I*I Innovation, Sciences et Innovation, Science and CA 2868848 C 2024/04/09

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 868 848
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépdt PCT/PCT Filing Date: 2013/03/26 (51) ClLInt./Int.Cl. GO6F 9/44 (2018.01)
(87) Date publication PCT/PCT Publication Date: 2013/10/03 | (72) Inventeurs/Inventors:
o . SHARMA, ABHIJIT, IN;
(45) Date de délivrance/lssue Date: 2024/04/09 KARNIK. NEERAN. IN:
(85) Entrée phase nationale/National Entry: 2014/09/26 GHASISAS, ABHAY, IN
(86) N° demande PCT/PCT Application No.: US 2013/033839 | (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 2013/148651 BMC SOFTWARE, INC., US
(30) Priorité/Priority: 2012/03/28 (US13/433,162) (74) Agent: SMART & BIGGAR LP

(54) Titre : ASSEMBLAGE AUTOMATIQUE DE BLEUS POUR ASSEMBLER UNE APPLICATION
(54) Title: AUTOMATED BLUEPRINT ASSEMBLY FOR ASSEMBLING AN APPLICATION

/—100

I

f
Micro ; Annotated Micro

i | Madel Database Blueprint " Blueprints
135 Database

130

Micro-blueprint
assembler 110

Application blueprint
assembler 115

Functional Component
Blueprint Assembler
120

(57) Abrégé/Abstract:

The embodiments provide a data processing apparatus for automated blueprint assembly. The data processing apparatus
includes a micro-blueprint assembler configured to receive a request for automated blueprint assembly for assembling an
application, where the request specifies at least one feature, and a model database configured to store model data. The model
data includes a plurality of classes and class properties. The data processing apparatus further includes a micro-blueprint database
configured to store a plurality of micro-blueprints. Each micro-blueprint corresponds to a functional component of a stack element
or service tier, and the functional component is annotated with one or more classes of the plurality of classes and at least one
required capability and available capability. The micro-blueprint assembiler is configured to generate at least one application
blueprint based on the model data and the plurality of micro-blueprints according to the request.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

2013/148651 A3 1IN 0000 OO0 0O OO0

<

W

(43) International Publication Date

CA 02868848 2014-09-26

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/148651 A3

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

3 October 2013 (03.10.2013) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/US2013/033839

International Filing Date:
26 March 2013 (26.03.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/433,162 28 March 2012 (28.03.2012) US

Applicant: BMC SOFTWARE, INC. [US/US]; 2101
CityWest Blvd., Houston, Texas 77042 (US).

Inventors: SHARMA, Abhijit; 103, Wing 3, Wellington
Mews, Lane 8, 98 Koregaon Park, Maharashtra, Pune
411001 (IN). KARNIK, Neeran; A-502, Tiara, Ivory Es-
tates, Baner Road, Pune 411008 (IN). GHASISAS,
Abhay; J-201 Samrajya, Shivateerth Nagar, Kothrud, Pune
411038 (IN).

Agent: SCHOLZ, Jared; Brake Hughes Bellermann LLP,
c/o CPA Global, P.O. Box 52050, Minneapolis, Minnesota
55402 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

(88)

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

Date of publication of the international search report:
3 January 2014

(54) Title: AUTOMATED BLUEPRINT ASSEMBLY FOR ASSEMBLING AN APPLICATION

Model

Data , | Mode! Database

135

v 100

Annotated Micro
Blueprints

Micro
Blueprint
Database

130

: S

icro-blueprint
assembler 110

Application blueprint
assembler 115

Functional Component
Blueprint Assembler

120

FIG. 1

(57) Abstract: The embodiments provide a data processing apparatus for automated blueprint assembly. The data processing appar -
atus includes a micro-blueprint assembler configured to receive a request for automated blueprint assembly for assembling an applic -
ation, where the request specifies at least one feature, and a model database configured to store model data. The model data includes
a plurality of classes and class properties. The data processing apparatus further includes a micro-blueprint database configured to
store a plurality of micro-blueprints. Each micro-blueprint corresponds to a functional component of a stack element or service tier,
and the functional component is annotated with one or more classes of the plurality of classes and at least one required capability
and available capability. The micro-blueprint assembler is configured to generate at least one application blueprint based on the

model data and the plurality of micro-blueprints according to the request.

AUTOMATED BLUEPRINT ASSEMBLY FOR
ASSEMBLING AN APPLICATION

[0001]
TECHNICAL FIELD
[0002] The present disclosure relates generally to automated blueprint assembly.
BACKGROUND
[0003] A functional blueprint of an application may define the topology (e.g.. the

number of tiers), configuration, actions, constraints, operating systems, and software
packages that need to be provisioned to deploy an application or server. A deployment
blueprint for each functional blueprint defines a way (amongst many) in which the
application could be provisioned in terms of mapping to resource sets and the required
compute. storage, network. For example, a “QA” deployment blueprint may use a single
resource set with one virtual machine (VM) to host all three tiers of application, whereas
a "Production” deployment blueprint may distribute the three individual application tiers
to three different resource sets.

[0004] Currently, there exist a number of different conventional methods to
generate functional blueprints or deployment blueprints. However, the conventional
methods provide a blueprint that is monolithic in design, for example, an application
template that includes the definition of all the functional components and their respective
software stacks in situ. As a result, the conventional blueprint may be unsuitable for

extensive re-use. For example, there may be a number of different choices of software

CA 2868848 2019-07-22

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

stack elements in a software stack. With the current monolithic design, this would mean
creating multiple functional blucprints for all the different options. The sheer choice of
re-usable services, similar conformant infrastructure, software stack clements, and/or
versions may lead to an explosion in the number of complete blueprints to be defined and
maintained in a catalog. As a result, managing the conventional blueprints may be

unworkable, or cumbersome at best.

SUMMARY

[0005] The embodiments provide a data processing apparatus for automated
blueprint assembly. The data processing apparatus includes a micro-blueprint assembler
configured to receive a request for automated blueprint assembly for assembling an
application, where the request specifies at least one feature, and a model database
configured to store model data. The model data includes a plurality of classes arranged in
a hierarchy with relational information and the model data includes class properties for at
least a portion of the plurality of classes. The data processing apparatus further includes
a micro-blueprint database configured to store a plurality of micro-blueprints. Each
micro-blueprint corresponds to a functional component of a stack element or service tier,
and the functional component is annotated with one or more classes of the plurality of
classes and at least one required capability and available capability. The micro-blueprint
assembler is configured to generate at least one application blueprint based on the model
data and the plurality of micro-blueprints according to the request.

[0006] In one embodiment, the request also specifies at least one constraint and
environment. Also, the at least one feature may be a non-functional feature. The
plurality of classes may represent different levels of the stack elements and the relational
information may define relations between the plurality of classes.

[0007] The plurality of classes may include core abstract classes including at least
one of an application, deployment, application server, platform runtime, operating system
and database server, and each of the core abstract classes may include sub-classes
corresponding to the micro-blueprints for the stack elements.

[0008] The micro-blueprint assembler is configured to generate the at least one

application blucprint may include assembling a subset of the plurality of micro-blueprints

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

for each service tier and each stack element within each service tier according to the
request.

[0009] The micro-blucprint assecmbler may include an application blucprint
assembler configured to assemble micro-blueprints corresponding to service tiers of the
application, and a functional component blueprint assembler configured to assemble
micro-blueprints corresponding to stack elements for each of the service tiers.

[0010] The application blueprint assembler is configured to assemble the micro-
blueprints may include obtaining micro-blueprints corresponding to the service tiers from
the micro-blueprint database according to the request and the required capabilities and the
available capabilities of the plurality of micro-blueprints.

[0011] The functional component blueprint assembler is configured to assemble
the micro-blueprints may include obtaining micro-blueprints corresponding to the stack
elements for each of the service tiers according to the request and the relational
information.

[0012] The application blueprint assembler is configured to assemble the micro-
blueprints may include obtaining micro-blucprints corresponding to the service tiers from
the micro-blueprint database using an artificial intelligence (Al) search algorithm.

[0013] The micro-blueprint assembler may be configured to generate a list of
application blueprints in an order of suitability that achieves the request.

[0014] The embodiments also provide a method for automated blueprint
assembly. The method includes receiving a request for automated blueprint assembly for
assembling an application, where the request specifies at least one feature, and generating
at least one application blueprint based on model data and a plurality of micro-blueprints
according to the request. The model data includes a plurality of classes arranged in a
hierarchy with relational information and the model data includes class properties for at
least a portion of the plurality of classes. Each micro-blueprint of the plurality of micro-
blueprints corresponds to a functional component of a stack element or service tier, and
the functional component is annotated with one or more classes of the plurality of classes
and at least one required capability and available capability.

