a
cogrqspondiﬁg component of the original electronic file, the update client allocates an
original memory block of a first memory area into which to write the received
component. The original memory block includes the corresponding component of the
original electronic file.

When the new component size exceeds the size of the corresponding
component of the original electronic file, the upgrade client searches unused portions
of the first memory area for a memory block large enough to store the received
component. The upgrade client reserves a memory block of the appropriate size if
one is located in the first memory area, otherwise the upgrade client searches the
second memory area. The upgrade client reserves a memory block of the appropriate
size if one is located in the second memory area. |

When, however, the new component size exceeds that of available blocks of
the first and second memory areas, the upgrade client rewrites the first memory area
to eliminate unused memory blocks. Following rewriting of the first memory area,
the upgrade client reapportions the first and second memory areas by sequentially
rewriting software components of the second memory area to the unused portion of
the first memory area where component size and available blocks of the first memory
area permit. Subsequently, the upgrade client re-desi gnates the remaining unused
portion of the first memory area as part of the second memory area. Following the
reapportionment, the upgrade client writes the new component to the second memory
area and updates a vector table.

With regard to accessing host device software components, the upgrade client
receives a function call from the main program of the host device, where the function
call includes identiﬁcation‘ information of corresponding software files. The upgrade
client uses the identification information to access the vector table and read a start

address of the corresponding software files from the vector table. Using the start

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

address from the vector table along with the identification information, the upgrade
client generates a call to the corresponding software files.

Figure 1 is a block diagram of a system for updating electronic files using a
byte-level file differencing and updating (FDU) algorithm, herein referred to as the
FDU algorithm, under an embodiment. The FDU algorithm includes a differencing
component and an updating component. The differencing component, referred to
herein as the file differencing algorithm and described in detail in the Related
Applications, generates a difference file in a first computer system from an original
version and a new version of an electronic file. The updating component, referred to
herein as the file updating algorithm and described in detail in the Related
Applications, generates a copy of the new file on a second computer system using the
difference file and the hosted copy of the original file. In the following description,
numerous specific details are introduced to provide a thorough understanding éf, and
enabling description for, embodiments of the invention. One skilled in the relevant
art, however, will recognize that the invention can be practiced without one or more
of the specific details, or with other components, systems, etc. In other instances,
well-known structures or operations are not shown, or are not described in detail, to
avoid obscuring aspects of the invention.

With reference to Figure 1, a first computer sys.tem 102 and a second
computer system 104 communicate via a communication path 106. These computer
systems 102 and 104 include any collection of computing devices operat:ing together,
as is known in the art. The computer systems 102 and 104 also include components
within a larger computer system. The communication path 106 includes any medium
by Whicih files are communicated or transferred between the computer systems 102
and 104, Therefbre this path 106 includes wireless connections, wired connections,
and hybrid wireless/wired connections. The communication path 106 also mcludes
couplmgs or connections to networks including local area networks (LANS),
metropolitan area networks (MANS), wide area networks (WANSs), proprietary
networks, interoffice or backend networks, and the Internet. Furthermore, the
communication path 106 includes removable fixed mediums like floppy disks, hard
disk drives, and CD-ROM disks, as well as flash RAM, Universal Serial Bus (USB)
connections, RS-232 connections, telephone lines, buses, and electronic mail

messages.

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

* The first communication system 102 receives an original, or old, version 110
and a new version 112 of an electronic file. The new file 112 is generally an updated
or revised version of the original file 110, but is not so limited. The electronic files -
110 and 112 include software files including dynamic link library files, shared object
files, embedded software components (EBSCs), firmware files, executable files, data

files including hex data files, system configuration files, and files including personal

- use data, but are not so limited. Since any type of file can be regarded as a byte

stream, hereafter a file can be described as a byte stream.

The file differencing algorithm 114 receives the new file 112, compares it to
the original file 110, and calculates the byte-level differences between the compared
files, as described below. The file differencing algorithm 114 may also pre-process
the original 110 and the new 112 files to reduce the sizes of the files prior to the
calculation of the file differences. The file differencing algorithm 114 generates a
difference file 116, referred to herein as a delfa file, during the comparison.

Contents of the delta file 116 provide an efficient representation of the byte-
level differences between the new and the original files. The delta file 116 includes
meta-data along with actual data of replacement and/or insertion operations that
represent the differences between the new or current version of the associated file and
previous versions of the file, as described below. The file differencing algorithm 114
provides any differences between the original 110 and the new 112 files in the delta
file 116 using a minimum number of bytes and a pre—deﬁned format or protocol,
thereby providing a delta file optimized in space.

The delta file 116 is transferred or transmitted to another computer system 104
via the communication path 106. Prior to transfer, the delta file 116 may be
compressed using compression techniques known in the art, but is not so limited. The
file updating algorithm 118 hosted on the receiving computer system 104 uses the
delta file 116 along with the hosted original file 110 to generate or create a copy of
the new file 112. This copy of the new file 112 is then used to updaté the original file
110 hosted on the client device 104 that is targeted for revision or updating. Upon
completion of this update process, the original file 110 now stored on the second
computer system 104 is identical to the new file received in the first computer system.

The differences between an original file and a new file are typically smaller

than the new file, leading to significant storage and transmission savings if the

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

differences are transmitted and stored instead of the entire new byte stream. This is
particularly important for mobile electronic devices hosting programs that are updated
via connections that typically can be slow and expensive, for example wireless or
cellular connections.

Figure 2 is a block diagram of a software upgrade system 200, refetred to
herein as the upgrade system, of an embodiment. The upgrade system 200 uses the
delta file and file updating algorithm of an embodiment in supporting software
maintenance and application management for client devices including mobile
electronic devices, mobile communication devices, cellular telephones, personal
digital assistants, computers, and other processor-based devices. This support is
provided for all device software ranging from firmware to embedded applications by
enabling carriers and device manufacturers to efficiently distribute electronic file
content and applications via a wireless infrastructure.

The upgrade system 200 prevents device recalls by supporting the provision of
new and revised software files to mobile client devices via various mechanisms of the
service provider’s wireless infrastructure. These systems function by receiving new
and revised software from a software distributor and generating a delta file from the
new software using the file differencing algorithm. The delta file is transferred to the
client device via the infrastructure of a service provider. The upgrade client,
including the file updating algorithm, of the receiving or client device uses the delta
file to update the targeted software hosted on the client device. 4

The upgrade system 200 enables different life cycles between device software
and hardware. This upgrade system, therefore, supports up-to-date device
functionality in view of the fact that critical software components such as Java™
Connected Limited Device Configuration (CLDC) libraries,- Moving Pictures Experts
Group-1 (MPEG-1) Layer III (MP3) drivers, communication software, and browser
applications evolve faster than the host device hardware and are consequently updated
with greater frequency than mobile device manufacturers deliver anew generation of
devices. The upgrade system 200 is described in further detail below.

With reference to Figure 2, the upgrade system 200 maintains embedded
software components on client devices 104 via a wireless connection with the device
212, thereby enabling wireless carriers to continuously provide the latest data services

to all users. The upgrade system 200 includes, but is not limited to, a new software

10

15

20

25

30.

WO 2004/046910 PCT/US2003/037001

component distributor or software component distributor 202, service provider
upgrade components 203-205, and an upgrade client 130 hosted on the client device
104. The service provider upgrade components include an upgrade server 204
coupled among a software component certification server 203 and an upgrade
manager 205. .

The software component distributor 202 of an embodiment provides a web-
based user interface by which software providers package and release new embedded
device software components such as an improved MP3 driver, an upgraded J ava ™ 2
Platform, Micro Edition J2ME™) Mobile Information Device Profile (MIDP)
library, or a feature-added address book application. Functions of the software
component distributor 202 include fegistering device information and submitting
device information to thé software component certification server. Also, the software
component distributor 202 receives new and original EBSCs and calculates byte-level
file differences therefrom using the file differencing algorithm, registers and packages
embedded software, and submits embedded software packages to the software
component certification server. The new software, following release, is provided to
the service provider upgrade components 203-205 via a wired, wireless, or hybrid
wired/wireless network coupling or connection 220, but is not so limited.

The software component distributor 202 of an embodiment is hosted on
processing systems of the client device manufacturers. In an alternative embodiment,
the software component distributor 202 is hosted on processing systems of a software
provider. In another alternative embodiment, the software component distributor 202
is hosted on processing systems of the communication service provider, for example
the upgrade components 203-205.

The service provider upgrade components 203-205 are coupled among the

software component distributor 202, the client devices 104, and the existing

- components of the service provider’s infrastructure 210-218, including the existing

gateway 210 and communication infrastructure 212, billing server 214, logging server
216, and authentication server 218. The software component certification server 203
provides an interface to device manufacturers and, thus, receives new device
information on embedded software packages from device manufacturers. The
software component certification server 203 also receives software componént

submission requests from the software component distributor, provides notification of

10

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

approval/decline of new software packages to submitting upgrade servers, provides
disk maﬁagement for submitted and approved software packages, and repackages and
distributes approved software packages to upgrade servers. Furthermore, the software
component certification server 203 provides carrier-grade security control over
potential intrusion and data tampering during the software component submission
process.

The upgrade manager 205, hnctioﬁng as an interface among the software
component certification server 203 and the upgrade server 204, provides a web-based
user interface by which wireless carrier system administrators verify and approve an
embedded device software component upgrade. Also, the upgrade manager 205
configures software and data packaging for optimal device management, schedules
remote change notifications, and controls the update policy monitor system.
Moreover, the upgrade manager 205 provides integration with the systems of the
existing infrastructure, or back end systems (billing, user database authentication, web
portal), thereby providing the workflow to determine authentication, access controls,
and their integration into the existing billing 214 and logging 216 servers.

The upgrade server 204 provides capabilities including authenticating,
connecting, and communicating with mobile devices to perform embedded software
component upgrades. Communication with client devices 104 can occur via wireless
connections 212, wired connections, hybrid wired/wireless connections, and other
network connections with the client device, as appropriate to the corresponding
service provider. In addition, the upgrade server 204 supports existing billing, data
collection, and logging services of the service provider.

