
(57) Abstract: A method of generating models with which to characterise selected aspects of the metabolic phenotype of subjects 
without dosing a test substance to those subjects or with which to predict, without dosing, the post-dose responses of subjects where 
those responses are dependent on metabolic phenotype, the method comprising: obtaining pre-dose data relating to a plurality of 
subjects before dosing with a dosing substance; obtaining post-dose data relating to the plurality of subjects after dosing with the 
dosing substance; and correlating inter-subject variation in the pre-dose data with inter-subject variation in the post-dose data, and 
generating a pre-to-post-dose predictive model on the basis of the observed correlation. The models may be used to determine 
selected aspects of the metabolic phenotype of a subject or to predict, without dosing, the post-dose responses of subjects. This is 
achieved by analysing data relating to the un-dosed subject in relation to a model describing the correlation of pre- dose and post-dose 
data relating to a plurality of subjects when dosed with a particular substance which challenges the biochemical transformation or 
pathway of interest; and generating, according to the predetermined criteria of the model, a numerical measure or classification 
describing the metabolic phenotype of the un-dosed subject. 
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Claims 

1. A method of generating models with which to characterise selected 

aspects of the metabolic phenotype of subjects without dosing a test substance 

to those subjects or with which to predict, without dosing, the post-dose 

responses of subjects where those responses are dependent on metabolic 

phenotype, the method comprising: 

obtaining pre-dose data relating to a plurality of subjects before dosing 

with a dosing substance; 

obtaining post-dose data relating to the plurality of subjects after dosing 

with the dosing substance; and 

correlating inter-subject variation in the pre-dose data with inter-subject 

variation in the post-dose data, and generating a pre-to-post-dose predictive 

model on the basis of the observed correlation. 

2. A method according to claim 1, wherein the pre- and/or post-dose data 

are obtained from samples which are biofluids such as urine, blood, blood 

plasma, blood serum, saliva, sweat, tears, breath or breath condensate. 

3. A method according to claim 1, wherein the pre- and/or post-dose data 

are obtained from samples which are plant tissues, plant fluids or homogenates, 

plant extracts or plant exudates, including, for example, essential oils. 

4. A method according to claim 1, wherein the pre- and/or post-dose data 

are obtained from samples which are human or animal tissues, fish tissues or 

oils, tissue extracts, tissue culture extracts, cell culture supernatants or extracts 

or are of microbial origin. 
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5. A memod according to claim 1, 2, 3 or 4, wherein the pre- and/or post-

dose data comprise data relating to chemical composition or physical 

parameters. 

6. A method according to claim 1, 2, 3, 4 or 5 wherein the pre- and/or post-

dose samples or subjects are treated prior to analysis (e.g. treated with one or 

more chemical reagents so as to produce derivative(s) of one or more existing 

substances) so as to enhance data recovery or to improve sample stability. 

7. A method according to any of claims 1 to 6 wherein the pre- and/or 

post-dose data are derived from or are compositional data acquired using 

nuclear magnetic resonance (NMR) spectroscopy and/or any other chemical 

analysis techniques such as mass spectroscopy (MS), infrared (IR) 

spectoscopy, gas chromatography (GC) and high performance liquid 

chromatography (HPLC) or by using any integrated combination of such 

techniques e.g. GC-MS. 

8. A method according to any of claims 1 to 7 wherein the pre- and/or 

post-dose data are physical data or data derived merefrom. 

9. A method according to any of claims 1 to 8 wherein, by dosing 

appropriate substances, a phenotyping model is generated for each of a 

plurality of biochemical transformations. 

10. A method according to any of claims 1 to 8 wherein, by dosing 

appropriate substances, a response prediction model is built for each of a 

plurality of dosing substances. 
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11. A method according to any of claims 1 to 10 wherein the original pre-

dose data set is extended, prior to pattern recognition, by taking ratios and/or 

other combinations of existing variables. 

12. A method according to any preceding claim wherein, for a group of 

subjects dosed with any particular substance, a pattern recognition method is 

used to identify patterns in the variable metabolism of, or the variable reactions 

to, the dosing substance. 

13. A method according to any preceding claim wherein, for a group of 

subjects dosed with any particular substance, an unsupervised pattern 

recognition method is used to identify variation in the pre-dose data that 

correlates with the variation of interest in the post-dose data. 

14. A method according to any preceding claim wherein, for a group of 

subjects dosed with any particular substance, a supervised pattern recognition 

method is used to identify variation in the pre-dose data that correlates with the 

variation of interest in the post-dose data. 

15. A method according to any preceding claim wherein, for a group of 

subjects dosed with any particular substance, a data filtering method such as 

Orthogonal Signal Correction (OSC) is used to remove variation in the pre-

dose data that is not correlated with the variation of interest in the post-dose 

data. 

16. A method according to any preceding claim when used to identify 

biomarkers or combinations of biomarkers which provide information on 

metabolic phenotype or which may be used to predict responses to dosing. 
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17. A method of determining selected aspects of the metabolic phenotype of 

a subject, the method comprising: 

analysing data relating to the un-dosed subject in relation to a model 

describing the correlation of pre-dose and post-dose data relating to a plurality 

of subjects dosed with a particular substance which challenges the biochemical 

transformation or pathway of interest; 

generating, according to the predetermined criteria of the model, a 

numerical measure or classification describing the metabolic phenotype of the 

un-dosed subject. 

18. A method according to claim 17, wherein data relating to the un-dosed 

subject is obtained from a biofluid such as urine, blood, blood plasma, blood 

serum, saliva, sweat, tears, breath or breath condensate or from a plant tissue, 

plant fluid, plant homogenate, plant extract or plant exudate, including, for 

example, an essential oil, or from human or animal tissue, fish tissue or oil, or 

from a tissue extract, tissue culture extract, cell culture supernatant or cell 

culture extract or from a sample of microbial origin or from any one of the 

above sample types after treatment to enhance data recovery or sample 

stability. 

19. A method according to claims 17 and/or 18, further comprising 

generating characteristic compositional and/or physical data relating to a 

subject using nuclear magnetic resonance (NMR) spectroscopy and/or any 

other techniques or by using any combination of techniques. 

20. A phenotyping method according to any preceding claim when used for 

the purpose of making a metabolic phenotype-influenced risk assessment 

and/or for the purpose of targeting the use of special health monitoring regimes 

and/or for the purpose of targeting the use of precautionary/preventative 
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treatments and/or for the purpose of characterising risk for insurance purposes 

and/or for the purpose of selecting subjects for any other purpose e.g. for 

breeding. 

21. A method of predicting the reaction of a subject to a dosing substance, 

the method comprising: 

analysing data relating to an un-dosed subject in relation to a model 

characterising the correlation of pre-dose and post-dose data relating to a 

plurality of subjects dosed with the particular dosing substance; and 

generating, according to the predetermined criteria of the model, a 

numerical or class prediction for the expected response of the un-dosed subject 

if it were to be dosed with the dosing substance. 

22. A method according to claim 21 wherein, according to pre-determined 

criteria, the maximum or minimum dose of a substance that a subject should 

receive can be predicted. 

23. A method according to claims 21 or 22 wherein, according to pre­

determined criteria, the amount of a dosing substance that a subject should 

receive can be predicted. 

24. A method according to claims 21, 22 or 23 wherein, according to pre­

determined criteria, the frequency with which a subject should be dosed with a 

substance can be predicted. 