[0015] In one embodiment, the request also specifies at least one constraint and

cnvironment. Also, the at Icast onc fecature may be a non-functional feature. The

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

plurality of classes may represent different levels of stack elements and the relational
information define relations between the plurality of classes.

[0016] The plurality of classes may include corc abstract classcs including at lcast
one of an application, deployment, application server, platform runtime, operating system
and database server, and cach of the core abstract classes may include sub-classes
corresponding to the micro-blueprints for the stack elements.

[0017] The generating the at least one application blueprint may include
assembling a subset of the plurality of micro-blueprints for each service tier and each
stack element within each service tier according to the request. The generating the at
least one application blueprint may include assembling micro-blueprints corresponding to
service tiers of the application and assembling micro-blueprints corresponding to stack
elements for each of the service tiers.

[0018] The embodiments also provide a non-transitory computer-readable
medium storing instructions that when executed cause one or more processors to perform
a process. The instructions comprising instructions to receive a request for automated
blucprint assembly for assembling an application, where the request specifies at least one
feature, and generate at least onc application blueprint based on model data and a
plurality of micro-blueprints according to the request. The model data includes a
plurality of classes arranged in a hierarchy with relational information, and the model
data includes class properties for at least a portion of the plurality of classes. Each micro-
blueprint of the plurality of micro-blueprints corresponds to a functional component of a
stack element or service tier, and the functional component is annotated with one or more
classes of the plurality of classes and at least one required capability and available

capability.

BRIEF DESCRIPTION OF THE DRAWINGS
[0019] FIG 1 illustrates a data processing apparatus for automated blueprint
assembly according to an embodiment;
[0020] FIG. 2 is a flowchart illustrating example operations of the data processing
apparatus of FIG. 1 according to an embodiment;

[0021] FIG. 3 illustrates model data of a model database of FIG. 1 according to an

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

embodiment;

[0022] FIG. 4 illustratcs an abstract modecl for annotation of a functional
componcnt rcpresenting a software stack clement or a service according to an
embodiment;

[0023] FIG. 5 illustrates a mapping between classes of the model data and the
micro-blueprints corresponding to the software stack elements according to an
embodiment;

[0024] FIG. 6 illustrates example micro-blueprints and their class annotations
corresponding to a plurality of service tiers according to an embodiment;

[0025] FIG. 7 illustrates a flowchart for the assembly of the micro-blueprints for
the plurality of service tiers according to an embodiment; and

[0026] FIG. 8 illustrates a process to assemble micro-blueprints corresponding to

the software stack elements according to an embodiment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0027] FIG. 1 illustrates a data processing apparatus 100 for automated blueprint
assembly according to an embodiment. The data processing apparatus 100 may include a
micro-blueprint assembler 110, a model database 135 that stores model data, and a micro
blueprint database 130 that stores micro-blueprints annotated with information from the
model data.

[0028] Micro-blueprints may include software stack elements and/or service
tiers. For example, each micro-blueprint may correspond to a functional component of a
software stack clement (e.g., Java Oracle JRE 1.6) or a service tier (e.g., web tier,
application tier, or database tier). The micro-blueprints for the service tier may refer to
the more general functional components of an application — web tier, application tier and
databasc ticr, for example. The micro-blueprints for the software stack elements may
refer to the more specific functional components of cach service tier. For example, with
respect to the software stack elements, the micro-blueprints may include the software
stack eclements for ecach service tier of the application. In one embodiment, the micro-
blueprints may be re-usable and compose-able blueprints for the software stack elements

such as Java Runtime Environment (JRE) or application server Oracle WebLogic 11.5g

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

and for the service tiers such as “PetStore App-Tier Services,” for example. According to
the embodiments, these micro-blueprints can be combined together to assemble a
complcte application or functional component blucprint.

[0029] In general, a blueprint may represent re-usable canonical application
templates which represent different application views. These are typically stored in a
repository and made available, as part of a catalog, for users to sclect from for various
purposes like developing an application, for example. Enterprise and application
architects in collaboration with middleware, database, and operating system
administrators may define these blueprints based on enterprise architecture standards,
reference architectures, security standards, stable version, standards compliance, and/or
performance characteristics, for example. In other words, a blueprint may be a
declarative specification of different aspects or views of an application or service such as
the architecture view and the deployment view. They are used for enabling various key
application related cloud services and other use cases. In one application, users may use
the blueprints to provision applications in a cloud environment. Generally, the blueprint
encompasses two types of blueprints — functional blueprints and deployment blueprints.
A functional blueprint may define the architectural view or the structure of an
application/scrvice in terms of its ticrs (also referred to as functional components) and the
connection between the components. Also, the functional blueprint may define the
software stack clements and related artifacts (e.g., startup, install scripts) within each
functional component. A deployment blueprint may define the deployment view or intent
for an application in terms of resource requirements (e.g., compute, storage, and network)
for deploying its various functional components. Multiple deployment blueprints may
conform to a functional blueprint of an application. The multiple deployment blueprints
may include a QA deployment blueprint where all three functional components (e.g., web
tier, application tier and database tier) are deployed on a single virtual machine (VM)
with certain CPU and memory resources, where a Production deployment blue-print may
deploy each of the three functional components in three individual VMs. The multiple
deployment blueprints may encompass many other variations other than the QA
deployment blueprint and Production deployment blueprint.

[0030] As further explained below, the data processing apparatus 100 decomposes

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

the blueprint into compose-able and re-usable micro-blueprints, and the micro blueprints
arc annotated with one or more classes from the model data in the model database 135.
Essentially, the annotated micro-blueprints map the micro-blueprints of the service or
software stacks to one or more classes of the model data, where the model data also
includes relational information defining relations among the classes. Using the annotated
micro-blueprints and the model data, the data processing apparatus 100 automatically
assembles the complete composed blueprint on the fly from the micro-blueprints so that
the application can be provisioned or developed. In other words, the data processing
apparatus 100 uses a model driven approach for flexible, dynamic and automated,
complete blueprint composition from smaller building blocks such as the micro-
blueprints. The complete application blueprint may encompass the functional blueprint
or the deployment blueprint described above. This completely assembled blueprint can
be used to develop the entire application including its components or tiers, and their
respective software stack elements.

[0031] According to one embodiment, the micro-blueprint assembler 110 may
receive a request for automated blueprint assembly for developing an application. The
request may specify fecaturces, constraints, or onc or morc cnvironments for assembling the
application. The request may specify functional (c.g., features, services) and/or non-
functional aspects (c.g., security, scalability) of assembling the application. The request
may be fairly high level or granular depending on the user’s requirements. For example,
a request may specify a need for a particular type of application (e.g., a PetStore
application) regardless of the software stack. In response, the micro-blueprint assembler
110 may generate a .NET based PetStore blueprint or a Tomcat based PetStore blueprint.
In another example, the request may specify a J2EE compliant PetStore blueprint. In
response, the micro-blueprint assembler 110 may generate a J2EE compliant blueprint.
In one embodiment, the features may correspond to the classes of the model data, and the
constraint and the environment aspects may correspond to the class properties of the
classes, as further explained below.

[0032] Generally, in response to the request, the micro-blueprint assembler 110
may query the model classes and its class properties from the model data of the model

database 135. The model data may be considered a semantically rich and extensible

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

model which captures domain knowledge in the form of key classes in the domain, class
hierarchy, class propertics and rclationships between classes, facets or restrictions on
propertics or rclations such as allowed values, and/or cardinality, for example. In
addition, the model data also captures one or more rules related to the classes and the
class properties. According to the embodiments, the model data may capture the domain
knowledge related to popular applications, components, and software elements, standard
application services, servers, and/or middleware, for example. The key abstract classes
may be Operating System, Platform Runtimes, Application Servers, and/or Deployment,
for example. In one embodiment, the model data may include a plurality of classes
arranged in a hierarchy with relational information. Further, the model data may include
class properties for one or more of the classes. Essentially, the plurality of classes may
represent different levels of stack elements and the relational information may define
relations between the plurality of classes. The model data is further explained with
reference to FIG. 3.

