La présente invention concerne un procédé de mise en grappe de bulbes munis d’une tige, caractérisé en ce qu’il comprend une étape d’emplâlage et de solidarisation d’une pluralité de pièces entre elles, pour coincer les tiges des bulbes de la grappe entre lesdites pièces. La présente invention concerne également un dispositif permettant de mettre en œuvre le procédé de mise en grappe, caractérisé en ce qu’il comprend un bâti (1) sur lequel sont montés un support de pièces, monté en rotation par rapport au bâti (1) sur un plateau tournant (10) indexé, monté coulissant par rapport au bâti (1) sur une glissière (3), et un bol vibrant (4) délivrant sur un rail (15), alignées et orientées, des pièces (5) à empiéler sur le support de pièces par un système de prise de pièce (5), de façon à former la grappe par coincement des tiges des bulbes entre lesdites pièces (5).
Procédé et dispositif de mise en grappe de bulbes

La présente invention concerne un procédé et un dispositif pour grappeler des bulbes à tiges, notamment d'oignons, d'aulx, d'échalotes, d'échalions, de fruits, etc...

Il est connu dans l'art antérieur des machines et des procédés pour mettre en grappe des bulbes. En particulier, le document FR 2 632 812 enseigne de former des grappes en disposant manuellement les bulbes en épi à plat autour d'un tuteur horizontal et en enroulant du fil en hélice autour du tuteur et des tiges des bulbes à l'aide de la machine, au fur et à mesure que les bulbes sont ajoutés à l'épi. Une griffe retient les tiges pendant l'opération d'enroulement. La machine fait subir simultanément un mouvement de translation à la griffe selon l'axe du tuteur, et un mouvement de rotation à la bobine de fil pour l'enroulement du fil autour du tuteur.

Il est également connu par le document FR 2 746 598 une machine et un procédé pour mettre en grappe des bulbes. Les bulbes sont guidés manuellement à travers une rainure horizontale vers un tuteur vertical, sur lequel les tiges des bulbes sont maintenues à l'aide d'un fil enroulé hélicoïdalement par la machine sur le tuteur, ce dernier descendant au fur et à mesure que les bulbes sont mis en grappe. Une fois que la grappe a atteint la longueur souhaitée, l'extrémité supérieure de cette dernière est agrafée, puis coupée à l'aide d'un sécateur, et la grappe tombe dans un panier de récupération des grappes formées.

Le document FR 2 754 428 enseigne une machine et un procédé pour former des grappes de bulbes. Le tuteur, souple ou rigide, est maintenu vertical par un système d'aspiration, qui permet également d'orienter correctement les bulbes, qui sont positionnés dans un support à alvéoles. Les bulbes sont maintenus sur le tuteur par un fil enroulé hélicoïdalement grâce à un plateau tournant. La machine comporte également des moyens d'agrafer et de couper le tuteur.
Il est connu aussi par le document EP 0 955 238 une machine et un procédé pour former des grappes de bulbes en enroulant du fil autour d'un tuteur sur lequel sont positionnés des bulbes grâce à un support à alvéoles. La grappe, au lieu d'être découpée dès qu'elle a atteint une longueur déterminée, est recueillie dans un tube situé juste sous la machine, de façon à éviter que la grappe ne tombe dans un récipient, ce qui peut abîmer les bulbes.

Un inconvénient de ces machines et procédés est que le fil maintenant les bulbes en grappe autour du tuteur peut facilement être coupé, ce qui rend la grappe fragile.

La présente invention a pour but de pallier certains inconvénients de l'art antérieur en proposant un procédé pour former des grappes de bulbes qui soient solides.

Ce but est atteint par un procédé de mise en grappe de bulbes munis d'une tige, caractérisé en ce qu'il comprend une étape d'empilage et de solidarisation d'une pluralité de pièces entre elles, pour coincer les tiges des bulbes de la grappe entre lesdites pièces.

