(5T) Abstract: A method of generating models with which to charactesise selected aspects of the metabolic phenotype of subjects
without dosing a test substance to those subjects or with which to predict, without dosing, the post-dose responses of subjects where
those responses are dependent on metabolic phenotype, the method comprising: obtaining pre-dose data relating to a plurality of
subjects before dosing with a dosing substance; obtaining post-dose dala relating io the plurality of subjects after dosing with the
dosing substance; and correlating inter-subject variation in the pre-dose data with inter-sabject variation in the post-dose data, and
generating a pre-to-post-dose predictive mode! on the basis of the observed comrelation. The models may be used to determine
selected aspects of the metabolic phenotype of a subject or to predict, without dosing, the post-dose responses of subjects. This is
achieved by analysing data relating to the un-dosed subject in relation to a model describing the correlation of pre- dose and post-dose
data relating to a plurality of subjects when dosed with a particular substance which challenges the biochemical transformation or
pathway of interest, and generaling, according to the predetermined criteria of the model, 2 mumenical measure or classification
describing the metabotic phenotype of the un-dosed subject.
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Claims

1. A method of generating models with which to characterise selected
aspects of the metabolic phenotype of subjects without dosing a test substance
to those subjects or with which to predict, without dosing, the posi-dose
responses of subjects where those responses are dependent on metabolic
phenotype, the method comprising:

obtaining pre-dose data relating to a plurality of subjects before dosing
with a dosing substance;

obtaining post-dose data relating to the plurality of subjects after dosing
with the dosing substance; and

correlating inter-subject variation in the pre-dose data with inter-subject
variation in the post-dose data, and generating a pre-to-post-dose predictive

model on the basis of the observed correlation.

2. A method according to claim 1, wherein the pre- and/or post-dose data
are obtained from samples which are biofluids such as urine, blood, blood
plasma, blood serum, saliva, sweat, tears, breath or breath condensate.

3. A method according to claim 1, wherein the pre- and/or post-dose data
are obtained from samples which are plant tissues, plant fluids or homogenates,
plant extracts or plant exudates, including, for example, essential oils.

4. A method according to claim 1, wherein the pre- and/or post-dose data
are obtained from samples which are human or animal tissues, fish tissues or
oils, tissue extracts, tissue culture extracts, cell culture supernatants or extracts

or are of microbial origin.
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5. A method according to claim 1, 2, 3 or 4, wherein the pre- and/or post-
dose data comprise data relating to chemical composition or physical

parameters.

6. A method according to claim 1, 2, 3, 4 or 5 wherein the pre- and/or post-
dose samples or subjects are treated prior to analysis (e.g. treated with one or
more chemical reagents so as to produce derivative(s) of one or more existing

substances) so as to enhance data recovery or to improve sample stability.

7. A method according to any of claims 1 to 6 wherein the pre- and/or
post-dose data are derived from or are compositional data acquired using
nuclear magnetic resonance (NMR) spectroscopy and/or any other chemical
analysis techniques such as mass spectroscopy (MS), infrared (IR)
spectoscopy, gas chromatography (GC) and high performance liquid
chromatography (HPLC) or by using any integrated combination of such
techniques e.g. GC-MS.

8. A method according to any of claims 1 to 7 wherein the pre- and/or
post-dose data are physical data or data derived therefrom.

9. A method according to any of claims 1 to 8 wherein, by dosing
appropriate substances, a phenotyping model is generated for each of a
plurality of biochemical transformations.

10. A method according to any of claims 1 to 8 wherein, by dosing

appropriate substances, a response prediction model is built for each of a
plurality of dosing substances.
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11. A method according to any of claims 1 to 10 wherein the original pre-
dose data set is extended, prior to pattern recognition, by taking ratios and/or

other combinations of existing variables.

12. A method according to any preceding claim wherein, for a group of
subjects dosed with any particular substance, a pattern recognition method is
used to identify patterns in the variable metabolism of, or the variable reactions

to, the dosing substance.

13. A method according to any preceding claim wherein, for a group of
subjects dosed with any particular substance, an unsupervised pattern
recognition method is used to identify variation in the pre-dose data that

correlates with the variation of interest in the post-dose data.

14. A method according to any preceding claim wherein, for a group of
subjects dosed with any particular substance, a supervised pattern recognition
method is used to identify variation in the pre-dose data that correlates with the
variation of interest in the post-dose data.

15. A method according to any preceding claim wherein, for a group of
subjects dosed with any particular substance, a data filtering method such as
Orthogonal Signal Correction (OSC) is used to remove variation in the pre-
dose data that is not correlated with the variation of interest in the post-dose
data.

16. A method according to any preceding claim when used to identify
biomarkers or combinations of biomarkers which provide information on

metabolic phenotype or which may be used to predict responses to dosing.
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17. A method of determining selected aspects of the metabolic phenotype of
a subject, the method comprising:

analysing data relating to the un-dosed subject in relation to a model
describing the correlation of pre-dose and post-dose data relating to a plurality
of subjects dosed with a particular substance which challenges the biochemical
transformation or pathway of interest;

generating, according to the predetermined criteria of the model, a

numerical measure or classification describing the metabolic phenotype of the

un-dosed subject.

18. A method according to claim 17, wherein data relating to the un-dosed
subject is obtained from a biofluid such as urine, blood, blood plasma, blood
serum, saliva, sweat, tears, breath or breath condensate or from a plant tissue,
plant fluid, plant homogenate, plant extract or plant exudate, including, for
cxample, an essential oil, or from human or animal tissue, fish tissue or oil, or
from a tissue extract, tissne culture extract, cell culture supernatant or cell
culture extract or from a sample of microbial origin or from any one of the
above sample types after treatment to enhance data recovery or sample
stability.

19. A method according to claims 17 and/or 18, further comprising
generating characteristic compositional and/or physical data relating to a
subject using nuclear magnetic resonance (NMR) spectroscopy and/or any

other techniques or by using any combination of techniques.

20. A phenotyping method according to any preceding claim when used for
the purpose of making a metabolic phenotype-influenced risk assessment
and/or for the purpose of targeting the use of special health monitoring regimes

and/or for the purpose of targeting the use of precautionary/preventative
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treatments and/or for the purpose of characterising risk for insurance purposes
and/or for the purpose of selecting subjects for any other purpose e.g. for
breeding.

21. A method of predicting thé reaction of a subject to a dosing substance,

the method comprising:

analysing data relating to an un-dosed subject in relation to a model
characterising the correlation of pre-dose and post-dose data relating to a
plurality of subjects dosed with the particular dosing substance; and

generating, according to the predetermined criteria of the model, a
numerical or class prediction for the expected response of the un-dosed subject

if it were to be dosed with the dosing substance.

22. A method according to claim 21 wherein, according to pre-determined
criteria, the maximum or minimum dose of a substance that a subject should

recetve can be predicted.

23. A method according to claims 21 or 22 wherein, according to pre-
determiined criteria, the amount of a dosing substance that a subject should

receive can be predicted.

24. A method according to claims 21, 22 or 23 wherein, according to pre-
determined criteria, the frequency with which a subject should be dosed with a
substance can be predicted. '

25. A method according to any of claims 21 to 24 wherein, according to pre-
determined criteria, the number of doses of a substance that a subject should

receive can be predicted.
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26. A method according to any of claims 21 to 25 wherein, according to pre-
determined criteria, the appropriate controlled release formulation for a subject

can be selected.

27. A method according to any of claims 21 to 26, wherein data relating to
the un-dosed subject is obtained from a biofluid such as urine, blood, blood
plasma, blood serum, saliva, sweat, tears, breath or breath condensate or from a
plant tissue, plant fluid, plant homogenate, plant extract or plant exudate,
including, for example, an essential oil, or from human or animal tissue, fish
tissue or oil, or from a tissue exfract, tissue culture extract, cell culture
supernatant or cell culture extract or from a sample of microbial origin or from
any one of the above sample types after treatment to enhance data recovery or
sampie stability.

28. A method according to any of claims 21 to 27, further comprising
generating characteristic compositional and/or physical data relating to a
subject using nuclear magnetic resonance (NMR) spectroscopy and/or any

other techniques or by using any combination of techniques.

29. A method of determining selected aspects of the metabolic phenotype of
a subject or of predicting the reaction of a subject to a dosing substance, the
method comprising analysing data relating to the un-dosed subject with respect
to one or more biomarkers which have been previously identified as described

in claim 16.

30. A method according to claim 29 wherein the biomarker(s) react(s) with
one or more added reagenis to produce a visible change such as a colour

change.
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31. A method according to any preceding claim when used to select a group
of phenotypically homogenous or similar subjects for a laboratory experiment

or clinical trial or for any other purpose.

32. A method, according to any preceding claim, for rationalising biological
variation in experimental data based on pre-dose analysis of biofluids or

tissues, where such variation is caused by phenotypic heterogeneity.

33. A method according to any preceding claim wherein the data is based on

physical and/or chemical measurements taken from the subject as a whole.

34. A method according to any preceding claim wherein the post-dose data
describes a change relative to the pre-dose state e.g. a decrease in blood
pressure of a human subject treated with a drug that lowers blood pressure.

35. A method according to any preceding claim wherein test data that does
not conform to the limits of a particular model and/or method can be identified.

36. A method according to any preceding claim wherein the subject is a
animal, in particular 2 mammal such as a human, a mouse, a rat, a pig, a cow, a
bull, a sheep, a horse, a dog or a rabbit or any farmed animal or any animal,

such as a race horse, used for the purpose of sport or for breeding.

37. A method according to any preceding claim wherein the subject is a

plant, a fish or any other aquatic organism

38. A method according to any preceding claim whereiﬁ the subject is a

biological tissue, a tissue culture, a cell culture or a microbial culture.
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39. A method according to any preceding claim wherein data are obtained
from a sample which is representative, or is taken to be representative, of a

group of subjects which are considered as a single subject.

40. A method according to any preceding claim wherein the dosed
substance is any substance or mixture or formulation of substances including
especially pharmaceutical or medicinal substances or substances in research or
development which might potentially become pharmaceutical or medicinal
substances, but also including, for example, toxins, pesticides, herbicides, food
or feed substances, food or feed additives and fluids of any sort including

liquids, gases, vapours and smoke e.g. tobacco smoke.

41. A method according to any preceding claim whereby the dosed
substance is actively or passively dosed in any matrix or medium, by any
means or route, including for example, by injection, by eating, by drinking, by
inhaling or by smoking, over any time period including a subject’s lifetime or
any specified part or fraction thereof, such dosing to include that resulting from
environmental exposure or pollution or from medical, dental, veterinary or

surgical procedures.

42. A method, according to any preceding claim, for identifying the
acetylator phenotype of a subject without dosing a test substance to that

subject.

43. A method, according to any preceding claim, for predicting the response
of a subject to dosing with a substance where that response is dependent on

acetylator phenotype.
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44. A method according to any preceding claim for predicting the

susceptibility of a subject to isoniazid-induced toxicity.

45. A method according to any preceding claim for predicting the
susceptibility of a subject to galaci;osamjne—induced toxicity.

46. A method according to any one of claims 1 to 43 for predicting the
susceptibility of a subject to paracetamol-induced toxicity.

47.  Apparatus for generating models according to any'of claims 1 to 15.

48.  Apparatus for response prediction and/or for metabolic phenotyping, the
apparatus comprising: ' '

one or more models, each model modelling the cotrelation of pre-dose
and post-dose data relating to a plurality of subjects dosed with a particular
dosing substance;

a processor for analysing data relating to an un-dosed subject in relation
to at least one of the models and thereby determining one or more aspects of
the metabolic phenotype of the un-dosed subject or predicting its responses to
dosing according to the model(s) employed.

49.  Apparatus, according to claim 48, the apparatus being further arranged

to generate one or more models according to any of claims 1 to 15.

50.  Apparatus according to any of claims 47 to 49, further comprising one
or more analytical instruments or devices to carry out physical and/or chemical
analysis, such as NMR spectroscopy, mass spectroscopy, infrared spectroscopy
or high performance liquid chromatography.
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51. Apparatus for identifying one or more biomarkers according to claim
16.

52.  Apparatus according to any preceding claim for response prediction or
metabolic phenotyping which is based on the use of one or more biomarkers
which have been previously identified as described in claims 16 and/or 51.

53. Apparatus for metabolic phenotyping or for predicting a subject’s
response(s) to dosing, the apparatus comprising:
a test area to receive a sample from the subject under test,

said test area incorporating one or more reagents which may react chemically
with one or more biomarkers in the sample to produce a change in the visual
appearance of the test area, the biomarkers having been previously identified
according to claims 16 and/or 51, and the resulting visual appearance of the test
area being characteristic of metabolic phenotype or predictive of response(s) to

dosing.

54,  Apparatus for carrying out any of the methods claimed in claims 21-26
wherein an appropriate dosing regime for a subject can be identified.

55. Apparatus according to any of claims 47 to 54, which is based on the
use of antibodies raised against specific biomarkers.

36. Apparatus according to any of claims 47 to 55 wherein selected
biomarkers are detected and/or quantified by means of enzyme-catalysed

reactions using, for instance, enzymes immobilised on a solid support.

57. Apparatus comprising one or more models generated by a method

according to any of claims 1 to 15.
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58 Apparatus, according to any of claims 47 to 57, which is further
arranged to identify test data that does not conform to the limits of a particular
model.
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METABOLIC PHENOTYPING
BACKGROUND
Biochemical reactions

An organism’s overall ‘metabolic phenotype’ is the sum total of its metabolic
attributes and is determined by the interaction of its genetic composition and
the ‘environment’, where the environment is considered in the widest possible
sense. The term ‘metabolic phenotype’ may also be applied to individual

aspects of an organism’s metabolic characteristics.

A vast array of biochemical reactions (metabolic transformations) take place
within living organisms and the overwhelming majority of these reactions are

catalysed by enzymes.

Enzymes are specialised proteins that function as biochemical catalysts to
accelerate biochemical reactions. Without enzymes many of the reactions
required for normal cell activity would not proceed fast enough at normal
bodily pH and temperature. As a catalyst, an enzyme increases the rate of a

reaction but is recovered unchanged at the end of the reaction.

A molecule acted on by an enzyme is termed a ‘substrate’ and enzymes exhibit
much specificity for particular substrates e.g. glucose oxidase will oxidise
glucose but not galactose. This specificity is determined by the substrate-
binding site on the enzyme surface. This site is a particular arrangement of
amino acids that confers preferred binding ability for one or more substrates.

Some enzymes have broad substrate specificity whereas others are specific to

CONFIRMATION COPY



individual substances. Thus, for example, glucose, mannose and fructose are

ali phosphorylated by hexokinase whereas glucokinase is specific for glucose.

The International Union of Biochemistry and Molecular Biology (TUBMB) has
established an enzyme classification system which has six major enzyme

classes:

1. Oxidoreductases
2. Transferases

3. Hydrolases

4. Lyases

5. Isomerases

6

. Ligases

Bach of these individual classes is further divided into sub-classes to which the
individual enzymes belong. Full details are currently available on the world-
wide web (http://www .chem.qmw.ac.uk/iubmb/enzyme).

As an example, guanidinoacetate N-methyl transferase (EC 2.1.1.2) catalyses
the conversion of S-adenosyl-L-methionine and guanidinoacetate to S- !
adenosyl-L-homocysteine and creatine. This is an example of a methyl

transferase.

Factors which may affect the rate of enzyme-catalysed reactions include the
amount of substrate present, the amount of product present, the amount of the
enzyme present and the activity of each enzyme molecule. The activity of an
enzyme molecule can be affected by a variety of factors including its inherent
activity, the presence of cofactors and prosthetic groups and by binding at an

allosteric site. Both the amount of the enzyme and the activity per enzyme


http://www.chem.qmw.ac.uk/iubmb/enzyme

3

molecule may be affected by genetic variation between subjects. The amount
of an enzyme and the activity per molecule combine to give the overall enzyme
activity and this may vary considerably between different subjects. Such
variation may independently affect a whole range of different enzymes and
metabolic transformations and this variation will contribute to the generation of
a different overall metabolic phenotype for each subject. Variation in the
levels of any other substances that are required for biochemical transformations
to take place will also contribute to the metabolic phenotype. For example,
variation in the ability of subjects to effect drug glucuronidation may be caused
by inter-subject variation in the level of UDP-glucuronic acid (UDPGA).

‘Whilst metabolic phenotype would typically be considered in terms of enzyme-
catalysed reactions, metabolic phenotype in its broadest sense would also
include measures relating to each of the non-enzymic reactions that might
occur within a certain type of subject. Additionally, a subject’s overall
metabolic phenotype would be influenced by the nature and quantity of the
other organisms, such as the gut bacteria, that are living within or on that
subject. Importantly, whilst a subject’s genotype would be constant throughout
the life of that subject, a subject’s overall metabolic phenotype could change
significantly with age and with other ‘environmental’ influences such as

disease, infection and nutritional status.

Variation in metabolic phenotype causes inter-subject differences in the
metabolism of xenobiotics such as drugs. Such differences in metabolism are a
major factor contributing to differential responses (e.g. degree of efficacy,
degree of toxicity etc.) to dosed substances because they may rcéult in different
degrees of exposure to the active substance(s). Thus, for instance, fast

metabolism of a toXic substance to non-toxic metabolites would result in rapid
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detoxification whilst slow metabolisers of the toxin would be more likely to
show toxic effects, Conversely, fast metabolism of the efficacious component
or derivative of a drug could lead to reduced efficacy of the treatment. Other
factors contributing to differential responses to dosed substances include inter-
subject differences in absorption from the gut and differential sensitivity of
receptors. Genetic variability in susceptibility and response to toXicants was
reviewed in Toxicology Letters (2001) Vol 120 in articles entitled "Genetic
variability in susceptibility and response to toxicants" by Ingelman-Sundberg
(pages 259-268) and by Miller er al (pages 269-280). Inter-individual
variability in human drug metabolism is the subject of a book "Interindividual
Variability in Human Drug Metabolism" edited by Pacifici and Pelkonen and
published by Taylor & Francis (2001).

Body fluids and the effects of variation in metabolic phenotype

Aspects of the biochemical composition of intracellular fluids are reflected in
the extracellular tissue fluid and consequently in the circulating blood which
contacts that tissue. Thus, alterations in the biochemical composition of cell
fluids are liable to affect the biochemical composition of the extracellular tissue
fluid and the biochemical composition of the blood. Alterations in blood
composition may, in turn, be reflected in altered urinary composition. Thus,
abnormal cellular metabolic processes are likely to be reflected in altered
compositions of biofluids such as blood and urine and, consequently, these
fluids provide diagnostic windows onto the state of the body. Major alterations
in such fluids are frequently caused when toxins, such as liver or kidney toxins,
are administered and inherent factors such as major enzyme deficiencies can
also be identified from those fluids. Thus, for example, in classical
phenylketonuria, a deficiency in phenylalanine hydroxylase causes a failure to

convert phenylalanine to tyrosine and produces an altered urinary composition



with increased levels of phenylpyruvic acid, phenyllactic acid and phenylacetic
acid (see Textbook of Biochemistry With Clinical Correlations, 4™ Edition,
1997, edited by T. M. Devlin, published by Wiley-Liss). This is an example of
a genetically determined error of metabolism and such diseases are known as
‘inborn errors of metabolism’ (see, for example, Newsholme and Leech, 1983,
Biochemistry for the Medical Sciences, published by John Wiley and Sons)
Identification of the described urinary changes serves to identify the enzymic
deficiency.