[0033] The micro-blueprints stored in the micro-blueprint database 130 may be
annotated with relevant key classes from the model data to enable automated
composition. For example, an Oracle Java JRE micro-blueprint may be annotated with
“OracleJRE” class from the model. This aspect is further described with reference to
FIG. 5. As such, when the micro-blueprint assembler 110 receives a request that specifies
a featurc of a certain type of application, the micro-blueprint assembler 110 may query
the appropriate class from the model data of the model database 135, and then query the
micro-blueprints having the obtained one or more classes from the micro-blueprint
database 130. Further, the micro-blueprints may be annotated with capabilities and
required capabilities, as further described with reference to FIGS. 4 and 6.

[0034] The micro blueprint assembler 110 may encompass a flexible approach
that may leverage the model data, the annotated re-usable micro-blueprints to automate
assembly of a complete application blueprint that can then be used to develop the entire
application including its service tiers, and the software stack elements for each service
tier. In other words, a semantically rich abstract model and annotated micro-blueprints
enable automated composition of the complete application blueprint composed at runtime

based on the application request.

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

[0035] The micro blueprint assembler 110 may include an application blueprint
assembler 115, and a functional component blueprint assembler 120. In other words,
according to onc cmbodiment, the process may be scparated into two parts — the
application blueprint assembler 115 and the functional component blueprint assembler
120. The application blueprint assembler 115 may assemble the micro-blueprints from
the micro-blueprint database 130 corresponding to service tiers (e.g., web tier, application
tier, and database tier). The assembly of the micro-blueprints for the service tiers is
further explained with reference to FIG. 7. Going a level deeper, the functional
component blueprint assembler 120 may assemble the micro-blueprints from the micro-
blueprint database 130 corresponding to the stack elements for each of the service tiers.
The assembly of the micro-blueprints for the stack elements for each of the service tiers
is explained with reference to FIG. 8. Also, if the micro-blueprint database 130 includes a
relatively large number of micro-blueprints, the application component assembler 115
may use an artificial intelligence (AI) search algorithm for locating the appropriate
micro-blueprints.

[0036] FIG. 2 is a flowchart illustrating example operations of the data processing
apparatus 100 of FIG. 1. Although FIG. 2 is illustrated as a sequential, ordered listing of
operations, it will be appreciated that some or all of the operations may occur in a
different order, or in parallel, or iteratively, or may overlap in time.

[0037] Model data may be stored in a model database (202). According to the
embodiments, the model database 135 may store the model data. The model data may
capture the domain knowledge related to popular applications, components, and software
elements, standard application services, servers, and/or middleware, for example. The
key abstract classes may be Operating System, Platform Runtimes, Application Servers,
and/or Deployment, for example. In one embodiment, the model data may include a
plurality of classes arranged in a hierarchy with relational information. Further, the
model data may include class properties for one or more of the classes. Essentially, the
plurality of classes may represent different levels of the stack elements and the relational
information may define relations between the plurality of classes.

[0038] A plurality of annotated micro-blueprints may be stored in a micro-

blucprint database (204). For example, the micro-blueprint database 130 may store the

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

plurality of annotated micro-blueprints. Each micro-blueprint may correspond to a
functional component of a stack clement or service tier, where the functional component
is annotatcd with onc or morc classcs of the plurality of classcs and at Icast onc required
capabilities and available capabilities.

[0039] A request for automated blueprint assembly for assembling an application
may be received (206). For example, the micro-blueprint assembler 110 may receive the
request for automated blueprint assembly for assembling an application. The request may
specify at least one feature (functional or non-functional). Optionally, the request may
specify one or more constraints or environments for assembling the application. In other
words, the request may specify functional (e.g., features, services) and/or non-functional
aspects (e.g., security, scalability). The request can be fairly high level or granular
depending on the user’s requirements.

[0040] At least one complete application blueprint may be generated based on the
model data and the plurality of micro-blueprints according to the request (208). For
example, the micro-blueprint assembler 110 may generate one or more of the application
blueprints having at least onc feature, constraint or environment based on the model data
and the plurality of micro-blueprints in response to the request. For example, the micro
blueprint assembler 110 may assemble a subset of the plurality of micro-blueprints from
the micro-blueprint database 130 for each service tier and for each stack clement within
cach service tier according to the request (e.g., the features, constraints, and/or the
environment). Initially, the application blueprint assembler 115 may assemble the micro-
blueprints according to the service tiers of the application. In one embodiment, the
application blueprint assembler 115 may obtain the micro-blueprints corresponding to the
service tiers according to the request (e.g., the features, constraints, and/or environment)
as well as the required capabilities and the available capabilities of the plurality of micro-
blueprints in the micro-blueprint database 130. In addition, if the plurality of micro-
blueprints stored in the micro-blueprint database 130 is relatively large, the application
blueprint assembler 115 may use an Al search algorithm in order to obtain the micro-
blueprints in the micro-blueprint database 130. Subsequently, the functional component
blueprint assembler 120 may assemble the micro-blueprints corresponding to the stack

elements for each of the service tiers. For instance, the functional component blueprint

10

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

assembler 120 may obtain the micro-blueprints corresponding to the stack elements for
cach of the service tiers according to the request and the relational information of the
model data of the model database 135.

[0041] FIG. 3 illustrates the model data 300 of the model database 135 of FIG. 1
according to an embodiment. The model data may include a semantically rich model
which captures abstracted domain knowledge relevant to typical application blueprints
with a specific focus towards provisioning of those applications. Domain experts (e.g.,
architects and/or administrators) may create and maintain the model database 135. As
indicated above, the model data may capture the domain knowledge related to popular
applications, components, software elements, middleware, standard application services,
and/or application servers, for example.

[0042] The model data 300 may be considered a semantically rich and extensible
model which captures domain knowledge in the form of key classes in the domain, class
hierarchy, class properties and relationships between classes, facets or restrictions on
properties or relations such as allowed values, and/or cardinality, for example. In
addition, the model data also capturcs onc or more rules related to the classes and the
class propertics. Referring to FIG. 3, the model data 300 may include a plurality of
classes that are arranged in a hierarchy with relational information. As shown in FIG. 3,
and further described below, the plurality of classes may represent different levels of
stack elements, and the relational information (e.g., “is a”, “needs”) may define relations
between the plurality of classes.

[0043] For example, the model data 300 may include an abstract main object 405
(e.g., AbstractDCODbject), and a plurality of core classes 410 that are relevant to typical
application stack elements. The plurality of core classes 410 may be considered sub-
classes of the abstract main object 405. In one example, the core classes may include a
database server 410-1, an operating system 410-2, a platform runtime 410-3, an
application server 410-4, a deployment 410-5, and/or an application 410-6. The
application 410-6 may represent applications such as a PetStore application or any other
type of application. An application 410-6 may include a plurality of deployments
represented as deployment 410-5. The deployment 410-5 may represent deployable
artifacts such as packages/archives, ¢.g. Web Archive (WAR), Enterprise Archive (EAR),

11

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

and/or DLL, which are deployed into application servers to instantiate an application’s
modules. The deployment sub-classcs may be WAR, EAR, and DLL.

[0044] The application scrver 410-4 (c.g., AppScrver) may represent an
application server where the deployable packages are deployed to instantiate application
modules. The J2EEServer and IIS may represent two sub-classes of AppServer and
further down the hierarchy WebLogic and WebSphere are sub-classes of J2EEServer.
Application servers require a platform runtime for an execution environment, e.g. a
J2EEServer requires a Java JRE platform runtime.

[0045] The platform runtime 410-3 (e.g., PlatformRuntime) may represent an
execution runtime environment such as a JVM for programs like an application server to
execute in. JRE and NET are sub-classes of PlatformRuntime 410-3 and further
IBMIJRE and OracleJRE are sub-classes of JRE. As shown in FIG. 3, the platform
runtime may require an operating system to execute.

[0046] The operating system 410-2 (e.g., OperatingSystem) may represent the
operating system on which the platform runtime executes. Unix and Windows are sub-
classes of OperatingSystem 410-2 and further AIX and Linux are sub-classes of Unix.
The databasc scrver 410-1 (c.g., DatabascScrver) may represent a databasc such as
Oracle or MSSQL, which in turn requires an operating system 410-2.

[0047] One or more of the classes may include class properties, which further
describe various properties of the class that could be used in the application request as
constrains to filter the software stack elements. In other words, the model data 300
includes class properties for one or more of the classes. For example, the class properties
of the operating system 410-2 may include different versions such as 32bit or 64bit. As
such, the application request may specify that it desires the app tier OS version to be 64
bit. Further, the WebSphere class may include different WebSphere versions such as
WebSphere Version 5 or WebSphere version 6.1. As such, the application request may
specify that it desires a WebSphere application server with minimum app tier OS version
to be 64 bit. Further, the JRE class may include various versions of the JRE class. For
example, the JRE class may have JRE version 1.5 or JRE version 1.6.