As an example of communications among the upgrade server 204 and client
devices 104, when a delta file is évailable for transfer to a client device 104 from the
upgrade server 204, the server 204 sends a user notification to notify the client device
user that there are software components available for updating. The user notification
can take the form of a text message via a Short Message Service (SMS) push protocol,
Hypertext Transfer Protocol (HTTP), or Wireless Application Protocol (WAP), but is
not so limited. Upon receiving confirmation from the handset users, the upgrade
server 204 uses the original handset data communication protocol to send the delta

file to the requesting handset.

11

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

In response to receipt of the confirmation from the handset, the upgrade server
204 authenticates and authorizes the user and/or requesting device, and verifies
prerequisite capabilities and limitations of the requesting device. Following
authentication the upgrade serQer 204, as the manager of client device configuration
data, identifies the current versions of embedded software components of the
requesting device 104, identifies and transfers appropriate delta files to the requesting
device 104, logs the status of the upgrade transaction, and reports the results to the
upgrade manager 205. An embodiment of the upgrade server 204 includes automatic
failure recovery mechanisms. In addition, the upgrade server 204
activates/deactivates the software upgrade service over the air, and notifies remote
users of software changes. '

With reference to Figure 1, the upgrade client 130 is embedded in the device
memory 300 of the client devices 104, but is not so limited. The upgrade client 130
stores and maintains configuration datél of the host device 104, and provides for the
maintenance and upgrading of embedded device software components using the file
updating algorithm 118. The ﬁpgrade client 130 supports a simple user interface and
is incorporated into mobile device software. Upon execution, the upgrade client 130
automatically detects the remote change of any embedded software components,
notifies users of an embedded software component upgrade, and upgrades a software
component based on the carriers and/or users control, as appropriate for a particular
service provider. The upgrade client 130 also includes an automatic failure recovery
mechanism. ‘

The client device determines the status of numerous device parameters prior to
participating in an update procedure. This is done in order to pre-qualify the device
for the update procedure, or verify that the condition of the client device is such that
the update procedure can be completed once begun. The client device pre-
qualification includes determining if the client device is in a cradle or chargiﬂg mode,
if the client device is connected to a serial cable, if the state of battery charge is
sufficient to perform the updating process, if the Received Signal Strength Indication
(RSSI) or signal strength is sufficient for the data transfer, and if the targeted EBSC is
currently in use. ‘

The upgrade system 200 of an embodiment supports numerous types of

software file or component updates via delta file. The file types for which updates are

12

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

supported include executable files, byte stream files, and data files, but are not so
limited. The exeéutable files, or image files, include software files used in the client
device to execute tasks, for example the operating system (OS), hardware device
drivers, and K Virtual Machine (KVM) files. The byte stream files include files used
by other executable files, for example, icon files, logo files, and MP3 files. Data files
include files containing personal use data, and handset reference data, for example the
calibration configuration files, the Protocol Independent Multicast (PIM) files, and
system configuration files.

Figure 3 is a block diagram of the device memory 300, under an embodiment.
The device memory 300 of an embodiment is flash ROM, but many types of memory
and/or combination of memory types may be used in alternative embodiments of the
device memory 300. The device memory 300 includes an embedded software area
302, an area for the upgrade client device parameters 306, and a device memory
management area 308. The upgrade client 130 along with the file updating algorithm
118 is stored in the embedded software area 302 of an embodiment. The device
memory management area 308 hosts a device memory management (DMM) library
310, a vector table 312, and a garbage table 314, as described in detail below.

Upon receipt of a delta file, or alternatively a new EBSC, the upgrade client
130 controls the revising and updating of files including embedded software,
embedded software components (EBSCs), and EBSC groups. The upgrade client uses
numerous methods to update EBSCs depending on the file type to be updated and the
resources allocated by the client device manufacturer to support these updates. These
update methods include but are not limited to the following, as described in detail in
the Related Applications: updating the operating system (OS), communication
protocol and other critical software components using reserved ROM; updating the
OS, communication protocol and other critical components using reserved RAM,;
updating the communication protocol in the absence of reserved ROM or RAM; and
single-line updates of non-critical EBSCs.

The update methods of an embodiment include non-critical component
updates and critical component updates. These categories are based on the usage of

the software components of the client device targeted for update, and are described
further below.

13

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

Non-critical components include embedded software components (EBSCs)
that are easily recovered over the air following a failure during the update process.
Examples of non-critical components include browsers and KVM files, but are not so
limited. Figure 4 is a flow diagram 400 of a non-critical component update, under an
embodiment. When updating with a delta file, the client device receives the delta file
from an upgrade server via a network connection, at block 402. The delta file, upon
receipt in the client device, is written into a designated area of device memory, at -
block 404, for example, RAM and/or ROM storage. The upgrade client of the client
device then generates a copy of the new file or EBSC from the original file or EBSC

using the delta file, at block 406. The copy of the new file is written into reserved

- RAM or ROM, as appropriate, at block 408. At block 410, the copy of the new file is

subsequently written from reserved memory into the memory locations that contain
the original file or EBSC.

Critical components include software components used in the update
procedure or the EBSCs critical to device operation. Further, éritical components
include EBSCs that are not éasily recovered over the air following a failure during the
update process. Examples of critical components include the operating system files,
protocol stacks, the upgrade client files, communication libraries, and display or LCD
driver files, but are not so limited. The update procedure differs slightly between
these two categories.

Figure 5 is a flow diagram 500 of a critical component update, under an
embodiment. When performing the update using a delta file, the client device
receives the delta file from the upgrade server via a network connection, at block 502.
As described above, the delta file can include file or EBSC upgrades of executable,
byte stream, and data files. The wireless network of an embodiment is that of the
cellular service provider, but is not so limited.

Upon receipt of the delta file, generally, the original files or EBSCs targeted
for updating are copied from the flash ROM of the client device into a memory area
designated for use during the update process, at block 504, for example RAM and/or
ROM storage as appropriate. The client device allocates this designated memory area
for use in storing the updating software components. The delta file is also written into

the memory area designated for use during the update process, at block 506.

14

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

The upgrade client of the client device then uses the hosted copy of the
original file along with the delta file to generate a copy of the new file, at block 508.
The copy of the new file is written into a pre-specified memory area of the client
device, for example reserved memory of the client device, at block 510. This process
is repeated as necessary.

Following generation, the copy of the new file is written from reserved
memory into the original memory locations containing the original file, at block 512.
When the size of the new file is the same as or smaller than that of the original file,
the new file is written into the memory locations of the original file, thereby replacing
the original file.

As described above, revision of files involves the writing of new and updated
EBSCs to memory locations of the host device. Often, the new EBSC will not be
exactly the same size or have exactly the same start address as the original EBSC it
replaces. The upgrade client of an embodiment provides device memory management
options including static addressing and dynamic addressing of upgradeable EBSCs to
accommodate writing of the new EBSC regardiess of the EBSC size or start address.

The static addressing of upgradeable EBSCs generally provides for changing
the size of the EBSC or EBSC group during updates, using reserved memory areas,
while the start address remains unchanged. Therefore, when using static addressing
the entire embedded software (EEBS) file is rewritten if the start address of an EBSC
or EBSC group requires changing, but the embodiment is not so limited.

The dynamic addressing of upgradeable EBSCs, while allowing for more
advanced memory management, generally supports modification of both the start
addresses and sizes of EBSCs and EBSC groups during each update. The upgrade
client of an embodiment supports dynamic addressing using interactions among a set
of application program or programming interfaces (APIs) and at least one data table.
As such, dynamic addressing increases the efficiency of ROM utilization and device
memory map design while supporting faster update processing with a lower
probability of update failures. Static and dynamic addressing are described in further
detail below.

The static addressing of an embodiment includes two .altematives, one of
which includes a reserve rhemory allocation for each upgradeable EBSC, and one of

which includes a reserve memory allocation for particular groups of EBSCs. The

15

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

reserve memory allocations modify the memory allocation for each EBSC or EBSC
group to accommodate software updates. Therefore, there will be additional ROM
reserved to accommodate future growth of the software, but the additional memory 1s
not limited to ROM.

Figure 6 is a flow diagram 600 of static addressing using reserve memory
allocation for each upgradeable EBSC, under an embodiment. In operation, the
upgrade client receives a new EBSC, at block 602. The new EBSC may be received
from the software component distributor, or generated by the upgrade client from the
original EBSC arid the delta file. The upgrade client determines, at block 604, a size
of the new EBSC. The upgrade client determines, at block 606, whether the size of
the new EBSC exceeds that of the corresponding EBSC it replaces. When the new
EBSC size does not exceed that of the original EBSC, the upgrade client reserves, and
subsequently writes the new EBSC to, the memory block storing the original EBSC,
at block 608. When the new EBSC size does exceed that of the original EBSC, the
upgrade client reserves, and eventually writes the new EBSC to, the memory block
and associated reserve memory area storing the original EBSC, at block 610.
Following writing of the new EBSC, operation returns to receive additional new
EBSCs, at block 612.

Figure 7 is a block diagram of a portion of a host device memory 702
configured to support static addressing memory management, under the embodiment
of Figure 6. In comparison, a portion of the host device memory 704 that is not
configured to support static addressing is shown. The memory 702 supporting static
addressing includes reserve memory areas for each upgradeable EBSC. In this
example, upgradeable EBSCs are identified at the time of device manufacture. A
reserve memory area is then provided that corresponds to each upgradeable EBSC.
While the reserve memory areas are shown as co-located with the corresponding
EBSC, they may be located or distributed anywhere in device memory. In the interest
of minimizing the amount of reserved memory, reserved memory areas are not
provided for non-upgradeable EBSCs, but the embodiment is not so limited.

Continuing with this example, the upgradeable EBSCs are identified as EBSC
1, EBSC 2, and EBSC 5, and reserved memory areas 1, 2, and 5 are provided for each
of these upgradeable EBSCs, respectively. Each reserved memory area 1, 2, and 5 is

of a size determined by the device manufacturer. Future upgrades and revisions to the

16

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

upgradeable EBSCs use the corresponding reserved memory area when the
upgrade/revision causes the size of the upgraded EBSC to exceed the size of the
original EBSC, as described above.