As well as the serious metabolic deficiencies, other lesser inter-individual
differences in metabolic phenotype exist that are not sufficient to cause
disruption of normal metabolic processes and consequent disease. However,
such differences may be revealed when the organism is subjected to an unusual
challenge such as a large dose of 2 particular chemical compound e.g. a dmg
substance. Additionally, such differences may cause altered risk factors for
diseases such as cancer which are associated with long term exposure to

harmful substances such as environmental pollutants and tobacco smoke.

NMR spectroscopic analysis of biological samples

The use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the low
molecular weight composition of biological fluids is now well established (e.g.
Nicholson and Wilson (1989), High resolution proton magnetic resonance
spectroscopy of biological fluids, Progress in NMR Spectroscopy, 21, 449-501;
Lindon et al. (1999), NMR spectroscopy of biofluids, Annual reports on NMR
spectroscopy, 38) . The advent of high field magnets for NMR has been one
factor in this development. Such magnets have greatly improved the sensitivity
of the technique and the use of cryoprobes brings further improvement. An
additional ber fit, for the examination of complex mixtures, is that increased



moagnetic field strength leads to improved dispersion of the NMR signals i.e.
the signals are more spread out and less prone to overlap one another. Other
factors which have greatly improved the capabilities of modern NMR
spectroscopy include improvements in probe design leading to much higher
sensitivity, the ready availability of computing power and the development of
improved pulse sequences e.g. for the selective suppression of the water signal
in an aqueous sample. The advent of flow probes has enabled greatly increased
sample throughput in comparison to the conventional use of high precision,
fragile glass sample tubes.

In addition to its usefulness for biofluids, NMR spectroscopy can be
successfully used for the examination of small (ca. 10-20 mg) samples of solid
tissue (e.g. Moka et al. (1997), Magic angle spinning proton nuclear magnetic
resonance spectroscopic analysis of intact kidney tissue samples, Analytical
Communications, 34, 107-109). However, this requires a special technique
known as Magic Angle Spinning (MAS) and, in comparison to so_lution state
NMR spectroscopy, MAS-NMR spectroscopy is a time-consuming procedure.
With automated solution state NMR spectroscopy it is possible to examine
more than 150 samples per day whilst 10 samples per day is typical for MAS-

NMR spectroscopy where the samples are manually changed by an operator. '

The vast majority of organic compounds contain protons that would be
detectable by "H NMR spectroscopy so long as enough of the compound is
present in the sample being analysed. This means that, in principle, "H NMR
spectroscopy is an almost universal detector for organic compounds. The
detectability of '"H NMR spectroscopic signals from a particular sample
component depends on the amount of the component present, on the type and
molecular environment of the proton(s) and on the nature of the NMR

experiment. The main limitation is that exchangeable protons, such as those in
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hydroxyl groups, may not be observed. Essentially, the "H NMR spectrum of
any particular organic compound is unique to that compourd. Additionally,
NMR spectra are readily interpretable and predictable so that structural features
and often the complete structure of a compound may be deduced from its 'H
NMR spectrum.

In the conventional one-dimensional (1D) 'H NMR spectrum of a biofluid the
individual spectra of ali the detectable components are superimposed according
to their relative concentrations and this facilitates quantitation. In practice, the
high field '"H NMR spectra of biofluids such as urine and plasma are
extraordinarily rich in information, with a very large number of low-to-medium
molecular weight components being detectable in a single experiment.
Lipoproteins and high molecular weight components such as proteins are also
present in plasma but their "H NMR spectra are subject to signal broadening
influences arising from restricted mobility of the resonating nuclei. Such
broadening reduces the amount of information derivable from and about such

components.

Applications of biofluid NMR spectroscopy

In comparison to NMR spectroscopy, traditional clinical chemistry assays
generally provide more exact quantitation and may also provide better
detection limits. On the other hand, '"H NMR spectroscopy has a major
advantage over traditional clinical chemistry in that, by the former, the levels of
all the detectable components are measured in a single experiment without the
need to specify which components require analysis. Thus, by 'H NMR
spectroscopy, unexpected changes may be observed and previously
unrecognised substances may be identified. Thus, 'H NMR spect:r;oscopy has



great strength as a simultaneous multi-analyte detector for non-routine

investigations and is ideally suited to the detection of new biomarkers.

The analysis of post-dose body fluids using NMR spectroscopy to identify and
track responses to toxins is known {(e.g. Holmes et al. (1992) NMR
spectroscopy and pattem recognition analysis of the biochemical processes
associated with the progression and recovery from nephrotoxic lesions in the
rat induced by mercury (II) chloride and 2-bromoethanamine, Mol. Pharmacol.,
42, 922-930). In the context of toxicology studies, biofluid NMR spectroscopy
may detect metabolites of dosed substances and/or changes in endogenous
biofinid components that are induced by dosed substances and may be used to
assess toxic effects and to identify relevant defensive processes, such as
glucuronidation and mercapturic acid formation. Biofluid NMR spectroscopy
also has significant potential to elucidate mechanisms of toxicity.

It is known that, using NMR spectroscopy, certain inborn errors of metabolism
can be readily identified from biofluid samples (e.g. Moolenaar et al. (2003)
Proton nuclear magnetic resonance spectroscopy of body fluids in the field of
inborn errors of metabolism, Ann. Clin. Biochem., 40, 1, 16-24). It is also
known that NMR spectroscopy of biofluids can be used to diagnose other
disease conditions and to track responses to therapy.

Following the success of the NMR-based approach to monitoring the metabolic
state of living systems the term ‘metabonomics’ has been coined (Nicholson et
al. (1999), ‘Metabonomics’: understanding the metabolic responses of living
systems to pathophysiological stimuli via multivariate statistical analysis of
biological NMR spectroscopic data, Xenobiotica, 29, 1181-1189).
Metabonomics is defined as ‘the quantitative measurement of the

multiparametric metabolic response of living systems to pathophysiological



stimuli or genetic modification’. Metabonomics is complementary to the
genomics and proteomics technologies which are based on detecting changes in
gene expression and protein levels respectively.  An advantage of
metabonomics in relation to the other technologies is that metabonomics looks
at the overall metabolic result rather than at underlying influences which may
or may not be metabolically significant.

Pattern Recognition

A complicating factor in extracting useful biochemical information from sets of
biological (biofluid or tissue-derived) NMR spectra is their great complexity.
An efficient way to investigate these complex multiparametric data sets is to

employ computer-based pattern recognition methods.

Pattern recognition (PR) is a general term for methods of multivariate data
analysis which may be used to look for patterns in data sets, a priori, or to look
for elements of data sets which correlate with other known factors (see, for
example, Beebe et al., 1998, Chemometrics, A Practical Guide, John Wiley and
Sons, New York etc.). Inherent in this is the assumption that the data set
consists of a number of different objects for which a variety of parameters (or
‘variables’) have been measured. Whatever those parameters may be, the same
parameters have generally been measured on all the objects in the data set
although occasional missing values may be acceptable. In the context of a set
of NMR spectra, the different objects would be the different spectra whilst the
various parameters would generally be the integrations for different spectral
windows within the overall spectrum. PR methods may be conveniently
classified as ‘supervised’ or ‘unsupervised’ and some of these multivariate

statistical analysis methods are described in the following sections.



10

Unsupervised PR methods

Unsupervised PR methods are used to determine inherent clustering patterns in
multivariate data sets without reference to any other independent knowledge.
Examples of unsupervised pattern recognition methods include principal
component analysis (PCA), hierarchical cluster analysis (HCA), and non-linear
mapping (NLM).

Principal Components Analysis (PCA)

Principal componeats analysis (PCA) (e.g. Sharaf et al., 1986, Chemometrics,
J. Wiley and Sons, New York) is one of the most useful and easily applied
unsupervised PR techniques. Principal components (PCs) are latent variables
created from linear combinations of the starting variables with appropriate
weighting coefficients. The properties of these PCs are such that: (i) each PC
is orthogonal to (i.e. uncorrelated with) all other PCs, and (ii) the first PC
contains the largest part of the variation of the data set (information content)
with subsequent PCs containing correspondingly smaller amounts of variation.

In mathematical terms, a data matrix, X, can be regarded as being composed of .
a ‘scores” matrix, T, and a ‘loadings matrix’, P, such that X = TP, where the
superscript ‘t’ denotes the transpose. The covariance matrix, C, is calculated
from the data matrix, X. The eigenvalues and eigenvectors of the covariance
matrix are then determined by diagonalisation. The coordinates of the different
objects in eigenvector plots (the principal components or PCs) are denoted
‘scores” and comprise the scores matrix T. The eigenvector coefficients are
denoted ‘loadings’ and comprise the loadings matrix P, and give the
contributions of the descriptors to the PCs.
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A plot of the any two principal component scores is often called a ‘scores plot’.
The scores plot for PC1 vs. PC2 provides the maximum information content of
the data in two dimensions although lower order PC plots may well be useful.
Such scores plots can be used to visualise inherent clustering in data sets.

Supervised Methods

Where appropriate, supervised pattern recognition methods may also be used to
analyse multivariate data. In such analyses the data set (X)) is related, where
possible, to one or more known factors (Y) such as class membership or the
value of one or more parameters outside the X data set. In such methods a
‘raining set’ of X and Y data is used to construct a statistical ‘model’ that
estimates the required Y factor(s) from the X data. This model is then tested
with independent data (referred to as a validation data set) to determine its
robustness and predictive ability. Once validated the model may legitimately
be used to predict the relevant Y factors for samples where only the X data is
available.

Examples of supervised pattern recognition methods include the following:
soft independent modelling of class analysis (SIMCA); partial least squares
analysis (PLS); linear descriminant analysis (LDA); K-nearest neighbour
analysis (KINN); artificial neural networks (ANN); probabilistic neural
networks (PNNs); rule induction (RI); and Bayesian methods. See, for
example: (re. SIMCA) Wold (1976) Pattern recognition by means of disjoint
principal components models, Pattern Recog., 8, 127; (re. PLS) Frank et al.
(1984) Prediction of product quality from spectral data using the partial least
squares method, J. Chem. Info. Comp., 24, 20; (re. I.LDA) Nillson, 1965,
Learning Machines, McGraw-Hill, New York); (te. KNN) Beebe et al., 1998,
Chemometrics, A Practical Guide, John Wiley and Sons, New York eic; (re.
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ANN) Anker and Jurs (1992) Prediction of C-13 nuclear magnetic resonance
chemical shifts by artificial neural networks, Anal. Chem., 64, 1157; (re. PNN)
Speckt (1990) Probabilistic neural networks, Neur. Networks, 3, 109; (re. RI)
Quinlan (1986) Induction of decision trees, Machine Learning, 1, 81; (re.
Bayesian Methods) Bretthorst, 1990, An introduction to parameter estimation
using Bayesian probability theory, In: Maximum Entropy and Bayesian
Methods, Ed. Fougere, Kluwer Academic Publishers, The Netherlands, 53-79.

Partial I east Squares (PLS)

PLS is the regression extension of the PCA method described earlier. In PLS
the variation between the objects in a data matrix X is described by the X-
scores, T, and the variation in the Y-block regressed against is described in the
Y-scores, U. Essentially, what PLS does is to maximize the covariance
between T and U. For the PLS model a set of PLS weights, W, are calculated,
containing the influence of each X-variable on the explanation of the variation
in Y. The corresponding set of weights for the Y-block is designated C. A
matrix of X-loadings, P, is also calculated. These loadings are used both for
interpretation and to perform the proper decomposition of X.

The PLS decomposition of X and Y can hence be described as follows:

X=TP'+E

Y=TC'+F

where E and F are the X and Y residuals respectively and the superscript “t’
denotes the transpose of the relevant matrix.
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The PLS regression coefficients, B, are then given by:
B=W@PW)!C

The estimate of Y, Y, can then be calculated according to the following

formula;
Yo = XWP'W)IC' = XB

Partial Least S es Descriminant Analysis (PLS-DA

PLS-DA is a supervised multivariate method yielding ‘latent’ variables in a
data matrix (X) that describe the maxiroum separation between known classes
of objects (Y). PLS-DA is based on PLS which is the regression extension of
the PCA method described earlier. Whereas PCA simply works to find the
maximum variation existing within the variables describing the studied objects,
PLS-DA works to find the maximum separation between known classes of
objects. This is done by a PLS regression against a ‘dummy’ vector or matrix
(Y) carrying the class information. The calculated PLS components are
thereby focussed on describing the variation in X that separates the classes (Y),
if this information is present in the data. The class membership has to be
known prior to the actual modelling. Once a model is calculated and validated
it can legitimately be used for prediction of class membership for objects of

unknown class.

Neural Networks vs. PLS and PLS-DA

Methods such as PLS and PL.S-DA rely on the extraction of linear associations
between the input variables and this can significantly limit the power of the
analysis. Neural network-based patiern recognition techniques can provide
improved predictive ability, particularly where the factor being predicted is
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influenced by a number of unrelated causes. Nevertheless, methods such as
PLS and PLS-DA are often sufficiently powerful and provide a significant
benefit over relatively ‘black box’ neural network methods in that they readily
allow some information to be gained as to what aspects of the input dataset
were particularly important in the model building i.e. in comparison to neural
network models, PLS and PLS-DA models are more transparent with respect to

interpretation.

The application of PR methods to metabonomic data

Pattern recognition niethods have been applied to the analysis of metabonomic
data, including, for example, complex NMR spectroscopic data, with some
success. See for example: Anthony et al. (1994) Pattern recognition
classification of the site of nephrotoxicity based on metabolic data derived
from proton nuclear magnetic resonance spectra of urine, Mol. Pharmacol., 46,
199-211; Beckwith-Hall et al. (1998) Nuclear magnetic resonance
spectroscopic and principal co:ﬁponents analysis investigations into
biochemical effects of three model hepatotoxins, Chem. Res. Tox., 11, 260-
272; Gartland et al. (1990) Pattern recognition analysis of high resolution 'H
NMR spectra of urine. A non-linear mapping approach to the classification of
toxicological data, NMR in Biomedicine, 3, 166-172; Holmes et al. (1992)
NMR spectroscopy and pattern recognition analysis of the biochemical
processes associated with the progression and recovery from nephrotoxic
lesions in the rat induced by mercury (I) chloride and 2-bromoethanamine,
Mol. Pharmacol., 42, 922-930; Holmes et al (1994) Automatic data reduction
and pattern recognition methods for analysis of 'H NMR spectra of human
urine from normal and pathological states, Anal. Biochem., 220, 284-296.
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Data Filtering

Although pattern recognition methods may be applied to ‘unfiltered” data, it is
often preferable to filter data to removed imrelevant variation. Such filtering
requires some degree of supervision to distinguish between relevant and

irrelevant variation.

One method of data filtering simply involves deleting selected spectral regions
and then working with the remainder. Thus, for example in the "H NMR
spectra of aqueous samples acquired with water suppression, the magnitude of
the residual water signals will vary according to the effectiveness of the water
suppression and these irrelevant signals may be deleted.

Alternatively, variation in the data which is not correlated to (i.e. is orthogonal
to) the variation of interest may be removed by ‘orthogonal filtering’. One
preferred orthogonal filtering method is conventionally referred to as
Orthogonal Signal Correction (OSC), wherein latent variables orthogonal to the
variation of interest are removed (Wold et al. (1998) Orthogonal Signal
Correction of Near Infrared Spectra, Chemometrics and Intelligent Laboratory
Systems, 44, 175-185).

Orthogonal Signal Correction

The OSC method locates the longest vector describing the X variation between
the objects that is not correlated with the Y-vector, and removes it from the
data matrix. The resultant data set has thus been filtered to allow pattern
recognition focused on the variation within the object population that is
correlated to features of interest, rather than non-correlated, orthogonal
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variation. This process may be repeated as often as necessary with the proviso
that ‘over-fitting’ should be avoided.

In PLS, the weights, W, are calculated to maximise the covariance between X
and Y. In OSC, in contrast, the weights, W, are calculated to minimize the
covariance between X and Y, which is the same as calculating components as
close to orthogonal to Y as possible. Such components, orthogonal to Y and
therefore containing unwanted variation, may then be subtracted from the
spectral data, X, to produce a filtered predictor matrix which is focussed on the

variation of interest.

H PCA suggests separation of different classes, orthogonal signal correction
(OSC) can be used to optimise the separation, thus improving the performance
of subsequent multivariate pattern recognition analysis and enhancing the
predictive power of the model.

Modelling and Prediction

Inherent in the PLS, PLS-DA and neural networks analyses is the idea of
building a predictive mathematical ‘model’ using ‘model-building’ or
‘modelling’ data from samples of known behaviour or type.

Once a model has been calculated, it may be validated using data for samples
of known behaviour or type which were not used to calculate the model. In this
way, the predictive ability of the model may be tested.  Once validated, such
models can legitimately be used to predict the behaviour or type of samples of
unknown behaviour or type (the test data). Before analysis, the test data must
be processed in the same manner as the modelling data, including the

application of any filtering.
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Any particular model is only as good as the data used to formulate it.
Therefore, it is preferable that all modelling and test data are obtained from
comparable individuals, under the same (or similar) conditions and using the

same (or similar) experimental parameters.

Prior art for phenotyping

The variation within sets of biofluid NMR specta from metabolically
unchallenged subjects (i.e. not dosed) may be examined by unsupervised PR
methods such as PCA and different groupings may sometimes be observed
under constant experimental conditions (e.g. Bollard et al. (2001)
Investigations into biochemical changes due to diurnal variation and estrus
cycle in female rats using high resolution (1)HNMR spectroscopy of urine and
pattern recognition, Anal. Biochem., 295, 2, 194-202). However, this method
does not necessarily provide clear information about the significance of the
different groupings in relation to metabolic transformations(e.g. Band-Camus
et al. (2001) Determination of N-acetylation phenotype using caffeine as a
metabolic probe and high-performance liquidchromatography with either
ultraviolet detection or electrospray massspectrometry, Chromatogr. B.
Biomed. Sci. Appl., 760, 1, 55-63). By examination of the spectral features
that provide discrimination between different groups it may be possible to
make an interpretation of the significance of the separation. However, this is
an unreliable and untargeted approach that does not provide proof of
significance and it is a very inefficient way of examining the potentially subtle

and complex variation associated with different metabolic phenotypes.

Conversely, in a targeted approach, it is known to use patterns of components
detected in biofluids using NMR spectroscopy, or other techniques, after
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dosing with test substances (such as caffeine in the case of acetylator
phenotype) to establish the ability of a subject to effect particular metabolic
transformations. In other words, NMR spectroscopy and other techniques can
be used to determine the metabolic phenotype of a subject using post-dose
biofluids. In these analyses, the components of interest would normally be the
unchanged dosed substance and/or its metabolites. For simplicity the term
‘metabolites of the dosed compound’ will henceforth be considered to include
the dosed compound itself. Often a ratio of such components would be
determined as a measure of the relevant metabolic ability. From such analyses
it would be possible to determine the ability of a subject with respect to a
whole variety of metabolic transformations depending on the availability of
suitable test substances. However, in general, the ability of a subject to effect
one type of transformation would be expected to be independent of its abilities
with respect to all other transformations. Thus, one would expect multiple test
substances to be required when investigating a subject’s ability with respect to
a variety of biochemical transformations. Although such analyses are
occasionally carried out, unnecessai'y dosing of any substance to human or
animal subjects is undesirable on safety and ethical grounds and widespread
use of such methods is unlikely. A further complication is that dosing a test
substance might cause enzyme induction, resulting, for some time afterwards, :
in an altered metabolic state. Thus, for instance, such phenotyping could be
problematic in relation to toxicity studies.