[0048] In addition, the model data 300 may include relational information. For

cxample, the model data includes a plurality of key relations between classes in the

12

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

domain model. In one example, the key relations may include the needs relation. The
needs relation may be defined on the AbstractDCObject 405 and represent a dependency
between classes from a softwarce stack perspective. To illustrate, as shown in FIG. 3, a
Deployment (e.g. WAR) requires an AppServer (e.g. WebLogic), an AppServer requires a
PlatformRuntime (e.g. OracleJRE) and the PlatformRuntime requires an
OperatingSystem (e.g. Linux).

[0049] Further, the needs relation is further specialized in the sub-classes of
AppServer and PlatformRuntime. J2EEServer (which is an AppServer) restricts the
needs relation to the PlatformRuntime to the needs JRE relation to the JRE sub-class of
PlatformRuntime as J2EE based application servers can only run on the Java Runtime
Environment (JRE) and not on .NET. There is further specialization defined for
WebSphere uses the needsIBMIRE relation to link to a sub-class of JRE, the IBMIJRE as
it only runs on IBM JRE environment. These can be considered as facets or constraints
on the needs relation.

[0050] The needs relation and its specializations or restrictions will be utilized in
the process of building a suitable software stack automatically from micro-blueprints of
the individual software clements. This is possible because the needs relation represents
dependencies between classes for abstract software clements from a softwarc stack
perspective.

[0051] In addition, the model data 300 may represent non-functional aspects of
the application. For example, the non-functional aspects (e.g., security, scalability, high
availability) may be represented as classes in the domain model and can be used to
annotate the software packages or functional component blueprints. This allows the
application request to include non-functional aspects in addition to the functional aspects.
For example, a clustered WebLogic app server micro-blueprint may be annotated with
classes from the domain representing concepts such as “high availability.” This will be
selected in preference to a generic WebLogic app server micro-blueprint when the
application request indicates a need for high availability.

[0052] In essence, the classes (including their properties and relations) associated
with the micro-blueprints will be used to dynamically assemble multiple blueprints to

achicve a complete blucprint for a softwarc stack for cach functional component to

13

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

deliver a complete blueprint for an application.

[0053] Dynamic automated assembly of a complete application blueprint from
several such micro-blueprints may require a mechanism for describing their functionality
in terms of classes belonging to the model data 300 described earlier, e.g., describing the
functionality of the software package or service micro-blueprint. For example, the micro-
blueprints are annotated with information from the model data 300 of the model database
135. In particular, the micro-blueprints may be annotated with one or more classes. In
addition, each micro-blueprint is annotated with capability information, as further
described below with reference to FIG. 4.

[0054] FIG. 4 illustrates an abstract model for annotation of a functional
component representing a software stack element or a service tier according to an
embodiment. For example, as indicated above, each micro-blueprint corresponds to a
functional component 510, and the functional component may correspond to a service tier
(e.g., web tier, application tier, and database tier) or a software stack element. As such,
the functional component 510 may correspond to the function of the software stack
clement or the function of the service tier. The functional component 510 may include a
plurality of required capabilitics and a plurality of available capabilitics. Each required
capability may corrcspond to a diffcrent functional feature 515, which is annotated with
one or more classes 520 from the model data 300. Also, each available capability
corresponds to a different functional feature 525, which is annotated with one or more
classes 520 from the model data 300. In other words, the abstract model may include a
functional component 510 that has a plurality of available capabilities which may
represent the capabilities of a respective functional component. Further, the functional
component 510 may have a plurality of required capabilities which may represent the
capabilities of the respective functional component. The capabilities may be considered
collections of a functional feature class. The functional feature class may include an
attributed type which refers to a class 520 from the model data 300, e.g., an Oracle Java
JRE micro-blueprint has a functional component which is annotated with “OracleJRE”
class from the model data 300.

[0055] FIG. 5 illustrates a mapping between classes of the model data 300 and the

micro-blucprints corresponding to the softwarc stack clements according to an

14

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

embodiment. For example, as shown in FIG. 5, individual micro-blueprints 501 are
annotated with information from the model data 300. For example, the micro-blueprints
501 may include a PetStore EAR micro-blueprint 501-1, an Oracle WebLogic 11.5 app
server micro-blueprint 501-2, a Java Oracle JRE 1.6 micro-blueprint 503-3, and an
Ubuntu Linux 10.04 micro-blueprint 501-4. These types of micro-blueprints are
illustrated for explanatory purposes only, where the embodiments encompass any type of
software stack element. The micro-blueprints 501 may be annotated with relevant classes
from the model data 300 (e.g., capabilitiecs<FunctionalFeature> type may refer to the
relevant class). For example, the Oracle WebLogic 11.5 App Server micro-blueprint 501-
2 may be annotated with the WebLogic class (sub-class of J2EEServer -> AppServer ->
AbstractDCObject). Also, the micro blueprints may be annotated with the more generic
class or more specific class in the class hierarchy and of course with multiple classes if
needed.

[0056] FIG 6 illustrates the micro-blueprints and their class annotations
corresponding to the service tiers according to an embodiment. Although FIG. 6
illustrates the example of a PetStore application, the embodiments encompass any type of
application having any number of service tiers. FIG. 6 illustrates three different micro-
blueprints for the web tier, the application tier, and the databasc tier. Each micro-
blueprint corresponds to a functional component 510 and includes functional features 515
and required functional features 525. Further, the functional features 515 and the
required functional features 525 are annotated with class information from the model data
300. For example, the PetStore Web Tier has capabilities ‘PetStoreWebApp’ and requires
capabilities of ‘Inventory’ and ‘ShoppingCart’ for it to be functional. The PetStore App
Tier has capabilities ‘Inventory’ and ‘ShoppingCart’ and requires capabilities of a
‘DatabaseServer.”

[0057] In one embodiment, the application blueprint assembler 115 may
assembly the micro-blueprints for the service tiers based on a matching of required and
available capabilities, which allows automatically assembly of the PetStore Web Tier, the
PetStore App Tier and the PetStore DB Tier micro-blueprints into the fully fledged
PetStore Application blueprint. Going one level deeper, within a functional component

like PetStore App Tier, the functional component blueprint assembler 120 may assemble

15

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

the micro-blueprints for the complete software stack from the annotated micro-blueprints
in the databasc 130, as further explained below.

[0058] As indicated above, the micro blucprint assecmbler 110 may receive a
request to generate a complete application blueprint. For example, the application
request may specify at least one feature, as well as various constraints or environments.
The output of processing an application request may be a list of dynamically composed
application blueprints ranked in order of suitability. In one embodiment, the application
request may specify a certain aspect such as a desired functional aspect (e.g., features,
services required) and/or non-functional aspects (e.g., security, scalability, high
availability) represented as classes from the model data 300. For example, a request for a
highly available PetStore application will expect in response a composed blueprint for the
PetStore application, with the app tier functional component software stack including
clustered WebLogic (or Tomcat) app server. In addition, it may also include a functional
component for a software load balancer to load balance HTTP requests to the application
server instances.

[0059] Also, the request may specify onc or more constraints. The constraints
may rclatc to the constraint on the classcs in the form on conditions on their
propertics/relations which filter the options available in terms of micro-blueprints to be
used during composition. For example, the request may specify a constraint such as a
J2EE compliant stack with minimum J2EE conformance level of 1.5.

[0060] Also, the request may specify an environment. The environment specified
has an impact on the chosen components or software stack elements. For example, in the
DEV environment, Tomcat application server may be selected, whereas in the PROD
environment, the clustered WebLogic app server may be selected.

[0061] Based on the information contained in the request, the micro blueprint
assembler 110 is configured to generate one or more complete application blueprints
from the re-usable micro-blueprints. For example, the micro blueprint assembler 110
may assemble a subset of the plurality of micro-blueprints from the micro-blueprint
database 130 for each service tier and for each stack element within each service tier
according to the request. Initially, the application blueprint assembler 115 may assemble

the micro-blueprints according to the service tiers of the application. In one embodiment,

16

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

the application blueprint assembler 115 may obtain the micro-blueprints corresponding to
the service tiers according to the request and the required capabilitics and the available
capabilitics of the plurality of micro-blucprints in the micro-blueprint database 130. The
details of compositing the service level micro-blueprints are further explained with
reference to FIG. 7. In addition, if the plurality of micro-blueprints stored in the micro-
blueprint database 130 is relatively large, the application blueprint assembler 115 may
use an Al search algorithm, which is further explained below.