25. A method according to any of claims 21 to 24 wherein, according to pre­

determined criteria, the number of doses of a substance that a subject should 

receive can be predicted. 
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26. A method according to any of claims 21 to 25 wherein, according to pre­

determined criteria, the appropriate controlled release formulation for a subject 

can be selected. 

27. A method according to any of claims 21 to 26, wherein data relating to 

the un-dosed subject is obtained from a biofluid such as urine, blood, blood 

plasma, blood serum, saliva, sweat, tears, breath or breath condensate or from a 

plant tissue, plant fluid, plant homogenate, plant extract or plant exudate, 

including, for example, an essential oil, or from human or animal tissue, fish 

tissue or oil, or from a tissue extract, tissue culture extract, cell culture 

supernatant or cell culture extract or from a sample of microbial origin or from 

any one of the above sample types after treatment to enhance data recovery or 

sample stability. 

28. A method according to any of claims 21 to 27, further comprising 

generating characteristic compositional and/or physical data relating to a 

subject using nuclear magnetic resonance (NMR) spectroscopy and/or any 

other techniques or by using any combination of techniques. 

29. A method of determining selected aspects of the metabolic phenotype of 

a subject or of predicting the reaction of a subject to a dosing substance, the 

method comprising analysing data relating to the un-dosed subject with respect 

to one or more biomarkers which have been previously identified as described 

in claim 16. 

30. A method according to claim 29 wherein the biomarker(s) react(s) with 

one or more added reagents to produce a visible change such as a colour 

change. 
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31. A method according to any preceding claim when used to select a group 

of phenotypically homogenous or similar subjects for a laboratory experiment 

or clinical trial or for any other purpose. 

32. A method, according to any preceding claim, for rationalising biological 

variation in experimental data based on pre-dose analysis of biofluids or 

tissues, where such variation is caused by phenotypic heterogeneity. 

33. A method according to any preceding claim wherein the data is based on 

physical and/or chemical measurements taken from the subject as a whole. 

34. A method according to any preceding claim wherein the post-dose data 

describes a change relative to the pre-dose state e.g. a decrease in blood 

pressure of a human subject treated with a drug that lowers blood pressure. 

35. A method according to any preceding claim wherein test data that does 

not conform to the limits of a particular model and/or method can be identified. 

36. A method according to any preceding claim wherein the subject is a 

animal, in particular a mammal such as a human, a mouse, a rat, a pig, a cow, a 

bull, a sheep, a horse, a dog or a rabbit or any farmed animal or any animal, 

such as a race horse, used for the purpose of sport or for breeding. 

37. A method according to any preceding claim wherein the subject is a 

plant, a fish or any other aquatic organism 

38. A method according to any preceding claim wherein the subject is a 

biological tissue, a tissue culture, a cell culture or a microbial culture. 
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39. A method according to any preceding claim wherein data are obtained 

from a sample which is representative, or is taken to be representative, of a 

group of subjects which are considered as a single subject. 

40. A method according to any preceding claim wherein the dosed 

substance is any substance or mixture or formulation of substances including 

especially pharmaceutical or medicinal substances or substances in research or 

development which might potentially become pharmaceutical or medicinal 

substances, but also including, for example, toxins, pesticides, herbicides, food 

or feed substances, food or feed additives and fluids of any sort including 

liquids, gases, vapours and smoke e.g. tobacco smoke. 

41. A method according to any preceding claim whereby the dosed 

substance is actively or passively dosed in any matrix or medium, by any 

means or route, including for example, by injection, by eating, by drinking, by 

inhaling or by smoking, over any time period including a subject's lifetime or 

any specified part or fraction thereof, such dosing to include that resulting from 

environmental exposure or pollution or from medical, dental, veterinary or 

surgical procedures. 

42. A method, according to any preceding claim, for identifying the 

acetylator phenotype of a subject without dosing a test substance to that 

subject. 

43. A method, according to any preceding claim, for predicting the response 

of a subject to dosing with a substance where that response is dependent on 

acetylator phenotype. 
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44. A method according to any preceding claim for predicting the 

susceptibility of a subject to isoniazid-induced toxicity. 

45. A method according to any preceding claim for predicting the 

susceptibility of a subject to galactosamine-induced toxicity. 

46. A method according to any one of claims 1 to 43 for predicting the 

susceptibility of a subject to paracetamol-induced toxicity. 

47. Apparatus for generating models according to any of claims 1 to 15. 

48. Apparatus for response prediction and/or for metabolic phenotyping, the 

apparatus comprising: 

one or more models, each model modelling the correlation of pre-dose 

and post-dose data relating to a plurality of subjects dosed with a particular 

dosing substance; 

a processor for analysing data relating to an un-dosed subject in relation 

to at least one of the models and thereby determining one or more aspects of 

the metabolic phenotype of the un-dosed subject or predicting its responses to 

dosing according to the model(s) employed. 

49. Apparatus, according to claim 48, the apparatus being further arranged 

to generate one or more models according to any of claims 1 to 15. 

50. Apparatus according to any of claims 47 to 49, further comprising one 

or more analytical instruments or devices to carry out physical and/or chemical 

analysis, such as NMR spectroscopy, mass spectroscopy, infrared spectroscopy 

or high performance liquid chromatography. 
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51. Apparatus for identifying one or more biomarkers according to claim 

16. 

52. Apparatus according to any preceding claim for response prediction or 

metabolic phenotyping which is based on the use of one or more biomarkers 

which have been previously identified as described in claims 16 and/or 51. 

53. Apparatus for metabolic phenotyping or for predicting a subject's 

response(s) to dosing, the apparatus comprising: 

a test area to receive a sample from the subject under test, 

said test area incorporating one or more reagents which may react chemically 

with one or more biomarkers in the sample to produce a change in the visual 

appearance of the test area, the biomarkers having been previously identified 

according to claims 16 and/or 51, and the resulting visual appearance of the test 

area being characteristic of metabolic phenotype or predictive of response(s) to 

dosing. 

54. Apparatus for carrying out any of the methods claimed in claims 21-26 

wherein an appropriate dosing regime for a subject can be identified. 

55. Apparatus according to any of claims 47 to 54, which is based on the 

use of antibodies raised against specific biomarkers. 

56. Apparatus according to any of claims 47 to 55 wherein selected 

biomarkers are detected and/or quantified by means of enzyme-catalysed 

reactions using, for instance, enzymes immobilised on a solid support. 

57. Apparatus comprising one or more models generated by a method 

accordmg to any of claims 1 to 15. 
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58 Apparatus, according to any of claims 47 to 57, which is further 

arranged to identify test data that does not conform to the limits of a particular 

model. 

Dated this 29/11/2004 V 
[B KOMBI] 

OF REMFRY & SAGAR 
ATTORNEY FOR THE APPLICANTS] 











































































1 

METABOLIC PHENOTYPING 

BACKGROUND 

Biochemical reactions 

An organism's overall 'metabolic phenotype' is the sum total of its metabolic 

attributes and is determined by the interaction of its genetic composition and 

the 'environment', where the environment is considered in the widest possible 

sense. The term 'metabolic phenotype' may also be applied to individual 

aspects of an organism's metabolic characteristics. 

A vast array of biochemical reactions (metabolic transformations) take place 

within living organisms and the overwhelming majority of these reactions are 

catalysed by enzymes. 