The term biomarker as used herein is normally taken to mean a chemical or
biochemical entity in a subject or subject sample or statistically associated
combinations of entities, or a physiological response in a subject which has a
significance associated with its presence, absence or level, that is indicative of
a particular physiological state, disease or toxic process or of a predisposition
towards a particular type of metabolic or disease process and may also be

associated with a clinical ou.come.
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Examples of such biomarkers include chemical and biological molecules, for
example metabolic substrates, intermediates or products, stractural proteins,
nuclei acids, transport and receptor proteins, immunological proteins, proteins
associated with metabolic or genetic control, catalytic proteins, enzymes and
their associated cofactors. Further examples of biomarkers also include levels
of activity of biological processes for example gene and protein expression and
levels of activity of cellular signalling pathways.

It is appreciated that the term biomarker also refers to any measurable signal
associated with or characteristic of the presence, absence or level of the
aforementioned molecules or processes; for example signals or patterns of
signals resulting from the output of measurements taken by techniques such as
nuclear magnetic resonance (NMR) spectroscopy and/or any other chemical
analysis techniques such as mass spectroscopy (MS), infrared (IR)
spectoscopy, gas chromatography (GC) and high performance liquid
chromatography (HPLC) or by using any integrated combination of such
techniques e.g. GC-MS.

The term chemical composition as used herein in reference to samples includes
the combination of chemical and/or biochemical species which comprise the
sample,

The term physical parameters as nsed herein in reference to samples inclhudes
characteristic physical measurements obtained by methods such as
chromatography, derivitisation, fractionation and separation, crystallisation,
sedimentation, spectral analysis, molecular weight analysis, diffraction,
analysis of solubility, amalysis of turbidity, refractive index or resistivity,
melting point or boiling point.

The present invention



20

The present invention relates to methods for identifsring the metabolic
phenotype of a subject and to methods for predicting responses and
determining risk factors which are influenced by metabolic phenotype. In
particular, the present invention includes methods for identifying the metabolic
phenotype of a subject and for predicting a subject’s responses to one or more

treatments by analysing a biofluid of that subject.

As stated above, the recognised approach to metabolic phenotyping relies upon
dosing a subject and then analysing a post-dose biofluid. In a radical departure
from this, the present invention is based on the unexpected finding that
variation in the levels of the metabolites of a dosed substance in a biofluid
correlates with variation in the metabolite profile of a biofluid before the
substance is administered. Thus, the present invention makes it possible to
predict the response of a subject to a substance prior to dosing that substance.
Furthermore, the present invention makes it possible to determine a subject’s
metabolic phenotype without the need to dose that subject with a test
substance. Clearly, where a substance has the potential to cause an adverse
reaction, it is highly useful to be able to predict a subject’s reaction e.g. in
pharmaceutical treatments. Additionally, for the reasons described above
(safety, ethics and enzyme induction), it is highly advantageous to be able to!
determine the metabolic phenotype of a subject without the need for amy
dosing. This new and radically different methodology provides a highly
targeted approach to finding pre-dose correlates for post-dose behaviour.

Thus, in one aspect, the present invention provides a generic method for
building a model with which to predict a subject’s response(s) to a substance
potentially to be administered to that individual, In this method, the substance
to be dosed would be administered to a representative population of subjects,
henceforth referred to as the model building population. The response(s) of
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interest would be measured in all members of the model building population,
by whatever means were appropriate. Biofluid or other samples collected from
the model building population before dosing would be examined by '"H NMR
spectroscopy or by another suitable technique (e.g. near infrared spectroscopy,
high performance liquid chromatography, mass spectroscopy or gas
chromatography) or by a combination of such techniques. Together, the pre-
dose and post-dose response data would constitute the model building data. A
chemometric pattern recognition (PR) technique such as PLS or PLS-DA
would be applied to the model building data to correlate the variation in the
post-dose response(s) with variation in the pre-dose data. Sometimes a data
filtering method such as OSC would be used prior to PR to remove
uncorrelated variation in the pre-dose data. Once built and validated, the model
would be useable in conjunction with appropriate pre-dose data from one or
more test subjects, of similar type to the model building population, where it
was desired to predict the response to the same substance. Normally, a new
model would be required for each substance of interest aithough a model
derived for one substance might be useable in conjunction Witil a closely
related substance.

In another aspect, the present invention provides a generic method for building
a model with which to characterise one or more elements of a subject’s
metabolic phenotype. In this method, the substance to be dosed, and the
amount of that substance, would be carefully chosen to challenge the particular
metabolic transformation{s) of interest. The chosen substance would be
administered to a representative population of subjects, henceforth referred to
as the model-building population. The metabolites of interest would be
measured, in a post-dose biofluid or other sample, by "H NMR spectroscopy or
by other suitable means, as convenient. From this analysis, a measure of the

ability of each subject with respect to the relevant metabolic transformation(s)
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would be determined. Biofluid or other samples coliected from the model
building population before dosing would be examined by 'H NMR
spectroscopy or by another suitable technigue (e.g. near infrared spectroscopy,
high performance liquid chromatography, mass spectroscopy or gas
chromatography) or by a combination of such techniques. Together, the pre-
dose data and the post-dose ‘metabolic ability’ measurements would constitute
the model building data. A chemometric pattern recognition (PR) technique
such as PLS or PLS-DA would be applied to the model building data to
correlate the variation in the post-dose ability measurements with variation in
the pre-dose data. Sometimes a data filtering method such as OSC would be
used prior to PR to remove uncorrelated variation in the pre-dose data. Once
built and validated, the model would be useable in conjunction with appropriate
pre-dose data from one or more test subjects, of similar type to the model-
building population, where it was desired to determine the relevant metabolic
ability or abilities.

In a first aspect of the invention there is provided a method of generating
models with which to characterise selected aspects of the metabolic phenotype
of subjects without dosing a test substance to those subjects or with which to
predict, without dosing, the post-dose responses of subjects where those -
responses are dependent on metabolic phenotype, the method comprising: ,

obtaining pre-dose data relating to a plurality of subjects before dosing
with a dosing substance;

obtaining post-dose data relating to the plurality of subjects after dosing
with the dosing substance;

correlating inter-subject variation in the pre-dose data with inter-subject
variation in the post-dose data, and generating a pre-to-post-dose predictive

model on the basis of the observed correlation.
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The pre- and/or post-dose data may be obtained from samples which are
biofluids such as urine, blood, blood plasma, blood serum, saliva, sweat, tears,
breath or breath condensate or from samples which are plant tissues, plant
fluids or homogenates, plant extracts or plant exudates, including, for example,
essential oils or from samples which are human or animal tissues, fish tissues
or oils, tissue extracts, tissue culture extracts, cell culture supernatants or
extracts or of microbial origin. The pre- and/or post-dose data may comprise
data relating to chemical composition and/or physical parameters.

The pre- and/or post-dose samples or subjects may be treated prior to analysis
(e.g. treated with one or more chemical reagents so as to produce derivative(s)
of one or more existing substances), for instance to enhance data recovery or to

improve sample stability.

The pre- and/or post-dose data may be derived from or are compositional data
acquired using puclear magnetic resonance (NMR) spectroscopy and/or any
other chemical analysis techniques such as mass spectroscopy (MS), infrared
(IR) spectoscopy, gas chromiatography (GC) and high performance liquid
chromatography (HPLC) or by using any integrated combination of such
techniques e.g. GC-MS.

The pre- and/or post-dose data may be physical data or data derived therefrom.

Preferably a phenotyping model is generated for each of a plurality of
biochemical transformations, by dosing appropriate substances. Similarly, by
dosing appropriate substances, a response prediction model may be built for
each of a plurality of dosing substances.
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The original pre-dose data set may extended, prior to pa&em recognition, by
taking ratios and/or other combinations of existing variables. This may be
achieved for instance by forming further data comprising a ratio or ratios of the
obtained data.

For a group of subjects dosed with any particular substance, a pattern
recognition method may be used to identify patterns in the variable metabolism
of, or the variable reactions to, the dosing substance. A supervised or
unsupervised pattern recognition method may be used to identify variation in
the pre-dose data that correlates with the variation of interest in the post-dose
data.

A data filtering method such as Orthogonal Signal Correction (OSC) may be
used to remove variation in the pre-dose data that is not correlated with the

variation of interest in the post-dose data.

The method may be used to identify biomarkers or combinations of biomarkers
which provide information on metabolic phenotype or which may be used to
predict responses to dosing.

In a second aspect of the invention there is provided a method of determining
selected aspects of the metabolic phenotype of a subject, the method
comprising:

analysing data relating to the un-dosed subject in relation to a model
describing the correlation of pre-dose and post-dose data relating to a plurality
of subjects dosed with a particular substance which challenges the biochemical
transformation or pathway of interest;
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generating, according to the predetermined criteria of the model, a
numerical measure or classification describing the metabolic phenotype of the
un-dosed subject.

The pre-determined criteria of the model include one or more mathematical
equations which define the relationship between the pre-dose data and the post-
dose data and allow characterisation of subjects on the basis of pre-dose data

and allow identification of test data which are outliers.

The data relating to the un-dosed subject may be obtained from a biofluid such
as urine, blood, blood plasma, blood serum, saliva, sweat, tears, breath or
breath condensate or from a plant tissue, plant fluid, plant homogenate, plant
extract or plant exudate, including, for example, an essential oil, or from human
or animal tissue, fish tissue or oil, or from a tissue extract, tissue culture
extract, cell culture supematant or cell culture exiract or from a sample of
microbial origin or from any one of the above sample types after treatment to
enhance data recovery or sample staliility.

Characteristic compositional and/or physical data relating to a subject may be
generated using nuclear magnetic resonance (NMR) spectroscopy and/or any

other techniques or by using any combination of techniques.

The phenotyping method may be used for the purpose of making a metabolic
phenotype-influenced risk assessment and/or for the purpose of targeting the
use of special health monitoring regimes and/or for the purpose of targeting the
use of precautionary/preventative treatments and/or for the purpose of
characterising risk for insurance purposes and/or for the purpose of selecting
subjects for any other purpose e.g. for breeding.
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In a further aspect of the invention there is provided a method of predicting the
reaction of a subject to a dosing substance, the method comprising:

analysing data relating to an un-dosed subject in relation to a model
characterising the correlation of pre-dose and post-dose data relating to a
plurality of subjects dosed with the particular dosing substance; and

generating, according to the predetermined criteria of the model, a
numnerical or class prediction for the expected response of the un-dosed subject

if it were to be dosed with the dosing substance.

According to pre-determined criteria, the maximum or minimum dose of a
substance that a subject should receive can be predicted as well as the amount
of a dosing substance that a subject should receive. The frequency with which
a subject should be dosed with a substance can also be predicted as well as the
number of doses of a substance that a subject should receive. The appropriate

controlled release formulation for a subject can be selected.

Characteristic compositional and/or physical data relating to a subject may be
generated using nuclear magnetic resonance (NMR) spectroscopy and/or any

other techniques or by using any combination of techniques.

The method of determining selecied aspects of the metabolic phenotype of a
subject or of predicting the reaction of a subject to a dosing substance, may
further comprise analysing data relating to the un-dosed subject with respect to
one or more biomarkers which have been previously identified. The
biomarker(s) may react with one or more added reagents to produce a visible
change such as a colour change. Preferably the biomarkers are selected by
correlating pre-dose data relating to a plurality of subjects before dosing with a
dosing substance and post-dose data relating to the plurality of subjects after
dosing with the dosing substance.
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The method may be used to select a group of phenotypically homogenous or
similar subjects for a laboraiory experiment or clinical trial or for any other

purpose.

The method may be used for rationalising biological variation in experimental
data based on pre-dose analysis of biofluids or tissues, where such variation is

caused by phenotypic heterogeneity.

The data may be based on physical and/or chemical measurements taken from
the subject as a whole. Examples of such measurements are blood pressure,
heart rate, peak flow, height, weight etc.

The post-dose data may describe a change relative to the pre-dose state e.g. a
decrease in blood pressure of a human subject treated with a drug that lowers
blood pressure.

Preferably test data that does not conform to the limits of a particular model
and/or method is identified.

The subject may be an animal, in particular a mammal such as a human, a
mouse, a rat, a pig, a cow, a bull, a sheep, a horse, a dog or a rabbit or any
farmed animal or any animal, such as a race horse, used for the purpose of
sport or for breeding. Alternatively the subject may be a plant, a fish or any
other aguatic organism or a biological tissue, a tissue culture, a cell culfure or a
microbial culture.

Data may be obtained from a sample which is representative, or is taken to be

representative, of a group of subjects which are considered as a single subject.
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For instance, samples from a plurality of like subjects (é.g. a plant) may be
ground together and the resulting material used to obtain data considered to
relate to a single plant subject.

The dosed substance may be any substance or mixture or formulation of
substances including especially pharmaceutical or medicinal substances or
substances in research or development which might potentially become
pharmaceutical or medicinal substances, but also including, for example,
toxins, pesticides, herbicides, food or feed substances, food or feed additives
and fluids of any sort including liquids, gases, vapours and smoke e.g. tobacco

smoke.

The dosed substance may be actively or passively dosed in any matrix or
medium, by any means or route, including for example, by injection, by eating,
by drinking, by inhaling or by smoking, over any time period including 2
subject’s lifetime or any specified part or fraction thereof, such dosing to
include that resulting from environmental exposure or pollution or from
medical, dental, veterinary or surgical procedures.

The method may be used for identifying the acetylator phenotype of a subject
without dosing a test substance to that subject. Additionally or alternatively the
method may be used for predicting the response of a subject to dosing with a
substance where that response is dependent on acetylator phenotype.

The method may be used to predict the susceptibility of a subject to isoniazid-
induced toxicity or galactosamine-induced toxicity.

The invention also relates to apparatus for generating models.
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In a further aspect of the invention there is provided apparatus for response
prediction and/or for metabolic phenotyping, the apparatus comprising:

one or more models, each model modelling the correlation of pre-dose
and post-dose data relating to a plurality of subjects dosed with a particular
dosing substance;
a processor for analysing data relating to an un-dosed subject in relation to at
least one of the models and thereby determining one or more aspects of the
metabolic phenotype of the un-dosed subject or predicting its responses to
dosing according to the model(s) employed.

Additionally or alternatively the apparatus is further arranged to generate one
or more models with which to characterise selected aspects of the metabolic
phenotype of subjects without dosing a test substance to those subjects or with
which to predict, without dosing, the post-dose responses of subjects where
those responses are dependent on metabolic phenotype, the apparatus being
arranged to:

obtain pre-dose data relating toa plurality of subjects before dosing with
a dosing substance;

obtain post-dose data relating to the plurality of subjects after dosing
with the dosing substance; and

correlate inter-subject variation in the pre-dose data with inter-subject
variation in the post-dose data, and generating a pre-to-post-dose predictive

mode] on the basis of the observed correlation.

Preferably the apparatus may further comprise one or more analytical
instruments or devices to carry out physical and/or chemical analysis, such as
NMR spectroscopy, mass spectroscopy, infrared spectroscopy or high
performance liquid chromatography.
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The apparatus may also be arranged to identify one or more biomarkers, in
particular for response prediction or metabolic phenotyping based on the use of

one or more biomarkers which have been previously identified as described.

In a further aspect of the invention there is provided apparatus for metabolic
phenotyping or for predicting a subject’s response(s) to dosing, the apparatus
comprising:
a test area to receive a sample from the subject under test,

said test area incorporating one or more reagents which may react chemically
with one or more biomarkers in the sample to produce-a change in the visual
appearance of the test area, the biomarkers having been previounsly identified
as described, and the resulting visual appearance of the test area being
characteristic of metabolic phenotype or predictive of response(s) to dosing.

Preferably the apparatus identifies an appropriate dosing regime for a subject.

The apparatus may be based on the use of antibodies raised against specific
biomarkers. Selected biomarkers may be detected and/or quantified by means

of enzyme-catalysed reactions using, for instance, enzymes immobilised on a

solid support.

The invention also relates to apparatus comprising one or more models
generated by a method according to the invention.

The apparatus may be further arranged to identify test data that does not
conform to the limits of a particular model.

The invention has many applications:
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‘Well’ subjects not requiring corrective treatment

Metabolic characterisation (phenotyping) of subject enabling:

risk assessment e.g. bladder cancer particularly associated with certain
phenotype.

targeted adoption of special health monitoring regimes where
appropriate i.¢. in high risk subjects.

targeted use of precautionary/preventative treatments where appropriate
i.e. in high risk subjects.

identification, for insurance purposes, of the degree of risk associated
with a subject.

selection of subjects with desirable characteristics €.g. in breeding farm
animals.

selection of phenotypically homogenous subsets of subjects for

laboratory or clinical experiments.
(2)  Subjects requiring pharmaceutical, medical, dental, veterinary or other
treatments

Metabolic characterisation (phenotyping) of the subject and/or prediction of the

subject’s responses to dosing or treatment, epabling:

avoidance of adverse drug reactions (e.g. coma, fatality) either by not
administering the drug to vulnerable subjects or by reducing the drug

dose and/or the frequency and/or duration of such dosing.

- prediction of occurrence and degree of severity of minor side effects of

drug treatments (e.g. nausea, drowsiness).
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- selection of optimal pharmaceutical treatment (compound, dose, dose-
frequency and duration of course of treatment) based on matntaining an
appropriate level of the active drug substance in the body whilst
minimising side-effects.

- avoidance of adverse reactions to medical, dental, veterinary procedures
and substances e.g. anaesthetics such as halothane.

- selection of appropriate medical, dental or veterinary procedures or

treatments.
(3) Drug development and licensing

Drugs having different effects (e.g. efficacy, toxicity) in different subjects
could be licensed under the proviso that pre-dose metabolic phenotyping would
be carried out and treatments tailored accordingly. This would enable:

- a reduction in ‘attrition’ (abandonment of compounds during the drug
development process) because of variable responses either in efficacy or

in toxicity.

- recovery/relicensing of certain non-approved drugs where the problems '
in effectiveness or toxicity were limited to certain subsets of subjects

rather than the population as a whole.

In relation to drug development studies (e.g. for toxicity or efficacy) pre-dose
metabolic phenotyping would enable:

- interpretation of variable results where that variation resulted from
phenotypic differences between different subjects or between different
subsets of subjects.
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- selection of desired test groups having certain required metabolic

characteristics.
(4) Biomarker identification

Instead of being used directly for analysis of test data, appropriate models
could be used to identify biomarkers or combinations of biomarkers with which
to determine metabolic phenotype or with which to predict responses
determined by metabolic phenotype. Having established the relevant
biomarker(s), simplified methods of analysis, e.g. urine dipsticks or HPLC
methods, could then be developed based on those biomarkers. This would
reduce reliance on sophisticated technologies such as NMR spectroscopy and
would enable more remote testing e.g. in local laboratories, pharmacies,

hospitals or doctors’ surgeries.