Selon une autre particularité, l'étape d'empilage et de solidarisation desdites pièces comprend l'itération des étapes, alternativement, de saisie d'une pièce, dans une file de pièces, par un système de prise de pièce, et de mise en place de ladite pièce sur un support de pièces par le dit système de prise de pièce, et en ce que l'étape d'empilage et de solidarisation des pièces est précédée d'une étape de positionnement du support de pièces à une hauteur initiale.

Selon une autre particularité, l'étape de mise en place d'une pièce est précédée d'une étape de descente, d'une hauteur déterminée, du support de pièces monté coulissant sur une glissière sensiblement verticale, d'une étape de rotation, d'un angle déterminé, du support de pièces monté fixe sur un plateau tournant, et d'une étape d'insertion des tiges de bulbes chacune entre deux languettes sensiblement verticales de ladite nouvelle pièce, en étant guidée par un guide situé au niveau de ladite pièce.
Selon une autre particularité, au moins les étapes de descente et de rotation du support de pièces, et les étapes de saisie d'une pièce et de mise en place de ladite pièce sur le support de pièces sont déclenchées par l'intermédiaire d'un système électronique.

Selon une autre particularité, la solidarisation des pièces est réalisée par encliquetage de ces dernières les unes dans les autres, par pénétration de dents formées sur une pluralité de languettes élastiques sensiblement verticales formées au-dessus d'un corps cylindrique creux muni d'une pluralité de gorges, dans les gorges du corps de la nouvelle pièce.

Selon une autre particularité, la solidarisation des pièces est réalisée par encastrément des pièces les unes dans les autres.

Selon une autre particularité, la solidarisation des pièces est réalisée par le collage des pièces les unes aux autres.

Selon une autre particularité, la solidarisation des pièces est réalisée par le maintien des pièces les unes aux autres à l'aide d'un élément tendeur.

Selon une autre particularité, la première étape de mise en place d'une pièce sur le support de pièces est réalisée par aspiration de ladite pièce du système de prise de pièce vers le support de pièces grâce à un système d'aspiration.

Selon une autre particularité, l'étape d'empilage et de solidarisation des pièces entre elles est suivie d'une étape de fixation d'un crochet sur la dernière pièce posée et/ou d'un socle sous la première pièce posée.

Un autre but de l'invention est de proposer un dispositif pour mettre en œuvre le procédé selon l'invention.

Ce but est atteint par un dispositif de mise en grappe permettant de mettre en œuvre le procédé selon l'invention, caractérisé en ce qu'il comprend un bâti sur lequel sont montés un support de pièces, monté mobile en rotation par rapport au bâti sur un plateau tournant indexé, lui-même monté coulissant par rapport au bâti sur une glissière, et un bol vibrant délivrant sur un rail, alignées et orientées, des pièces à empiérer sur le support de pièces par un système de prise de pièce, de façon à former la grappe par coincement des tiges des bulbes entre lesdites pièces.
Selon une autre particularité, le système de prise de pièce est monté mobile en déplacement entre le rail et le support de pièces, sur le bâti.

Selon une autre particularité, le système de prise de pièce comprend un vérin duquel est solidaire une tige, sensiblement verticale, qui saisit et empile une pièce à la fois, ladite tige étant constituée d’un axe prolongé par un ressort taré couplé à un capteur de mesure de la déformation dudit ressort, lui-même prolongé par un système de préhension, le système de préhension étant, soit un cylindre creux, dans lequel les pièces sont maintenues par frottement, soit un système d'aspiration, soit une pince, et ledit capteur permettant de contrôler la force d'insertion d'une pièce sur la précédente déjà posée sur le support de pièces.

Selon une autre particularité, le support de pièces est relié à un système d'aspiration permettant de maintenir une première pièce posée sur ledit support de pièce.

D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, faite en référence aux dessins annexés, dans lesquels :

- la figure 1 représente une vue en perspective de face du dispositif de mise en grappe selon l'invention,
- la figure 2 représente une vue de profil du dispositif de mise en grappe selon l'invention,
- la figure 3 représente une vue de face en perspective d'une pièce à empiler,
- la figure 4 représente une vue de détail en coupe longitudinale d'une grappe formée selon le procédé selon l'invention,
- la figure 5 représente une vue de détail en coupe de la tige du système de prise de pièce et du support de pièce.