[0062] Subsequently, the functional component blueprint assembler 120 may
assemble the micro-blueprints corresponding to the stack elements for each of the service
tiers. For instance, the functional component blueprint assembler 120 may obtain the
micro-blueprints corresponding to the stack elements for each of the service tiers
according to the request. The assembly for the micro-blueprints corresponding to the
stack elements is further explained with reference to FIG. 8.

[0063] FIG. 7 illustrates a flowchart for the assembly of the micro-blueprints for
the service tiers according to an embodiment. Although FIG. 7 is illustrated as a
scquential, ordered listing of operations, it will be appreciated that some or all of the
operations may occur in a different order, or in parallel, or iteratively, or may overlap in
time.

[0064] At least one feature, constraint, and/or environment are extracted from the
request (702). For example, the application blueprint assembler 110 may extract at least
the feature, which may specify a certain type of application. However, the feature may
include any type of feature related to the assembly of application. Further, the request
may specify one or more constraints and/or environments.

[0065] Linked model classes are extracted from the request (704). For example,
the application blueprint assembler 110 may extract the linked model classes from the
request. In other words, the features may correspond to one or more of the plurality of
classes, and the constraint and/or environment may correspond to one or more of the
class properties. As such, the application blueprint assembler 100 may obtain the
relevant classes for the features, constraints, and the environment.

[0066] The application blueprint assembly process is called (706). For example,

the application blueprint assembler 110 may start the application blueprint assembly

17

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

process, and the application blueprint assembler 115 may start to assemble the micro-
blueprints corresponding to the service tiers of the application.

[0067] The micro blueprints having the extracted classes are obtained (708). For
example, the application blueprint assembler 115 may query the micro-blueprint database
130 in order to obtain the micro-blueprints having the extracted classes. For example, the
application blueprint assembler 115 may search the micro-blueprint database 130 in order
to obtain a subset of micro-blueprints based on the required capabilities and the available
capabilities of the micro-blueprints such that one or more of the available and required
capabilities match.

[0068] The annotated classes of a current micro blueprint are checked to
determine if they match the constraints specified in the request (710). For example, if the
request includes one or more constraints, the application blueprint assembler 115
determines if the constraints specified in the request match the class properties of model
data 300 corresponding to the current micro-blueprint.

[0069] The micro blueprint is checked to determine whether it is admissible in the
sclected environment (712). For cxample, the application blueprint assembler 115 may
determine if the current micro blucprint is admissible in the environment specified in the
request.

[0070] The micro-blueprint is obtained (714). For example, if meeting the
conditions of 710 and 712, the application blueprint assembler 115 may obtain the micro
blueprint from the micro-blueprint database 130. This process may be repeated for each
of the micro-blueprints obtained in 708.

[0071] The above described process of FIG. 7 may be configured in a set of
instructions, which when executed cause one or more processors to perform a series of
functions. The instructions may include:

/ Process to generate complete composed blueprint for application
for all Functional & Non Functional Featurcs in Request
for all Model Classes in Features {
Call function process(Classes, Constraints, Environment)
}

// Above yields a list of candidate composed complete blueprints with micro
//blueprints for each of the related tiers or functional components
List<Blueprint> composedBlueprints

for all composedBlueprints {

18

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

for each tier microBlueprint in a composedBlueprint {
Invoke Process to generate the composed blueprint for the software
stack of the component
Add this to the tier microBlueprint

}
}

List<MicroBlueprint> function process(Classes, Constraints, Environment) {
List<MicroBlueprint> microBlueprints
for all Classes
microBlueprints = Find MicroBlueprint(s) in Repository annotated
with these classes i.e.
class is subset FunctionalComponent.Capabilities.Functional Feature.type

}

for all microBlueprints {
Check if current MicroBlueprint annotated classes match the specified
tier level constraints (if any)
if(no) Remove from microBlueprints
)
for all microBlueprints satisfying constraints {
Check if current MicroBlueprint is admissible in the selected
Environment
if(no) Remove from microBlueprints

}

for all microBlueprints dynamically discover the linked functional
component micro-blueprints {
// recursive step
List<MicroBlueprint> linkedMicroBlueprints =
Call function process (Current.MicroBlueprint.Required Capabilities.Classes,
Constraints, Environment)
if(linkedMicroBlueprints empty) Remove current from microBlueprints
else Link linkedMicroBlueprints to current MicroBlueprint

}
}
return microBlueprints
[0072] Next, the functional component blueprint assembler 120 is configured to
assemble micro blueprints corresponding to software stack clement for cach of the
service tiers. For example, the functional component blueprint assembler 120 is

configured to dynamically compose packages/software stack elements to build a software

stack for each service tier.

19

[0073] In one embodiment, the functional component blueprint assembler 120
utitizes the needs relation and its specializations or restrictions in the process of building
a suitable software stack automatically from micro-blueprints of the individual software
elements. This is possible because the needs relation represents dependencies between
classes for abstract software elements from a software stack perspective.

[0074] FIG. 8 illustrates a process to assemble micro-blueprints corresponding to
the software stack elements according to an embodiment. Although FIG. 8 is illustrated
as a sequential, ordered listing of operations, it will be appreciated that some or all of the
operations may occur in a different order, or in parallel, or iteratively, or may overlap in
time.

[0075] The micro-blueprints for the software stack elements may be obtained for
each service tier (802). For example, the functional component blueprint assembler 120
may be configured to obtain the micro-blueprints for the service tier micro-blueprints
obtained in the process of FIG. 7.

[0076] The annotated classes for the micro-blueprints are obtained (804). For
example, the functional component blueprint assembler 120 may obtain the relevant
annotated classes from the obtained micro-blueprints. The process may determine if the
current annotated class is the operating system class (806). For example, the functional
component blueprint assembler 120 may determine if the current annotated class is the
operating system class. If yes, the process is stopped (808) because it signals the end of
the software stack element. If no, the process continues to 810. Although this particular
example utilizes the operating system software element stack as an ending point, the
embodiments encompass using any type of software stack element as the ending point.

[0077] The linked classes pointed to by the relational information are obtained
(810). For example, the functional component blueprint assembler 120 may obtain the
linked classes point to by the needs relation. Each feature, constraint, and environment
contained in the request is applied to the classes (812). For example, the functional
component blueprint assembler 120 may apply each feature, constraint, and environment
contained in the request to the classes. Subsequently, the process may repeat iiself for
each software stack element in each of the service tiers.

[0078] The above described process of FIG. 8 may be configured in a set of

20

CA 2868848 2019-07-22

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

instructions, which when executed cause one or more processors to perform a series of

functions. The instructions may include:

// Process to generate composed blueprint for a tier or functional component consisting of
a suitable software stack
// automatically from micro-blueprints of the individual software elements
- Get app Deployment micro blueprint for Functional Component or tier ¢.g. for
PetStore App Tier it is the PetStore EAR micro blueprint
- Get annotated class(es) for the Deployment micro blueprint e.g. for PetStore
EAR it is EAR class from the model
- Carry on in a recursive manner until you reach the OS class - stop here as you
have the software stack {
- For annotated class get linked class(es) pointed to by the needs*
relation e.g. for EAR above the needs relation points to J2EEServer class
- If a more specialized needs™ relation is present then one chooses the
linked specific class - otherwise there could be many choices
for the linked classes
¢.g. Deployment can be linked to any AppServer
- Apply specified class properties level constraints to filter the classes to
get the matching ones e.g. a constraint like
J2EEServer.conformanceLevel > 1.5 can filter out NET app
servers
- Look at non functional requirements to filter out options that do not
match them c.g. if HA is required then instead of WebLogic Blueprint
WebLogic clustered Blueprint is chosen
- Also filter for Environment e.g. Dev, Prod may have different
requirements

}

[0079] Also, as explained above, if the number of micro-blueprints is relatively
large, the application blueprint assembler 110 may assemble the micro-blueprints using
an Al search algorithm.

[0080] An Al search is used in a lot of different problems where the search space
is very large e.g. in games, robot motion planning. Al search algorithms make it
computationally very feasible to solve a range of search like problems. This problem has
been formulated as an Artificial Intelligence (Al) search problem where the solution is
the fully assembled complete blueprint with both the software stack definitions as well as
the tier definitions included.

[0081] More specifically, the problem is formulated as an A* (AStar Al Search
Algorithm) search problem. Briefly the A* algorithm is heuristic based “best-first” search

21

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

algorithm which starts from an initial state and takes one to a goal state(s), at any current
statec choosing the best next state based on the heuristic cquation provided below.