The invention will now be described further, by way of example only, with
reference to the accompanying drawings, in which:

Figure 1.1 shows the variable urinary excretion of galactosamine after dosing
with Galactosamine HCI (abbreviated GallN HC1) (800 mg/kg);

Figure 1.2 shows the variable urinary excretion of an N-acetylated species after
dosing with GalN HCI (800 mg/kg);

Figure 1.3 shows some urinary changes induced by GalN HC1 (800 mg/kg) in a
responder;

Figure 1.4 shows the altered urinary excretion of hippurate and histidine after
dosing with galactosamine HCI (800 mg/kg);

Figure 1.5 shows the scores plot on PC 1 vs. PC 5 from a PCA of the day -1
(pre-dose) urine NMR spectra from the galactosamine study;
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Figure 1.6 shows the loadings plot on PC 1 vs. PC 5 from the PCA of the day —
1 (pre-dose) urine NMR spectra from the galactosamine study;

Figure 2.1 shows examples of the different patterns of N-acetylated metabolites
seen in the NMR spectra of urine samples collected from 0-7 hours after dosing
isoniazid (400 mg/kg) to male Sprague-Dawley rats;

Figure 2.2 shows the scores plot on PC 1 vs. PC 2 from a PCA of the N-acetyls
region (8 2.23 to & 2.13) of the NMR spectra of the day 1 (0-7 hours from
dosing) urine samples from the animals dosed with isoniazid (200 mg/kg);
Figure 2.3 shows two optional initial pathways for isoniazid metabolism;
Figure 3.1 shows pre-dose prediction of the ratio (peak-height ‘a’/peak height
allantoin) in the NMR spectra of urine samples collected from 0-7 hours after
dosing isoniazid (200 mg/kg);

Figure 3.2 shows the regression coefficients pertaining to the PLS analysis
which gave rise to the results described in Figure 3.1;

Figure 3.3 shows pre-dose prediction of the amount of metabolite C excreted in
the urine collected from 0-7 hours after dosing rats with isoniazid (200 mg/kg).
Figure 3.4 shows pre-dose prediction of the ratio [(Fraction C)/(Fraction A +
B)] in the urine collected from 0-7 hours after dosing rats with isoniazid (200
mg/kg).

Figure 3.5 shows the internal validation of the medel relating to Figure 3.4.
Figure 3.6 shows pre-dose predictions of [(Fraction C)/(Fraction A + B)] for an
external test set.

Figure 4.1 shows pre-dose prediction of the total urinary excretion of N-
acetylated compounds (& ca. 2.22 — ca. 2.11) in the 24-hour period after dosing
rats with paracetamol. (1* model for this parameter).

Figure 4.2 shows pre-dose prediction of the amount of ‘MA’ excreted in the
24-hour period after dosing rats with paracetamol. (I* model for this

parameter).
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1

Figure 4.3 shows pre-dose prediction of the total urmary excretion of N-
acetylated compounds (6 ca. 2.22 — ca. 2.11) in the 24-hour period after dosing
rats with paracetamol. (2™ model for this parameter).

Figure 4.4 shows the internal validation of the model relating to Figure 4.3.
Figure 4.5 shows pre-dose prediction of the urinary excretion of paracetamol
glucuronide (‘G’) in the 24-hour period after dosing rats with paracetamol.
Figure 4.6 shows the internal validation of the model relating to Figure 4.5
Figure 4.7 shows pre-dose prediction of the urinary excretion of ‘MA’ in the
24-hour period after dosing rats with paracetamol. (2™ model for this
parameter).

Figure 4.8 shows the internal validation of the model relating to Figure 4.7
Figure 4.9 shows the external validation of the model relating to Figure 4.7
Figure 4.10 shows pre-dose prediction of the urinary excretion of ‘P’ in the 24-
hour pertod after dosing rats with paracetamol.

Figure 4.11 shows the internal validation of the model relating to Figure 4.10
Figure 4.12 shows the observed versus pre-dose predicted values for the
amount of ‘S’ excreted in the 24-hour period after dosing rats with
paracetamol.

Figure 4.13 shows the observed versus pre-dose predicted values for the G/S
ratio in the 24-hour urine samples obtained after dosing rats with paracetamol.
Figure 5.1 shows pre-dose prediction of the total urinary excretion of N-
acetylated compounds (8 2.210 — 2.135) per kg of body mass in the first three
hours after dosing human males with paracetamol.

Figure 5.2 shows the external validation of the model relating to Figure 5.1.
Figure 5.3 shows pre-dose prediction of the amount of paracetamol glucuronide
(‘G”) excreted in the urine per kg of body mass in the first three hours after
dosing human males with paracetamol.

Figure 5.4 shows the external validation of the model relating to Figure 5.3.
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Figure 5.5 shows pre-dose prediction of the amount of ‘P’ excreted in the urine
per kg of body mass in the first three hours after dosing human males with
paracetamol.

Figure 5.6 shows the external validation of the model relating to Figure 5.5.
Figure 5.7 shows pre-dose prediction of the total urinary excretion of N-
acetylated compounds (& 2.210 — 2.135) per kg of body mass in the first six
hours after dosing human males with paracetamol.

Figure 5.8 shows the external validation of the model relating to Figure 5.7.

A. Preferred features of the model building procedure

L. The model building population.

The subjects who form the model-building population should, as far as
possible, be representative of the subjects who will form the test population.
Diet can affect biofluid composition and inter-subject dietary variation could
therefore be important in relation to biofluid-derived models. Ideally, the
methods would be sufficiently robust so as to be unaffected by dietary variation
but this would require testing for each model. As a precaution against the
possible effect of a variable diet, it would be advisable for all the model
building, validation and test data relating to a particular model to be acquired
from subjects receiving the same diet. This is easier to achieve for laboratory
animals than it is for humans. In fact, it could be advantageous if standard
animal diets and a standard human diet were to specified for all relevant
exercises as this would enable rapid checking of a test subject’s urine sample
against a range of different models. In general, the larger the size of the model-
building population, the more robust will be the model created. Once a model
has been built it would need o be validated using a group of subjects who were
not members of the model-building population.
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2. Dosing

The substance dosed, the dose level, the frequency of dosing and the means of
dosing will depend on the application. Where the aim is to produce a method
for metabolic phenotyping, the dosed substance would need to provide one or
more metabolites with which to characterise the exient of the transformation(s)
of interest. Ideally, the selected metabolites would only be affected by the
transformation(s) of interest and would not be subject to other complications.
It is, therefore, likely that the dosed compounds would be small uncomplicated
chemical compounds with perhaps mono- or bi- chemical functionality. For
building such phenotyping models it is likely that a single dose of the selected
substance would be sufficient but this dose would need to be large enough to
provide discrimination between metabolically-different individuals. Where the
aim is to build a model for response prediction, the dosing regime should be
identical to that for which the response is to be predicted in the test subjects.

3. Samples
a. Pre-dose samples

The pre-dose sample(s) will need to be selected so as to contain relevant
metabolic information. 1If necessary, samples of more than one type could be
taken and their information content combined. Preferably the sample(s) would
be easy to obtain and the sampling procedure(s) would cause minimal pain and
inconvenience. To minimise the potential for changes in metabolic phenotype
to occur between time of pre-dose sampling and the time of dosing, the pre-
dose samples should be obtained as near as possible to the time of dosing.
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Urine is an ideal pre-dose sample because it contains a wealth of metabolic
information and can be sampled with littte or no inconvenience especially to
human subjects. Additionally, with humans, urine can be sampled essentially
on demand. Urine collection from animals such as rats is slightly more
difficult; it cannot be obtained on demand and smaller animals such as rats
would generally have to be housed within individual cages for several hours

with special arrangements for urine collection.

Blood also contains metabolic information and, in small-quantities, is relatively
-easy- to sample from larger animals er humans by -a ‘pin-prick’- method.
However, special arrangements have to be made to inhibit clotting e.g. the use
of blood serum or of vials containing lithium heparin. Larger quantities of
blood are more difficult to obtain especially from smaller animals and
specialised techniques and phlebotomists may be required. Anaesthesia and/or
sedation may be required depending on the site of blood sampling and the ease
of immobilising the subject. Blood plasma or blood serum are the two blood-
derived fluids that would normally be analysed.

Saliva, sweat, exhaled breath or exhaled breath condensate, tears and maternal
milk are other body fluids which would be easy to obtain and might contain
relevant metabolic information depending on the nature of the investigation.

b. Post-dose samples

The post-dose sample type will depend on the application. The post-dose
sample could be the whole subject e.g. a human or a rat, or a sample derived
from that organism, as in section a. above. Where necessary, samples of more

than one type could be taken.
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c. Sample stability

Special arrangements need to be taken to ensure the stability of biological
samples which would otherwise be subject to degradation by bacteria or other
means. As stated above, special arrangements need to be made to prevent the
clotting of blood or blood plasma. Urine samples, especially those which
might have been subjected to faecal or other contamination, are best collected
into vials containing an anti-bacterial agent such as sodium azide. Sodium
azide has the benefit of being invisible to "H NMR spectroscopy. Where the
urine sample is collected over a significant period of time, i.e. for hours rather
than minutes, it is best if the collection vessel or bag is cooled by ice or other
means. Once collected and stabilised, all biological fluids should either be
analysed immediately or stored deep-frozen (-20C or below) pending analysts.
Preferably, any ‘solid’ tissue samples would be ‘snap’ frozen in liquid nitrogen
immediately after collection and subsequently stored at -80C pending analysis.
Collection and storage vessels should be selected which will not contaminate
the samples by leakage of plasticisers or other plastic components.

4, Sample preparation

Some sample preparation or treatment may be required prior to analysis.
Samples for '"H NMR spectroscopic analysis are typically prepared as follows
although there may be much variation in the exact procedure used by different

workers:

a. Urine samples
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Urine samples are typically prepared for NMR analysis by mixing 400 pl of
urine with 200 ul of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M
Na,HPO,4 and 0.2 M NaH,PO,. pH 7.4); if insufficient urine is available the
shortfall is made up with purified water with a minitnum of 200 ul of urine
being used. The urine-buffer mixture is left to stand for 10 minutes at room
temperature to enable buffering to take place and then centrifuged at 13,000
rpm for a further 10 minutes to remove suspended particulates, 500 pl of
‘clear’ buffered urine is transferred to an NMR tube and 50 ul of a TSP/D,O
solution added. TSP (sodium 3-trimethylsilyl-[2, 2, 3, 3-2H,]-1-propionate) is a
chemical shift reference compound (8 0) used in the NMR experiment and the
D20 provides é ﬁeld/frequencﬁ lock for the NMR spectrometer. The
concentration of the TSP/D;O solution is such as to give a final TSP
concentration of 0.1 mM in the NMR tube.

b. Plasma samples

Plasma samples are typically prepared for '"H NMR analysis by mixing 150 pL
of plasma with 350 uL of saline (0.9% (w/v) NaCl in a mixture of 10% (v/v)
D;0 and 90% (v/v) H,0). Chemical shift reference compounds such as TSP
are not added because of the likelihood of binding to protein in the sample.

Depending on the analytical technique to be employed, chemical derivatisation
of the sample could be used to enhance data recovery. Thus, for example
suitable chromophores could be attached to compounds which would otherwise
be undetectable to spectrophotometric detectors monitoring the absorption of
ultraviolet or visible light. Another option would be to attach fluorescent
markers to enhance the detectability of compounds by fluorimetric analysis.
By such chemical derivatisation, previously undetectable compounds could be
made detectable and detection limits could be improved for others. Chemical
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derivatisation could also be employed to facilitate the chromatographic
separation of different sample components. Physical and/or chemical
treatments could also be employed to remove undesirable sample components
such as plasma proteins which might otherwise cause problems during the

analysis.
5. Physical-chemical analytical techniques
a. Analysis of post-dose samples

The analytical technique(s) need to be chosen with regard to the parametex(s)

being measured and the number and nature of the samples e.g. whole organism

or biofluid type. The huge range of parameters that might be of interest in

different models means that a wide range of analytical instrumentation and
~methods could be required.

If the application is to measure specific response(s), e.g. the chalhlge in blood
pressure, after dosing with a particular substance then the most appropriate
technique(s) should be chosen, e.g. sphygmomanometer. If the toxicity of a
substance is the focus of interest then it may be best to measure a range of
blood plasma parameters, such as enzyme activities, using, for instance, an
automated clinical analyser equipped with appropriate kits.  Alternatively,
histopathological findings could be classified according to type of effect or
could be numerically scored according to degree of severity. Where the aim is
to build a phenotyping model the post-dose analytical technique would
normally need to provide quantitation, or at least relative quantitation, of one or
more metabolites of the dosed substance.

b. Analysis of pre-dose samples
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As with the post-dose samples, the choice of analytical technique for the pre-
dose samples will be influenced by the nature of the samples but, additionally,
the chosen pre-dose analytical technique would need to be able to reveal
metabolic information. Preferably, analysis of a body fluid or body tissue
would be by means of NMR spectroscopy or by another technique which is
capable of undirected metabolite detection and quantitation i.e. the chosen
technique would ideally detect and quantify individual metabolites without the
need to specify analysis of those particular metabolites. This allows for the
use, within the model, of the most useful metabolites even if they are not
-presently  known. It also-allows for the identification of -new metabolite
markers where that is of interest. For model-building, it is not necessary that
each observed metabolite is identified but, rather, the analytical technique
should provide a reliable quantitative fingerprint of each sample. Ideally, the
chosen technique would be readily accessible but this might not always be
possible because of the expense and the level of sophistication required. One
possible technique, that is standard analytical equipment in most analytical
chemistry laboratories, is High Performance Liquid Chromatography (HPLC)
with, for instance, UV-Visible spectrophotometric detection. Although it can
be rather time-consuming, the HPLC technique would be capable of providing
the type of data that is required from a pre-dose sample. The choice of the
detector for HPLC would be a critical factor and data recovery could be
facilitated by chemical derivatisation of the sample prior to analysis. The ﬁse
of NMR spectroscopy would not be limited to any particular type of NMR

experiment.

c. Variable performance of different analytical instruments
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Different analytical instruments may perform differently and the performance
of a single piece of equipment may vary over time. Such instrumental variation
could be particularly important where subtle pre-dose variation between
samples needs to be characterised to build a successful model although data
filtering such as OSC could help to minimise its effects in ‘supervised’ PR
analyses. ‘Therefore, in building a particular model, all measurements of a
particular type would, ideally, be taken on a single occasion using one specific
instrument. If it were not possible to carry out all the analyses on one occasion
it would be necessary to ensure that instrument performance had not varied
significantly between the different periods of use. Where multiple pieces or
types of equipment were used in taking measurements from the model-building -
population, it would be necessary to carry out cross-checks to ensure similar
performance from each instrument. Deselection or recalibration of instruments
would need to be carried out where there was a significant difference in

performance between different instruments.
6. Data manipulation prior to multivariate PR analysis

It may be helpful or necessary to carry out some data manipulation prior to PR
analysis.

Ideally, all the available physical and/or chemical data would be used in
creating the input data for the chemometric analysis. However, depending on
the type of data acquired, some data reduction may be required prior to
multivariate analysis. With "H NMR spectroscopic data of biofluids such as
urine this has been used, despite buffering, to cope with small pH-induced
shifts in the position of peaks on the chemical shift scale. Thus, after deleting
certain regions such as the residual water signals, the remainder of each 1D 'H
NMR spectrum is divided along its abscissa into sequential segments (typically
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of 0.04 ppm width for a 600 MHz spectrometer) and an iﬁiegral obtained for
each segment. Where such data reduction is required it would be advisable to
try a different data reduction method, e.g. to use different spectral segment
widths, if the previous attempt had not yielded an adequate model. The use of
a data filtering technique such as OSC could facilitate data reduction by

assisting with variable selection.

With biofluid NMR data it is common practice to ‘normalise’ each data-
reduced spectrum and there are a namber of ways of doing that. Frequently,
each NMR spectrum is normalised, or scaled, to give the same total integration
-as-every other NMR -spectrum -in the data-set. - Additionally, --other data
manipulations may prove to be helpful e.g. scaling the '"H NMR data from
urine samples to a constant integration for the allantoin peak at & 5.4, if present,
or to a constant integration for a creatinine peak. In man, urinary creatinine
excretion is related to muscle mass which in turn is loosely related to body
mass. Scaling urine data to constant creatinine should therefore help to
eliminate differences in excretion that are related to body mass. Additionally,
by determining a measure of metabolite concentrations in urine and by taking
account of the amount of urine excreted by each subject it should be possible to
obtain a data set which truly represents metabolite excretion by each subject.
Where metabolite excretion has been determined, and body mass is also known
but variable, it may be useful to normalise urine data to excretion per unit body
mass. It may also be useful to ‘block’ the data so that variables with values
falling within a particular range are treated as a discrete group.

A particular limitation of analyses such as PCA, PLS or PLS-DA is that they
rely on finding useful linear combinations of existing variables despite the fact
that a non-linear combination of variables might be more instructive. Thus,
before carrying out such analyses it would be sensible to extend the X data
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matrix by adding non-linear combinations of the existing variables. In
particular, the ratio of two variables is often more significant than the absolute
value of either and taking ratios could be especially belpful in relation to
metabolic phenotyping where the relative amounts of different metabolites are
often important. Thus, the extended X matrix should include the original X
variables together with the one-to-one ratios of all those original variables
except for the ratio of one variable to itself. This approach is shown in the

following simple example:

Original X matrix:
- Sample or Variable Variable -
object X1 X2
A 25 25
B 16
C 8 2
Extended X matrix:
Sample or Variable Variable Variable
object X1 X2 X1/X2
A 25 25 1
B 16 8 2
C 8 2 4

In a slightly more complicated example three original X variables are extended

to produce a new six variable matrix:
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Original 3 variable matrix:

Sample or Object | Variable X1 Variable X2 Variable X3

A 25 25 50

B 16 8 32

C 8 2 4

Extended matrix:

Sample | Variable | Variable | Variable | Variable | Variable | Variable

or object X1 X2 X3 X1/X2 X1/X3 X2/X3
A 25 25 50 0.5 0.5
B 16 32 05--1 025
C 8 2 4 2 0.5

The potential benefit of this approach is demonstrated in the following simple
PLS-type example where one wishes to predict a single Y variable from two X

variables:
Original data matrix:
Sample or Variable Variable Variable
object X1 X2 Y1
A 25 25 2
B 16 8 4
C 8 2
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Extended matrix:
Sample or Variable Variable Variable Variabie
object X1 X2 X1/X2 Y1
A 25 25 1
B 16 2 4
C 8 2 4

In the original mairix there was no constant linear combination of X1 and X2
that would produce Y1. However, by extending the X matrix as described a
very simple linear relationship becomes apparent i.e. Y1=2(X1/X2).