Figure 8 is a flow diagfam 800 of static addressing using reserve memory
allocation for groups of upgradeable EBSCs, under an embodiment. In operation, the
upgrade client receives a new EBSC, at block 802. Again, the new EBSC may be
received from the software component distributor, or generated by the upgrade client
from the original EBSC and the delta file. The upgrade client determines, at block
804, a size of the new EBSC. The upgrade client determines, at block 806, whether
the size of the new EBSC exceeds that of the corresponding EBSC it replaces. When
the new EBSC size does not exceed that of the original EBSC, the upgrade client
reserves, and subsequently writes the new EBSC to, the memory block storing the
EBSC group that includes the corresponding original EBSC, at block 808. When the
new EBSC size does exceed that of the original EBSC, the upgrade client reserves,
and eventually writes the new EBSC to, the memory block and associated reserve
memory area storing the original EBSC, at block 810. Following writing of the new
EBSC, operation returns to receive additional new EBSCs, at block 812.

Figure 9 is a block diagram of a portion of a host device memory 902
configured to support static addreésing memory management, under the embodiment
of Figure 8. In comparison, a portion of the host device memory 904 that is not
configured to support static addreséing is shown. The host memory 902 supporting
static addressing includes reserve memory areas for pre-specified groups of

upgradeable EBSCs. In this alternative, upgradeable EBSCs are identified at the time

of device manufacture. In this example, EBSCs 1, 2, 4, 5, and 8 are upgradeable.

The device manufacturer groups the upgradeable EBSCs using at least one of
a number of factors. For example, EBSCs with similar update frequencies may form
a group. Also, EBSCs with similar probabilities of being updated/revised can form a
group. Furthermore, EBSCs of related or interworking functions may form a group.
The following groupings are made for purposes of this ”example: EBSCs 1,4, and 5
form EBSC group 1; EBSCs 3 and 7 form gfoup 2; EBSCs 6 and 9 form group 3; and
EBSCs 2 and 8 form group 4. |

Following grouping, the device manufacturer provides a reserve memory area

corresponding to each updateable EBSC group. While the reserve memory areas are

17

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

shown as co-located with the corresponding EBSC groups, they may be located
anywhere in device memory. While non-upgradeable EBSCs are also placed in one
Or more groups, no reserved area is provided in the interest of minimizing the amount
of reserved memory, but the embodiment is not so limited.

In this example, the upgradeable EBSC groups are identified as EBSC Group
1 and EBSC Group 4, and reserved memory areas G1 and G4 are provided for each of
these upgradeable EBSC groups, respectively. Each reserved memory area G1 and
G4 is of a size determined by the device manufacturer. Future upgrades and revisions
to the upgradeable EBSC groups use the corresponding reserved memory area when
the upgrade/revision causes the size of the upgraded EBSC group to exceed the size of
the original EBSC group. ‘

The rewriting of the EBSCs or EBSC groups described above can result in
changes in the starting addresses of the subroutines within the file that includes the

- rewritten EBSC or EBSC group. Any changes in subroutine starting addresses result
in changes to the corresponding call addresses by which other subroutines of the host
device access the rewritten subroutines. Therefore, in an embodiment, the upgrade
client supports upgrading of the call addresses corresponding to any rewritten EBSCs
or EBSC groups. This call address upgrade includes rewriting any blocks in the host
device memory that include call addresses corresponding to subroutines in rewritten
EBSCs or EBSC groups. As these call address changes typically involve only a few
bytes, upgrading only the blocks including the call addresses is found to be more
efficient than updating the EBSCs containing the call addresses, but the embodiment
is not so limited.

Figure 10 is a block diagram of a client device ROM map 1000 supporting

static addressing, under an embodiment. The ROM includes the following areas, but
is not so limited: boot code area 1002, embedded software area 1004, EBSC working
memory area 1006, upgrade client device parameter area 1008, and at least one area
reserve)d 1 010 for unspecified purposes.

The boot code area 1002 stores the device booting sequence code. The
embedded software area 1004 stores embedded software of the client device. The
embedded software includes, for example, software of the browser, K Virtual
Machine (KVM), communication library, real time OS, graphics driver, and upgrade

client, but the embodiment is not so limited. The memory allocation for each

18

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

upgradeable EBSC or EBSC group is modified to accommodate software updates, as
described above. Therefore, there will be additional ROM reserved to accommodate
future growth of the software. The additional reserved ROM is approximately 5%-
20% of the size of the initial version of the corresponding EBSC or EBSC group, but
is not so limited.

The EBSC working memory area 1006 stores new versions of an EBSC or
EBSC group temporarily after they are generated by the upgrade client and before the
new versions are written to the memory locations of the embedded software area 1004
currently occupied by the original versions of the EBSC or EBSC group. The
estimated size of the working area 1006 is at least the size of the iargest of all EBSCs
or EBSC groups that use this memory area, including critical and non-critical
components.

The upgrade client device parameter area 1008 stores client device
configuration data and parameters specific to the upgrade client. The estimated size
of this area 1008 corresponds to the number of upgradeable EBSCs related to device
configuration hosted on the client device, but is not so limited.

Figure 11 is a block diagram of an embedded software development and
deployment process 1100 using static addressing, under an embodiment. This
diagram depicts the process from EBSC development by the software component
distributor 1102, for example, to device ROM initialization using an upgrade client of
an embodiment with static addressing-based device memory management.

Components of the software component distributor 1102 receive source code

of the new EBSCs, and compile 1103 the new EBSC source code. The compiling

. 1103 couples the resulting EBSC of)j ect code to the linkers 1106 and 1116 which, as

part of the registration of the new EBSC, generate a new hex file (text) or binary ﬁle
1118 from the new EBSC object code. The new hex file corresponds to the new
EBSC.

In supporting static addressing, the software component distributor or service
provider modifies the original map file to insert additional memory for each
upgradeable EBSC. In an embodiment, linker 1106 generates the modified rﬁap file
1104. When EBSC grouping is used, the original map file is modified to group
EBSCs and insert additional memory for each upgradeable EBSC group. This

19

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

modification of the map file 1104 includes editing the link files using linker 1106 to
insert the empty file or group together with the corresponding object files.

A vector generating tool 1105 generates a vector table file 1108 from the
modified map file 1104. The vector table file 1108 is downloaded into the reserved
ROM area 1110 for upgrade client device parameters in the client device 1112. With
reference to Figure 1, the upgrade client 130 maintains the vector table 1108, which
generally remains unchanged unless the entire embedded software (EEBS) is
rewritten. The linker 1116 also uses the modified map file 1104 to generate the new
hex or binary file 1118. Further, the linker 1116 specifies or generates a list of hex
file/map file path pair associations. The hex file 1118 is downloaded into the
embedded software area 1120 of the client device 1112, but may be downloaded into
other areas of the client device memory in alternative embodiments. .

While the static addressing described above reduces the host device processing
times and enables updating of critical software components, it does not accommodate
all upgrades and revisions. In addition, the use of static addressing necessitates
rewriting of the entire device memory when a rewrite of any EBSC will exceed the
size of the corresponding reserved memory area. Consequently, embodiments use
dynamic addressing as an alternative to static addressing.

Dynamic addressing allows for electronic file updates and revisions in which
the size of the new file version exceeds that of the original file version. In supporting
dynémic addressing, the upgrade client of an embodiment effectively manages the
device memory during both the file update process and the function call process in
which the main program calls functions including updated EBSCs.

In performing memory management using dynamic addressing, the upgrade
client identifies and reserves memory blocks large enough to accommodate new
software components by performing sequential searches of host device memory areas
including at least one first and second memory area. When the new component size
exceeds that of available blocks of the searched memory areas, the upgrade client
rewrites a first memory area to eliminate unused memory blocks, reapportions the
first and second memory areas, writes the new component to the second memory area,
and updates a vector table, as described below.

Figure 12 is a flow diagram 1200 for upgrading an EBSC or EBSC group

using dynamic addressing under an embodiment. The upgrade client receives the new .

20

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

EBSC version, at block 1202. The new EBSC version is generated from the original
EBSC version and the corresponding delta file or, alternatively, is received from the
software component distributor. A memory area is identified and reserved in the
client device to accommodate storage of the new EBSC version, at block 1204. At
block 1206, components of the upgrade client write the new EBSC version to the
reserved memory area. Updates are made to the vector table, at block 1208, in order
to make any necessary changes to the information of the vector table resulting from
the new EBSC version. Also, at block 1210, updates are made to the garbage table to
reflect any changes in the unused memory area resulting from writing of the new
EBSC version.

To access software components in a host device using dynamic addressing, the
upgrade client receives a function call from the main pro gram of the host device
including identification information of corresponding software files, reads a start
address of the corresponding software files from the vector table, and generates a call
for the corresponding software files. As such, when a first EBSC calls a second
EBSC, the upgrade client changes the function calling sequence so that, instead of
calling the second EBSC directly using a static address, the first EBSC calls an API of
the upgrade client using a static address. The called API converts the received call to
a call to the second EBSC using the corresponding static address and arguments of the
runtime vector table.

| Figure 13 is a flow diagram 1300 of a function call using dynamic addressing,
under an embodiment. The main program of the host device supports user-requested
functions using EBSCs stored in the host device memory. When a function is
requested by a user, an EBSC of the main program of the host device calls the EBSCs
associated with the particular function by directly calling components of the upgrade
client using a static address. In response to the call, the upgrade client receives
information from the main program that includes a function or EBSC identification
and the arguments to the function, at block 1302. The upgrade client accesses the
vector table, at block 1304, which includes entries for each EBSC available to the
main program along with corresponding start addresses of the EBSC. The upgrade
client reads the start address and associated arguments from the vector table, at block
1306. Using the start address information along with the information of the called

EBSC received from the main program, the upgrade client generates a call for the

21

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

actual function, and the corresponding EBSC, along with all the received arguments,
at block 1308.

Figure 14 is a block diagram of a client device ROM map 1400 supporting
dynamic addressing, under an embodiment. The ROM includes the following areas,
but is not so limited: boot code area 1402,-embedded software area 1404, EBSC
update area 1406, upgrade client device parameter area 1408, device memory
management area 1410, and at least one area 1412 reserved for unspecified purposes.
Each of these memory areas is described below, but alternative embodiments can use
many different area configurations as recognized by one skilled in the art.