[0082] Eq. (1) f(n) = g(n) + h(n)

[0083] The parameter g(n) is the lowest cost incurred in the chosen path the
search algorithm has taken so far to the current state (e.g., the path formed out of the
chosen states so far). The cost of a particular path segment is defined in a problem
specific manner.

[0084] The parameter h(n) is the estimated cost of the remaining path to the goal
state(s) from the current state. All of these parameters, the goal state(s), functions and
cost can be defined as needed in the problem. In this case, a functional component with a
set of capabilities and a set of required capabilities may represent a current state. There
may be several functional components in the micro-blueprint database 130 that either
individually or in combination satisfy the required capabilities.

[0085] For example, in particular example, the “web tier” component forms the
current state “State n”. The web tier component has required capabilities “Inventory” and
“Shopping Cart”. Thus, querying the micro-blueprint databasc 130 may yiclds threc
components which ecither partially or completely satisfy these required capabilities
namely “app tier” (completely meets requirements), “inventory service” (partially) and
“shopping cart service” (partially). Potential next states are generated (e.g., “State n + 17
and State n + 2”°) from these in such a way that each state completely satisfies the current
state “State n” requirements. In this case, “State n + 1” comprises of the “inventory
service” and the “shopping cart service” components and “State n + 2” is comprised of
the “app tier” component.

[0086] Next, the optimum state is chosen amongst these states as the optimum
state. This cost can include heuristics like choose state with minimum number of
components, also considering the constraints, for example. This also feeds into the cost
function g(n). Thus, a path that least cost or best is built.

[0087] The goal state is reached by keeping track of accumulated “capabilities” of
the chosen states so far and the accumulated ‘“required capabilities”. Once the
accumulated “required capabilities” are a subset of accumulated “capabilities”, the

complete blueprint is determined and the process stops scarching.

22

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

[0088] As a result, the data processing apparatus of the embodiments may
decomposc the blueprint into compose-able and re-usable micro-blueprints, and the micro
blucprints arc annotatcd with onc or morc classcs from the model data in the model
database 135. Essentially, the annotated micro-blueprints map the micro-blueprints of the
service or software stacks to one or more classes of the model data, where the model data
also includes relational information defining relations among the classes. Using the
annotated micro-blueprints and the model data, the data processing apparatus
automatically assembles the complete composed blueprint on the fly from the micro-
blueprints so that the application can be provisioned or developed. In other words, the
data processing apparatus 100 uses a model driven approach for flexible, dynamic and
automated, complete blueprint composition from smaller building blocks such as the
micro-blueprints. The complete application blueprint may encompass the functional
blueprint or the deployment blueprint described above. This completely assembled
blueprint can be used to develop the entire application including its components or tiers,
and their respective software stack elements.

[0089] Implementations of the various techniques described hercin may be
implemented in digital clectronic circuitry, or in computer hardware, firmware, softwarc,
or in combinations of them. Implementations may implemented as a computer program
product, i.c., a computer program tangibly embodied in an information carrier, ¢.g., in a
machine-readable storage device or in a propagated signal, for execution by, or to control
the operation of, data processing apparatus, ¢.g., a programmable processor, a computer,
or multiple computers. A computer program, such as the computer program(s) described
above, can be written in any form of programming language, including compiled or
interpreted languages, and can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit suitable for use in a
computing environment. A computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed across multiple sites and
interconnected by a communication network.

[0090] Method steps may be performed by one or more programmable processors
executing a computer program to perform functions by operating on input data and

generating output. Method steps also may be performed by, and an apparatus may be

23

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate
array) or an ASIC (application-specific integrated circuit).

[0091] Proccessors suitable for the exccution of a computer program include, by
way of example, both general and special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a processor will receive
instructions and data from a read-only memory or a random access memory or both.
Elements of a computer may include at least one processor for executing instructions and
one or more memory devices for storing instructions and data. Generally, a computer
also may include, or be operatively coupled to receive data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical
disks, or optical disks. Information carriers suitable for embodying computer program
instructions and data include all forms of non-volatile memory, including by way of
example semiconductor memory devices, ¢.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, ¢.g., internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor and the memory may be
supplemented by, or incorporated in special purpose logic circuitry.

[0092] To provide for intcraction with a user, implementations may be
implemented on a computer having a display device, c¢.g., a cathode ray tubc (CRT) or
liquid crystal display (LCD) monitor, for displaying information to the user and a
keyboard and a pointing device, ¢.g., a mouse or a trackball, by which the user can
provide input to the computer. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form, including acoustic, speech, or tactile
input.

[0093] Implementations may be implemented in a computing system that
includes a back-end component, ¢.g., as a data server, or that includes a middleware
component, e.g., an application server, or that includes a front-end component, e.g., a
client computer having a graphical user interface or a Web browser through which a user
can interact with an implementation, or any combination of such back-end, middleware,

or front-end components. Components may be interconnected by any form or medium of

24

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

digital data communication, e.g., a communication network. Examples of
communication networks include a local arca network (LAN) and a wide arca network
(WAN), c.g., the Internct.

[0094] While certain features of the described implementations have been
illustrated as described herein, many modifications, substitutions, changes and

equivalents will now occur to those skilled in the art.

25

WHAT IS CLAIMED IS:

L. A data processing apparatus for automated blueprint assembly, a functional
blueprint that defines an architectural view or a structure of an application or a service in
terms of tiers, the data processing apparatus including:

a micro-blueprint assembler configured to generate at least one application
blueprint, and to receive a request for automated blueprint assembly for automatically
assembling the application blueprint, the request specifying at least one feature;

a model database configured to store model data, the model data including a
plurality of classes arranged in a hierarchy with relational information specifying
relationship links among the plurality of classes;

a micro-blueprint database configured to store a plurality of micro-blueprints,
each micro-blueprint corresponding to a functional component corresponding to a
service tier comprising one of a web tier, an application tier, and a database tier, each
micro-blueprint being annotated with one or more classes of the plurality of classes from
the model data of the model database; and

the micro-blueprint assembler configured to generate the application blueprint for
the application by assembling micro-blueprints from the micro-blueprint database,
wherein, when generating the at least one application blueprint, the micro-blueprint
assembler is configured to: apply the at least one feature to the classes of the model data
of the model database to obtain a class that is relevant to the at least one feature of the
request, and query the micro-blueprint database to obtain at least one micro-blucprint
having the obtained class and at least one micro-blueprint linked to the obtained class by

the relational information.

2. The data processing apparatus of claim 1, wherein the request also specifies at

least one constraint and environment.
3. The data processing apparatus of claim 1, wherein the at least one feature is a
non-functional feature, the non-functional feature specifying a sccurity feature or a

scalability feature.

26

Date Regue/Date Received 2023-04-14

4. The data processing apparatus of claim 1, wherein the plurality of classes

represent different levels of stack elements for the service tier.

5. The data processing apparatus of claim 1, wherein the plurality of classes include
core abstract classes representing at least one of the application, deployment, application
server, platform runtime, operating system and database server, and each of the core
abstract classes include sub-classes corresponding to the micro-blueprints for stack

elements for the service tier.

6. The data processing apparatus of claim 1, wherein the micro-blueprint assembler
includes:

an application blueprint assembler configured to assemble micro-blueprints
corresponding to the web tier, the application tier, and the database tier of the application;
and

a functional component blueprint assembler configured to assemble micro-
blueprints corresponding to stack elements for each of the web tier, the application tier,

and the database tier.

7. The data processing apparatus of claim 6, wherein the application blueprint
assembler is configured to obtain the micro-blueprints by obtaining micro-blueprints
based on a matching of required capabilitics and available capabilities of the micro-

blueprints.

8. The data processing apparatus of claim 6, wherein the functional component
blueprint assembler is configured to assemble the micro-blueprints, including:

obtaining micro-blueprints corresponding to the stack elements for each of the
web tier, the application tier, and the database tier according to the request and the

relational information.

27

Date Regue/Date Received 2023-04-14

9. The data processing apparatus of claim 6, wherein the application blueprint
assembler is configured to assemble the micro-blueprints, including:
obtaining micro-blueprints from the micro-blueprint database using a heuristic

based best-first search algorithm.

10. The data processing apparatus of claim 1, wherein the micro-blueprint assembler
is configured to genecrate a list of application blueprints in an order of suitability that

achieves the request.