For each variable in the data set some form of scaling will normally be required
prior to performing a chemometric analysis. Typical scaling approaches

include mean-centring, unit variance scaling and pareto scaling.
7. Chemometrics methodology

It is important to realise that the scope of this invention is not limited to the use
of particular specified chemometrics methodologies. Any such methodologies
which could identify and establish pre-to-post-dose data correlations could be
employed. '

Supervised pattern recognition (PR) methods such as PLS or PLS-DA would
normally be employed to achieve targeted model building i.e. pre-to-post dose
data correlations. It is possible that these supervised methods would be
preceded by the use of unsupervised PR methods such as PCA e.g. to examine
the variation in the responses to a dosed compound or to examine the variation

in the metabolism of a dosed compound. Such unsupervised analysis could be
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helpful in identifying outliers and in deciding whether to build a classification

method or whether to build a numerical result model (see below).

Occassionally, in a less sophisticated approach to achieving a model for pre-
dose discrimination of some aspect of metabolic phenotype or response
prediction, it might be adequate to apply an unsupervised method such as PCA
to the pre-dose data. This approach has a simplicity advantage although it
would be much less able to determine subtle discriminators than the supervised
methods. Such a method would rely on being able to code (e.g. colour code)
the individual model building pre-dose data points according to post-dose
behaviour. The success or otherwise of this approach would depend on the
ease with which the coded populations could be distinguished pre-dose. In
general, this unsupervised approach would only be suitable where there were
relatively cbvious pre-dose discriminators for the different response groups. It
would not be suitable where the discriminators were complex and ‘hidden’ and,
importantly, data filtering methods such as OSC could not be employed with
this ‘unsupervised’ approach.

The chemometrics method(s) to be employed in the model building will depend
on the final application that is envisaged or required. Thus, a classification
method such as PLS-DA would be appropriate when the objective was to
achieve a method for classification of some aspect of metabolic phenotype (e.g.
‘fast’ or ‘slow’ acetylation) or for prediction of the type of response to a dosed
substance (e.g. ‘adverse drug reaction’ or ‘no adverse drug reaction’).
Alternatively, where the objective was to achieve a quantitative measure of
some aspect of metabolic ability or to predict a numerical measure of some
response to a dosed substance, methods such as PLS would be appropriate.
Neural networks analysis (NNA) can be useful, depending on the application,

and NNA has been proven to be advantageous in a classification role where
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pre-dose discrimination may come from one of a number of independent
sources e.g. if the X data is of type A or B or C then the response will be Y1, if
the X data is not of those types then the response will be Y2. Importantly,
neural networks methods do not readily enable identification of those pre-dose
features which provide the discrimination of interest. Methods such as PCA,
PLS and PLS-DA do readily enable the identification of discriminatory features
and this would be an important advantage in understanding the scientific basis
of any discrimination and where it was desired to derive other analytical
methods to perform the same discrimination.

Data filtering methods such as OSC would sometimes be employed to remove
variation in the pre-dose data that is not correlated to the variation of interest in
the post-dose data. For instance, OSC can help to minimise the effects of any
variation in the performance of the analytical instrument(s) used in the physical
and/or chemical analysis.

Frequently, a relatively small number of outliers will need to be e};cluded from
the model-building data because their data is in some way inconsistent or a
hindrance to the model building, PCA scores plots and DmodX values may be
used to identify outliers. In the case of PLS models, outliers could be
legitimately excluded by any of the following means:

a) An examination of the X scores (t1/t2)
b) An examination of the X residuals (DmodX)

¢) An examination of the correlation between the scores in the X and Y

spaces (e.g. t1/ul).
d) An examination of the Y scores (e.g. ul/u2)

€) An examination of the Y residuals (DmodY).



30

8. Response prediction applications

Substances dosed to living organisms will frequently be subject to a variety of
different metabolic transformations. Each of the ensuing metabolites might
then in turn undergo a variety of further transformations and so on and so forth.
Thus, the complete metabolism of one original compound could involve an
extremely complex morass of different pathways and many different enzymes.
. Consequently a multplicity of different phenotypic influences could contribute
to the nature of the response to a dosed substance and it could be very difficult
to deconvolve all those different influences. Therefore, in regard to response
prediction applications, it is preferred that the invention is used to directly
predict the response without deconvolving the different influences. Thus, for
instance, the vastly variable degree of liver damage (as shown by
histopathology and clinical chemistry parameters) caused when male Sprague-
Dawley rats are dosed galactosamine HCI (800 mg/kg) (see Example 1) might,
in principle, be directly correlated with variation in pre-dose urine so as to
provide a predictive model for susceptibility to galactosamine HCI, without
needing to understand the metabolic factors that are determinants of the

response.

B.  Preferred features of the model validation procedure

Verification of model validity is of great importance in all types of
mathematical modelling. Validation of a model’s robustness and predictive
ability requires a validation data set that is independent of the data used for
model building. The predictive ability of a model is assessed according to the
magnitude of the errors associated with the model-based predictions for the
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validation data set. The robustness of a model can be judged by comparing the
magnitude of the estimated error for the model with the magnitude of the error
associated with the model-based predictions for the validation data set. For a
modet to be considered as reliable for future bredictions of ‘unknown’ samples
both requirements, predictability and robustness, should be fulfilled.

In the case of PLS models, both ‘internal’ and ‘external’ validation may be
performed as follows:

‘Internal’ validation of PLS models may be effected firstly by determining the
R%Y and QZY values and secondly by observing the effect, on those values, of
randomising the positions of the Y data in relation to their corresponding rows
in the X matrix (typically 20 separate row permutations would be performed).
R%Y provides a measure of the ability of the PLS model to explain the Y data
from the X data, Wlth all the data included in the model. However, spuriously
high R®Y values can be obtained by over-fitting and the real test of a PLS
model is its predictive ability, Q?Y provides a measure of the predictive ability
of a PLS model and is obtained by a cross-validation procedure wherein
different portions of the XY data are sequentially held out for X to Y prediction
using models derived from the remainder of the data. Both R%Y and QY have
a theoretical maximum value of 1, although Q%Y should normally be less than
R%Y. Subject to the actual values of R%Y and Q°Y, a value of QY close to R%Y
implies good predictive ability. In the second stage of the internal validation of
a PLS model, the positions of the Y data are randomised and both the R%Y and
Q*Y values should decrease substanfially if the original model was valid.
Randomisation of the positions of the Y data relative to their corresponding
rows in the X matrix should result in a large decrease in QY, ideally to zero.
R?Y values should also decrease substantially on randomisation of the Y data

but would not necessarily decrease to zero because the modelling procedure
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will always try to find something in the X data, even noise, that can predict the
randomised Y data.

‘External’ validation of PLS models may be performed by taking a test set of
animals that do not form part of the model-building population and whose Y
values approximaiely span the range of the Y data in the model. For the model
to be taken as valid the prediction errors for the test samples (In the SIMCA
software from Umetrics this is designated RMSEP — root mean square error of
prediction) must be in the same range as the estimation errors for the model
samples (In the SIMCA software from Umetrics this is designated RMSEE -

root mean square error of estimation).

C.  Preferred features of the testing procedure

One very important feature of this invention concerns the identification of
subjects with unusual or extreme metabolic phenotypes.  Subjects such as
these may be particularly prone to suffering adverse or idiosyncratic drug
reactions. Given the practical limitations that apply to the numbers of subjects
that can be included in any model building exercise, it is impossible to build a
model based on the full range of metabolic phenotypes and rare phenotypes are j
unlikely to be included. Additionally ethnic differences are likely to be
important sources of phenotypic variation. However, it is an important feature
of the current invention that, at the testing stage, any phenotype that does not
conform to the range of phenotypes in the model will be identifiable as an
outlier. In the case of PCA and PLS models, for example, these outliers will be
detected either in the direction of the model plane or hyper-plane described by
the PC- or PLS-scores or in the model residual direction, the distance to model
(DModX, Y). Additionally, in the case of PLS modelling, outliers in the scores

direction can be present in X-space (T), in Y-space (U) and in the inner relation
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between X and Y (T/U). With test subjects identified as outliers, their
metabolic phenotype would not be identifiable, or their response to the dosing
substance in question would not be predictable, with adequate confidence.
Therefore, in response prediction applications, it would be sensible either not to
dose the substance at all to such outliers or to proceed with great caution e.g.
with an initial low dose. Thus, despite the practical limitations of the model
building procedure, the model should be able to provide useful information
with respect to all of the test subjects.

A single NMR spectrum of, say, a subject’s urine could be compared against a
variety of models to predict that subject’s responses to a_variety of treatments
or to assess several aspects of the subject’s metabolic phenotype. The NMR
spectrum could be stored electronically for use as and when required. This
type of approach would reduce the amount of physical and/or chemical testing
required although testing at different stages of a subject’s life could be required
to allow for age-related alterations in metabolic phenotype.

Normally, a new model would be required for each substance of interest
although a model derived for one substance might be useable in conjunction
with a closely related substance.

Preferred features of each aspect of the invention are as for each of the oth
aspects mutatis mutandis. 'The prior art documents mentioned herein

incorporated to the fullest extent permitted by law.

Examples

Example 1. The variable response of Sprague-Dawley rats to dosing with
galactosamine hydrochloride. An example of a possible response
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prediction method based on the use of a simple response-coded PCA of the
NMR spectra of pre-dose biofluid samples.

Thirty young adult age-matched male Sprague-Dawley rats were obtained from
Charles River, France. After observation to ensure that they each appeared
healthy they were placed in individual metabolism cages with free access to
water and a standard commercial laboratory diet (diet AO4C from Usine
d’Alimentation Rationnelle, Villemoisson-sur-Orge, France). The laborgtory
terperature was maintained at 20 £ 2 degrees C and the relative humidity at 60
% 20 %. The laboratory air was filtered and changed 14 times per hour. A
“fixed ‘12 hours light - 12 hours dark’ cycle was imposed. The study
commenced after a short period of cage ‘acclimatisation’. The sampling

regime is as shown in Table 1.1.

Table 1.1: The sampling regime for the Galactosamine HCI study. B, U
and P denote sampling for blood, urine and pathology respectively. Dosing
was carried out at the start of day 1.

Group\Day t -3 | -2 -1 11 1 2131453617 8
Urine

collection | 0-7{0-7]0-7)0-7724:0-7,0-7(0-7}0-7([0-7)0-7) -
period/hrs

Late

eathanased { B (U (U (U | U JU|U|JU]JU{U|U/| BP
group U

Early

euthanased | B{ U | U | U | U |[BPi - - - - - -
group 18]




55

At the time of dosing (at the start of day 1) the growing rats were each
approximately 260g in mass. Galactosamine (abbreviated GalN) HCl (from
Sigma, France) was dissolved in physiological saline and dosed by
intraperitoneal injection at either 200 mg/kg or at 800 mg/kg; ten animals (nos.
101-110) received the low dose and ten animals (nos. 201-210) received the
high dose. Ten control animals (nos. 1-10) received an oral dose of corn oil.

Five of each group of ten rats were euthanased by means of CO; on day 2 with
the remainder being euthanased by the same technique on day 8. The early-
euthanased rats were numbers 6-10, 106-110 and 206-210. The late-
euthanased rats were numbers 1-5, 101-105 and 201-205, --

Pre- and post-dose urine samples were collected for 7 hours daily into ice-
cooled vessels containing sodium azide (0.100 m! of a 10% (w/v) solution of
sodium azide in water) as an antibacterial preservative. There was an
additional overnight urine collection on the day of dosing (ﬁ'om. 7-24 hours
post-dose). The urine collection apparatus was cleaned prior to each collection
to minimise bacterial, food and faecal contamination. The urine samples were
deep-frozen pending NMR analysis.

Blood was sampled from the orbital sinus, under isoflurane anaesthesia. Blood
was sampled from all animals on day —3 and just prior to euthanasia on either
day 2 or day 8  Following euthanasia each rat was sampled for
histopathological examination with the sampling including taking ten liver
samples from each rat (two from each liver lobe). The blood samples were
collected into vials containing lithium heparin as anticoagulant and
immediately centrifuged at approx. minus four degrees C to separate plasma.
A portion of each plasma sample was analysed at thirty degrees C on an
AU600 multiparametric clinical analyser (Olympus) for a range of clinical
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1

chemistry parameters including alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) amongst many others,

Urine samples were prepared for NMR analysis by mixing 400 ul of urine with
200 ul of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na,HPO, and 0.2
M NaH,PO,. pH 7.4); if insufficient urine was available the shortfall was made
up with purified water with a minimum of 200 pul of urine being used. The
urine-buffer mixture was left to stand for 10 minutes at room temperature to
enable buffering to take place and then centrifuged at 13,000 rpm for a further
10 minutes to remove suspended particulates. 500 pl of ‘clear’ buffered urine
was transferred to an NMR ‘tube and 50 pl of a TSP/D,O sohition added. TSP
(sodium 3-trimethylsilyl-[2, 2, 3, 3-2H,]-1-propionate) is a chemical shift
reference compound (8 0) vsed in the NMR experiment and the D,O provided a
field/frequency lock for the NMR spectrometer. The concentration of the
TSP/D,0 solution was such as to give a final TSP concentration of 0.1 mM in
the NMR tube. The NMR analyses were carried out at thirty degrees C on a
Bruker AMX 600 MHz NMR spectrometer with the NOESYPRESAT pulse
sequence (Claridge, 1999) used to reduce the size of the water signal. The
principal acquisition parameters were:

Spectrometer Frequency: 600 MHz

Spectral Width: ca. 7200 Hz (12 ppm)

Bruker Pulse Program: noesyprid

Number of Data Points in Time Domain: 65536
Number of Scans: 64

Number of Dummy Scans: 4

Acquisition Time: ca. 4.55 seconds
Presaturation Time: 3 seconds

Mixing Time: 0.1 second
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After acquisition, the NMR spectra were Fourier-transformed into 32768 data
points following application of 0.3 Hz line-broadening by means of an
exponential multiplication applied to the free induction decay signal. The
spectra were phased to give an even baseline around the NMR signals and the
chemical shift scale was set by assigning the value of & O to the TSP peak.
Prior to data-reduction, the baseline of each day —1 spectrum was moved to
zero intensity using a straight-line baseline correction algorithm. All these
spectral processing operations were carried out on a Silicon Graphics computer
using the ‘xwinnmr’ software (Bruker GmBH).

Visual examination of the post-dose urine NMR spectra revealed great inter-
animal variation in respect of the effects of galactosamine HC1 (800 mg/kg) on
endogenous metabolites (see Table 1.5 and figures 1.3 and 1.4). On the basis
of this visual examination, animals could be readily categorised as either (i)
‘responders’ or (ii) as ‘weak or non-responders’. Additionally, the responders
were found to excrete much greatef amounts of galactosamine in their urine
over the period from 0-24 hours post-dosing than did the weak/non-responders
(see Figure 1.1 and Table 1.6) and this indicates a connection between
galactosamine metabolism and its toxicity.

Figure 1.1 shows three NMR spectra. Spectrum ‘a’ is of the day 1 urine
coliected from animal 201 from 0-7 houwrs after dosing. Spectrum ‘D’ was
obtained from authentic GalN HCI. Spectrum ‘c’ is of the day 1 urine collected
from animal 203 from 0-7 hours after dosing. Spectra ‘a’ and ‘¢’ are scaled to
constant allantoin (6 5.4) peak height. GaiN is clearly present in the urine from
animal 201 but not in the urine from animal 203.
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Furthermore, in the NMR spectra of the urine samples collected from 24-31
hours post-dosing, the responders showed the presence of a certain N-acetyl
peak that was, at least largely, absent from the spectra of the weak/non-
responders (see Figure 1.2). This peak was provisionally assigned to N-
acetylgalactosamine. The great inter-animal variability in response to the 800
mg/kg dose was also reflected in the histopathology and clinical chemistry data
(see Tables 1.2 tol.4).

Figure 1.2 shows NMR spectra of the day 2 urine samples collected from
animals 202 (spectrum ‘a’) and 203 (spectrum ‘b’) from 24-31 hours after
dosing. The spectra are scaled to constant creatinine. An N-acetylated species,
believed to be N-acetylgalactosamine, is clearly present in specttum ‘a’ but not
in spectrum ‘b’.

PCA was then carried out on the NMR spectra of the day — 1 (pre-dose) urine
samples for the animals that were subsequently dosed with galactosamine
hydrochloride (800 mg/kg). This data set consisted of nine spec.ﬁ'a because
there was insufficient day —1 urine to obtain an NMR spectrum for animal 206.
Prior to the PCA each day — 1 spectrum was ‘data-reduced’ in a fixed manner
using the ‘AMIX’ software (Bruker GmBH). Certain spectral regions were
excluded with the retained regions being & 9.0 - § 6.25 and 8 4.5-0 2.76 and §
248 - 8 0.5. The retained regions were divided as far as possible into
sequential 0.04 ppm-wide segments and an integral obtained for each segment
of each spectrum. The data-reduced values were then normalised uniformly to
give a total integration value of 1000 for each ‘spectrum’. The resultant data
set was loaded into a multivariate statistical analysis software package
(‘Pirouette’ from Infometrix). The PCA was then carried out using mean-
centred scaling for each variable, The resultant scores plots were colour-coded

according to post-dose behaviour and, by inspection, it was found that the
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scores plot for PCl1 versus PCS gave separation of fésponders and non-
responders. This plot and the corresponding loadings plot are presented as
Figures 1.5 and 1.6 respectively. Examination of Figure 1.5 suggests that an
individual rat’s response to dosing with galactosamine HCI (800 mg/kg) could
be predicted from the appropriate pre-dose PCA scores plot depending on how
it mapped in relation to known responders and non-responders. Figure 1.6
demonstrates how such an analysis could reveal the pre-dose features that
enable discrimination of responders and non-responders.

The various figures and tables that follow provide some details of the variable
vesponses of the different rats to galactosamine HCl (800 mg/kg) and show
how PCA can be used to distinguish responders and non-responders pre-dose.
It is likely that a supervised PR method using PLS, PLS-DA or neural networks
analysis would be able to achieve much better pre-dose discrimination of
responders and non-responders than the unsupervised PR approach described

here.
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Table 1.2: Summary of histopathological changes in galactosamine HCI-

dosed rats.
Day Dose of galactosamine hydrochloride
200 mg/kg 800 mg/kg
2 No differences from | Multifocal randomly scattered foci of

controls

209 - severe

hepatocellular necrosis were present in 4/5
animals. Severity of changes:
208 - none

207 — mild

206, 210 — marked

Most necrotic hepatocytes were rounded
with a deeply eosinophilic cytoplasm and
pyknotic nucleus. Some degenerated
hepatocytes showed fine cytoplasmic
vacuolation. Necrotic foci and portal spaces
were infiltrated by mixed inflammatory
cells while foci of haemorthage were

occasionally seen.

No differences from

controls

Minimal bile duct hyperplasia was found in
2/5 animals (201 and 202) this change being
accompanied by slight hepatocellular
anisocaryosis and a few scattered

hemosiderin laden macrophages.




61

Table 1.3: Clinical chemistry analysis of plasma sampled at 24 hours post-

dosing. See Table 1.4 for key to abbreviations and for units of measurement.