Le procédé de mise en grappe selon l'invention consiste à empiler une pluralité de pièces (5) entre lesquelles sont coincées les tiges (201) des bulbes (20) à grappeler.

Le dispositif de mise en grappe selon l'invention, représenté en particulier sur les figures 1 et 2, comprend un bâti (1) supportant deux
glissières (2, 3), l'une sensiblement horizontale et l'autre sensiblement verticale, ainsi qu'un bol vibrant (4). Le bâti (1) est, par exemple, muni de roulettes (16), de façon à pouvoir être déplacé facilement.

Un premier chariot (6), sur lequel est fixé un système de prise de pièce, coulisse sur la glissière horizontale (2). Le système de prise de pièce est constitué d'un vérin (7) à l'extrémité inférieure duquel est située une tige (8), dont la forme est adaptée à celle des pièces (5) à prendre pour les empiler.

Un deuxième chariot (9), sur lequel est fixé un plateau tournant (10), coulisse sur la glissière verticale (3) grâce à un premier actionneur (11). Le plateau tournant (10), sensiblement horizontal, est surmonté, par exemple en son centre, d'un support de pièces (115) en forme de cône tronqué, sur lequel peuvent être empilées les pièces (5) permettant de mettre les bulbes en grappe. Le support de pièces (115) est connecté à un système d'aspiration (non représenté) permettant de maintenir par aspiration la première pièce (5) posée sur l'édit support (115). Le plateau tournant (10) est mis en rotation par un deuxième actionneur (12).

La glissière horizontale (2) est située au-dessus de l'extrémité supérieure de la glissière verticale (3), une des extrémités de la glissière horizontale (2) étant disposée à proximité de l'extrémité supérieure de la glissière verticale (3) de façon à ce que la tige (8) du système de prise de pièce soit alignée avec le centre du support de pièces (115), pour pouvoir déposer des pièces (5) sur le support de pièces (115).

Le système de prise de pièce et le plateau tournant (10) sont connectés à un système électronique, soit préprogrammé de façon à ce que la mise en grappe soit automatique, soit relié à un pupitre de commande et/ou à une pédale, actionnables par un opérateur, soit les deux de façon à ce que la mise en grappe soit semi-automatique, avec une intervention d'un opérateur sur certaines étapes.

Le bol vibrant (4) est d'un type connu. Il délivre les pièces (5) alignées sur un rail (15), toutes selon la même orientation, comme cela est visible en particulier sur la figure 1. Lorsque la pièce (5) située à l'extrémité du rail (15)
opposée au bol vibrant (4) est prise par le système de prise de pièce, les autres pièces (5) sont décalées vers ladite extrémité du rail (15) grâce aux vibrations du bol vibrant (4). L'extrémité du rail (15) opposée au bol vibrant (4) est munie d'une butée permettant de retenir les pièces.

Les pièces (5), visibles en particulier sur les figures 3 et 4, sont empilées les unes au-dessus des autres sur le support de pièces (115) pour coincer les tiges (201) de bulbes (20) entre lesdites pièces (5), de façon à former une grappe de bulbes. La longueur de la tige (201) est, par exemple, comprise entre 2 et 4 cm.

Une grappe peut contenir autant de bulbes que le souhaite l'opérateur. En général, la masse de bulbes est d'environ 500 g ou 1 kg. Les bulbes constituant une grappe peuvent être d'une seule sorte, par exemple seulement des oignons, ou de plusieurs sortes, par exemple un mélange d'oignons, d'échalotes, d'aulx et d'échalions. La répartition des différentes sortes de bulbe sur la grappe est alors choisie par l'opérateur.