11. A method for automated blueprint assembly, a functional blueprint that defines an
architectural view or a structure of an application or a service in terms of tiers, the
method including:

receiving a request for automated blueprint assembly for automatically
assembling an application blueprint of the application, the request specifying at least one
feature;

accessing a model database storing model data, the model data including a
plurality of classes arranged in a hierarchy with relational information specifying
relationship links among the plurality of classes;

accessing a micro-blueprint database configured to store a plurality of micro-
blueprints, each micro-blueprint corresponding to a functional component corresponding
to a service tier comprising one of a web tier, an application tier, and a database tier,
cach micro-blueprint being annotated with one or more classes of the plurality of classes
from the model data of the model database; and

generating the application blueprint by assembling micro-blueprints from the
micro-blueprint database, including: applying the at least one feature to the classes of the
model data of the model database to obtain a class that is relevant to the at least one
feature of the request, querying the micro-blueprint database to obtain at least one micro-
blueprint having the obtained class and at least one micro-blueprint linked to the obtained

class by the relational information.

28

Date Regue/Date Received 2023-04-14

12. The method of claim 11, wherein the request also specifies at least one constraint

and environment.

13. The method of claim 11, wherein the at least one feature is a non-functional

feature, the non-functional feature specifying a security feature or a scalability feature.

14. The method of claim 11, wherein the plurality of classes represent different levels

of stack elements for the service tier.

15. The method of claim 11, wherein the plurality of classes include core abstract
classes representing at least one of the application, deployment, application server,
platform runtime, operating system and database server, and each of the core abstract
classes include sub-classes corresponding to the micro-blueprints for stack elements for

the service tier.

16. The method of claim 11, wherein generating the application blueprint includes:
assembling the micro-blueprints for each stack element for the service tier

according to the request.

17. A non-transitory computer-readable medium storing instructions that when executed
cause one or more processors to perform a process for automated blueprint assembly, a
functional blueprint that defines an architectural view or a structure of an application or a
service in terms of tiers, the instructions comprising instructions to:

receive a request for automated blueprint assembly for automatically assembling
an application blueprint of the application, the request specifying at least one feature;

access a model database storing model data, the model data including a plurality
of classes arranged in a hierarchy with relational information specifying relationship links
among the plurality of classes;

access a micro-blueprint database configured to store a plurality of micro-
blueprints, each micro-blueprint corresponding to a functional component corresponding

to a service tier comprising one of a web tier, an application tier, and a database tier, each

29

Date Regue/Date Received 2023-04-14

micro-blueprint being annotated with one or more classes of the plurality of classes from
the model data of the model database; and

generate the application blueprint for the application by assembling micro-
blueprints from the micro-blueprint database, including: apply the at least one feature to
the classes of the model data of the model database to obtain a class that is relevant to the
at least one feature of the request, query the micro-blueprint database to obtain at least
one micro-blueprint having the obtained class and at least one micro-blueprint linked to

the obtained class by the relational information.

18. The non-transitory computer-readable medium of claim 17, wherein the micro-

blueprints are re-usable templates representing building blocks of the application.

19. A data processing apparatus for automated blueprint assembly, a functional
blueprint that defines an architectural view or a structure of an application or a service in
terms of tiers, the data processing apparatus including:

at least one processor;

a non-fransitory computer-readable medium storing instructions that when
executed by the at least one processor are configured to implement:

a micro-blueprint assembler configured to generate at least one blueprint for the
application, and to receive a request for automated blueprint assembly for assembling the
application, the request specifying at least one constraint;

a model database configured to store model data, the model data including an
arrangement of a plurality of classes with relational information specifying relationships
among the plurality of classes;

a micro-blueprint database configured to store a plurality of micro-blueprints, the
plurality of micro-blueprints including first micro-blueprints providing one or more
functional features, each first micro-blueprint corresponding to an individual service tier,
the plurality of micro-blueprints including second micro-blueprints, each second micro-
blueprint corresponding to an individual stack clement, the first and second micro-
blueprints being annotated with class information of the plurality of classes such that the

first and second micro-blueprints are mapped to one or more classes of the model data,

30

Date Regue/Date Received 2023-04-14

the micro-blueprint assembler configured to query the micro-blueprint database to obtain
a first subset of the first micro-blueprints for service tiers of the application based on a
matching of the one or more functional features and a second subset of the second micro-
blueprints for stack elements for the service tiers such that the first and second subsets
meet the at least one constraint of the request and the relational information of the model
data, the micro-blueprint assembler configured to assemble at least one complete

blueprint for the application from the first and second subsets.

20. The data processing apparatus of claim 19, wherein the at least one constraint of
the request includes at least one functional feature and at least one non-functional feature,
the at least one non-functional feature specifying a security feature or a scalability

feature.

21. The data processing apparatus of claim 19, wherein the service tiers include a web

tier, an application tier, and a database tier.

22. The data processing apparatus of claim 19, wherein each of the plurality of classes
includes at least one class property, the first and second micro-blueprints being annotated

with the at least one class property from one or more of the plurality of classes.

23. The data processing apparatus of claim 19, wherein the plurality of classes
represent components of the application, the components including operating systems,
database servers, application servers, execution environments, and deployment artifacts,
the plurality of classes including abstracted domain knowledge information for the

components.
24. The data processing apparatus of claim 19, wherein the one or more functional
features are annotated with class properties of the plurality of classes from the model

data, the micro-blueprint assembler being configured to obtain the first subset of the first

micro-blueprints based on the matching of the one or more functional features of the first

31

Date Regue/Date Received 2023-04-14

micro-blueprints and a maiching of the at least one constraint of the request to the class

properties.

25. The data processing apparatus of claim 19, wherein the micro-blueprint assembler
is configured to obtain the second subset of the second micro-blueprints using the
relational information of the model data as a guide for determining which second micro-

blueprint to evaluate in view of the at least one constraint of the request.

26. The data processing apparatus of claim 19, wherein the relational information
specifies dependencies between the plurality of classes, the micro-blueprint assembler
being configured to query a class derived from the request from the model data of the
model database, and then query the plurality of micro-blueprints having the obtained

class from the micro-blueprint database.

27. The data processing apparatus of claim 19, wherein the plurality of micro-
blueprints arc re-usable micro-blueprints such that the plurality of micro-blueprints arc

available for assembling a secondary application.

28. The data processing apparatus of claim 19, wherein the micro-blueprint assembler
is configured to obtain the first subset of micro-blueprints using an artificial intelligence

(AJ) search algorithm.

29. The data processing apparatus of claim 19, wherein the micro-blueprint assembler
is configured to generate multiple complete blueprints for the application including a first
complete blueprint and a second complete blueprint, the micro-blueprint assembler being
configured to provide the first and second complete blueprint according to a level of

suitability that achieves the at least one constraint of the request.
30. A method for automated blueprint assembly, a functional blueprint that defines an
architectural view or a structure of an application or a service in terms of tiers, the

method being performed by at least one processor, the method comprising:

32

Date Regue/Date Received 2023-04-14

receiving a request for automated blueprint assembly for assembling the
application, the request specifying at least one constraint;

accessing a model database configured to store model data, the model data
including an arrangement of a plurality of classes with relational information specifying
relationships among the plurality of classes;

accessing a micro-blueprint database configured to store a plurality of micro-
blueprints, the plurality of micro-blueprints including first micro-blueprints providing one
or more functional features each first micro-blueprint corresponding to an individual
service tier, the plurality of micro-blueprints including second micro-blueprints, each
second micro-blueprint corresponding to an individual stack element, the first and second
micro-blueprints being annotated with class information of the plurality of classes such
that the first and second micro-blueprints are mapped to one or more classes of the model
data;

querying the micro-blueprint database to obtain a first subset of the first micro-
blueprints for service tiers of the application based on a matching of the one or more
functional features and a second subset of the second micro-blueprints for stack elements
for the service tiers such that the first and second subsets meet the at least one constraint
of the request and the relational information of the model data; and

assembling at least one complete blueprint for the application from the first and

second subsets.
31. The method of claim 30, wherein the at least one constraint of the request
includes at least one functional feature and at least one non-functional feature, the at least

one non-functional feature specifying a security feature or a scalability feature.

32 The method of claim 30, wherein the service tiers include a web tier and an

application tier.
33. The method of claim 30, wherein each of the plurality of classes includes at least
one class property, the first and second micro-blueprints being annotated with the at least

one class property from one or more of the plurality of classes.

33

Date Regue/Date Received 2023-04-14

34. The method of claim 30, wherein the plurality of classes represent components of
the application, the components including operating systems, database servers,
application servers, execution environments, and deployment artifacts, the plurality of

classes including abstracted domain knowledge information for the components.