STUDY |ANIMAL |5I-NT| A/G | ALAT | ALB | AP | ASAT| TBA
99023 6 23] 14 517 34| 635 82  69.0
99023 71 271 14 52] 33| 688 711 240
99023 8 21 1.3 62| 33 732 103] 29.0
99023 o] 18] 15 46| 32 497 751 20.
99023 0] 26 15 so] 34| 492 86 16.0|
99023 106 23] 13 43] 33| 606 107 48.0!
99023 107] 21 14 46] 33| 495 g4l 220
99023 108] 21 15 49f - 37| 566 73] 290
99023 109] 19 14 38 34] 697 671 230
99023 1100 27| 14 470 33 637 75| 29.0
99023 206 156] 171 2350  32] 787 4320 493
99023 207 23] 21 178 33 983 264 43.0
99023 208] 17] 15| 45| 34] 666 79 200
99023 209 203] 24| 4300 33| 999 10600 1300
99023 210f 35] 18] 479 31] 852 832] 65.0

STUDY [ANIMAL |BILI |CHOL {CREA |GGT |GLUC [PROT |TRIG |UREA

99023 6 011} 72 0.5 O 144] 58] 108 27
99023 7] 009 77 04 Or 186 56 93] 23
99023 8 01 78 0.5 0| 173 58 142 22
99023 9 01l 70 05 0 1857 53| 130 3%

99023 10 62 0.5 176] 57 96 24

99023 106 009 73 0.5 1731 59 94 29

99023 1071 0.05] 60 0.5 184] 56] 158{ 40
99023 108 011} 91 0.5 167) 61f 140 33
99023 109 0.1 72 04 L 138 58 109/ 28

ol ol ol &
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99023 110{ 0.12{ 81 0.5 o 182} 571 127} 28
99023 206 1.26] 60 04 2 1001 51 38 45
99023 207 0.06] 15 0.4 0 162 49 89 24
99023 208 0.11] 61 0.5 Of 168} 561 148 29
99023 209] 137 42 I 04 5 80 47 95| 40
99023 210I 0.12| 46 04 1 130 48 38 25

Table 1.4: Plasma chemistry abbreviations and units

Abbreviation Parameter Units

5I.NT 5-nucleotidase IU/L

AIG albumin/globulin ratio |none

ALAT alanine aminotransferase IU/L

ALB albumin gL

AP alkaline phosphatase TU/L

ASAT aspartate aminotransferase IU/L

TBA total bile acids pmol/L

BILI bilirubin mg/dL

CHOL total cholesterol mg/dL

CREA creatinine mg/dL

GGT y-glutamy] transferase IU/L

GLUC glucose mg/dL

PROT total protein g/L

TRIG triglycerides mg/dL

UREA urea mg/dL
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Table 1.5: Summary of urinary changes observed by NMR in
galactosamine HCl-dosed rats. These resulis refer to the late-euthanased
group of rats (animals 1-5, 101-105 and 201-205).

Dose of galactosamine hydrochloride

instances of raised
taurine but no clear
and consistent

pattern.

Creatine: no

increase

200 mg/kg 800 mg/kg

Very variable Very variable amount of galactosamine were present in

amounts of the day 1 urine samples. The samples from animals 201

galactosamine and 202 contained much galactosamine whilst the

were present in the | samples from animals 203-205 contained very little. See

day 1 urine Table 1.6 and Figure 1.1.

samples. . . .| - . . ..
N-acetyl at ca. 2.07 ppm: this new peak was only
apparent in the day 2 samples from animals 201 and 202.
This peak was provisionally identified by addition of
authentic = standard as  originating from N-
acetylgalactosamine.

Taurine: some | Taurine: Animals 203-205 showed no clear change

whilst animals 201 & 202 showed highly elevated levels.

Creatine: Only animals 201 and 202 showed a clear

increase in creatine - which occurred on day 3.

Guanidinoacetic acid: Only animals 201 and 202 showed
a clear change in the level of GAA; both those animals
showed very much increased levels on day 3 and perhaps

somewhat low levels on day 7.

2-Oxoglutarate: Animals 203-205 showed no obvious
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change in the level of 2-oxoglutarate. Animals 201 &
202 showed reduced levels on days 2 and 3 but very high
levels on day 7.

Trimethylamine-N-oxide: Animals 203-205 showed no
obvious change in TMAO levels. Despite normal pre-
dose levels, TMAQ had essentially disappeared from the
day 3 urine samples obtained from animals 201 & 202.

Bile acids: clearly increased (seen as C18 methyl) in the
day 3 samples from animals 201 and 202.

Betaine: appeared very clearly in the day 2 and day 3
samples from animals 201 & 202 and some betaine was
still present in the day 7 samples from those two animals.
No betaine was detected in any of the urine samples
from animals 204-205. A tiny amount of betaine was
possibly present in the day 3 sample from animal 203.

Urocanic acid: appeared clearly in the day 2 and day 3
samples from animals 201 and 202 but was not present
in any other samples.

Histidine: appeared very clearly in the day 3 sample
from animal 201 and less clearly in the day 3 sample
from animal 202. Histidine was not present in any of the

other urine samples examined from the high dose group.

Threonine: was very clearly elevated in the day 3
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samples from animals 201 and 202. Threonine levels
appeared to be normal in all the other high dose samples.

Alanine: was clearly elevated in the day 3 samples from
animals 201 and 202 but was otherwise normal.

Glucose: appeared to be elevated in the day 2 and day 3
urine samples from animals 201 and 202. Occasionally
elevated glucose was shown by other high dose animals
(animal 204 on day 3; animal 205 on day 7).

A doublet at ca. 8 521, arising from an unidentified
compound, was clearly present in the day 2 urine spectra
from animals 201 & 202. This doublet was not clearly
visible in the spectra of any urine samples from animals
201-205.

Hippurate: was depleted in the day 3 samples from
animals 201 and 202.

Glutamate and glutamine were elevated in the day 3
urine spectrum from animal 201 and possibly also

elevated in the day 3 urine spectrum from animal 202,

Other unlisted changes occurred.

Figure 1.3 shows a portion of the noesypresat NMR spectra of the day —1 and
day +3 urine samples from animal 202. The pre-dose sample (specirum ‘a’)
was collected from 24-17 hours before dosing. The posi-dose sample
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(spectrum ‘b’) was collected from 48-55 hours post-dosing. The spectra are
scaled to constant creatinine. In comparison to spectrum ‘a’, spectrum ‘b’
shows increases in creatine, betaine, guanidinoacetic acid (GAA) and taurine

and decreases in trimethylamine-N-oxide (TMAO) and 2-oxoghtarate.

Figure 1.4 shows a portion of the noesypresat NMR spectra of the day -1 and
day +3 urine samples from animal 201. The pre-dose sample (spectrum ‘a’

was collected from 24-17 hours before dosing. The post-dose sample
(spectrum ‘b’) was coliected from 48-55 hours post-dosing. The spectra are
scaled to constant allantoin. In comparison to spectrum ‘a’, spectrum ‘b’

shows increased excretion of histidine and decreased excretion of hippurate.

Table 1.6: The variability of response to galactosamine HCI (800 mg/kg) in
relation to the amount of galactosamine excreted in the urine, This table
shows, for each animal, the amount of galactosamine excreted in the urine

collected from 0-24 hours post-dosing and lists whether or not a toxic response

was observed.
Animal Total amount of | Responder (R) Source of evidence regarding R/NR
Number | galactosamine or non- classification
excreted in the responder (NR)
urine from 0-24
hours post-
dosing (mg)
201 40.0 R Urine NMR, Histopathology
202 26.2 R Urine NMR, Histopathology
203 0.4 NR Urine NMR, Histopathology
204 0.1 NR Urine NMR, Histopathology
205 0.3 NR Urine NMR, Histopathology
206 14.9 R Histopathology
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207 84 NR (or weak | Histopathology
R)

208 2.3 NR Histopathology

209 28.2 R (severe) Histopathology

210 30.5 R Histopathology

The measured amount of galactosamine excreted by animal 206 was somewhat
lower than expected, given that it was a strong responder, and this may be
because of urine retained in the bladder. Only 3.7 ml of urine was excreted by
animal 206 over the period from 0-24 hours post-dosing and this was the
-lowest amount of urine produced by any animal -during that period. - Metabolite -
excretion is most likely to be underestimated when the measured urine volume
is very low; this is because there may be a significant amount of highly

concentrated urine in the bladder which is insufficient to cause urination.

Figure 1.5 shows a PC scores plot obtained by PCA of the "H NMR spectra of
the nine available day —1 urine samples for the high dose (800 mg/kg) animals;
insufficient day —1 urine was available to obtain an NMR spectrum for animal
206. The data points are coded using diamonds for non-responders (animal
nos. 203, 204, 205, 207 and 208) and crosses for responders (animal nos. 201,
202, 209, 210), but it should be noted that animal 207 was on the borderline
between responder and non-responder. This plot shows that there are features
in the pre-dose urine spectra which can distinguish between those animals
which will and will not be badly affected by galactosamine 800 mg/kg. The
responders had higher pre-dose levels of urinary creatine than non-responders
and all but one of the responders (animal 201) had a lower pre-dose ratio of
urinary 2-oxoglutarate/creatinine than non-responders (see also Figure 1.6).
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Each of the plotted points of Figure 1.6 is labelled according to the centre of
the 0.04 ppm-wide spectral segment that it represents. Thus, for instance, the
point labelled 3.02 represents the spectral segment (or variable) from d 3.04 to
8 3.00 ppm. The points of interest are those that make substantial, non-zero,
contributions to PCs 1 and 5. Comparison of Figures 1.5 and 1.6 indicates that,
in comparison to the responders, the non-responders have a relatively high
value for the integral of the spectral segment centred at 8 3.02. This difference
appears to be attributable to a higher level of 2-oxoglutarate in the non-
responders and 2-oxoglutarate also contributes to the segment centred at § 2.46.
Trimethylamine-N-oxide makes a major contribution to the segment centred at
One possible explanation for this is that the non-responders were slow

acetylators.

Example 2. Variable urinary isoniazid metabolite patterns and their
relationship to the toxicity of isoniazid in rats. An example of the major
significance of inter-individual differences in metabolic capacities.

Thirty young adult age-matched male Sprague-Dawley rats were obtained from ‘
Charles River, France. After observation to ensure that they each appeared
healthy they were placed in individual metabolism cages with free access to
water and a standardised diet (diet AO4C from Usine d’Alimentation
Rationnelle, Villemoisson-sur-Orge, France). The laboratory temperature was
maintained at 20 + 2 degrees C and the relative humidity at 60 + 20 %. The
laboratory air was filtered and changed 14 times per hour. A fixed ‘12 hours
light - 12 hours dark’ cycle was imposed. The study commenced after a short
period of cage ‘acclimatisation’ when the rats were about 6 weeks old and

about 200g in mass.
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Dosing was on the day designated as ‘day 1’ when the growing rats were each
approximately 250g in mass. Isoniazid (from Sigma, France) was dissolved in
physiological saline and dosed by intraperitoneal injection at either 200 mg/kg
or at 400 mg/kg; ten animals (nos. 101-110) received the low dose and ten
animals (nos. 201-210) received -the high dose. Ten control animals (nos. 1-10}
received an intraperitoneal injection of saline.

Pre- and post-dose seven hour urine samples were collected daily into ice-

cooled vessels containing sodium azide (0.1 ml of a 10% (w/v) solution of

sodium azide in water) as an antibacterial preservative. There was an

additional overnight urine collection from 7-24 -hours post-dosing. The urine -
collection apparatus was cleaned prior to each collection to minimise bacterial,

food and faecal contamination. The final volume of each urine sample was

determined without making any correction for the azide solution. The urine

samples were stored frozen pending analysis.

It was intended that post-dose blood samples would be taken ;mmediately
before euthanasia with euthanasia being immediately followed by sampling for
histopathology. As in Example 1, the intention was that five of each group of
ten rats would be euthanased by means of CO, at one day after dosing thereby
providing early blood and histopathology samples; the remainder were to be
euthanased by the same technique at seven days after dosing thereby providing
late blood and histopathology samples. It was planned that the early-
euthanased rats would be numbers 6-10, 106-110 and 206-210 whilst the late-
cuthanased rats would be numbers 1-5, 101-105 and 201-205. However, some
animals (nos. 204, 205, 207 and 209) from the group which received the high
dose of isoniazid, suffered unexpected convulsions and either died or had to be
euthanased early to prevent suffering. Remarkably, by comparison, the other
animals (nos. 201-203, 206, 208 and 210) from the high dose group showed no
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obvious clinical signs of ill effects. The urine samples were deep-frozen
pending NMR analysis.

Urine samples were prepared for NMR analysis by mixing 400 pl of urine with
200 ul of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na,HPO, and 0.2
M NaH,PQ,); if insufficient urine was available the shortfall was made up with
purified water with a minimum of 200 pl of urine being used. The urine-buffer
mixture was left to stand for 10 minutes at room temperature to enable
buffering to take place and then centrifuged at 13,000 rpm for a further 10
minutes to remove suspended particulates. 500 il of ‘clear’ buffered urine was
transferred to an NMR tube and 50 ul of a TSP/D,O solution added. TSP
(sodium 3-trimethylsilyl-[2, 2, 3, 3-*H,]-1-propionate) is a chemical shift
reference compound (S 0) used in the NMR experiment and the D,O provided a
field/frequency lock for the NMR spectrometer. The concentration of the
TSP/D,0 solution was such as to give a final TSP concentration of 0.1 mM in
the NMR tube. The NMR analyses were carried out at 303K on a Bruker AMX
600 MHz NMR spectrometer with the NOESYPRESAT pulse sequence
(Claridge, 1999) used to reduce the size of the water signal. The principal

acquisition parameters were:

Spectrometer Frequency: 600 MHz

Spectral Width: ca. 7200 Hz (12 ppm)

Bruker Pulse Program: noesyprld

Number of Data Points in Time Domain; 65536
Number of Scans: 64

Number of Dummy Scans: 4

Acquisition Time: ca. 4.55 seconds
Presaturation Time: 3 seconds

Mixing Time: 0.1 second
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After acquisition the NMR spectra were Fourier-transformed into 32768 data
points following application of 0.3 Hz line-broadening by means of an
exponential multiplication applied to the free induction decay signal. The
spectra were phased to give an even baseline around the NMR signals and the
chemical shift scale was set by assigning the value of 8 O to the TSP peak.
Spectra and selected expansions were plotted on paper. Where a set of spectra
was to be examined by multivariate pattern recognition methods, the baseline
of each spectum was moved to zero intensity using a straight-line baseline
correction algorithm. These spectral processing operations were carried out on
-a Silicon Graphics computer using-the ‘xwinnmr’ software (Bruker-GmBH): -

Visual examination of the NMR spectra collected from 0-7 hours post-dosing
revealed substantial variation in the patterns of certain metabolites which are
believed to be derived from isoniazid. This variation was particularly obvious
in three peaks in the region of 2 ppm which are thought to originate from three
different N-acetylated species. These peaks at ca. 2.22, 2.20 and 2.15 ppm are
henceforth designated as peaks ‘a’, ‘b’ and ‘c’ respectively and the compounds
from which they arise are henceforth designated as compounds ‘A’, ‘B’ and
‘C’. At each dose there appeared to be essentially two different types of
pattern of these metabolites and examples of these different patierns, referred to
as Type 1 and Type 2, are shown in Figure 2.1.

PCA of the data-reduced NMR spectra of the urine samples collected from 0-7
howrs after dosing isoniazid (200 mg/kg) also revealed the metabolic variation
(see Figure 2.2). To achieve this analysis the NMR spectra of the nine
available samples were first ‘data-reduced’ in a fixed manner using the AMIX
program (Bruker GmBH). All spectral regions except for the N-acetyls region
from 8 2.23 to § 2.13 were discarded. The remaining portion of each spectrum
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was divided into two consecutive 0.05 ppm-wide segments and an integral
obtained for each segment. The data-reduced values were then normalised to
give a total integration value of 1000 for each ‘spectrum’. The resultant data
set was loaded into a multivariate statistical analysis software package
(‘Pirouette’ from Infometrix) and Principal Components Analysis (PCA)
carried out using mean-centred scaling of each variable (spectral segment).
With only two input variables this was a trivial example of PCA but it
.supported the presence of two different types of N-acetyls patterns as
previously determined, the Type 1 animals being animals 101, 103 and 109 and
the Type 2 animals being animals 102, 105, 106, 107, 108 and 110. In Figure
© 2.2 the data points for the Type 1 animals are marked with crosses whilst the
data points for the Type 2 animals are marked with diamonds.

Isoniazid is a classic example of a substance whose metabolism, in humans, is
affected by N-acetylator phenotype and the different metabolite patterns that
were observed in this example suggested the existence of slow and fast N-
acetylators within the test group. The isoniazid metabolite patterns were
somewhat dose-dependent but it was possible, regardless of dose level, to
assign all the day 1 (0-7 hours) urine spectra as having either Type 1 or Type 2
patterns on the basis of fixed peak height ratio criteria (see Table 2.1)..
Remarkably it was observed, at the high dose level, that only those animals
showing the Type 2 pattern of N-acetyls developed certain foxic responses
which included loss of kidney function (revealed by increased urinary glucose

and/or lactate), convulsions and death (see Table 2.1).
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Table 2.1. Summary of the metabolic and other behaviour observed after
dosing isoniazid to male Spague-Dawley rats at 200 and 400 mg/kg.

Table 2.1, part 1.

Animal Dose a=2.22ppmpk.ht. b=220ppmpk. ¢=2.15ppmpk
No. (mg/kg) ht. ht.
101 200 5 30 66.5
102 200 14 62.5 75
103 200 3 22 49
104 200 no spectrum no specinum no spectrum
105 200 : 145 ... o101 ... 825
106 200 18.5 79 110
107 200 12 42 445
108 200 41 140 10
109 200 6 29 89
110 200 17 70 47.5
201 400 9 44 65.5
202 400 10 48 76.5
203 400 9.5 49 72
204 400 21.5 99.5 28.5
205 400 - 125 68 14
206 400 45 157 69.5
207 400 34 113 25
208 400 14 81 114.5
209 400 34 128 315

210 400 6.5 41 77
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The peak heights (abbreviated pk.ht.) were measured in millimetres from the
plotted spectra after subtraction of a local baseline.