Enzymes are specialised proteins that function as biochemical catalysts to 

accelerate biochemical reactions. Without enzymes many of the reactions 

required for normal cell activity would not proceed fast enough at normal 

bodily pH and temperature. As a catalyst, an enzyme increases the rate of a 

reaction but is recovered unchanged at the end of the reaction. 

A molecule acted on by an enzyme is termed a 'substrate' and enzymes exhibit 

much specificity for particular substrates e.g. glucose oxidase will oxidise 

glucose but not galactose. This specificity is determined by the substrate-

binding site on the enzyme surface. This site is a particular arrangement of 

amino acids that confers preferred binding ability for one or more substrates. 

Some enzymes have broad substrate specificity whereas others are specific to 

CONFIRMATION COPY 
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individual substances. Thus, for example, glucose, mannose and fructose are 

all phosphorylated by hexokinase whereas glucokinase is specific for glucose. 

The International Union of Biochemistry and Molecular Biology (IUBMB) has 

established an enzyme classification system which has six major enzyme 

classes: 

1. Oxidoreductases 

2. Transferases 

3. Hydrolases 

4. Lyases 

5. Isomerases 

6. Ligases 

Each of these individual classes is further divided into sub-classes to which the 

individual enzymes belong. Full details are currently available on the world-

wide web (http://www.chem.qmw.ac.uk/iubmb/enzyme). 

As an example, guanidinoacetate N-methyl transferase (EC 2.1.1.2) catalyses 

the conversion of S-adenosyl-L-methionine and guanidinoacetate to S-

adenosyl-L-homocysteine and creatine. This is an example of a methyl 

transferase. 

Factors which may affect the rate of enzyme-catalysed reactions include the 

amount of substrate present, the amount of product present, the amount of the 

enzyme present and the activity of each enzyme molecule. The activity of an 

enzyme molecule can be affected by a variety of factors including its inherent 

activity, the presence of cofactors and prosthetic groups and by binding at an 

allosteric site. Both the amount of the enzyme and the activity per enzyme 

http://www.chem.qmw.ac.uk/iubmb/enzyme
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molecule may be affected by genetic variation between subjects. The amount 

of an enzyme and the activity per molecule combine to give the overall enzyme 

activity and this may vary considerably between different subjects. Such 

variation may independently affect a whole range of different enzymes and 

metabolic transformations and this variation will contribute to the generation of 

a different overall metabolic phenotype for each subject. Variation in the 

levels of any other substances that are required for biochemical transformations 

to take place will also contribute to the metabolic phenotype. For example, 

variation in the ability of subjects to effect drug glucuronidation may be caused 

by inter-subject variation in the level of UDP-glucuronic acid (UDPGA). 

Whilst metabolic phenotype would typically be considered in terms of enzyme-

catalysed reactions, metabolic phenotype in its broadest sense would also 

include measures relating to each of the non-enzymic reactions that might 

occur within a certain type of subject. Additionally, a subject's overall 

metabolic phenotype would be influenced by the nature and quantity of the 

other organisms, such as the gut bacteria, that are living within or on that 

subject. Importantly, whilst a subject's genotype would be constant throughout 

the life of that subject, a subject's overall metabolic phenotype could change 

significantly with age and with other 'environmental' influences such as 

disease, infection and nutritional status. 

Variation in metabolic phenotype causes inter-subject differences in the 

metabolism of xenobiotics such as drugs. Such differences in metabolism are a 

major factor contributing to differential responses (e.g. degree of efficacy, 

degree of toxicity etc.) to dosed substances because they may result in different 

degrees of exposure to the active substance(s). Thus, for instance, fast 

metabolism of a toxic substance to non-toxic metabolites would result in rapid 
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detoxification whilst slow metabolisers of the toxin would be more likely to 

show toxic effects. Conversely, fast metabolism of the efficacious component 

or derivative of a drug could lead to reduced efficacy of the treatment. Other 

factors contributing to differential responses to dosed substances include inter-

subject differences in absorption from the gut and differential sensitivity of 

receptors. Genetic variability in susceptibility and response to toxicants was 

reviewed in Toxicology Letters (2001) Vol 120 in articles entitled "Genetic 

variability in susceptibility and response to toxicants" by Ingelman-Sundberg 

(pages 259-268) and by Miller et al (pages 269-280). Inter-individual 

variability in human drug metabolism is the subject of a book "Interindividual 

Variability in Human Drag Metabolism" edited by Pacifici and Pelkonen and 

published by Taylor & Francis (2001). 

Body fluids and the effects of variation in metabolic phenotype 

Aspects of the biochemical composition of intracellular fluids are reflected in 

the extracellular tissue fluid and consequently in the circulating blood which 

contacts that tissue. Thus, alterations in the biochemical composition of cell 

fluids are liable to affect the biochemical composition of the extracellular tissue 

fluid and the biochemical composition of the blood. Alterations in blood 

composition may, in turn, be reflected in altered urinary composition. Thus, 

abnormal cellular metabolic processes are likely to be reflected in altered 

compositions of biofluids such as blood and urine and, consequently, these 

fluids provide diagnostic windows onto the state of the body. Major alterations 

in such fluids are frequently caused when toxins, such as liver or kidney toxins, 

are administered and inherent factors such as major enzyme deficiencies can 

also be identified from those fluids. Thus, for example, in classical 

phenylketonuria, a deficiency in phenylalanine hydroxylase causes a failure to 

convert phenylalanine to tyrosine and produces an altered urinary composition 
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with increased levels of phenylpyruvic acid, phenyllactic acid and phenylacetic 

acid (see Textbook of Biochemistry With Clinical Correlations, 4th Edition, 

1997, edited by T. M. Devlin, published by Wiley-Liss). This is an example of 

a genetically determined error of metabolism and such diseases are known as 

'inborn errors of metabolism' (see, for example, Newsholme and Leech, 1983, 

Biochemistry for the Medical Sciences, published by John Wiley and Sons) 

Identification of the described urinary changes serves to identify the enzymic 

deficiency. 

As well as the serious metabolic deficiencies, other lesser inter-individual 

differences in metabolic phenotype exist that are not sufficient to cause 

disruption of normal metabolic processes and consequent disease. However, 

such differences may be revealed when the organism is subjected to an unusual 

challenge such as a large dose of a particular chemical compound e.g. a drag 

substance. Additionally, such differences may cause altered risk factors for 

diseases such as cancer which are associated with long term exposure to 

harmful substances such as environmental pollutants and tobacco smoke. 

NMR spectroscopic analysis of biological samples 

The use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the low 

molecular weight composition of biological fluids is now well established (e.g. 

Nicholson and Wilson (1989), High resolution proton magnetic resonance 

spectroscopy of biological fluids, Progress in NMR Spectroscopy, 21, 449-501; 

Lindon et al. (1999), NMR spectroscopy of biofluids, Annual reports on NMR 

spectroscopy, 38) . The advent of high field magnets for NMR has been one 

factor in this development. Such magnets have greatly improved the sensitivity 

of the technique and the use of cryoprobes brings further improvement. An 

additional benofit, for the examination of complex mixtures, is that increased 
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magnetic field strength leads to improved dispersion of the NMR signals i.e. 

the signals are more spread out and less prone to overlap one another. Other 

factors which have greatly improved the capabilities of modern NMR 

spectroscopy include improvements in probe design leading to much higher 

sensitivity, the ready availability of computing power and the development of 

improved pulse sequences e.g. for the selective suppression of the water signal 

in an aqueous sample. The advent of flow probes has enabled greatly increased 

sample throughput in comparison to the conventional use of high precision, 

fragile glass sample tubes. 