35. The method of claim 30, wherein the one or more functional features are
annotated with class properties of the plurality of classes from the model data, wherein
the querying includes obtaining the first subset of the first micro-blueprints based on the
matching of the one or more functional features of the first micro-blueprints and a

matching of the at least one constraint of the request to the class properties.

36. The method of claim 30, wherein the querying includes obtaining the second
subset of the second micro-blueprints using the relational information of the model data
as a guide for determining which second micro-blueprint to evaluate in view of the at

least one constraint of the request.

37. A non-transitory computer-readable medium storing instructions that when
executed cause one or more processors to perform a process for automated blueprint
assembly, a functional blueprint that defines an architectural view or a structure of an
application or a service in terms of tiers, the instructions comprising instructions to:

receive a request for automated blueprint assembly for assembling the application,
the request specifying at least one constraint;

access a model database configured to store model data, the model data including
an arrangement of a plurality of classes with relational information specifying
relationships among the plurality of classes;

access a micro-blueprint database configured to store a plurality of micro-
blueprints, the plurality of micro-blueprints including first micro-providing one or more
functional features, each first micro-blueprint corresponding to an individual service tier,
the plurality of micro-blueprints including second micro-blueprints, each second micro-

blueprint corresponding to an individual stack clement, the first and second micro-

34

Date Regue/Date Received 2023-04-14

blueprints being annotated with class information of the plurality of classes such that the
first and second micro-blueprints are mapped to one or more classes of the model data;

query the micro-blueprint database to obtain a first subset of the first micro-
blueprints for service tiers of the application based on a matching of the one or more
functional features and a second subset of the second micro-blueprints for stack elements
for the service tiers such that the first and second subsets meet the at least one constraint
of the request and the relational information of the model data; and

assemble at least one complete blueprint for the application from the first and

second subsets.
38. The non-transitory computer-readable medium of claim 37, wherein at least one
constraint of the request includes at least one functional feature and at least one non-

functional feature, the at least one non-functional feature specifying a security feature or

a scalability feature.

35

Date Regue/Date Received 2023-04-14

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

117

Micro i
Model } Annotated Micro

Blueprint |- Blueprints
.. | Model Database P
Data 135 Database

130

.
~
..
.................
ey
Seay
-

Micro-blueprint
assembler 110

Application blueprint
assembler 115

Functional Component

Blueprin’; g\gsembler F I G . 1

\. /

SUBSTITUTE SHEET (RULE 26)

WO 2013/148651

CA 02868848 2014-09-26

2[7

PCT/US2013/033839

Store model data in a model database, the
model data including a plurality of classes
arranged in a hierarchy with relational
information, the model data including class
properties for at least a portion of the plurality
of classes

~— 202

A 4

Store a plurality of micro-blueprints, each
micro-blueprint corresponding to a functional
component of a stack element or service tier,
the functional component being annotated
with one or more classes of the plurality of
classes and at least one required capability
and available capability

A 4

Receive a request for automated blueprint
assembly for assembling an application, the
request specifying at least one feature

—~— 206

A 4

Receive a request for automated blueprint
assembly for assembling an application, the
request specifying at least one feature

—~~ 208

FIG. 2

SUBSTITUTE SHEET (RULE 26)

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839
300 37
Win2K3 Win2K8
AIX . Linux Is a | /
Is a / \ /S a
¢. IS a Windows
Unix [
410-2 Is a needsWindows
Isa Oracle
\ \ needs ~ |g g — MSSAL
OperatlngSystem &
hasArchitecture | : DatabaseServer | 4101
Version I
410-6
Architecture \ Is a —
IS & HasVersion — Is a
needs \ ‘ Application «
7 PetStore
405 1 AbstractDCObject a
. deployment
4103 PIatformRuntlme Is a / T
— lsa 410-4 X
Is a \ needs ™ \ Needs 410-5
AppServer Deployment
NET 3
needsDotNet s 3 —
Is a Is a Archive
Z
BVURE | [OracieJRE | needsJRE e
Isa
J2EE Servel‘ needSJQEE \Isla \
needsIBMJRE WAR| | EAR | | DLL
WebSphere | | WebLogic
needsllS

FIG. 3

SUBSTITUTE SHEET (RULE 26)

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

a/7
1o 525
/ M £

FunctionalFeature

FunctionalFeature Required Capabilities
Mabilities 7
1
type 1 FunctionalComponent 1 type
: 4 :
X 510

Class from Model Class from Model
’ ’

520 520

FIG. 4

Classes from model
annotate the micro
blueprints

EAR Class Web Logic Class OracleJRE Class Linux Class
Capabilities: Capabilities: Capabilities: Capabilities:
Class annotations Class annotations Class annotations Class annotations

Oracle WebLogic 11.5 Java OracleJRE 0OS-Ubuntu Linux
PetStore EAR App Server 1.6 10.04
PetStore EAR WebLogic 11.5 Oracle JRE 1.6 Linux

Functional Component Functional Component: Functional Component: | Functional Component:
Micro blueprint Micro blueprint Micro blueprint Micro blueprint
501-1 501-2 501-3 501-4

FIG. 5

SUBSTITUTE SHEET (RULE 26)

CA 02868848 2014-09-26

PCT/US2013/033839

WO 2013/148651

9 "Old

0cs 0cs 0cs 0cs
lanlegeseqeleq lenegoeseqejeq || veobuiddoys | | Alojusau)
ma/b adAy adfy adfy
GLSG ~J sinmesqeuonouny
A alnjesJjeuonouny aJnjesd4jeuonoun
senljiqede) mm\m mr\m
soliqedeo seniiqede
palinbay
015 ™~ jusuodwonjeuonouny
H 015 ™~ jusuodwonieuonosuny
e s|
_ e s|
4811 qd=1031sied
Jal] ddyai01G)od

0]

1/S

0cs 0cs 0cs
uenbuiddoys Alojuanu| ddyqgapnaloiSiad
adA) adf) adA)
GlLS

/

alnjes 4jeuoloun 4

ainjes 4jeuonoun

4

Gcs

sailiqeded
palinbay

seliqede)

01S ™~ wsuodwonjeuoipun g

1311 G9MNRI0ISIAd

a

es|

SUBSTITUTE SHEET (RULE 26)

CA 02868848 2014-09-26

PCT/US2013/033839

WO 2013/148651

. Old

AV Rann

juudsn|g ouoIp
Jus.Ind 0] JuLdan|g

IOl PaxUIT puld

~~7Vl/.

+

(shuudenig
OJOIN paJeyI4
]

JUSWUOIIAUT Pa}os|as
a2yl ul s|qissiwpe
sI (s)juuden|q

0JOIW JI %0940

Amrc_wm:_m_

QJDIIN paJaYId
|

OLL

801

SjuIBIISUOD
[2A89] Jony palioads
sy} yojew sssse|o
palejouue Juidan|g
QJOIN JUBLIND JI 3oBYD

A
(shundenig

oI pata)id
|

S —

SOSSE|D
pajoelixa sy Buiaey
suden|g-o1oiw UIRYqO

902 ~_ Alquisssy

0L ~

S89201d

juudan|g
uopeolddy |[eD
*.
JuswuolIAUT ‘sJulelisuoD
‘sasse|D |9PoN
|
salnjead 0]
s9sSE|D |9PON
pa)ull 10eX3

%

SainjesH

¢0L
EmE:o.__>cm_/

ﬁ

‘sjuIesjsuoD
‘sasse|D |3poiA

JUBWIUOIIAUB 10
/puUe JUIBN)SUOD ‘ainjes)
BUO]seg| e Joel)xX]

1/9

I

uonisodwon
judan|g 404 1sanbay

SUBSTITUTE SHEET (RULE 26)

CA 02868848 2014-09-26

WO 2013/148651 PCT/US2013/033839

77

Obtain software stack
P»| element micro blueprint
for service tier

|

Obtain annotated
classes for this Micro- |~ 804
blueprint

~ 802

808
806 /
Is the Os Yes
class? > Stop

Obtain linked classes
pointed to by the needs ~_ 810
relation

\ 4
Apply all constraints to
filter the classes:
- class properties ~_ 812
- non-functional
-environment

FIG. 8

SUBSTITUTE SHEET (RULE 26)

i { .
Micro } Annotated Micro

. | Model Database Blueprint " Blueprints
135 Database

130

J

Micro-blueprint
asserrbler 110

Application blueprint
assembler 115

Functional Gomponent
Blueprint Assembler
120

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - REPRESENTATIVE_DRAWING