The boot code area 1402 stores the device booting sequence code. The
embedded software area 1404 stores embedded software of the client device. The
embedded software includes, for example, software of the browser, KVM,
communication library, real time OS, graphics driver, and the upgrade client, but is
not so limited.

The EBSC update area 1406 stores new versions of embedded software
components. The estimated size of this area 1406 will vary among devices.
Generally, however, the EBSC update area 1406 will be approximately 10%-20% of
the size of the embedded software area 1404.

The upgrade client device parameter area 1408 stores client device
configuration data and parameters specific to the upgrade client. The estimated size
of the upgrade client device parameter area 1408 corresponds to the number of
upgradeable EBSCs related to device configuration hosted on the client device, but is
not so limited.

The device memory management area 1410 stores memory parameters, a
vector table and a garbage entry table, but is not so limited. The estimated size of this
area 1410 corresponds to the number of upgradeable EBSCs related to device memory
management hosted on the client device.

The memory parameters of the device memory management area 1410 include
the ROM number, start address, and size of the reserved ROM area for device
memory management, and the start address and size of the next available memory in
the reserved ROM area for device memory management 1410. The memory
parameters also include the size of the vector table and the garbage entry table, and

the number of valid entries in the garbage entry table. The vector table includes the

22

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

EBSC identification, ROM number, start address, and size of the upgradeable EBSCs.
The garbage entry table includes the ROM number, start address, and size of all
garbage entries.

Figure 15 is a block diagram of the device memory 300 showing an example
of interaction among components of the memory including the upgrade client 130, the
embedded software area 302, the. DMM library 310, the vector table 312, and the
garbage table 314, under the embodiments of Figures 3 and 14. The DMM library
310 includes three APIs 1502-1506. These APIs 1502-1506 are for use in
manipulating the reserved ROM area for device memory management, the reserved
memory for EBSCs, and the reserved area for EBSC update. These APIs include an
API for function address conversion 1502, an API for reservation of a new version of
an EBSC 1504, and an API for garbage collection 1506, each of which are described
below.

The function address conversion API 1502 generates calls from the host
device main program 1510 for EBSCs associated with particular host device
functions, as described above with reference to Figure 13. The main program 1510
of the host device calls an EBSC associated with a particular function by directly
calling the function address conversion API 1502. The direct call of the API 1502 is
made instead of a direct call of the EBSC. At the time of the call, the function address
conversion API 1502 receives information from the main program 1510 that includes
function identification information and the arguments to the function.

In response to the call, the function address conversion API 1502 accesses the
vector table 312. The vector table 312 includes an entry for each function available to
the main program 1510 along with the corresponding start address of the function in
the device memory 302. The function address conversion API 1502 reads the start
address of the function requested by the main program 1510 from the vector table 312
and, using the start address information along with the information of the called
EBSC received from the main program 1510, generates a call for the actual function
along with all the received arguments.

The upgrade client 130 of an embodiment uses the API for reservation of a
new version of an EBSC 1504, referred to herein as the reservation API 1564, to
locate and reserve areas in memory to accommodate new versions of EBSCs or EBSC

groups. With reference to Figure 15, the reservation API 1504, when called by the

23

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

upgrade client 130, receives identification information for the new EBSC version,
information that includes the file size of this new version. The file size of the new
EBSC version is the size of the area that is to be reserved in the device ROM 302 to
store the new EBSC version. Thé reservation API 1504 locates an appropriate area in
memory 302 and returns the start address of the requested reservation area upon
successfully reserving the memory area. Figure 16 is a flow diagram 1600 for
reserving memory areas to accommodate new versions of an EBSC using the
reservation API 1504, under an embodiment.

* In allocating a memory block of the requested size, the reservation API 1504
applies a set of rules as follows, but alternative embodiments may apply different
rules to effect equivalent results. Figure 17 is a flow diagram 1700 for locating
memory blocks to accommodate new versions of an EBSC using the rules of the
reservation API 1504, under an embodiment. Upon receiving information as to the
size of the new EBSC, at block 1702, the reservation API 1504 determines whether
the size of the new EBSC exceeds that of the original EBSC, at block 1704. When
the size of the new EBSC is equal to or less than the size of the corresponding original
EBSC, the reservation API 1504 allocates the memory block currently occupied by
the corresponding original EBSC to receive the new EBSC, at block 1706.

Otherwise, the reservation API 1504 tries to locate a memory block having the
requested size from the available memory in the reserved memory area.

In continuing the search, the reservation API 1504 searches the reserved
memory area of the client device for a memory block having the requested size, at
block 1708. If an appropriately sized block is found in the reserved memory area, the
reservation API 1504 allocates the memory block to receive the new EBSC, at block
1710. If an appropriately sized memory block is not available in the reserved memory
area, the reservati;)n API 1504 accesses the garbage table 314, at block 1712. The
reservation API 1504 uses information of the garbage table 314 to search the unused
memory areas of the main program, at block 1714, in an attempt to locate a memory
block of the requested size among the unused areas corresponding to the entries in the
garbage table 314. The unused areas of an embodiment, referred to herein as garbage
areas, include unused areas of the main program, but the embodiment is not so
limited. If an appropriately sized memory block is found in the unused memory areas,

the reservation API 1504 allocates the block to receive the new EBSC, at block 1716.

24

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

The reservation API 1504 of an embodiment initiates a process referred to
herein as garbage collection, at block 1718, if it cannot locate an appropriately sized
memory block. Also, the reservation API 1504 initiates garbage collection when all
entries of the garbage table 214 are occupied. In an embodiment the API for garbage
collection 1506, referred to herein as the garbage collection API 1506, is called by the
reser\-ration API 1504, but is not so limited. The API for garbage collection generally
receives no argument and cleans up all garbage in the reserved areas for EBSCs and
for EBSC update, but is not so limited. ‘

As described above, the reservation API 1504 initiates garbage collection if it
cannot find enough memory for the requested reservation size or if the garbage entry
table becomes full. Figure 18 is a flow diagram 1800 of garbage collection, under an
embodiment. In initiating garbage collection, the reservation API 1504 calls the
garbage collection API 1506. When called, the garbage collection API 1506 reads the
garbage table entries, at block 1802, and causes the embedded software area of the
device memory to be rewritten so as to sequentially pack the EBSCs of the memory
up in memory, at block 1804. Alternative embodiments may pack the EBSCs down
in the main memory, but the embodiment is not so limited. This packing operation
removes the unused areas in the embedded software area.

Following this packing operation, the garbage collection API 1506 evaluates
the size of each EBSC stored in the reséwed memory area, at block 1806, and
compares the size against any unused memory blocks remaining in the main program
of the embedded software area following its réwriting. This evaluation determines if
the amount of unused memory remaining following the rewriting of the embedded
software area can accommodate any EBSCs of the reserved memory area so that,
where possible, EBSCs can be moved out of the reserved memory area and into the
embedded software area of the device memory. The EBSCs of the reserved memory
area are evaluated sequentially, but the embodiment is not so limited. The EBSCs are
rewritten from the reserved memory area to the embedded software area where EBSC
size permits, at block 1808. As the EBSCs are rewritten in one embodiment, they are
stored sequentially in the embedded software area following the packed EBSCs.

The evaluation of the EBSCs stored in the reserved memory area continues
until all EBSCs have been moved to the embedded software area, or until a

determination is made that there is no remaining area in the embedded software area

25

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

large enough to accommodate the EBSCs of the reserved memory area. Any EBSCs
that can not be accommodated in the embedded software area remain in the reserved
memory area, but the embodiment is not so limited.

Upon completion of the packing and moving operations, the garbage
collection APT 1506 reapportions the host device memory by redesignating any
unused memory blocks of the host device main memory as reserved memory area, at
block 1810. Further, the reserved memory area pointer is reset to maintain the start
address of available memory in the reserved memory area, at block 1812.
Additionally, at block 1814, the garbage table is rewritten to reflect the status of the
unused memory area. The upgrade client 130 also updates the vector table 312
following the writing of a new version of an EBSC to any memory area other than the
memory area occupied by the original version of the same EBSC.

An example of upgrading and garbage collection operations follows, with
reference to Figures 15, 17, 19, and 20. Figure 19 is a block diagram of an example
host device memory before 1902 and after 1904 upgrading operations of the
reservation API, under an embodiment. Figure 20 is a block diagram of the host
device memory 2004 following upgrading and garbage collection operations, under an
embodiment.

This example begins with receipt of information on a new version of EBSC 8
by the reservation API. Upon receipt of the file size of the new version of EBSC §, a
determination is made as to whether the size of this new version is equal to or less
than the size of the original EBSC. In this example, the original version of EBSC 8
contains 400 bytes while the new version of EBSC 8 contains 380 bytes. Therefore,
the reservation API allocates the area 1920 currently occupied by the original version
of EBSC 8 to receive the new version of EBSC 8.

The example continues with receipt of information for a new version of EBSC
5 by the reservation API. Upon receipt of the file size of the new version of EBSC 5,
a determination is made as to whether the size of this new version is equal to or less
than the size of the original EBSC. In this example, the original version of EBSC 5
contains 300 bytes while the new version of EBSC 5 contains 360 bytes. As the size
of the new version is larger than that of the original version, the reservation API
attempts to locate a memory block having the requested size from the available

memory in the reserved memory area 1910. In this example, memory is available in

26

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

the reserved memory area 1910, so the reservation API allocates an area 1922 in the
reserved memory 1910 to receive the new version of EBSC 5. Furthermore, the
reservation AP allocates the area currently occupied by the original Ve;sion of EBSC
5 as unused area 1924.

Next, the reservation API receives information on a new version of EBSC 7.
The original version of EBSC 7 contains 550 bytes while the new version of EBSC 7
contains 560 bytes. As the size of the new version is larger than that of the original
version, the reservation API attempts to locate a memory block having the requested
size from the available memory in the reserved memory area 1910. In this example,
memory is available in the reserved memory area 1910, so the reservation API
allocates the next available area 1926 in the reserved memory 1910 to receive the new
version of EBSC 7. Furthermore, the reservation API allocates the area currently
occupied by the original version of EBSC 7 as unused area 1923.