Le dispositif de mise en grappe selon l'invention comprend également un réceptacle (17) contenant les bulbes à mettre en grappe, relié à une rampe (18) permettant de déverser dans ledit réceptacle (17) le nombre de bulbes nécessaire à la formation d'une grappe. Ainsi, la grappe est terminée lorsque l'ensemble des bulbes contenus dans ledit réceptacle (17) au début du procédé de mise en grappe ont été utilisés pour former ladite grappe.

Dans une variante de réalisation, les bulbes sont pré-calibrés de façon à ce qu'ils aient tous la même masse. Dans cette variante, la rampe (18) déverse des bulbes en permanence dans le réceptacle (17). Pour donner une masse déterminée à la grappe, l'opérateur, par exemple, calcule le nombre de bulbes nécessaires pour former une grappe pesant ladite masse déterminée et décide que la grappe est terminée lorsqu'il a utilisé ledit nombre de bulbes nécessaire pour former la grappe.

Les pièces (5) à empiler sont, soit encliquetées les unes dans les autres, soit encastrées les unes dans les autres, soit collées les unes aux autres, soit maintenues les unes aux autres à l'aide d'un élément tendeur.
Toute autre façon, évidente pour l'homme du métier, de faire tenir les pièces les unes aux autres fait également partie de l'invention.

Dans le mode de réalisation représenté sur les figures, les pièces (5) sont encliquetées les unes dans les autres. Dans ce mode de réalisation, chaque pièce (5), par exemple en plastique, a un corps cylindrique creux (51) muni d'une pluralité de gorges circulaires (510) sur sa surface interne. Dans une variante de réalisation, la pluralité de gorges circulaires (510) est remplacée par un filetage.

Ce corps cylindrique (51) est surmonté de deux languettes élastiques (52), formant ainsi une rainure (53) sur le haut de la pièce (5). Chacune de ces languettes (52) est munie d'au moins une dent (520) sur sa surface extérieure, prévue pour pénétrer dans une des gorges (510) du corps cylindrique (51) de la pièce (5) située au-dessus de ladite pièce. Préférentiellement, chaque languette élastique (52) comporte une pluralité de dents (520), par exemple trois, pénétrant chacune dans une gorge différente, pour permettre un bon maintien d'une pièce (5) dans une autre.

Les languettes élastiques (52) sont sensiblement verticales et sont disposées à proximité du bord extérieur du corps cylindrique (51), en vis-à-vis l'une de l'autre.

Le haut du corps cylindrique (51) comporte, entre les languettes (52), deux paires de dents (54), disposées en vis-à-vis l'une de l'autre.

Le bas du corps cylindrique (51) comporte également deux évidements (55) situés en vis-à-vis l'un de l'autre, qui permettent d'accueillir et de bloquer les tiges (201) insérées dans la pièce (5) du dessous. L'axe passant par les évidements (55) fait, par exemple, un angle de 60° avec l'axe passant par les deux paires de dents (54) situées entre les languettes (52). De cette façon, les pièces (5) sont empilées les unes sur les autres après avoir été tournées d'un angle de 60° autour de leur axe, ce qui permet de réaliser une grappe à la fois compacte et esthétique.

Dans le rail (15), les pièces sont positionnées corps cylindrique (51) en bas et languettes (52) en haut, toutes les pièces ayant sensiblement la même orientation.
Le procédé de mise en grappe d'une quantité déterminée de bulbes déversés dans le réceptacle (17) prévu à cet effet par la rampe de déversement (18), débute par le positionnement du plateau tournant (10) à une hauteur initiale déterminée adéquate (voir plus bas). Le plateau tournant (10) est indexé pour tourner d'un angle déterminé, correspondant à l'angle compris entre l'axe des dents (54) situées entre les languettes (52) d'une pièce et celui des évidements (55) de la pièce (5) à poser au-dessus de celle-ci.