In addition to its usefulness for biofluids, NMR spectroscopy can be 

successfully used for the examination of small (ca. 10-20 mg) samples of solid 

tissue (e.g. Moka et al. (1997), Magic angle spinning proton nuclear magnetic 

resonance spectroscopic analysis of intact kidney tissue samples, Analytical 

Communications, 34, 107-109). However, this requires a special technique 

known as Magic Angle Spinning (MAS) and, in comparison to solution state 

NMR spectroscopy, MAS-NMR spectroscopy is a time-consuming procedure. 

With automated solution state NMR spectroscopy it is possible to examine 

more than 150 samples per day whilst 10 samples per day is typical for MAS-

NMR spectroscopy where the samples are manually changed by an operator. 

The vast majority of organic compounds contain protons that would be 

detectable by 1H NMR spectroscopy so long as enough of the compound is 

present in the sample being analysed. This means that, in principle, 1H NMR 

spectroscopy is an almost universal detector for organic compounds. The 

detectability of lH NMR spectroscopic signals from a particular sample 

component depends on the amount of the component present, on the type and 

molecular environment of the proton(s) and on the nature of the NMR 

experiment. The main limitation is that exchangeable protons, such as those in 
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hydroxyl groups, may not be observed. Essentially, the 1H NMR spectrum of 

any particular organic compound is unique to that compound. Additionally, 

NMR spectra are readily interpretable and predictable so that structural features 

and often the complete structure of a compound may be deduced from its 1H 

NMR spectrum. 

In the conventional one-dimensional (1D) 1H NMR spectrum of a biofluid the 

individual spectra of all the detectable components are superimposed according 

to their relative concentrations and this facilitates quantitation. In practice, the 

high field 1H NMR spectra of biofluids such as urine and plasma are 

extraordinarily rich in information, with a very large number of low-to-medium 

molecular weight components being detectable in a single experiment. 

Lipoproteins and high molecular weight components such as proteins are also 

present in plasma but their 1H NMR spectra are subject to signal broadening 

influences arising from restricted mobility of the resonating nuclei. Such 

broadening reduces the amount of information derivable from and about such 

components. 

Applications of biofluid NMR spectroscopy 

In comparison to NMR spectroscopy, traditional clinical chemistry assays 

generally provide more exact quantitation and may also provide better 

detection limits. On the other hand, 1H NMR spectroscopy has a major 

advantage over traditional clinical chemistry in that, by the former, the levels of 

all the detectable components are measured in a single experiment without the 

need to specify which components require analysis. Thus, by 1H NMR 

spectroscopy, unexpected changes may be observed and previously 

unrecognised substances may be identified. Thus, 1H NMR spectroscopy has 
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great strength as a simultaneous multi-analyte detector for non-routine 

investigations and is ideally suited to the detection of new biomarkers. 

The analysis of post-dose body fluids using NMR spectroscopy to identify and 

track responses to toxins is known (e.g. Holmes et al. (1992) NMR 

spectroscopy and pattern recognition analysis of the biochemical processes 

associated with the progression and recovery from nephrotoxic lesions in the 

rat induced by mercury (II) chloride and 2-bromoethanamine, Mol. Pharmacol., 

42, 922-930). In the context of toxicology studies, biofluid NMR spectroscopy 

may detect metabolites of dosed substances and/or changes in endogenous 

biofluid components that are induced by dosed substances and may be used to 

assess toxic effects and to identify relevant defensive processes, such as 

glucuronidation and mercapturic acid formation. Biofluid NMR spectroscopy 

also has significant potential to elucidate mechanisms of toxicity. 

It is known that, using NMR spectroscopy, certain inborn errors of metabolism 

can be readily identified from biofluid samples (e.g. Moolenaar et al. (2003) 

Proton nuclear magnetic resonance spectroscopy of body fluids in the field of 

inborn errors of metabolism, Ann. Clin. Biochem., 40, 1, 16-24). It is also 

known that NMR spectroscopy of biofluids can be used to diagnose other 

disease conditions and to track responses to therapy. 

Following the success of the NMR-based approach to monitoring the metabolic 

state of living systems the term 'metabonomics' has been coined (Nicholson et 

al. (1999), 'Metabonomics': understanding the metabolic responses of living 

systems to pathophysiological stimuli via multivariate statistical analysis of 

biological NMR spectroscopic data, Xenobiotica, 29, 1181-1189). 

Metabonomics is defined as 'the quantitative measurement of the 

multiparametric metabolic response of living systems to pathophysiological 
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stimuli or genetic modification'. Metabonomics is complementary to the 

genomics and proteomics technologies which are based on detecting changes in 

gene expression and protein levels respectively. An advantage of 

metabonomics in relation to the other technologies is that metabonomics looks 

at the overall metabolic result rather than at underlying influences which may 

or may not be metabolically significant. 

Pattern Recognition 

A complicating factor in extracting useful biochemical information from sets of 

biological (biofluid or tissue-derived) NMR spectra is their great complexity. 

An efficient way to investigate these complex multiparametric data sets is to 

employ computer-based pattern recognition methods. 

Pattern recognition (PR) is a general term for methods of multivariate data 

analysis which may be used to look for patterns in data sets, a priori, or to look 

for elements of data sets which correlate with other known factors (see, for 

example, Beebe et al., 1998, Chemometrics, A Practical Guide, John Wiley and 

Sons, New York etc.). Inherent in this is the assumption that the data set 

consists of a number of different objects for which a variety of parameters (or 

'variables') have been measured. Whatever those parameters may be, the same 

parameters have generally been measured on all the objects in the data set 

although occasional missing values may be acceptable. In the context of a set 

of NMR spectra, the different objects would be the different spectra whilst the 

various parameters would generally be the integrations for different spectral 

windows within the overall spectrum. PR methods may be conveniently 

classified as 'supervised' or 'unsupervised' and some of these multivariate 

statistical analysis methods are described in the following sections. 
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Unsupervised PR methods 

Unsupervised PR methods are used to determine inherent clustering patterns in 

multivariate data sets without reference to any other independent knowledge. 

Examples of unsupervised pattern recognition methods include principal 

component analysis (PCA), hierarchical cluster analysis (HCA), and non-linear 

mapping (NLM). 

Principal Components Analysis (PCA) 

Principal components analysis (PCA) (e.g. Sharaf et al., 1986, Chemometrics, 

J. Wiley and Sons, New York) is one of the most useful and easily applied 

unsupervised PR techniques. Principal components (PCs) are latent variables 

created from linear combinations of the starting variables with appropriate 

weighting coefficients. The properties of these PCs are such that: (i) each PC 

is orthogonal to (i.e. uncorrelated with) all other PCs, and (ii) the first PC 

contains the largest part of the variation of the data set (information content) 

with subsequent PCs containing correspondingly smaller amounts of variation. 

In mathematical terms, a data matrix, X, can be regarded as being composed of 

a 'scores' matrix, T, and a 'loadings matrix', P, such that X = TP', where the 

superscript 't' denotes the transpose. The covariance matrix, C, is calculated 

from the data matrix, X. The eigenvalues and eigenvectors of the covariance 

matrix are then determined by diagonalisation. The coordinates of the different 

objects in eigenvector plots (the principal components or PCs) are denoted 

'scores' and comprise the scores matrix T. The eigenvector coefficients are 

denoted 'loadings' and comprise the loadings matrix P, and give the 

contributions of the descriptors to the PCs. 
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A plot of the any two principal component scores is often called a 'scores plot'. 