As the example continues, the reservation API receives information on a new
version of EBSC 2. While the original version of EBSC 2 includes 330 bytes, the
new version of EBSC 2 contains 360 bytes. The reservation API determines that an
appropriately sized area is not available in the reserved memory area 1910 and
accesses the garbage table 314. The garbage table 314 is used in an attempt to locate
a memory block of the requested size among the garbage areas identified using the
entries in the garbage table 314. In this example, an unused area 1930 of an
appropriate size is identified, and the reservation API allocates the unused area 1930
to receive the new version of EBSC 2.

As described above, the reservation API initiates garbage collection if it
cannot find enough memory for the requested reservation size or if the garbage entry
table becomes full. For this example, it is assumed that the next new EBSC version
received following allocation in the reserved memory area for the new version of
EBSC 2 results in initiation of garbage collection. The garbage collection of an
embodiment packs the EBSCs up in the host device memory, resulting in a new host
device memory configuration 1904 in which the EBSC order is EBSC 1, EBSC 4,
EBSC 2, EBSC 3, EBSC 6, EBSC 8, EBSC 5, and EBSC 7. The garbage collection
routine of an alternative embodiment packs the EBSCs down in the host device

memory.

27

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

Figure 21 is a block diagram 2100 of an embedded software development and
deployment process using dynamic addréssing, under an embodiment. This diagram
depicts the process from EBSC development by the software component distributor
2102 to device ROM initialization using an upgrade client of an embodiment with
dynamic addressing-based device memory management.

Components of the software component distributor 2102 receive source code
of the new EBSCs, and compile 2103 the new EBSC source code. The compiling
2103 couples the resulting EBSC object code to the linkers 2106 and 2116 which, as
part of the registration of the new EBSC, generate a new hex file (text) or binary file
2118 from the new EBSC object code. The new hex file corresponds to the new
EBSC.

In supporting dynamic addressing, the software component distributor 2102
uses the compiler 2103 and linker 2106 to generate a map file 2104. This map file
2104 is used by a vector generating tool 2105 to generate a corresponding initial
vector table 2108 of EBSCs. The vector table 2108 is subsequently provided to the
linker 2116, and the linker 2116 generates the hex (text) or binary file 2118 using the
initial vector table 2108. The hex (text) or binary file 2118 is downloaded into the
embedded software area 2120 of the client device 2112, but alternative embodiments
may write the hex file 2118 to other memory areas of the client device 2112.
Components of the DMM library of the upgrade client maintain the vector table 2108
and, as such, support dynamic addressing of EBSCs. The DMM library overlaps with
the vector table 2108 stored in the area reserved for upgrade client device parameters
2110. |

The systems and associated methods described above for device memory
management during electronic file updating include a system for updating electronic
files, the system comprising: a first device including a first component of a file
differencing and updating system that generates a délta file; and a second device
receiving the delta file from the first device via at least one coupling.

~ The second device includes a second component of the file differencing and
updating system that is configured to update electronic files of the second device by:
reading at least one new component of a new electronic file from the delta file, the
new electronic file being an updated version of an original electronic file; identifying

and reserving a memory block large enough to accommodate the new component by

28

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

performing a sequential search of a first and second memory area, wherein the first
memory area is rewritten to eliminate unused memory blocks and the first and second
memory areas are reapportioned when a size of the new component exceeds a size of
available memory blocks of the first and second memory areas; writing the new
component to the reserved memory block; and updating a vector table when the new
component is written to a memory block other than an original memory block A
including the corresponding component of the original electronic file.

The second device also includes a second component of the file differencing
and updating system that is configured to access the electronic files of the devices by:
receiving a function call from a main program of the device, the function call
including identification information of corresponding electronic files; reading a start
address of the corresponding electronic files from the vector table; and generating a
call for the corresponding electronic files using the start address and the identification
information.

The second device of the system of an embodiment further includes first and
second application programming interfaces (APIs) for use in updating electronic files.

The second device of the system of an embodiment further includes a third
application programming interface (API) for use in accessing electronic files.

The first device of the system of an embodiment includes a processor-based
device accessible by at least one provider of software hosted on the second device.

The second device of the system of an embodiment includes at Jeast one
processor-based device selected from among personal computers, portable computing

devices, cellular telephones, portable communication devices, and personal digital

~ assistants.

The coupli’ng of the system of an embodiment is at least one of wireless

couplings, wired couplings, hybrid wireless/wired couplings, and couplings with at

 least one network including local area networks (LANS), metropolitan area networks

(MANS), and wide area networks (WANS), proprietary networks, backend networks,
the Internet, and removable fixed mediums including floppy disks, hard disk drives,
and compact disc-read only memory (CD-ROM) , as well as telephone lines, buses,
and electronic mail messages.

The original and new electronic files of an embodiment comprise-software

files including dynamic link library files, shared object files, embedded software

29

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

components (EBSCs), firmware files, executable files, data files including hex data
files, system configuration files, and files including personal use data.

The systems and associated methods described above for device memory
management during electronic file updating include methods for device memory
management in a host device, comprising: receiving identification information of at
least one received component of a new electronic file, the new electronic file being an
updated version of an original electronic file, wherein the identification information
includes a size of the received component; identifying and teserving a memory block
large enough to accommodate the received component by performing a sequential
search of a first and second memory area, wherein the first memory area is rewritten
to eliminate unused memory blocks and the first and second memory areas are
reapportioned when the size exceeds a size of available memory blocks of the first
and second memory areas; providing an address of the reserved memory block; and

-updating the original electronic file by writing the received component to the reserved
memory block.

The methods for device memory management in a host device further
comprise updating a first table when the received component is written to a memory
block other than an original memory block in the first memory area including a
corresponding component of the original electronic file, wherein the first table
includes component information of components of electronic files of the host device,
the component information including component identification, read only memory
(ROM) number, start address, and size.

In the methods of an embodiment, identifying and reserving includes reserving
an original memory block of the first memofy area when the size is equal to or smaller
than a size of a corresponding component of the original electronic file, the original
memory block including the corresponding component of the original electronic file.

In the methods of an embodiment, identifying and reserving includes
searching at least one of the second memory area and unused portions of the first
memory area for a memory block large enough to store the received component when
the size exceeds the size of the corresponding component of the original electronic
file.

In the methods of an embodiment, the rewriting of the first memory area and

the reapportionment of the second memory area further includes: reading a second

30

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

table including at least one entry corresponding to the unused memory blocks of the
first area; rewriting components of the first memory area to sequentially pack the
components of the first memory area and consolidate the unused memory blocks;
sequentially evaluating a size of each component of the second mémory area and
rewriting components of the second memory area to the first memory area where a
size of the component of the second memory area and a size of the consolidated
unused memory blocks permits; identifying remaining blocks of the consolidated
unused memory blocks following the sequential evaluating and rewriting;
reapportioning the second memory area by designating the remaining blocks of the
consolidated unused memory blocks as part of the second memory area; setting a
pointer of the second memory area to maintain a start address of available memory of
the reapportioned second memory area; and updating the second table.

In the methods of an embodiment, the entries of the second table comprise
information of the unused memory blocks inclﬁding read only memory (ROM)
number, start address, and size.

‘The methods for device memory management in a host device further
comprise accessing functions provided by electronic files of the host device by:
receiving a function call from a main program of the host device, the function call
including identification information of corresponding electronic files; reading a start
address of the corresponding electronic files from a vector table; and generating a call
for the corresponding electronic files using the start address and the identification
information. ‘

The systems and associated methods described above for device memory
‘management during electronic file updating include methods for device memory
management during file updating, comprising: determining a size of at least one
received component of a new electronic file using identification information of the
received component, the new electronic file being an updated version of an original
electronic file; when the size is equal to or smaller than a size of a corresponding
component of the original electronic file, allocating an original memory block of a
first memory area into which to write the received component, the original memory
block including the corresponding component of the original electronic file; when the
size exceeds the size of the corresbonding component of the original electronic file,

searching at least one of a second memory area and unused portions of the first

31

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

memory area for a memory block large enough to store the received component; and
when the size exceeds a size of available memory blocks of the first and second
memory areas, rewriting the first memory area to remove the unused portions,
reapportioning the first and second memory areas, and allocating a memory block of
the second memory area into which to write the received component.

In the methods of an embodiment, the rewriting of the first memory area
further includes: reading a table including at least one entry corresponding to the
unused portions of the first memory area; and rewriting components of the first
memory area to sequentially pack the components of the first memory area and
consolidate the unused memory blocks.

In the methods of an embodiment, reapportioning the first and second memory
areas further includes: sequentially evaluating a size of each component of the second
memory area and writing components of the second memory area to the rewritten first
memory area when a size of the component of the second memory area and a size of a
consolidated unused memory block of the rewritten first memory area permits;
identifying remaining blocks of the consolidated unused memory blocks following the
sequential evaluating and writing; reapportioning the first and second memory areas
by designating the remaining blocks of the consolidated unused memory blocks as
part of the second memory area; setting a pointer of the second memory area to
maintain a start address of available memory of the reapportioned second memory
area; and updating the table.

The systems and associated methods described above for device memory
management during electronic file updating include methods for managing memory of
electrqnic devices, comprising updating electronic files of the devices by: receiving at
least one new component of a new electronic file, the new electronic file being an
updated version of an original electronic file; identifying and reserving a memory
block large enough to accommodate the new component by performing a sequential
search of a first and second memory area, wherein the first memory area is rewritten
to eliminate unused memory blocks and the first and second memory areas are
reapportioned when a size of the new component exceeds a size of available memory
blocks of the first and second memory areas; writing the new component to the

reserved memory block; and updating a vector table when the new component is

32

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

written to a memory block other than an original memory block including the
corresponding component of the original electronic file.

The methods for managing memory of electronic devices further comprise
accessing the electronic files of the devices by: receiving a function call from a main
program of the device, the function call including identification information of
corresponding electronic files; reading a start address of the corresponding electronic
files from the vector table; and generating a call for the corresponding electronic files
using the start address and the identification information.