Pendant que le plateau tournant (10) se positionne à la hauteur initiale déterminée, le système de prise de pièce, en position haute, coulisse sur la glissière horizontale (2) pour se positionner au-dessus de la pièce (5) située à l'extrémité du rail (15) opposée au bol vibrant (4). La tige (8) du système de prise de pièce descend alors jusqu'à une position basse pour prendre ladite pièce, puis remonte. Le système de prise de pièce coulisse dans l'autre sens pour se positionner au-dessus du support de pièces (115). La tige (8) descend jusqu'à sa position basse. La pièce (5) est alors aspirée sur ledit support (115) grâce au système d'aspiration et se libère de la tige (8). La tige remonte alors en position haute. Pendant que le système de prise de pièce va chercher une seconde pièce, le plateau tournant (10) descend de la hauteur du corps (51) d'une pièce (5) et tourne de l'angle déterminé, par exemple 60°, puis les tiges (201) de deux bulbes (20) sont insérées dans la rainure formée par les languettes (52) de la pièce (5) en place sur le support de pièces (115), en vis-à-vis l'une de l'autre, soit par un opérateur, soit par un système automatisé (non représenté). L'opération d'insertion des tiges (201) de bulbes (20) est facilitée par un guide (85) situé au niveau de la dernière pièce posée. Le système de prise de pièce positionne alors la seconde pièce (5) sur la première pièce (5), sur laquelle elle s'encliquète, venant ainsi maintenir les tiges des bulbes. Pendant que le système de prise de pièce va chercher une troisième pièce, le plateau tournant (10) descend et tourne, puis des tiges sont insérées sur la dernière pièce (5) posée, et ainsi de suite jusqu'à ce la grappe ait atteint la taille souhaitée.
L'aspiration est alors arrêtée, puis la grappe formée est retirée du dispositif de mise en grappe, soit par un opérateur, soit par un système automatisé. La dernière pièce (5) encliquetée permet de maintenir les tiges des derniers bulbes insérés dans la rainure de l'avant-dernière pièce, mais la rainure de cette dernière pièce n'accueille pas de tige de bulbe.

Le dispositif de mise en grappe selon l'invention comprend également un déversoir (19) permettant à l'opérateur de faire tomber la grappe terminée dans un panier (non représenté).

L'ensemble des positionnements du système de prise de pièce est préprogrammé et enregistré dans une mémoire du système électronique.

L'ensemble des étapes du procédé selon l'invention peut être soit complètement manuel, soit complètement automatique, soit semi-automatique, avec l'intervention d'un opérateur sur certaines étapes, par exemple à l'aide du pupitre et/ou de la pédale.

La hauteur initiale déterminée du plateau tournant (10) correspond à la hauteur adéquate pour que le mouvement préprogrammé de descente de la tige permette que, lorsque la tige est en position basse, elle puisse, d'une part, prendre une pièce (5) sur le rail (15) et, d'autre part, positionner la pièce (5) sur le support de pièce (115).

La tige (8) du système de prise de pièce, visible en particulier sur la figure 5, est constituée d'un axe (80) prolongé par un ressort taré (81), lui-même prolongé par un système de préhension (82) des pièces (5). Le ressort taré (81) est couplé à un capteur de mesure de la déformation dudit ressort (81), de façon à contrôler avec précision la force d'insertion des pièces (5). En effet, une pression trop importante provoque un cisaillement des tiges (201) des bulbes (20) et une pression trop faible ne permet pas de maintenir suffisamment les tiges (201) des bulbes (20).

Dans le mode de réalisation des figures, le système de préhension (82) du système de prise de pièce est un cylindre creux, dans lequel les languettes (52) des pièces (5) sont maintenues par frottement. La force d'aspiration doit donc être supérieure à la force de frottement pour permettre que la première pièce (5) soit déposée sur le support de pièces (115).
Dans une variante de réalisation, le système de préhension (82) est un système d'aspiration, dont la force est inférieure à la force d'aspiration du système d'aspiration du support de pièces (115).

Dans une autre variante de réalisation, le système de préhension (82) est une pince.

Dans un autre mode de réalisation (non représenté), le système de prise de pièces n'est pas mobile, mais est fixé au bâti (1). Dans ce mode de réalisation, le dispositif de mise en grappe ne comprend pas de glissière horizontale (2), ni de chariot (6). Le rail (15) alimente le système de prise de pièces en pièces (5) directement au niveau de la tige (8) depuis le bol vibrant (4) grâce à un chargeur type chargeur de pistolet positionné à l'extrémité du rail (15) située à proximité de la tige (8) du système de prise de pièces.