The scores plot for PC1 vs. PC2 provides the maximum information content of 

the data in two dimensions although lower order PC plots may well be useful. 

Such scores plots can be used to visualise inherent clustering in data sets. 

Supervised Methods 

Where appropriate, supervised pattern recognition methods may also be used to 

analyse multivariate data. In such analyses the data set (X) is related, where 

possible, to one or more known factors (Y) such as class membership or the 

value of one or more parameters outside the X data set. In such methods a 

'training set' of X and Y data is used to construct a statistical 'model' that 

estimates the required Y factor(s) from the X data. This model is then tested 

with independent data (referred to as a validation data set) to determine its 

robustness and predictive ability. Once validated the model may legitimately 

be used to predict the relevant Y factors for samples where only the X data is 

available. 

Examples of supervised pattern recognition methods include the following: 

soft independent modelling of class analysis (SIMCA); partial least squares 

analysis (PLS); linear descriminant analysis (LDA); K-nearest neighbour 

analysis (KNN); artificial neural networks (ANN); probabilistic neural 

networks (PNNs); rule induction (RI); and Bayesian methods. See, for 

example: (re. SIMCA) Wold (1976) Pattern recognition by means of disjoint 

principal components models, Pattern Recog., 8, 127; (re. PLS) Frank et al. 

(1984) Prediction of product quality from spectral data using the partial least 

squares method, J. Chem. Info. Comp., 24, 20; (re. LDA) Nillson, 1965, 

Learning Machines, McGraw-Hill, New York); (re. KNN) Beebe et al., 1998, 

Chemometrics, A Practical Guide, John Wiley and Sons, New York etc; (re. 
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ANN) Anker and Jurs (1992) Prediction of C-13 nuclear magnetic resonance 

chemical shifts by artificial neural networks, Anal. Chem., 64, 1157; (re. PNN) 

Speckt (1990) Probabilistic neural networks, Neur. Networks, 3, 109; (re. RI) 

Quinlan (1986) Induction of decision trees, Machine Learning, 1, 81; (re. 

Bayesian Methods) Bretthorst, 1990, An introduction to parameter estimation 

using Bayesian probabihty theory, In: Maximum Entropy and Bayesian 

Methods, Ed. Fougere, Kluwer Academic Publishers, The Netherlands, 53-79. 

Partial Least Squares (PLS) 

PLS is the regression extension of the PCA method described earlier. In PLS 

the variation between the objects in a data matrix X is described by the X-

scores, T, and the variation in the Y-block regressed against is described in the 

Y-scores, U. Essentially, what PLS does is to maximize the covariance 

between T and U. For the PLS model a set of PLS weights, W, are calculated, 

containing the influence of each X-variable on the explanation of the variation 

in Y. The corresponding set of weights for the Y-block is designated C. A 

matrix of X-loadings, P, is also calculated. These loadings are used both for 

interpretation and to perform the proper decomposition of X. 

The PLS decomposition of X and Y can hence be described as follows: 

X = TPt + E 

Y = TCt + F 

where E and F are the X and Y residuals respectively and the superscript 't' 

denotes the transpose of the relevant matrix. 
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The PLS regression coefficients, B, are then given by: 

B = W(PtW) -1C1 

The estimate of Y, Yest, can then be calculated according to the following 

formula: 

Yest = XW(PtW)-1Ct = XB 

Partial Least Squares Descriminant Analysis (PLS-DA) 

PLS-DA is a supervised multivariate method yielding 'latent' variables in a 

data matrix (X) that describe the maximum separation between known classes 

of objects (Y). PLS-DA is based on PLS which is the regression extension of 

the PCA method described earlier. Whereas PCA simply works to find the 

maximum variation existing within the variables describing the studied objects, 

PLS-DA works to find the maximum separation between known classes of 

objects. This is done by a PLS regression against a 'dummy' vector or matrix 

(Y) carrying the class information. The calculated PLS components are 

thereby focussed on describing the variation in X that separates the classes (Y), 

if this information is present in the data. The class membership has to be 

known prior to the actual modelling. Once a model is calculated and validated 

it can legitimately be used for prediction of class membership for objects of 

unknown class. 

Neural Networks vs. PLS and PLS-DA 

Methods such as PLS and PLS-DA rely on the extraction of linear associations 

between the input variables and this can significantly limit the power of the 

analysis. Neural network-based pattern recognition techniques can provide 

improved predictive ability, particularly where the factor being predicted is 
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influenced by a number of unrelated causes. Nevertheless, methods such as 

PLS and PLS-DA are often sufficiently powerful and provide a significant 

benefit over relatively 'black box' neural network methods in that they readily 

allow some information to be gained as to what aspects of the input dataset 

were particularly important in the model building i.e. in comparison to neural 

network models, PLS and PLS-DA models are more transparent with respect to 

interpretation. 

The application of PR methods to metabonomic data 

Pattern recognition methods have been applied to the analysis of metabonomic 

data, including, for example, complex NMR spectroscopic data, with some 

success. See for example: Anthony et al. (1994) Pattern recognition 

classification of the site of nephrotoxicity based on metabolic data derived 

from proton nuclear magnetic resonance spectra of urine, Mol. Pharmacol., 46, 

199-211; Beckwith-Hall et al. (1998) Nuclear magnetic resonance 

spectroscopic and principal components analysis investigations into 

biochemical effects of three model hepatotoxins, Chem. Res. Tox., 11, 260-

272; Gartland et al. (1990) Pattern recognition analysis of high resolution 1H 

NMR spectra of urine. A non-linear mapping approach to the classification of 

toxicological data, NMR in Biomedicine, 3, 166-172; Holmes et al. (1992) 

NMR spectroscopy and pattern recognition analysis of the biochemical 

processes associated with the progression and recovery from nephrotoxic 

lesions in the rat induced by mercury (H) chloride and 2-bromoemanamine, 

Mol. Pharmacol., 42, 922-930; Holmes et al. (1994) Automatic data reduction 

and pattern recognition methods for analysis of 1H NMR spectra of human 

urine from normal and pathological states, Anal. Biochem., 220, 284-296. 
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Data Filtering 

Although pattern recognition methods may be applied to 'unfiltered' data, it is 

often preferable to filter data to removed irrelevant variation. Such filtering 

requires some degree of supervision to distinguish between relevant and 

irrelevant variation. 

One method of data filtering simply involves deleting selected spectral regions 

and then working with the remainder. Thus, for example in the 1H NMR 

spectra of aqueous samples acquired with water suppression, the magnitude of 

the residual water signals will vary according to the effectiveness of the water 

suppression and these irrelevant signals may be deleted. 

Alternatively, variation in the data which is not correlated to (i.e. is orthogonal 

to) the variation of interest may be removed by 'orthogonal filtering'. One 

preferred orthogonal filtering method is conventionally referred to as 

Orthogonal Signal Correction (OSC), wherein latent variables orthogonal to the 

variation of interest are removed (Wold et al. (1998) Orthogonal Signal 

Correction of Near Infrared Spectra, Chemometrics and Intelligent Laboratory 

Systems, 44,175-185). 