In the methods of an embodiment, the identification information includes
function identification and arguments to the function.

 The systems and associated methods described above for device memory
management during electronic file updating include an apparatus comprising: means
for receiving at least one new component of a new electronic file, the new electronic
file being an updated version of an original electronic file; means for identifying and
reserving a memory block large enough to accommodate the new component by
performing a sequential search of a first and second memory area, wherein the first
memory area is rewritten to eliminate unused memory blocks and the first and second
memory areas are reapportioned when a size of the new component exceeds a size of
available memory blocks of the first and second memory areas; means for updating
the original electronic file by writing the new component to the reserved memory
block; and means for updating a vector table when the new component is written to a
memory block other than an original memory block including the corresponding
component of the original electronic file.

The apparatus of an embodiment includes at least one processor-based device
selected from among personal computers, portable cbmputing devices, cellular
telephones, portable communication devices, and personal digital assistants.

The apparatus of an embodiment includes a first application programming
interface (API) as the means for identifying and reserving a memory block.

The apparatus of an embodiment further comprises: means for receiving a
function call from a main program of the device, the function call including
identification information of corresponding electronic files; means for reading a start

address of the corresponding electronic files from the vector table; and means for

33

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

generating a call for the corresponding electronic files using the start address and the
identification information.

The apparatus of an embodiment includes a second application programming
interface (API) as the means for receiving a function call.

The systems and associated methods described above for device memory
management during electronic file updating include a computer readable medium
including executable instructions which, when executed in a processing system,
update electronic files and file components by: receiving identification information of
at least one received component of a new electronic file, the new electronic file being
an updated version of an original electronic file, wherein the identification
information includes a size of the received component; identifying and reserving a
memory block large enough to accommodate the received component by performing a
sequential search of a first and second memory area, wherein the first memory area is
rewritten to eliminate unused memory blocks and the first and second memory areas
are reapportioned when the size exceeds a size of available memory blocks of the first
and second memory areas; providing an address of the reserved memory block; and
updating the original electronic file by writing the received component to the reserved
memory block.

The systems and associated methods described above for device memory
management during electronic file updating include an electromagnetic medium
including executable instructions which, when executed in a processing system,
update electronic files and file components by: receiving identification information of
at least one received component of a new electronic file, the new electronic file being
an updated version of an original electronic file, wherein the identification
information includes a size of the received component; identifying and reserving a
memory block large enough to accommodate the received component by performing a
sequential search of a first and second memory area, wherein the first memory area is
rewritten to eliminate unused memory blocks and the first and second memory areas
are reapportioned when the size exceeds a size of available memory blocks of the first
and second memory areas; providing an address of the reserved memory block; and
updating the original electronic file by writing the received component to the reserved

memory block.

34

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

The systems and associated methods described above for device memory
management during electronic file updating include a system for updating electronic
files, comprising: a first device including a first component of a file differencing and
updating system that generates a delta file; and a second device receiving the delta file
from the ﬁrét device via at least one coupling. The second device of an embodiment
includes a second component of the file differencing and updating system configured
to update electronic files of the second device by: receiving at least one component of
anew electronic file via the delta ﬁlé, the new electronic file being an updated version
of an original electronic file; determining a size of the received component; when the
size is equal to or smaller than a size of a corresponding component of the original
electrohic file, writing the received component to an original memory area that
includes the corresponding component of the original electronic file; and when the
size exceeds the size of the corresponding component of the original electronic file,
writing the received component to a reserved memory area that is associated with the
original memory area. ’

The systems and associated methods described above for device memory
management during electronic file updating include methods for updating electronic
files, comprising: receiving at least one component of a new electronic file, the new
electronic file being an updated version of an original electronic file; determining a
size of the received component; when the size is equai to or smaller than a size of a
corresponding component of the original electronic file, writing the received
component to an original memory area that includes the corresponding component of
the original electronic file; and when the size exceeds the size of the corresponding
component of the original electronic file, writing the received component to a
reserved memory area that is associated with the original memory area. In the
methpds of an embodiment, the at least one component includes a group of
components.

The systems and associated methods described above for device memory
management during electronic file updating include an apparatus comprising: means
for receiving at least one component of a new electronic file, the new electronic file
being an updated version of an original electronic file; means for determining'a size of |
the received component; means for writing the received component to an original

memory area that includes the corresponding component of the original electronic

35

10

15

20

25

30

WO 2004/046910 PCT/US2003/037001

file, when the size is equal to or smaller than a size of a corresponding component of
the original electronic file; and means for writing the received component to a
reserved memory area that is associated with the original memory area when the size
exceeds the size of the corresponding component of the original electronic file.

Aspects of the invention may be implemented as functionality programmed
into any of a variety of circuitry, including programmable logic devices (PLDs), such
as field programmable gate arrays (FPGAs), programmable array logic (PAL)
devices, electrically programmable logic and memory devices and standard cell-based
devices, as well as application specific integrated circuits (ASICs). Some other
possibilities for implementing aspects of the invention include: microcontrollers with
memory (such as electronically erasable programmable read only memory
(EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore,
aspects of the invention may be embodied in microprocessors having software-based
circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy
(neural) logic, quantum devices, and hybrids of any of the above device types. Of
course the underlying device technologies may be provided in a variety of component
types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies
like complementary metal-oxide semiconductor (CMOS), bipolar technologies like
emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer
and metal-conjugated polymer-metal structures), mixed analog and digital, etc.

Unless the context clearly requires otherwise, throughout the description and
the claims, the words “comprise,” “comprising,” and the like are to be construed in an
inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a
sense of “including, but not limited to.” Words using the singular or plural number
also include the plural or singular number respectively. -Additionally, the words
“herein,” “hereunder,” and words of similar import, when used in this application,
shall refer to this application as a whole and not to any particular portions of this
application.

The above description of illustrated embodiments of the invention is not
intended to be exhaustive or to limit the invention to the precise form disclosed.
While specific embodiments of, and examples for, the invention are described herein
for illustrative purposes, various equivalent modifications are possible within the

scope of the invention, as those skilled in the relevant art will recognize. The

36

10

15

20

WO 2004/046910 PCT/US2003/037001

teachings of the invention provided herein can be applied to other processing and
communication systems, not only for the cellular telephone system described above.

The elements and acts of the various embodiments described above can be
combined to provide further embodiments. These and other changes can be made to
the invention in light of the above detailed description. '

All of the above references and United States patents and patent applications
are incorporated herein by reference. Aspects of the invention can be modified, if
necessary, to employ the systems, functions and concepts of the various patents and
applications described above to provide yet further embodiments of the invention.

In general, in the following claims, the terms used should not be construed to
limit the invention to the specific embodiments disclosed in the specification and the
claims, but should be construed to include all processing systems that operate under
the claims to provide a method for file differencing. Accordingly, the invention is not
limited by the disclosure, but instead the scope of the invention is to be determined
entirely by the claims.

While certain aspects of the invention are presented below in certain claim
forms, the inventors contemplate the various aspects of the invention in any number
of claim forms. For example, while only one aspect of the invention is recited as
embodied in a computer-readable medium, other aspects may likewise be embodied in
a computer-readable medium. Accordingly, the inventors reserve the right to add
additional claims after filing the application to pursue such additional claim forms for

other aspects of the invention.

37

O 0 NN N L AW

DN NN NN DN NN N /B /= om e o e e pm e
O© X 9 O i A LW ND = © VW W N & NI A W N — o

WO 2004/046910 PCT/US2003/037001

CLAIMS
‘What I claim is:

1. A system for updating electronic files, comprising:
a first device including a first component of a file differencing and updating
system that generates a delta file; |
a second device receiving the delta file from the first device via at least one
coupling, the second device including a second component of the file differencing and
updating system configured to,
update electronic files of the second device by,
reading at least one new component of a new electronic file
from the delta file, the new electronic file being an updated version of
an original electronic file;
idenfifying and reserving a memory block large enough to
accommodate the new component by performing a sequential search of
a first and second memory area, wherein the first memory area is
rewritten to eliminate unused memory blocks and the first and second
memory areas are reapportioned when a size of the new component
exceeds a size of available memory blocks of the first and second
Memory areas; |
writing the new component to the reserved memory block; and
updating a vector table when the new éomponent 1s written to a
memory block other than an original memory block including the
corresponding component of the original electronic file; and
access the electronic files of the devices by,
receiving a function call from a main program of the device, the
function call including identification information of corresponding
electronic files;
reading a start address of the corresponding electronic files
from the vector table; and
generating a call for the corresponding electronié files using the

start address and the identification information.

38

p—

~N N W N, = S VS T \S TR

AW O e

Whn b W N =

WO 2004/046910 PCT/US2003/037001

2. The system of claim 1, wherein the second device further includes first and

second application programming interfaces (APIs) for use in updating electronic files.

3. The system of claim 1, wherein the second device further includes a third

application programming interface (API) for use in accessing electronic files.

4, The system of claim 1, wherein the first device includes a processor-based

device accessible by at least one provider of software hosted on the second device.

5. The system of claim 1, wherein the second device includes at least one

processor-based device selected from among personal computers, portable computing

devices, cellular telephones, portable communication devices, and personal digital

assistants.

6. The system of claim 1, wherein the at least one coupling is selected from'
among wireless couplings, wired couplings, hybrid wireless/wired couplings, and
couplings with at least one network including local area networks (LANSs),
metropolitan area networks (MANS), and wide area networks (WAN), proprietary
networks, backend networks, the Internet, and removable fixed mediums including
floppy disks, hard disk drives, and compact disc-read only memory (CD-ROM) , as

well as telephone lines, buses, and electronic mail messages.

7. The system of claim 1, wherein the original and new electronic files comprise
software files including dynamic link library files, shared object files, embedded
software components (EBSCs), firmware files, executable files, data files including

hex data files, system configuration files, and files including personal use data.