Table 2.1, part 2.
Dose
Animal No. (mg/kg) «¢bpk. ht.ratio c/apk. ht. ratio  Acetyls type

101 200 2.2 13.3 1
102 200 1.2 54 2
103 200 22 16.3 1
104 200 no spectrum no spectrum no spectrum

- 105 200 08 - - 57 - -2
106 200 14 59 2
107 200 1.1 3.7 2
108 200 0.7 25 2
109 200 3.1 14.8 1
110 200 0.7 2.8 2
201 400 1.5 7.3 1
202 400 1.6 1.7 1
203 400 1.5 7.6 1
204 400 0.3 1.3 2
205 400 0.2 1.1 2
206 400 04 1.5 2
207 400 0.2 0.7 2
208 400 1.4 8.2 1
209 400 0.2 0.9 2
210 400 1.9 11.8 1



75

Criteria for determination of N-acetyls pattern type:
Lowdose: Typel:c/h22.2;c/a=13.3 Type2:c/b<14;c/a<59

High dose: Typel:c/h214;c/a273 Type 2: c/b<04;c/a<s 1.5
Either dose: Type 1:c/az=7.3 Type 2: ¢/a<5.9
Type l:c/b214 Type2:c/bs14

Table 2.1, part 3. No loss of kidney function was detected at the 200 mg/kg
dose but some animals showed impaired kidney function at the 400 mg/kg
dose. Furthermore, there is a correlation, at the 400 mg/kg dose, between the
type of acetyls pattern observed and whether or not there was any loss of
kidoney fuiiction. Only the Type 2 animals showed-a lossof kidneyfunction as -
evidenced by increased urinary levels of glucose and lactate. As an animal
producing the Type 2 acetyls pattern, animal 206 showed somewhat anomalous
behaviour in regard to urinary lactate. However, it is noteworthy that this
animal was at the extreme edge of Type 2 region as defined by the acetyls peak
height ratios. |



Table 2.1 part 3

Animal Dose
No. (ng/kg)
101 200
102 200
103 200
104 200
105 200
106 200
107 200
108 - --200 - - .
109 200
110 200
201 400
202 400
203 400
204 400
205 400
206 400
207 400
208 400
209 400
210 400
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Acetyls type Increased lactate?

1
2
1
no spectrum

| ST ST S S T S

" I T = T o T o B o B T T

No
No
No
no spectrum
No
No
No
No .
No
No

No
No
No
Yes
Yes
No
Yes
No
Yes
No

Increased
glucose?
No
No
No
no spectrum
No
No
No
No
No
No

No
No
No
Yes
Yes
Yes
Yes
No
Yes
No
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Table 2.1, part 4. There is a further association, at the 400 mg/kg dose,
between the type of acetyls pattern observed and whether or not convulsions
and premature death occurred. Only Type 2 animals suffered convulsions and
premature death. Again animal 206 was anomalous in that it was Type 2 but

did not die prematurely.
Dose Impaired kidney Premature
Animal No. (mg/kg)  Acetyls type function? Death?
101 200 1 No No
102 200 2 No No
103 200 1 No .. No
104 . ... 200.-.  pospecttum - ---—-nospectrum--- - - No -
105 200 2 No No
106 200 2 No No
107 200 2 No No
108 200 2 No No
109 200 1 No No
110 200 2 No . No
201 400 1 No No
202 400 1 No No
203 400 1 No No
204 400 2 Yes Yes
2035 400 2 Yes Yes
206 400 2 Yes (mild) No
207 400 2 Yes Yes
208 400 1 No No
209 400 2 Yes Yes
210 400 1 No No
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Table 2.1 suggests that some metabolic difference, reflected in the N-acetyls
patterns, has a critical effect on isoniazid toxicity. The critical metabolic step
is suspected to be the initial transformation of isoniazid which may proceed
either 1) to N-acetylisoniazid, by N-acetylation, or 2) to hydrazine and
isonicotinic acid, by hydrolysis of the amide group of isoniazid (see Figure
2.3).

We suspect that hydrazine was responsible for the observed convulsions and
we postulaie that the animals showing the toxic responses in this study had a
particular N-acetylator phenotype i.e. that they were relatively slow N-
acetylators-and that-they-therefore produced more toxic hydrazine from the 400
mg/kg dose of isoniazid than did the other high dose animals which were
presumably relatively fast N-acetylators. To confirm the nature of the
factor(s) underlying the variable effects of isoniazid (400 mg/kg) that were
observed in this study, compounds ‘A’ and ‘B’ giving rise to peaks ‘a’, ‘b’ ’
must be identified. Compound ‘C’ has already been identified as N-

acetylisoniazid.

This example demonstrates, as is well known, that the metabolite patterns of a
dosed substance can be used to distinguish different metabolic phenotypes.
This example also shows that these metabolite patterns may be interrogated by
the use of PR methodology. This example also demonstrates the crucial
importance of metabolic phenotype in determining an individual’s response to
being dosed with a particular substance. In the next example it is demonstrated
that the present invention allows variation in post-dose metabolic behaviour to
be correlated with pre-dose variation in biological samples so as to provide a

predictive model.
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Example 3. Pre-dose prediction of urinary isoniazid metabolite quantities
in male Sprague-Dawley rats subsequently dosed with isoniazid (200
mg/kg). An example showing that numerical pre-dose to post-dose
predictions can be achieved.

75 young adult age-matched male Sprague-Dawley rats were obtained from
Charles River, France. After screening to ensure that they appeared healthy
they were assigned numbers 101-175 and placed in individual metabolism
cages with free access to water and a standardised diet (diet AO4C from Usine
&’ Alimentation Rationnelle, Villemoisson-sur-Orge, France). The laboratory
temperature was maintained at 20 = 2 degrees C and the relative humidity at 60
120 %. The laboratory air was filtered and changed 14 times per hour. A
fixed ‘12 hours light - 12 hours dark’ cycle was imposed. The study
commenced after a short period of cage ‘acclimatisation’ when the rats were
about 6 weeks old and about 200g in mass. Dosing was catried out when the
growing rats were each approximately 250g in mass. Isoniazid (from Sigma,
France) was dissolved in physiological saline and dosed to each rat by
intraperitoneal injection at 200 mg/kg.

Individual pre-dose (48-41 hours before dosing) and post-dose (0-7 hours after
dosing) urine samples were collected into ice-cooled vessels containing sodium
azide (0.1 ml of a 10% (w/v) solution of sodium azide in water) as an
antibacterial preservative. The urine collection apparatus was cleaned prior to
each collection to minimise bacterial, food and faecal contamination. The final
volume of each urine sample was determined without making any correction

for the azide solution.
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The urine samples were prepared for NMR analysis by mlxmg 400 ul of urine
with 200 pl of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na,HPO, and
0.2 M NaH,PO,, pH 7.4); if insufficient urine was available the shortfall was
made up with purified water with a minimum of 200 ul of urine being used.
The urine-buffer mixture was left to stand for 10 minutes at room temperature
to enable buffering to take place and then centrifuged at 13,000 rpm for a
further 10 minutes to remove suspended particulates. 500 pl of ‘clear’ buffered
urine was transferred to an NMR tube and 50 pul of a TSP/D,O solution added.
TSP (sodium 3-trimethylsilyl-{2, 2, 3, 3-’H,]-1-propionate) is a chemical shift
reference compound (8 0) used in the NMR experiment and the D,0 provided a
field/frequency lock for the NMR spectrometer. The concentration of the
TSP/D,O solution was such as to give a final TSP concentration of 0.1 mM in
the NMR tube.

The NMR analyses of the prepared urine samples were carried out at thirty
degrees C on Bruker 600 MHz NMR spectrometers with the NOESYPRESAT
pulse sequence (Claridge, 1999) used to reduce the size of the water signal. A
Bruker DRX spectrometer was used to acquire the post-dose NMR data whilst
a Bruker AMX spectrometer was used to acquire the pre-dose NMR data. The

principal acquisition parameters were:

Spectrometer Frequency: 600 MHz

Spectral Width: ca. 7200 Hz (12 ppm)

Bruker Pulse Program: noesyprld

Number of Data Points in Time Domain: 65536

Number of Scans: 32 (post-dose spectra); 64 (pre-dose spectra)
Number of Dummy Scans: 4

Acquisition Time: ca. 4.55 seconds

Presaturation Time: 3 seconds
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Mixing Time: 0.1 second

After acquisition the NMR spectra were Fourier-transformed into 32768 data
points following application of 0.3 Hz line-broadening by means of an
exponential multiplication applied to the free induction decay signal. The
spectra were phased to give an even baseline around the NMR signals and the
chemical shift scale was set by assigning the value of & 0 to the TSP peak.
Each of the post-dose NMR spectra was plotted on paper and peak height
measurements were made manunally on selected peaks afier localised baseline
correction. The peaks whose heights were measured were the allantoin peak at
0 5.4, the-three peaks -at ca. 6 2.22, 6 2.20 and $.2.15, known .as peaks ‘a’, ‘b’
and ‘c’ respectively as in Example 2, and the TSP peak at & 0. Prior to data
reduction leading to multivariate statistical analysis, the baseline of each digital
spectrum was moved to zero intensity using a straight-line baseline correction
algorithm. The spectral processing and plotting operations described above
were carried out on a Silicon Graphics computer using the ‘xwinnmr’ software
(Bruker GmBH). '

After data reduction, PCA of the ‘N-acetyls’ region (8 2.3 to § 2.1) of the post-
dose NMR spectra was carried out using the ‘Pirouefte’ software from
Infometrix. However, in contrast to the results for Example 2, distinct
groupings for Type 1 and Type 2 spectra were not observed despite the wide
range of patterns present in the data set. As it was not possible to identify
suitable natural boundaries within the distribution, the individual post-dose
spectra were better described by pumerical measores rather than by
membership of a particular class. This in turn meant that the following pre-
dose to post-dose correlation analysis would be better based on numerical

prediction rather than on c¢lass prediction.
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There are certain problems associated with achieving useful measurements of
urinary metabolite excretion and, consequently, two different approaches were
taken to quantifying the excretion of the different N-acetylated species in the
post-dose samples. The first approach was to quantify the excretion of
metabolites A, B and C (designéted as in Example 2) with respect to an
endogenous urinary component, allantoin. Thus, the intensities of peaks a, b
and ¢ in each NMR spectrum were described as peak height ratios with respect
to the allantoin peak at § 5.4. The allantoin peak was a convenient internal
reference point although the creatinine methylene signal at & 4.05 could also :
have been used for that purpose. The second approach was to make some
~measure of the-absolute excretion -of components-A;B-and-C-byreference -to
the size of the TSP signal, which was added in known constant quantity to each
NMR sample, and taking into account the volume of urine produced by each
rat. ‘Thus, for example, a relative measure of the absolute excretion of
compound C by different animals was obtained using the formula (height of
peak ‘c’/height of TSP peak)*(volume of urine collected). It is important to
note here that this measurement is valid because all of the post—ciose NMR
samples were prepared in a constant fashion using 400 pl of urine except for
animal 138 where no urine was available and no NMR sample was prepared.
Peak heights were measured in millimetres and urinary volumes were measured
in millilitres. The limitation of this second approach is that the urine collected
from an animal over a set period may not be representative of what was passed
to the bladder during that period and experience has shown that such excretion
‘errors’ are particularly likely when very little urine is collected. The limitation
of the first approach to quantitation is that the excretion of the endogenous
reference compound, allantoin in this case, may not be invariant although prior

experience has indicated it to be a useful reference point.
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Each pre-dose NMR spectrum was ‘data-reduced’ in a constant fashion using
the AMIX program (Bruker GmBH). Certain spectral regions were discarded
(e.g. the regions containing the TSP and residual water signals) before dividing
the remainder of each spectrum into sequential 0.04 ppm-wide segments and
obtaining an integral for each segment. The data-reduced spectra were then
normalised to give the same total intensity for each ‘spectrum’. PLS analyses
were then carried out in an attempt to find pre-dose features that would enable
prediction of the post-dose excretion of the various N-acetylated metabolites,
‘A’, ‘B’ and ‘C’. These PLS analyses were carried out using the SIMCA

software from Umetrics.

to the height of the allantoin peak at § 5.4, in the NMR spectra of the urine
samples collected from 0 — 7 hours after dosing isoniazid (200 mg/kg), could
be predicted surprisingly well from the pre-dose data (see Figures 3.1 and 3.2
which relate to peak ‘a’). Considering the case of peak ‘a’, its peak height ratio
with respect to allantoin provides a relative measure of the ratio of (amount of
compound A /amount of allantoin) in the NMR sample. If allantoin excretion
over the 7 hour urine collection period on day 1 is assumed to be constant for
all the rats in this study, the ratio (height of peak ‘a’/height of ailantoin peak)
provides a relative measure of the amounts of compound A excreted by the
different rats during that period. Thus, these findings indicate that, with a
suitable model, the amounts of compounds A and B excreted after dosing
isoniazid (200 mg/kg) are predictable, for some rats, from the pre-dose data.

It was also found that, for the vast majority of animals that produced more than
3 ml of urine during the 0 - 7 hour collection period on day 1, the quantity
(height of peak ‘c’/height of TSP peak)*(volume of urine collected) could be
predicted from the pre-dose data (see Figure 3.3). Given that the NMR
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samples and associated spectra were all prepared and obtained in the exact
same way, this quantity is a relative measure of the amount of compound C
excreted by each rat. Thus, with a suitable model, it is possible to predict, from
pre-dose data, the amount of compound C excreted after dosing isoniazid (200
mg/kg).

Figure 3.1 shows the model building and validation data for a PLS model
predicting, from pre-dose urinary NMR spectroscopic data, the values of
(height of peak ‘a’/height of allantoin peak) in the NMR spectra of urine
samples collected from O ~ 7 hours after dosing isoniazid (200 mg/kg) to male
-Sprague-Dawley rats. The data points are marked and coded using -unfilled
triangles for model building data and filled triangles for validation data. The
unfilled triangles show the observed and predicted results for the rats whose
data was used to build the predictive PLS model. The filled triangles show the
observed and predicted results for eleven rats (numbers 110, 111, 122, 125,
128, 135, 140, 144, 147, 167 and 172) whose data were excluded from the
model-building process. Visual assessment of this figure indicates that a valid
model has been obtained and that it is possible to predict the level of excretion
of peak ‘a’ relative to the level of allantoin from an analysis of the pre-dose
data.

The regression coefficients pertaining to the PLS analysis of Figure 3.1 are
shown in Figure 3.2 for each of the variables used in the analysis. As
previously described, these variables were derived from integrals of
consecutive segments of the pre-dose spectra. The different variables used in
the PLS analysis are identified, in Figure 3.2, according to the chemical shift at
the centre of the relevant 0.04 ppm-wide spectral segments. The greater the
magnitude, either positive or negative, of the regression coefficient for a

spectral segment, the greater the predictive contribution of that segment and,
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for example, the pre-dose spectral segment centred at 8 3.42 is negatively
correlated with the concentration of A post-dose.

Figure 3.3 shows the model building and validation data for a PLS model
predicting, from pre-dose urinary NMR spectroscopic data, the post-isoniazid
(200 mg/kg) excretion of compound C by Sprague-Dawley rats. The data
points in Figure 3.3 are marked and coded using unfilled triangles for model
building data and filled triangles for validation data. The unfilled triangles
show the observed and predicted values for the various rats whose data was
used in building the model. The filled triangles show the observed and
- predicted results for eight rats (numbers- 105, 108, 115,116,121, 142,157 and -
163) whose data were excluded from the model-building process. The relative
amount of metabolite C excreted by each animal was measured as (height of
peak ‘c’/height of TSP peak)*(volume of urine produced). Visual assessment
of this figure indicates that a valid model has been obtained.

In a further analysis of the data, a different approach was taken to the
quantitation of the compounds A, B and C that were excreted after dosing
isoniazid. In this approach the region from & 2.24 - 2.12, containing the three
peaks ‘a’, ‘b’ and ‘c’, was first integrated as a whole. Then separate
integrations for the regions & 2.24 - 2.17 (containing peaks ‘a’ and ‘b’) and 3
2.17 - 2.12 (containing peak ‘c’) were obtained as fractions of the total § 2.24 -
2.12 integration, giving ‘Fraction A + B’ and ‘Fraction C’. The ratio [Fraction
C/(Praction A + B)] was then calculated from the latter two quantities. The
rationale for this approach was that integrations should provide better estimates
of relative amounts than are obtainable from peak height measurements, whilst
recognising that the individual ratios (Amount C/Amount A) and (Amount
C/Amount B), that provided phenotypic discrimination, might be usefully
replaced by the single ratio [Fraction C/(Fraction A + B)]. Knowledge of
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either Fraction A -+ B or Fraction C means that the ratio [Amount C/(Amount A
+ Amount B)] can be calculated. Thus, using the SIMCA software from
Umetrics, we attempted to build PLS models for predicting Fraction A + B,
Fraction C and [Fraction C/(Fraction A + B)] from the pre-dose data. This
gave three possible ways of arriving at a successful prediction of {Fraction
C/(Fraction A + B)].

Using pre-dose NMR data normalised to constant total spectral area (after
excluding certain spectral regions), we found that PLS models were obtained
that were successful in individually predicting each of the three quantities,
~--Fraction A + B, Fraction-C and the ratio [Fraction C/(Fraction A -+ B)], from
that pre-dose data.

-Figure 3.4 shows a plot of the observed versus pre-dose predicted values for
[Fraction C/(Fraction A + B)] in the urine collected from 0-7 hours after dosing
male Sprague-Dawley rats with isoniazid (200 mg/kg). The results shown are
for modelling data only. This plot indicates that correlation between the pre-
and post-dose data can be detected.

Figure 3.5 shows the results of the internal model validation analysis proving |
that the observed correlation between the pre-dose data and the post-dose
values of [Fraction C/(Fraction A + B)] was not random.

Figure 3.6 shows the prediction of [Fraction C/(Fraction A + B)] for an
externally generated test set. In this case a pre-to-post dose prediction model
built using the present isoniazid study data was used in an attempted pre-to-
post dose prediction of the results for 9 low dose animals from the isoniazid
study described in Example 2.  The prediction set (filled circles) was
comprised of six Type 2 animals and three Type 1 animals and the results
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showed that [Fraction C/(Fraction A + B)] could be succe.élsfu]ly predicted for
the Type 2 test animals but was not well predicted for the Type 1 test animals
(RMSEE = 0.1524; RMSEP (Types 1 and 2) = 0.4416; RMSEP (Type 2) =
0.2325). However, examination of the modelling data (unfilled circles)
indicated that it was almost entirely composed of Type 2 animals and this
provides a likely explanation why Type 2 test data could be better predicted
than Type 1. However, it is important to note that the model was sufficiently
robust to provide some useful predictions for test data obtained in a separate
study.

. With further work it may_prove possible to make_pre-dose predictions of .
susceptibility or non-susceptibility to isoniazid (400 mg/kg)-induced toxicity as
seen in Example 2. However, the crucial result obtained here is that certain
metabolic phenotype-determined post-dose results can be predicted from pre-
dose biofluid NMR spectra.

Example 4. Pre-dose prediction of wrinary paracetamol metabolite
quanfities in male Sprague-Dawley rats subsequently dosed with
paracetamel (600 mg/kg). An example showing that numerical pre-dose to
post-dose predictions can be achieved.