Orthogonal Signal Correction 

The OSC method locates the longest vector describing the X variation between 

the objects that is not correlated with the Y-vector, and removes it from the 

data matrix. The resultant data set has thus been filtered to allow pattern 

recognition focused on the variation within the object population that is 

correlated to features of interest, rather than non-correlated, orthogonal 
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variation. This process may be repeated as often as necessary with the proviso 

that 'over-fitting' should be avoided. 

In PLS, the weights, W, are calculated to maximise the covariance between X 

and Y. In OSC, in contrast, the weights, W, are calculated to minimize the 

covariance between X and Y, which is the same as calculating components as 

close to orthogonal to Y as possible. Such components, orthogonal to Y and 

therefore containing unwanted variation, may then be subtracted from the 

spectral data, X, to produce a filtered predictor matrix which is focussed on the 

variation of interest. 

If PCA suggests separation of different classes, orthogonal signal correction 

(OSC) can be used to optimise the separation, thus improving the performance 

of subsequent multivariate pattern recognition analysis and enhancing the 

predictive power of the model. 

Modelling and Prediction 

Inherent in the PLS, PLS-DA and neural networks analyses is the idea of 

building a predictive mathematical 'model' using 'model-building' or 

'modelling' data from samples of known behaviour or type. 

Once a model has been calculated, it may be validated using data for samples 

of known behaviour or type which were not used to calculate the model. In this 

way, the predictive ability of the model may be tested. Once validated, such 

models can legitimately be used to predict the behaviour or type of samples of 

unknown behaviour or type (the test data). Before analysis, the test data must 

be processed in the same manner as the modelling data, including the 

application of any filtering. 
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Any particular model is only as good as the data used to formulate it. 

Therefore, it is preferable that all modelling and test data are obtained from 

comparable individuals, under the same (or similar) conditions and using the 

same (or similar) experimental parameters. 

Prior art for phenotyping 

The variation within sets of biofluid NMR spectra from metabolically 

unchallenged subjects (i.e. not dosed) may be examined by unsupervised PR 

methods such as PCA and different groupings may sometimes be observed 

under constant experimental conditions (e.g. Bollard et al. (2001) 

Investigations into biochemical changes due to diurnal variation and estrus 

cycle in female rats using high resolution (l)HNMR spectroscopy of urine and 

pattern recognition, Anal. Biochem., 295, 2, 194-202). However, this method 

does not necessarily provide clear information about the significance of the 

different groupings in relation to metabolic transformations(e.g. Baud-Camus 

et al. (2001) Determination of N-acetylation phenotype using caffeine as a 

metabolic probe and high-performance Uquidchromatography with either 

ultraviolet detection or electrospray massspectrometry, Chromatogr. B. 

Biomed. Sci. Appl., 760, 1, 55-63). By examination of the spectral features 

that provide discrimination between different groups it may be possible to 

make an interpretation of the significance of the separation. However, this is 

an unreliable and untargeted approach that does not provide proof of 

significance and it is a very inefficient way of examining the potentially subtle 

and complex variation associated with different metabolic phenotypes. 

Conversely, in a targeted approach, it is known to use patterns of components 

detected in biofluids using NMR spectroscopy, or other techniques, after 
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dosing with test substances (such as caffeine in the case of acetylator 

phenotype) to establish the ability of a subject to effect particular metabolic 

transformations. In other words, NMR spectroscopy and other techniques can 

be used to determine the metabolic phenotype of a subject using post-dose 

biofluids. In these analyses, the components of interest would normally be the 

unchanged dosed substance and/or its metabolites. For simplicity the term 

'metabolites of the dosed compound' will henceforth be considered to include 

the dosed compound itself. Often a ratio of such components would be 

determined as a measure of the relevant metabolic ability. From such analyses 

it would be possible to determine the ability of a subject with respect to a 

whole variety of metabolic transformations depending on the availability of 

suitable test substances. However, in general, the ability of a subject to effect 

one type of transformation would be expected to be independent of its abilities 

with respect to all other transformations. Thus, one would expect multiple test 

substances to be required when investigating a subject's ability with respect to 

a variety of biochemical transformations. Although such analyses are 

occasionally carried out, unnecessary dosing of any substance to human or 

animal subjects is undesirable on safety and ethical grounds and widespread 

use of such methods is unlikely. A further complication is that dosing a test 

substance might cause enzyme induction, resulting, for some time afterwards, . 

in an altered metabolic state. Thus, for instance, such phenotyping could be 

problematic in relation to toxicity studies. 

The term biomarker as used herein is normally taken to mean a chemical or 

biochemical entity in a subject or subject sample or statistically associated 

combinations of entities, or a physiological response in a subject which has a 

significance associated with its presence, absence or level, that is indicative of 

a particular physiological state, disease or toxic process or of a predisposition 

towards a particular type of metabolic or disease process and may also be 

associated with a clinical outcome. 
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Examples of such biomarkers include chemical and biological molecules, for 

example metabolic substrates, intermediates or products, structural proteins, 

nuclei acids, transport and receptor proteins, immunological proteins, proteins 

associated with metabolic or genetic control, catalytic proteins, enzymes and 

their associated cofactors. Further examples of biomarkers also include levels 

of activity of biological processes for example gene and protein expression and 

levels of activity of cellular signalling pathways. 

It is appreciated that the term biomarker also refers to any measurable signal 

associated with or characteristic of the presence, absence or level of the 

aforementioned molecules or processes; for example signals or patterns of 

signals resulting from the output of measurements taken by techniques such as 

nuclear magnetic resonance (NMR) spectroscopy and/or any other chemical 

analysis techniques such as mass spectroscopy (MS), infrared (IR) 

spectoscopy, gas chromatography (GC) and high performance liquid 

chromatography (HPLC) or by using any integrated combination of such 

techniques e.g. GC-MS. 

The term chemical composition as used herein in reference to samples includes 

the combination of chemical and/or biochemical species which comprise the 

sample. 

The term physical parameters as used herein in reference to samples includes 

characteristic physical measurements obtained by methods such as 

chromatography, derivitisation, fractionation and separation, crystallisation, 

sedimentation, spectral analysis, molecular weight analysis, diffraction, 

analysis of solubility, analysis of turbidity, refractive index or resistivity, 

melting point or boiling point. 

The present invention 
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The present invention relates to methods for identifying the metabolic 

phenotype of a subject and to methods for predicting responses and 

determining risk factors which are influenced by metabolic phenotype. In 

particular, the present invention includes methods for identifying the metabolic 

phenotype of a subject and for predicting a subject's responses to one or more 

treatments by analysing a biofluid of that subject. 

As stated above, the recognised approach to metabolic phenotyping relies upon 

dosing a subject and then analysing a post-dose biofluid. In a radical departure 

from this, the present invention is based on the unexpected finding that 

variation in the levels of the metabolites of a dosed substance in a biofluid 

correlates with variation in the metabolite profile of a biofluid before the 

substance is administered. Thus, the present invention makes it possible to 

predict the response of a subject to a substance prior to dosing that substance. 

Furthermore, the present invention makes it possible to determine a subject's 

metabolic phenotype without the need to dose that subject with a test 

substance. Clearly, where a substance has the potential to cause an adverse 

reaction, it is highly useful to be able to predict a subject's reaction e.g. in 

pharmaceutical treatments. Additionally, for the reasons described above 

(safety, ethics and enzyme induction), it is highly advantageous to be able to 

determine the metabolic phenotype of a subject without the need for any 

dosing. This new and radically different methodology provides a highly 

targeted approach to finding pre-dose correlates for post-dose behaviour. 