8. A method for device memory management in a host device, comprising:
receiving identification information of at least one received component of a

new electronic file, the new electronic file being an updated version of an original

electronic file, wherein the identification information includes a size of the received

component;

39

O 0 3

10

12
13

AN = BN = S ULt AW N

AN Ut AW N =

WO 2004/046910 PCT/US2003/037001

identifying and reserving a memory block large enough to accommodate the
received component by performing a sequential search of a first and second memory
area, wherein the first memory area is rewritten to eliminate unused memory blocks
and the first and second memory areas are reabportioried when the size exceeds a size
of available memory blocks of the first and second memory areas;

providing an address of the reserved memory block; and

updating the original electronic file by writing the received component to the

reserved memory block. -

9. The method of claim 8, further comprising updating a first table when the

received component is written to a memory block other than an original memory

block in the first memory area including a corresponding component of the original
electronic file, wherein the first table includes component information of components
of electronic files of the host device, the component information including component

identification, read only memory (ROM) number, start address, and size.

10. The method of claim 8, wherein identifying and reserving includes reserving
an original ' memory block of the first memory area when the size is equal to or smaller
than a size of a corresponding component of the original electronic file, the original

memory block including the corresponding component of the original electronic file.

11. The method of claim 10, wherein identifying and reserving includes searching
at least one of the second memory area and unused portions of the first memory area
for a memory block large enough to store the received component when the size

exceeds the size of the corresponding component of the original electronic file.

12. The method of claim 8, wherein the rewriting of the first memory area and the
reapportionment of the second memory area further includes:

reading a second table including at least one entry corresponding to the unused
memory blocks of the first area;

rewriting components of the first memory area to sequentially pack the

components of the first memory area and consolidate the unused memory blocks;

40

10
11
12
13
14
15
16
17

O I N Rk~ WD

0 1 AN L b W

WO 2004/046910 PCT/US2003/037001

sequentially evaluating a size of each component of the second memory area
and rewriting components of the second memory area to the first memory area where
a size of the component of the second memory area and a size of the consolidated
unused memory blocks permits;

identifying remaining blocks of the consolidated unused memory blocks
following the sequential evaluating and rewriting;

reapportioning the second memory area by designating the remaining blocks
of the consolidated unused memory blocks as part of the second memory area;

setting a pointer of the second memory area to maintain a start address of
available memory of the reapportioned second memory area; and

updating the second table.

13. The method of claim 12, wherein the entries of the second table comprise
information of the unused memory blocks including read only memory (ROM)

number, start address, and size.

14. The method of claim 8, further comprising accessing functions provided by
electronic files of the host device by:
| receiving a function call from a main program of the host device, the
function call including identification information of corresponding electronic files;
reading a start address of the corresponding electronic files from a
vector table; and
generating a call for the corresponding electronic files using the start

address and the identification information.

15. A method for device memory management during file updating, comprising:
determining a size of at least one received component of a new electronic file
using identification information of the received component, the new electronic file
being an updated version of an original electronic file;
when the size is equal to or smaller than a size of a corresponding component
of the original electronic file, allocating an original memory block of a first memory
area into which to write the received component, the original memory block including

the corresponding component of the original electronic file;

41

10
11
12
13
14
15
16

N W bW N

O 0 1 O »n bk W=

I Y = T e
LW N = O

WO 2004/046910 PCT/US2003/037001

when the size exceeds the size of the corresponding component of the original
electronic file, searching at least one of a second memory area and unused portions of
the first memor}} area for a memory block large enough to store the received
component; and

when the size exceeds a size of available memory blocks of the first and
second memory areas, rewriting the first memory area to remove the unused portions,
reapportioning the first and second memory areas, and allocating a memory block of

the second memory area into which to write the received component.

16. The method of claim 15, wherein the rewriting of the first memory area further
includes:

reading a table including at least one entry corresponding to the unused
portions of the first memory area; and

rewriting components of the first memory area to sequentially pack the

components of the first memory area and consolidate the unused memory blocks.

17. The method of claim 15, wherein reapportioning the first and second memory
areas further includes:

sequentially evaluating a size of each component of the second memory area
and writing components of the second memory area to the rewritten first memory area
when a size of the component of the second memory area and a size of a consolidated
unused memory block of the rewritten first memory area permits;

identifying remaining blocks of the consolidated unused memory blocks
following the sequential evaluating and writing;

reapportioning the first and second memory areas by designating the
remaining blocks of the consolidated unused memory blocks as part of the second
memory area;

setting a pointer of the second memory area to maintain a start address of
available memory of the reapportioned second memory area; and

updating the table.

18. A method for managing memory of electronic devices, comprising:

updating electronic files of the devices by,

42

O 0 2 & v W

10
11
12
13
14
15
16
17
18
19
20
21

O 00 3 O Wi A~ W

WO 2004/046910 PCT/US2003/037001

receiving at least one new component of a new electronic file, the new
electronic file being an updated version of an original electronic file;
identifying and reserving a memory block large enough to
accommodate the new component by performing a sequential search of a first
and second memory area, wherein the first memory area is rewritten to
eliminate unused memory blocks and the first and second memory areas are
reapportioned when a size of the new component exceeds a size of available
memory blocks of the first and second memory areas;
writing the new component to the reserved memory block; and
updating a vector table when the new component is written to a
memory block other than an original memory block including the
corresponding component of the original electronic file; and
accessing the electronic files of the devices by,
receiving a function call from a main program of the device, the
function call including identification information of corresponding electronic files;
reading a start address of the corresponding electronic files from the
vector table; and
generating a call for the corresponding electronic files using the start

address and the identification information.

19. The method of claim 18, wherein the identification information includes

function identification and arguments to the function.

20. An apparatus comprising:
means for receiving at least one new component of a new electronic

file, the new electronic file being an updated version of an original electronic file;

means for identifying and reserving a memory block large enough to
accommodate the new component by performing a sequential search of a first and
second memory area, wherein the first memory area is rewritten to eliminate unused
memory blocks and the first and second memory areas are reapportioned when a size
of the new component exceeds a size of available memory blocks of the first and

second memory areas;

43

10
11
12
13
14

AW N

—

co N N Ut h W =

WO 2004/046910 PCT/US2003/037001

means for updating the original electronic file by writing the new component
to the reserved memory block; and

means for updating a vector table when the new component is written to a
memory block other than an original memory block including the corresponding

component of the original electronic file.

21. The apparatus of claim 20, wherein the apparatus includes at least one
processor-based device selected from among personal computers, portable computing
devices, cellular telephones, portable communication devices, and personal digital

assistants.

22. The apparatus of claim 20, wherein the means for identifying and reserving a

memory block is a first application programming interface (API).

23. The apparatus of claim 20, further comprising:
means for receiving a function call from a main program of the device,

the function call including identification information of corresponding electronic files;
means for reading a start address of the corresponding electronic files
from the vector table; and
means for generating a call for the corresponding electronic files using

the start address and the identification information.

24. The apparatus of claim 23, wherein the means for receiving a function call is a

second application programming interface (API).

25. A computer readable medium including executable instructions which, when
executed in a processing system, update electronic files and file components by:
receiving identification information of at least one received component of a
new electronic file, the new electronic file being an updated version of an original
electronic file, wherein the identification information includes a size of the received
component,
identifying and reserving a memory block large enough to accommodate the

received component by performing a sequential search of a first and second memory

44

10
11
12
13
14

o T e
AW DN = O

O 0 1 O WL A W N =

—
o

O o0 NN N i B WD e

WO 2004/046910 PCT/US2003/037001

area, wherein the first memory area is rewritten to eliminate unused memory blocks
and the first and second memory areas are reapportioned when the size exceeds a size
of available memory blocks of the first and second memory areas; |
providing an address of the reserved memory block; and
updating the original electronic file by writing the received component to the

reserved memory block.

26. An electromagnetic medium including executable instructions which, when
executed in a processing system, update electronic files and file components by:

\ receiving identification information of at least one received component of a
new electronic file, the new electronic file being an updated version of an original
electronic file, wherein the identification information includes a size of the received |
component;

identifying and reserving a memory block large enough to accommodate the -
received component by performing a sequential search of a first and second memory
area, wherein the first memory area is rewritten to eliminate unused memory blocks
and the first and second memory areas are reapportioned when the size exceeds a size
of available memory blocks of the first and second memory areas;

providing an address of the reserved memory block; and

updating the original electronic file by writing the received component to the

reserved memory block.

27. A system for updating electronic files, comprising:

a first device including a first component of a file differencing and updating
system that generates a delta file;

a second device receiving the delta file from the first device via at least one
coupling, the second device including a second component of the file differencing and
updating system configured to update electronic files of the second device by,

receiving at least one component of a new electronic file via the delta
file, the new electronic file being an updated version of an original electronic
file;

determining a size of the received component;

45

11
12
13
14
15
16
17

O 0 N3 O W B W

—
)

W 0 ~3 & U b W N

[RR O —
- O

WO 2004/046910 PCT/US2003/037001

when the size is equal to or smaller than a size of a corresponding
component of the original electronic file, writing the received component to an
original memory area that includes the corresponding component of the
original electronic file; and '

when the size exceeds the size of the corresponding component of the
original electronic file, writing the received coimponent to a reserved memory

area that is associated with the original memory area.

28. A method for updating electronic files, comprising:

receiving at least one component of a new electronic file, the new electronic
file being an updated version of an original electronic file;

determining a size of the received component;

when the size is equal to or smaller than a size of a corresponding component
of the original electronic file, writing the received component to an original memory
area that includes the corresponding component of the original electronic file; and

when the size exceeds the size of the corresponding component of the oﬁginal
electronic file, writing the received component to a reserved memory area that is

associated with the original memory area.

29. The method of claim 28, wherein the at least one component includes a group

of components.

30. An apparatus comprising:

means for receiving at least one component of a new electronic file, the new
electronic file being an updated version of an original electronic file;

means for determining a size of the received component;

means for writing the received component to an original memory area that
includes the corresponding component of the original electronic file, when the size is
equal to or smaller than a size of a corresponding component of the original electronic
file; and

means for writing the received component to a reserved memory area that is
associated with the original memory area when the size exceeds the size of the

corresponding component of the original electronic file.