75 male Sprague-Dawley rats were obtained which were matched for age and
body mass. At 3 days before dosing the mean body mass of the rats was
260.2g (standard deviation: 12.6g) and at the time of dosing the rats were
approximately 7 weeks old. They were kept in individual cages in a
temperature-, humidity- and light/dark- controlled laboratory with free access
to water and a standard rodent diet. The study commenced after a period of
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cage acclimatisation. 65 of the rats were dosed orally with paracetamol (660
mg/kg) in an aqueous solution containing methylcellulose (0.5% w/v) and
Tween 80 (0.1% w/v). 10 of the rats were used as a conirol set and were orally
dosed with the dosing vehicle only., Individual pre- and post-dose 24-hour
urine samples were collected from each rat into ice-cooled vessels, which also
contained a fixed volume of sodium azide solution as a preservative. The pre-
dose urine samples were collected from 4824 hours before dosing. The post-
dose urine samples were collected from 0-24 hours after dosing. The final
volume of each urine sample was determined without making any correction

for the azide solution. The urine samples were all prepared for NMR analysis

according to -a-standard- procedure that involved-the use- of fixed volumes of-

urine, of a pH buffer solution and of a TSP/D,0 solution. The "H NMR spectra
were acquired at 600 MHz on a Bruker NMR spectrometer equipped with a
flow probe, using Bruker’s ‘xwinnmr’ and ‘iconnmr’ software.  Water
suppression was achieved using the ‘noesyprid’ program. The post-dose
spectra of the paracetamol-dosed rats showed extra N-acetyl signals which
were found to be located at ca. 2.18, 2.165, 2.155 and 2.15 ppm after resolution
enhancement. These signals were initially assigned to paracetamol sulphate
(now designated °‘S’), paracetamol glucuronide (now designated ‘G’), the

mercapturic acid derived from paracetamol (now designated ‘MA’), and .

paracetamol itself (now designated ‘P’), respectively. The mercapturic acid of
paracetamol (MA) is also sometimes referred to as the N-acetylcysteine
conjugate of paracetamol. Spiking with paracetamol glucuronide and
paracetamol confirmed their peak assignments and the assignment of the MA
acetyl was confirmed from the similarly sized peak at 1.86 ppm. Reference to
the literature (Bales et al. (1984) Urinary excretion of acetaminophen and its
metabolites as studied by proton NMR spectroscopy, Clin. Chem., 30, 10,
1631-1636) suggested that the N-acetyl peak of the cysteine conjugate of
paracetamol would potentially overlap the N-acetyl peak of paracetamol but, in
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fact, it seems more likely that the N-acetyl peak of the cysteine conjugate
would overlap the equivalent N-acetyl peak from the mercapturic acid. This
leaves some uncertainty over the quantitation of both MA and P and,
henceforth, when we refer to models and data for MA and P, it should be
remembered that the measured quantities might contain some contribution from
the cysteine conjugate. No significant interferences were present in the spectra
of the post-dose control samples. Quantitation of the various paracetamol-
related urinary metabolites, including paracetamol itself, was achieved by
reference to the relevant acetyl signals in the chemical range 2.22 — 2.11 ppm
although other signals could also potentially have been used. The complete
--cluster-of N-acetyls signals -from ¢a.-2.22-to c¢a.-2.11 ppm was first integrated -
relative to the TSP signal, in the post-dose spectra, giving a measure of the total
amount of N-acetylated species in each NMR sample. A relative measure of
the total excretion of N-acetylated species by each rat in the 0-24 hr post-dose
period was then calculated as (total N-acetyls integration/TSP
integration)*volume of urine collected (in millilitres). Subsequently, each
post-dose spectrum was resolution-eihanced using a gaussian multiplication (Ib
-1, gb 0.5) and the signals from the four components S, G, MA and P were
integrated relative to one another. These values were summed and then the
amount of each component was calculated as a fraction of the total. As other
components of the N-acetyls cluster were relatively insignificant, combining
these fractional values for S, G, MA and P with the value for the total acetyls
excretion for each animal gave an estimate of the amount of each component
excreted by that animal. The S/G ratio was calculated. The pre-dose spectra
were normalised in two different ways. In the first approach, the total spectral
integration between 9.5 and 0.5 ppm was adjusted to constant total area after
excluding the region from 6.3 — 4.0 ppm, which contained the residual water
signals and the signal from urea, which is affected by the water suppression
procedure. In the second approach, the pre-dose spectra were normalised
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relative to TSP, which had been added in constant amount to each NMR
sample.  Subsequently, each of the TSP-normalised pre-dose spectra was
multiplied by the relevant volume (in millilitres) of urine collected during the
pre-dose collection. 'Thus, in this second approach, a relative measure was
obtained of the 24-hour excretion of each of the pre-dose urinary metabolites.
The TSP signal was excluded prior to carrying out the chemometrics analyses.

PLS models for pre-dose to post-dose prediction were constructed using the
SIMCA software from Umetrics.

-Figure -4.1- shows-a plot of the observed-versus-PL—S-preéieﬁed—valu&s for- the
total 0-24 hour excretion of N-acetylated compounds by rats dosed with
paracetamol (600 mg/kg). The results shown are for modelling data only and
relate to the first model for this parameter. This plot indicates clear comrelation
between the pre-dose and post-dose data. The value of RMSEE for the model
is 7.98.

Figure 4.2 shows a plot of the observed versus PLS-predicted values for the 0-
24 hour excretion of MA by rats dosed with paracetamol (600 mg/kg). The
results shown are for modelling data only and relate to the first model for this
parameter. This plot indicates clear correlation between the pre-dose and posi-
dose data. The value of RMSEE for the model is 1.28.

Figure 4.3 shows a plot of the observed versus PLS-predicted values for the
total 0-24 hour excretion of N-acetylated compounds by rats dosed with
paracetamol (600 mg/kg). The results shown are for modelling data only and
relate to the second model for this parameter. This plot indicates clear

correlation between the pre-dose and post-dose data. The value of RMSEE for
the model is 12.99,
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Figure 4.4 shows the successful internal validation of the mode] that generated
the pre-dose predictions shown in Figure 4.3. This plot proves that the
correlation between the pre- and post-dose data, indicated by Figure 4.3, is not
random. Exiernal validation of the model was also successful and produced an
RMSEP value of 12.89, which was comparable with the RMSEE value of
12.99 for the model.

Figure 4.5 shows a plot of the observed versus PLS-predicted values for the 0-
24 hour excretion of paracetamol glucuronide (‘G’) by rats dosed with
paracetamol (600 mg/kg). The results shown are for modelling data only..
This plot indicates clear correlation between the pre-dose and post-dose data.
The value of RMSEE for the model is 6.99.

Figure 4.6 shows the successful internal validation of the model that generated
the pre-dose predictions shown in Figure 4.5. This plot proves thai the
correlation between the pre- and post-dose data, indicated by Figure 4.5, is not
random. External validation of the model was also successful and produced an
RMSERP value of 7.27, which is comparable with the RMSEE value of 6.99 for

the model.

Figure 4.7 shows a plot of the observed versus PLS-predicted values for the 0-
24 hour excretion of ‘MA’ by rats dosed with paracetamol (600 mg/kg). The
results shown are for modelling data only and relate to the second model for
this parameter. This plot indicates clear correlation between the pre-dose and
post-dose data. The value of RMSEE for the model is 1.90.

Figure 4.8 shows the successful internal validation of the mode! that generated
the pre-dose predictions shown in Figure 4.7. This plot proves that the
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correlation between the pre- and post-dose data, indicated by Figure 4.7, is not
random. External validation of the model was also successful and produced an
RMSEP value of 1.32, which is comparable with the RMSEE value of 1.90 for
the model. The external validation is shown in Figure 4.9 where the unfilled
circles are the model-building data and the filled circles are test data that were
not used in the model-building exercise.

Figure 4.10 shows a plot of the observed versus PLS-predicted values for the
excretion of ‘P’ by rats dosed with paracetamol (600 mg/kg). The resulis
shown are for modelling data only. This plot indicates that there is correlation
between the pre-dose and post-dose data. The value of RMSEE for the model
is 3.51.

Figure 4.11 shows the internal validation of the model that generated the pre-
dose predictions shown in Figure 4.10. This plot proves that the correlation
between the pre- and post-dose data, indicated by Figure 4.10, is not random.
External validation of the model was also successful and produced an RMSEP
value of 3.30, which is comparable with the RMSEE value of 3.51 for the
model.

Direct pre-dose prediction of the amount of ‘S’ excreted post-dose was not
achieved. However, by subtracting the predictions for the amounts of ‘G’, ‘P’
and ‘MA’ excreted from the prediction for the total excretion of N-acetylated
species it was possible to generate a pre-dose prediction for the amount of ‘S’
excreted by each rat in the 24-hour post-dose period. By combining that
prediction for ‘S’ with the appropriate prediction for ‘G’ it was possible to
obtain a pre-dose prediction for the posi-dose G/S ratio for each rat. Figure
4.12 shows the observed versus predicted values for the amount of ‘S’
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excreted. Figure 4.13 shows the observed versus predicted values for the G/S

ratio.

The results of this study demonstrate that the new methodology is not limited
simply to predictions of responses determined by acetylator phenotype. The
results presented here indicate that pre-dose predictions can be made regarding
the amounts, and the relative extent, of glucuronidation and mercapturic acid
formation and that occur on dosing paracetamol. Prediction of the amount of
paracetamol sulphate excreted in the urine was not so readily achieved but the
results obtained suggested that it might be predictable ‘by difference’. MA, the
mercapturic acid derived from paracetamol, has special toxicological
significance as it thought to originate from the conjugation of a toxic, reactive
intermediate with glutathione. Glucuronidation, sulphation and glutathione
conjugation are three of the most important transformations of Phase 2
metabolism and each has a major defensive role in regard to a variety of
exogenous substances. Thus, the present data indicate that subj;:ct-specific
pre-dose predictions might be made with respect to the metabolism and toxicity
of a large number of exogenous compounds. Given the examples shown, there
is every reason to believe that pre-dose urinary discriminators exist for a wide
variety of other aspects of metabolic phenotype i.e. that pre-dose prediction
models could be built for a wide variety of aspects of metabolic phenotype and

for dosing responses governed by one or more of those aspects.

Example 5. Pre-dose prediction of urinary paracetamol metabolite
quantities in human males subsequently dosed with paracetamol (1000
mg). An example showing that numerical pre-dose to post-dose

predictions can be achieved in humans.
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99 adult human male subjects were recruited for an ethically-approved clinical
trial. Certain dietary restrictions were stipulated such as not eating fish and not
drinking alcohol for a certain period. To be eligible for the study, it was
necessary that the subjects were not taking paracetamol or other drugs for a
certain period prior to the study. The weight and height of each subject was
recorded. On the day of the study, a ‘snapshot’ mid-stream pre-dose urine
sample was first provided by each subject. Subsequently, each subject took 2
x 500 mg tablets of paracetamol BP with a fixed volume of water.  After
dosing, each subject was required to provide all of the urine that he produced
over two consecutive time periods, namely 0-3 hours and 3-6 hours from
dosing. At the end of each of those time periods, each subject was requested
to empty his bladder as completely as possible and the mass of urine produced
by each subject over each post-dose time period was recorded. The urine
samples were all prepared for NMR analysis according to a standard procedure,
which involved the use of 440 microlitres of urine. The 'H NMR spectra were
acquired at 600 MHz on a Bruker NMR spectrometer using Bruker’s
‘xwinnmr’ and ‘iconnmr’ software. Water suppression was achieved using the
‘noesyprld’ program. In the post-dose spectra, the N-acetyls signals from
2.210 to 2.135 ppm were first integrated relative to TSP and a measure of the
total excretion of N-acetylated species by each subject for each period was
determined as (acetyls integration/TSP integration)*mass of urine collected (in
g). This formula is based on the assumption that the density of the urine
samples is nearly constant. As a check, the sample densities of a number of
representative samples were measured and were found to lie in the range 1.00 —
1.04 g/ml i.e. the assumption of nearly comstant density was reasonable.
Subsequently, the post-dose spectra were resolution-enhanced using a gaussian
multiplication of the FID (Ib -1, gb 0.5). Where possible, the amounts of
paracetamol sulphate (S), paracetamol glucuronide (G) and unchanged
paracetamol (P) were then measured directly as fractions of the total integration
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from 2.210 — 2.135 ppm. It was not possible to obtain an accurate measure of
the amounts of unchanged paracetamol (P) excreted during the 3-6 hour
collection and this data was not used. The level of paracetamol mercapturic
acid (MA) was not generally high enough to be measurable with accuracy. The
amounts of the individual paracetamol metabolites (S, G and P) excreted by
each subject during a particular collection period were calculated by
multiplying the total excretion of N-acetylated species for that subject and
period (previously calculated) by the relevant fractions of the 2.210 — 2.135
ppm integration. Where appropriate the data for the two collections was
summed to give data for the whole 0-6 hour post-dose period. Because the
effective dose of paracetamol received by any particular subject was dependent
on his body mass, the excretion results for total N-acetyls, S, G and P were
combined with the body mass data to give excretion per kg of body mass. It
should be noted that, as with the paracetamol study in the rat, it is possible that
the cysteine conjugate of paracetamol could have influenced the quantitation of
unchanged paracetamol. The pre-dose spectra were normalised in two different
ways (to total spectral area, after excluding certain regions, and to constant
creatinine) and PLS models for pre-dose to post-dose prediction were
constructed using the SIMCA software from Umetrics.

Figure 5.1 shows the observed versus PLS-predicted values for the total
excretion of N-acetylated compounds (0-3 hour collection) per kg of body mass
for male volunteers who took paracetamol (1000 mg). The results shown are
for modelling data only. This plot indicates that clear correlation was found
between the pre-dose and post-dose data. The value of RMSEE for the model

was 1.12.

Figure 5.2 shows the observed versus PLS-predicted values for the total
excretion of N-acetylated compounds (0-3 hour collection) per kg of body mass
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for an external test set that was analysed in relation to the model underlying
Figure 5.1. The RMSEP value was 0.80, which compares favourably with the
model’s RMSEE value of 1.12.

Figure 5.3 shows the observed versus PLS-predicted values for the excretion of
paracetamol glucuronide (‘G’) (0-3 hour collection) per kg of body mass for
male volunteers who took paracetamol (1000 mg). The results shown are for
modelling data only. This plot indicates that correlation was found between the
pre-dose and post-dose data. The value of RMSEE for the model] was 0.84.

Figure 5.4 shows the observed versus PLS-predicted values for the excretion of
‘G’ (0-3 hour collection) per kg of body mass for an external test set that was
analysed in relation to the model underlying Figure 5.3. The RMSEP value
was 0.70, which compares favourably with the model’s RMSEE value of 0.84.

Figure 5.5 shows the observed versus PLS-predicted values for the excretion of
‘P’ (0-3 hour collection) per kg of body mass for male volunteers who took
paracetamol (1000 mg). The results shown are for modelling data only. This

plot indicates that correlation was found between the pre-dose and post-dose "
data. The value of RMSEE for the model was 0.185.

Figure 5.6 shows the observed versus PLS-predicted values for the excretion of
‘P’ (0-3 hour collection) per kg of body mass for an external test set that was
analysed in relation to the model underlying Figure 5.5. The RMSEP value
was 0,170, which compares favourably with the model’s RMSEE value of
0.185.
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Figure 5.7 shows the observed versus PLS-predicted values for the total
excretion of N-acetylated compounds (0-6 hour period) per kg of body mass for
male volunteers who took paracetamol (1000 mg). The results shown are for
modelling data only., This plot indicates that clear correlation was found
between the pre-dose and post-dose data. The value of RMSEE for the model
was 1.47.

Figure 5.8 shows the observed versus PLS-predicted values for the total
excretion of N-acetylated compounds (0-6 hour period) per kg of body mass for
an external test set that was analysed in relation to the model underlying Figure
5.7. The RMSEP value was 1.13, which compares favourably with the model’s

RMSEE value of 1.47.

The results from this study confirm the principle that the methodology can be
extended from rats to humans and it is assumed that the methodology could be
applied successfully to all mammals. In particular, it is notable that the method
worked in humans who were not subject to full dietary control and, ﬁvith such
control in place, improved results would be expected. The findings presented
here represent a preliminary analysis of the samples and data and improved
models may well be possible. It is possible that use of a standard analytical
method, such as HPLC with UV-Visible detection, in relation to the post-dose
samples would provide improved quantitation of the paracetamol metabolites
and would therefore facilitate the model building. In particular, the use of such
a technique should permit improved quantitation of P and MA compared to the
NMR method used here. Furthermore, it is believed that improved models
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might be obtained by taking ratios and other combinations of the pre-dose
variables (which, in this case, are the 0.04 ppm wide segments of the pre-dose
NMR spectra) before carrying out the PLS analysis.

Hypothetical examples

A principal feature of the present invention is to be able to predict responses to
dosing and thereby to select appropriate dosing substances and treatment
regimes e.g. pharmaceutical treatments, anaesthetics etc. Such methods wouid
enable, on the basis of pre-determined criteria, such as toxicity, efficacy and
side-effects, the identification of appropriate dosing substances, the
identification of maximum or minimum doses, the identification of appropriate
doses, appropriate dosing frequencies, appropriate numbers of doses and the
selection of appropriate controlled-release formulations. Typical construction
of these methods is shown in the following hypothetical example, which
involves identifying the minimum dose of an antibacterial substance for
clearing an infection of a particular type within a set period of time, Thus,
different model building populations suffering from the specified infection

would be treated with different levels of the antibacterial. Data pertaining to |
dose levels which did not clear up the infection in any of the subjects within the
set period would be deleted from the analysis. For each of the other data sets, a
classification model would be built to identify the pre-dose characteristics of
- those subjects that met the clear-up criterion and the pre-dose characteristics of
those subjects that did not. Test data of a subject would be analysed in relation
to each of the models to find the minimum dose commensurate with clear-up of
the infection in a subject of that phenotype. This dose would not necessarily be
administered; such administration might depend, for instance, on whether

unacceptable side effects would be expected in the subject at that dose level.
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Another feature of the present invention is the ability to select a phenotypically
homogenous set of subjects for whatever purpose. Typically, the requirement
would be to select a group of subjects which were homogenous with respect to
one element of metabolic phenotype e.g. N-acetylator phenotype. For this
example a model would be built using a dosing substance that challenged N-
acetylation. A classification model would then be built according to imposed
homogeneity criteria. Test data relating to subjects of unknown N-acetylator
phenotype would be examined in relation to the model and the subject
classified accordingly. The subjects falling into one class would be considered
as phenotypically homogenous with respect to N-acetylation of the dose
substance.

Likewise the invention permits the rationalisation of variable data obtained in
studies such as studies of toxicity or efficacy. For instance, a dosing regime
which caused toxicity in one group but not in another group might be
rationalised if it was found, by use of pre-dose phenotyping, that one group
were fast O-methylators whilst the other group were slow O-methylators. Such
an indication would lead to a consideration of the metabolism of the dosed
substance and possibly to the identification of a critical O-methylation step

which either produced or eliminated a toxic metabolite.

Another feature of the present invention is to facilitate the identification of pre-
dose biomarkers or biomarker combinations, which by their presence or
concentrations in a pre-dose sample would indicate a particular metabolic
phenotype or a particular response to a potential dosing substance. For
example, in a PCA, a scores plot which provides separation of the different
classes of interest would be compared to the corresponding loadings plot. The

pre-dose variables that provide the discrimination, and the positive or negative
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nature of their correlation to the class separation, can then be identified.
Sometimes these variables may be directly atiributable to particular
compounds. In the case of NMR spectroscopic data, a particular variable or
combination of variables would indicate the spectral regions containing the
discriminating features. By examination of those regions of the model building
spectra the discriminating compound(s) (or “biomarkers”) could then, in
principle, be identified.

Sometimes it would be necessary io take samples from a number of subjects to
be representative of a wider group of subjects. For instance, one would
normally only be able to sample a few plants from a field of such plants. From
analysis of the characieristics of the selected plants one might then wish to
select a particular dose of herbicide for the whole field.
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