Thus, in one aspect, the present invention provides a generic method for 

building a model with which to predict a subject's response(s) to a substance 

potentially to be administered to that individual. In this method, the substance 

to be dosed would be administered to a representative population of subjects, 

henceforth referred to as the model building population. The response(s) of 
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interest would be measured in all members of the model building population, 

by whatever means were appropriate. Biofluid or other samples collected from 

the model building population before dosing would be examined by 1H NMR 

spectroscopy or by another suitable technique (e.g. near infrared spectroscopy, 

high performance liquid chromatography, mass spectroscopy or gas 

chromatography) or by a combination of such techniques. Together, the pre-

dose and post-dose response data would constitute the model building data. A 

chemometric pattern recognition (PR) technique such as PLS or PLS-DA 

would be applied to the model building data to correlate the variation in the 

post-dose response(s) with variation in the pre-dose data. Sometimes a data 

filtering method such as OSC would be used prior to PR to remove 

uncorrelated variation in the pre-dose data. Once built and validated, the model 

would be useable in conjunction with appropriate pre-dose data from one or 

more test subjects, of similar type to the model building population, where it 

was desired to predict the response to the same substance. Normally, a new 

model would be required for each substance of interest although a model 

derived for one substance might be useable in conjunction with a closely 

related substance. 

In another aspect, the present invention provides a generic method for building 

a model with which to characterise one or more elements of a subject's 

metabolic phenotype. In this method, the substance to be dosed, and the 

amount of that substance, would be carefully chosen to challenge the particular 

metabolic transformation(s) of interest. The chosen substance would be 

administered to a representative population of subjects, henceforth referred to 

as the model-building population. The metabolites of interest would be 

measured, in a post-dose biofluid or other sample, by 1H NMR spectroscopy or 

by other suitable means, as convenient. From this analysis, a measure of the 

ability of each subject with respect to the relevant metabolic transformations) 
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would be determined. Biofluid or other samples collected from the model 

building population before dosing would be examined by 1H NMR 

spectroscopy or by another suitable technique (e.g. near infrared spectroscopy, 

high performance liquid chromatography, mass spectroscopy or gas 

chromatography) or by a combination of such techniques. Together, the pre-

dose data and the post-dose 'metabolic ability' measurements would constitute 

the model building data. A chemometric pattern recognition (PR) technique 

such as PLS or PLS-DA would be applied to the model building data to 

correlate the variation in the post-dose ability measurements with variation in 

the pre-dose data. Sometimes a data filtering method such as OSC would be 

used prior to PR to remove uncorrelated variation in the pre-dose data. Once 

built and vahdated, the model would be useable in conjunction with appropriate 

pre-dose data from one or more test subjects, of similar type to the model-

building population, where it was desired to determine the relevant metabolic 

ability or abilities. 

In a first aspect of the invention mere is provided a method of generating 

models with which to characterise selected aspects of the metabolic phenotype 

of subjects without dosing a test substance to those subjects or with which to 

predict, without dosing, the post-dose responses of subjects where those 

responses are dependent on metabolic phenotype, the method comprising: 

obtaining pre-dose data relating to a plurality of subjects before dosing 

with a dosing substance; 

obtaining post-dose data relating to the plurality of subjects after dosing 

with the dosing substance; 

correlating inter-subject variation in the pre-dose data with inter-subject 

variation in the post-dose data, and generating a pre-to-post-dose predictive 

model on the basis of the observed correlation. 
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The pre- and/or post-dose data may be obtained from samples which are 

biofluids such as urine, blood, blood plasma, blood serum, saliva, sweat, tears, 

breath or breath condensate or from samples which are plant tissues, plant 

fluids or homogenates, plant extracts or plant exudates, including, for example, 

essential oils or from samples which are human or animal tissues, fish tissues 

or oils, tissue extracts, tissue culture extracts, cell culture supernatants or 

extracts or of microbial origin. The pre- and/or post-dose data may comprise 

data relating to chemical composition and/or physical parameters. 

The pre- and/or post-dose samples or subjects may be treated prior to analysis 

(e.g. treated with one or more chemical reagents so as to produce derivative(s) 

of one or more existing substances), for instance to enhance data recovery or to 

improve sample stability. 

The pre- and/or post-dose data may be derived from or are compositional data 

acquired using nuclear magnetic resonance (NMR) spectroscopy and/or any 

other chemical analysis techniques such as mass spectroscopy (MS), infrared 

(IR) spectoscopy, gas chromatography (GC) and high performance liquid 

chromatography (HPLC) or by using any integrated combination of such 

techniques e.g. GC-MS. 

The pre- and/or post-dose data may be physical data or data derived therefrom. 

Preferably a phenotyping model is generated for each of a plurality of 

biochemical transformations, by dosing appropriate substances. Similarly, by 

dosing appropriate substances, a response prediction model may be built for 

each of a plurality of dosing substances. 
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The original pre-dose data set may extended, prior to pattern recognition, by 

taking ratios and/or other combinations of existing variables. This may be 

achieved for instance by forming further data comprising a ratio or ratios of the 

obtained data. 

For a group of subjects dosed with any particular substance, a pattern 

recognition method may be used to identify patterns in the variable metabolism 

of, or the variable reactions to, the dosing substance. A supervised or 

unsupervised pattern recognition method may be used to identify variation in 

the pre-dose data that correlates with the variation of interest in the post-dose 

data. 

A data filtering method such as Orthogonal Signal Correction (OSC) may be 

used to remove variation in the pre-dose data that is not correlated with the 

variation of interest in the post-dose data. 

The method may be used to identify biomarkers or combinations of biomarkers 

which provide information on metabolic phenotype or which may be used to 

predict responses to dosing. 

In a second aspect of the invention there is provided a method of determining 

selected aspects of the metabolic phenotype of a subject, the method 

comprising: 

analysing data relating to the un-dosed subject in relation to a model 

describing the correlation of pre-dose and post-dose data relating to a plurality 

of subjects dosed with a particular substance which challenges the biochemical 

transformation or pathway of interest; 
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generating, according to the predetermined criteria of the model, a 

numerical measure or classification describing the metabolic phenotype of the 

un-dosed subject. 

The pre-determined criteria of the model include one or more mathematical 

equations which define the relationship between the pre-dose data and the post-

dose data and allow characterisation of subjects on the basis of pre-dose data 

and allow identification of test data which are outliers. 

The data relating to the un-dosed subject may be obtained from a biofluid such 

as urine, blood, blood plasma, blood serum, saliva, sweat, tears, breath or 

breath condensate or from a plant tissue, plant fluid, plant homogenate, plant 

extract or plant exudate, including, for example, an essential oil, or from human 

or animal tissue, fish tissue or oil, or from a tissue extract, tissue culture 

extract, cell culture supernatant or cell culture extract or from a sample of 

microbial origin or from any one of the above sample types after treatment to 

enhance data recovery or sample stability. 

Characteristic compositional and/or physical data relating to a subject may be 

generated using nuclear magnetic resonance (NMR) spectroscopy and/or any 

other techniques or by using any combination of techniques. 