46

WO 2004/046910 PCT/US2003/037001

1/20

Original File "~ New File

File Differencing 114
Algorithm —
Delta File 116 102
\

\A(mé

Hosted Delta File
Original File

) [

File Updating -

Algorithm
118
Upgrade Client 130
Device Memory 300
Y
Copy of New File 112 104

G 1

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/037001

2/20

WO 2004/046910

NUH& 10AIOG g:s;sﬁé

Sy | =

JoAJag SmE307T §
gunsixq

1T _Jg __

941G SWIq
Sunsixq | P

e _— 0

,,__*_

10A19g operddn 70

10/0qINSI¢E
Tdeney apeiddp yuauodwoy)
IBMIJOS
MD
0¢l saaw gﬁéﬁo N
I ,
opesd(] 07—" jsuoduio)) 2remijos

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

3/20

File Updating
Algorithm
118 I
Upgrade Client 130
Embedded Software Areca 302
| Upgrade Client 306 <
Device Parameters = |
DMM Library 310
Vector Table 312
Garbage Table 314
Device Memory - 308
Management Area
Device Memory 300

FIG.3

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

4/20
Receive delta file 402
Y
Write delta file into designated memory area ——404
Y .
Generate copy of new file from 406
original file and delta file
Y
Write copy of new file into reserved memory 408

4

Write copy of new file into memory area of original file |~_-410

FIG 4

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

5/20

Receive delta file —_-502

[

Wiite original files into memory area for updating |~ 504

\

Write delta file info memory area for updating 506

Y

Generate copy of new file from 508
original file and delta file

Y

Write copy of new file mto reserved memory ——3510

y

Write copy of new file into memory area of original file }~-512

FIG.5

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910

6/20

PCT/US2003/037001

600

Receive new EBSC

—— 602

Y

Determine a size of the new EBSC

——604

606

Size
of new EBSC exceeds

No

size of original
EBSC?

Yes

A

A

Write new EBSC
into memory block
of original EBSC

(

Write new EBSC to memory block
including reserve memory area
associated with the memory

block of the original EBSC

608

——610

-
-

Y

Return

——612

FIGr6

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910

7/20

EBSC 1

EBSC 2

EBSC 3

EBSC 4

EBSC 5

EBSC 6

P o -~

Device Memory

704

PCT/US2003/037001

e e e e e . . e o o]

o e e e e e o A o . - s T b S s e o o]

Reserved Area 2

EBSC 3

EBSC 4

R e e e b D e R e

Reserved Area 5

EBSC 6

Device Memory
Configuration Supporting
Static Addressing

702

FIG.7

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

8/20

Receive new EBSC 802

/

Determine a size of the new EBSC [—~—804

806

Size
of new EBSC exceeds No

size of original
EBSC?

Yes Write new EBSC
into memory area
of original EBSC

group
v ﬂ)
Write new EBSC to memory area 808
including reserve memory area 310
associated with the memory
area of the original EBSC group
Return — 812

F1G.8

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910

PCT/US2003/037001

9/20

EBSC 1

EBSC 2

EBSC Group 1

EBSC 3

e e et e o e o]

Reserved Area Gl

EBSC 4

EBSC 5

EBSC Group 2

EBSC 6

EBSC Group 3

EBSC 7

EBSC 8

EBSC Group 4

EBSC 9

b et e - e — o~ . o

Reserved Area G4

Device Memory

904

Device Memory
Configuration Supporting
Static Addressing

902

FIG.9

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/037001

WO 2004/046910

10/20

01DId

3001 ®eoIe s1ajomeied 921A9D JUAI]D apeiddn
0707 osodind 13710 10 PIAISSAl LAY
gO0T ©oIe SuLjIoM PIAINSYY

p00T ©oie /S POPPoqWiH

7007 ©oIe apod j00g

0001 —"

ety opeiddn

I19AII(sorqdern

S0 oW, [eoy

moﬂcoEﬁEEoO

WA

JISMOIQOIIIIN

NOY

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/037001

WO 2004/046910

11/20

201A9D JUaT}D opeiddn
10] PaAIOSOI ealy

vate /S
poppaquig

| 5

S:\ g

saqy Areniq
10 S9[1} YOl

o

P o]

8111 911

——————————

T 1ajaurered U EER——

1
]
1
t
¢
]

g

9]qe} 103097

8011

[00} Suryeiauad 011

——
¢ g

10J29A
oy depy ~— 011
)
— <] G
9011 €011
_/ __J

[om opdwo)

848

dojaa M/S

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

12/20
Recetve new EBSC version —_1202
\
Identify and reserve host device memory 1204

area to accommodate new EBSC version

Y

Write new EBSC version to reserved memory area [—~—1206

f
Update vector table to include
information of new EBSC version

\

Update garbage table to include any unused 1210
area resulting from writing of new EBSC version

FIG.12

Receive information of called EBSC 1302
A

Access vector table —_1304
Y

Read start address of called: EBSC —_—-1306
Y

Generate call for called EBSC 1308

FI(x.13

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/037001

WO 2004/046910

13/20

ARIE

~

0TF] ©OJe PAAIasal juomoSeue AIOWAW 901A(]
S07] eore sojomered 90143p juald opeiddp
7171 9sodind 10m0 10] POAIISAI BAIY

o0%1 91epdn HSHH O] PIAISSAI BAIY

YOPT va1e M/S pappaquig

70p1 ®a1e 9p0d 100g

00y1 —"

M/S Juet[) speiddn

10A1I(songdein

SO om, [eay

UOTIBOIUNWO,)

WA

J3SMOIGOIOTIA

NOY

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/037001

WO 2004/046910

14/20

pIe

JlqeL
ageqren

01¢
A1RIQIT WINA

90ST
IdV Uonas[jon

ageqien
A

4

A

(A1

JqeL,
10190\

L.

v0ST
IdV
UOTJBAIISYY

A

\. c0¢

0€l
jusr]) apeiddn

A A

08T
IdV UOISIOATO))
SSIPPY TONOUN]

-

<«

CIst
BAIY AJOWIAJN PAAIISIY

L OSHH

BaIy pasnuf)

¢ OSHH

8 ONgH

oIy pasnup

9 DSHH

¢ JSHH

BOIY pasnuf)

¥ JSHH

R EN)

¢ DSgH

[OSHH

017 weiSoid ulely

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

15/20

Receive information of new EBSC version

Y
Identify area in device memory large enough
to accomodate the new EBSC version

Y
Reserve identified memory area

A
Return address of reserved memory area

FIG.16

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910

16/20

PCT/US2003/037001

Y

Receive size information | {709
for new EBSC version

1706

é

\

~

: T N\Ye Allocate memory area
<%1§gcﬁ orlgma? S ! currently occupied by
version: original EBSC

Y

No 1704

»

[

block of appropriate size

Search reserved memory area for 1708

1710

s

Y

< Block identified in Yes Allocate identified
r

eserved memory area?

block in reserved
memory area

Y

No

\

Access garbage table [~—1712

/
Search unused memory areas [~—1714

1716

— Allocate identified
< Block identified 1n? >Yes block in unused >
unused memory area’ memory area

No

Y
Perform garbage collection |—~—1718

SUBSTITUTE SHEET (RULE 26)

1700

FIG.17

WO 2004/046910 PCT/US2003/037001

17/20
Read garbage table ——1802
Y
Pack EBSCs of embedded software area —_— 1804

A
Evaluate size of EBSCs of reserved memory area

—_1806

Y

Move EBSCs from reserved memory area to
embedded software area where EBSC size permits

—-1808

A

Designate unused memory area
as reserved memory area

——1810

A

Reset reserved memory area pointer

——1812

Y

Rewrite garbage table

——1814

FIG.18

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910

PCT/US2003/037001

18/20

Main Program

EBSC 1

Unused Area

\

Main Program Unused Area
EBSC 1 EBSC 4
EBSC 2 EBSC 2 - New Version [~— 1930
Unused Area EBSC 3
EBSC 4 EBSC 6
Unused Area Unused Area
EBSC 3 —— |EBSC 8 - New Version [~—1920
EBSC 6 Unused Area
" Unused Area Unused Area 1924
EBSC 8 Unused Area —_-1928
EBSC 5 EBSC 5 - New Version 1922
Unused Area | = [7T
- —_-192
EBSC 7 EBSC 7 - New Version 1526
Reserved Reserved
Memory Area Memory Area
1910 1910
1902 1904~
~ Y,

SUBSTITUTE SHEET (RULE 26)

WO 2004/046910 PCT/US2003/037001

19/20

Main Program

EBSC 1
EBSC 4
EBSC 2
EBSC 3

EBSC 6
EBSC 8
EBSC 5
EBSC 7

Reserved Memory Area
1910

1904J

FIG.20

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/037001

WO 2004/046910

20/20

/— 4
Jamagenem

K30waw 291A3p
10} POAIOSAI BOTY

s1ajameied
001A9D JUaT[D Speiddn
10] PRAJSAI BOIY

——111T

o o
2 S
POpPOEY

\- 7~ -~/
AR
11—

Sapy Areniq
10 $3 Xoff

o

a]qe} JOJA

o] 801¢
1007 Sunesual
a]qe} 10094 $012
oy)~ $01
))
< <
901C €017
N —

dojarag

apod 20Inos

(3902 200105 N

“5dd

S
~

~ -
llllllll

dojasad M/S

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/37001

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 7/00, 17/30, 9/44
USCL 707/8, 100, 200, 201; 717/168

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/8, 100, 200, 201; 717/168

Minimum documentation searched (classification system followed by classification symbols)

NONE

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

WEST

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y, P US 2003/0212712 Al (GU et al.) 13 November 2003, the entire document is relevant. 1-30
Y US 5,479,654 A (SQUIBB) 26 December 1995, the entire document is relevant. 1-30
Y US 6,088,694 A (BURNS et al.) 11 July 2000, the entire document is relevant. 1-30
Y, T US 6,694,336 B1 (MULTER et al.) 17 February 2004, the entire document is relevant. 1-30

[:l Further documents are listed in the continuation of Box C.

L]

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“[» document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“0” document referring to an oral disclosure, use, exhibition or other means

“P" document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“yn document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

20 March 2004 (20.03.2004)

Date of mailing of the international search report

7 APR 2004

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US

Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Authorized officer
A
Thuy Pardo 'b/@

Telephone No. 703-305-1091

’/2WL A CQat™~—

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