Après que la grappe ait été retirée du dispositif de mise en grappe, un filet peut être ajouté autour de la grappe, par exemple par un opérateur, de façon à protéger la grappe. Une étiquette, par exemple en forme de ruban, peut également être ajoutée. Un crochet (21) peut également être ajouté sur la dernière pièce (5) posée, par exemple par encliquetage, de façon à maintenir le filet et/ou à pouvoir suspendre la grappe. Un socle (25) peut également être ajouté sous la première pièce (5) posée, de façon à pouvoir poser la grappe, par exemple sur un plan de travail dans une cuisine. Ces opérations peuvent être effectuées, soit par un opérateur, soit par un système adapté.

Le crochet (21), visible en particulier sur la figure 4, comporte dans sa base au moins une gorge circulaire dans laquelle les dents (520) des languettes (52) de la dernière pièce posée s'encliquètent.

La grappe ainsi formée apparaît comme un tuteur sensiblement cylindrique dans lequel sont coincées les tiges de bulbes, qui peuvent alors être facilement arrachées par un consommateur.

Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. Par conséquent, les présents modes de
réalisation doivent être considérés à titre d'illustration, mais peuvent être modifiés dans le domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus.
REVENDICATIONS

1. Procédé de mise en grappe de bulbes (20) munis d'une tige (201), caractérisé en ce qu'il comprend une étape d'empilage et de solidarisation d'une pluralité de pièces (5) entre elles, pour coincer les tiges (201) des bulbes de la grappe entre lesdites pièces.

2. Procédé de mise en grappe selon la revendication 1, caractérisé en ce que l'étape d'empilage et de solidarisation desdites pièces (5) comprend l'itération des étapes, alternativement, de saisie d'une pièce (5), dans une file de pièces (5), par un système de prise de pièce (6, 7, 8), et de mise en place de ladite pièce (5) sur un support de pièces (115) par ledit système de prise de pièce, et en ce que l'étape d'empilage et de solidarisation des pièces (5) est précédée d'une étape de positionnement du support de pièces (115) à une hauteur initiale.

3. Procédé de mise en grappe selon la revendication 2, caractérisé en ce que l'étape de mise en place d'une pièce est précédée d'une étape de descente, d'une hauteur déterminée, du support de pièces (115) monté coulissant sur une glissière (3) sensiblement verticale, d'une étape de rotation, d'un angle déterminé, du support de pièces (115) monté fixe sur un plateau tournant (10), et d'une étape d'insertion des tiges (201) de bulbes (20) chacune entre deux languettes (52) sensiblement verticales de ladite nouvelle pièce (5), en étant guidée par un guide (85) situé au niveau de ladite pièce.

4. Procédé de mise en grappe selon la revendication 2 ou 3, caractérisé en ce qu'au moins les étapes de descente et de rotation du support de pièces (115), et les étapes de saisie d'une pièce et de mise en place de ladite pièce sur le support de pièces (115), sont déclenchées par l'intermédiaire d'un système électronique.

5. Procédé de mise en grappe selon une des revendications 2 à 4, caractérisé en ce que la solidarisation des pièces (5) est réalisée par
encliquetage de ces dernières les unes dans les autres, par pénétration de dents (520) formées sur une pluralité de languettes élastiques (52) sensiblement verticales formées au-dessus d'un corps cylindrique creux (51) muni d'une pluralité de gorges (510), dans les gorges (510) du corps (51) de la nouvelle pièce (5).

6. Procédé de mise en grappe selon une des revendications 2 à 4, caractérisé en ce que la solidarisation des pièces (5) est réalisée par enca斯特ment des pièces (5) les unes dans les autres.

7. Procédé de mise en grappe selon une des revendications 2 à 4, caractérisé en ce que la solidarisation des pièces (5) est réalisée par le collage des pièces (5) les unes aux autres.

8. Procédé de mise en grappe selon une des revendications 2 à 4, caractérisé en ce que la solidarisation des pièces (5) est réalisée par le maintien des pièces (5) les unes aux autres à l'aide d'un élément tendeur.

9. Procédé de mise en grappe selon une des revendications 2 à 8, caractérisé en ce que la première étape de mise en place d'une pièce sur le support de pièces (115) est réalisée par aspiration de ladite pièce du système de prise de pièce vers le support de pièces (115) grâce à un système d'aspiration.

10. Procédé de mise en grappe selon une des revendications 1 à 9, caractérisé en ce que l'étape d'empilage et de solidarisation des pièces (5) entre elles est suivie d'une étape de fixation d'un crochet (21) sur la dernière pièce (5) posée et/ou d'un socle (25) sous la première pièce posée.

11. Dispositif de mise en grappe permettant de mettre en œuvre le procédé selon une des revendications 1 à 10, caractérisé en ce qu'il comprend un bâti (1) sur lequel sont montés un support de pièces (115), monté mobile en rotation par rapport au bâti (1) sur un plateau tournant (10) indexé, lui-même monté coulissant par rapport au bâti (1) sur une glissière (3), et un bol vibrant (4) délivrant sur un rail (15), alignées et orientées, des pièces (5) à empiler sur le support de pièces (115) par un système de prise
de pièce (5), de façon à former la grappe par coinement des tiges (201) des bulbes (20) entre lesdites pièces (5).

12. Dispositif selon la revendication 11, caractérisé en ce que le système de prise de pièce est monté mobile en déplacement entre le rail (15) et le support de pièces (115), sur le bâti (1).

13. Dispositif selon la revendication 11 ou 12, caractérisé en ce que le système de prise de pièce comprend un vérin (7) duquel est solidaire une tige (8), sensiblement verticale, qui saisit et empile une pièce (5) à la fois, ladite tige (8) étant constituée d'un axe (80) prolongé par un ressort taré (81) couplé à un capteur de mesure de la déformation dudit ressort (81), lui-même prolongé par un système de préhension (82), le système de préhension (82) étant, soit un cylindre creux, dans lequel les pièces (5) sont maintenues par frottement, soit un système d'aspiration, soit une pince, et ledit capteur permettant de contrôler la force d'insertion d'une pièce sur la précédente déjà posée sur le support de pièces (115).

14. Dispositif selon une des revendications 11 à 13, caractérisé en ce que le support de pièces (115) est relié à un système d'aspiration permettant de maintenir une première pièce (5) posée sur ledit support de pièce (115).
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>D,A</td>
<td>FR 2 754 428 A (JEZEQUEL ROBERT) 17 avril 1998 (1998-04-17) * page 1, ligne 21 - page 8, ligne 24; figures *</td>
<td>1-14</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR 829 119 A (SMYTH HORNE LTD) 13 juin 1938 (1938-06-13) * page 7, ligne 22 - page 8, ligne 13; figures 1-4 *</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR 2 622 550 A (GIEZA PAUL) 5 mai 1989 (1989-05-05) * page 5, ligne 22 - page 6, ligne 24; figures *</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>D,A</td>
<td>EP 0 955 238 A (GIEZA PAUL) 10 novembre 1999 (1999-11-10) * colonne 2, ligne 57 - colonne 5, ligne 21; figure 1 *</td>
<td>11-14</td>
<td>A01G</td>
</tr>
</tbody>
</table>

Date d'achèvement de la recherche: 26 février 2004
Examineur: Schlichting, N
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 26-02-2004
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets,
ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AT 103759 T</td>
<td>15-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68914465 D1</td>
<td>11-05-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68914465 T2</td>
<td>06-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2052049 T3</td>
<td>01-07-1994</td>
</tr>
</tbody>
</table>

| FR 829119 A | 13-06-1938 | AUCUN | |

| | | DE 69910654 D1 | 02-10-2003 |

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82