The phenotyping method may be used for the purpose of making a metabolic 

phenotype-influenced risk assessment and/or for the purpose of targeting the 

use of special health monitoring regimes and/or for the purpose of targeting the 

use of precautionary/preventative treatments and/or for the purpose of 

characterising risk for insurance purposes and/or for the purpose of selecting 

subjects for any other purpose e.g. for breeding. 
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In a further aspect of the invention there is provided a method of predicting the 

reaction of a subject to a dosing substance, the method comprising: 

analysing data relating to an un-dosed subject in relation to a model 

characterising the correlation of pre-dose and post-dose data relating to a 

plurality of subjects dosed with the particular dosing substance; and 

generating, according to the predetermined criteria of the model, a 

numerical or class prediction for the expected response of the un-dosed subject 

if it were to be dosed with the dosing substance. 

According to pre-determined criteria, the maximum or minimum dose of a 

substance that a subject should receive can be predicted as well as the amount 

of a dosing substance that a subject should receive. The frequency with which 

a subject should be dosed with a substance can also be predicted as well as the 

number of doses of a substance that a subject should receive. The appropriate 

controlled release formulation for a subject can be selected. 

Characteristic compositional and/or physical data relating to a subject may be 

generated using nuclear magnetic resonance (NMR) spectroscopy and/or any 

other techniques or by using any combination of techniques. 

The method of determining selected aspects of the metabolic phenotype of a 

subject or of predicting the reaction of a subject to a dosing substance, may 

further comprise analysing data relating to the un-dosed subject with respect to 

one or more biomarkers which have been previously identified. The 

biomarker(s) may react with one or more added reagents to produce a visible 

change such as a colour change. Preferably the biomarkers are selected by 

correlating pre-dose data relating to a plurality of subjects before dosing with a 

dosing substance and post-dose data relating to the plurality of subjects after 

dosing with the dosing substance. 
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The method may be used to select a group of phenotypically homogenous or 

similar subjects for a laboratory experiment or clinical trial or for any other 

purpose. 

The method may be used for rationalising biological variation in experimental 

data based on pre-dose analysis of biofluids or tissues, where such variation is 

caused by phenotypic heterogeneity. 

The data may be based on physical and/or chemical measurements taken from 

the subject as a whole. Examples of such measurements are blood pressure, 

heart rate, peak flow, height, weight etc. 

The post-dose data may describe a change relative to the pre-dose state e.g. a 

decrease in blood pressure of a human subject treated with a drug that lowers 

blood pressure. 

Preferably test data that does not conform to the limits of a particular model 

and/or method is identified. 

The subject may be an animal, in particular a mammal such as a human, a 

mouse, a rat, a pig, a cow, a bull, a sheep, a horse, a dog or a rabbit or any 

farmed animal or any animal, such as a race horse, used for the purpose of 

sport or for breeding. Alternatively the subject may be a plant, a fish or any 

other aquatic organism or a biological tissue, a tissue culture, a cell culture or a 

microbial culture. 

Data may be obtained from a sample which is representative, or is taken to be 

representative, of a group of subjects which are considered as a single subject. 
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For instance, samples from a plurality of like subjects (e.g. a plant) may be 

ground together and the resulting material used to obtain data considered to 

relate to a single plant subject. 

The dosed substance may be any substance or mixture or formulation of 

substances including especially pharmaceutical or medicinal substances or 

substances in research or development which might potentially become 

pharmaceutical or medicinal substances, but also including, for example, 

toxins, pesticides, herbicides, food or feed substances, food or feed additives 

and fluids of any sort including liquids, gases, vapours and smoke e.g. tobacco 

smoke. 

The dosed substance may be actively or passively dosed in any matrix or 

medium, by any means or route, including for example, by injection, by eating, 

by drinking, by inhaling or by smoking, over any time period including a 

subject's lifetime or any specified part or fraction thereof, such dosing to 

include that resulting from environmental exposure or pollution or from 

medical, dental, veterinary or surgical procedures. 

The method may be used for identifying the acetylator phenotype of a subject 

without dosing a test substance to that subject. Additionally or alternatively the 

method may be used for predicting the response of a subject to dosing with a 

substance where that response is dependent on acetylator phenotype. 

The method may be used to predict the susceptibility of a subject to isoniazid-

induced toxicity or galactosamine-induced toxicity. 

The invention also relates to apparatus for generating models. 
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In a further aspect of the invention there is provided apparatus for response 

prediction and/or for metabolic phenotyping, the apparatus comprising: 

one or more models, each model modelling the correlation of pre-dose 

and post-dose data relating to a plurality of subjects dosed with a particular 

dosing substance; 

a processor for analysing data relating to an un-dosed subject in relation to at 

least one of the models and thereby determining one or more aspects of the 

metabolic phenotype of the un-dosed subject or predicting its responses to 

dosing according to the modeI(s) employed. 

Additionally or alternatively the apparatus is further arranged to generate one 

or more models with which to characterise selected aspects of the metabolic 

phenotype of subjects without dosing a test substance to those subjects or with 

which to predict, without dosing, the post-dose responses of subjects where 

those responses are dependent on metabolic phenotype, the apparatus being 

arranged to: 

obtain pre-dose data relating to a plurality of subjects before dosing with 

a dosing substance; 

obtain post-dose data relating to the plurality of subjects after dosing 

with the dosing substance; and 

correlate inter-subject variation in the pre-dose data with inter-subject 

variation in the post-dose data, and generating a pre-to-post-dose predictive 

model on the basis of the observed correlation. 

Preferably the apparatus may further comprise one or more analytical 

instruments or devices to carry out physical and/or chemical analysis, such as 

NMR spectroscopy, mass spectroscopy, infrared spectroscopy or high 

performance liquid chromatography. 
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The apparatus may also be arranged to identify one or more biomarkers, in 

particular for response prediction or metabolic phenotyping based on the use of 

one or more biomarkers which have been previously identified as described. 

In a further aspect of the invention there is provided apparatus for metabolic 

phenotyping or for predicting a subject's response(s) to dosing, the apparatus 

comprising: 

a test area to receive a sample from the subject under test, 

said test area incorporating one or more reagents which may react chemically 

with one or more biomarkers in the sample to produce- a change in the visual 

appearance of the test area, the biomarkers having been previously identified 

as described, and the resulting visual appearance of the test area being 

characteristic of metabolic phenotype or predictive of response(s) to dosing. 

Preferably the apparatus identifies an appropriate dosing regime for a subject. 

The apparatus may be based on the use of antibodies raised against specific 

biomarkers. Selected biomarkers may be detected and/or quantified by means 

of enzyme-catalysed reactions using, for instance, enzymes immobilised on a 

solid support. 

The invention also relates to apparatus comprising one or more models 

generated by a method according to the invention. 

The apparatus may be further arranged to identify test data that does not 

conform to the limits of a particular model. 

The invention has many applications: 
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(1) 'Well'subjects not requiring corrective treatment 

Metabolic characterisation (phenotyping) of subject enabling: 

- risk assessment e.g. bladder cancer particularly associated with certain 

phenotype. 

- targeted adoption of special health monitoring regimes where 

appropriate i.e. in high risk subjects. 

- targeted use of precautionary/preventative treatments where appropriate 

i.e. in high risk subjects. 

- identification, for insurance purposes, of the degree of risk associated 

with a subject. 

- selection of subjects with desirable characteristics e.g. in breeding farm 

animals. 

- selection of phenotypically homogenous subsets of subjects for 

laboratory or clinical experiments. 

(2) Subjects requiring pharmaceutical, medical, dental, veterinary or other 

treatments 

Metabolic characterisation (phenotyping) of the subject and/or prediction of the 

subject's responses to dosing or treatment, enabling: 

- avoidance of adverse drug reactions (e.g. coma, fatality) either by not 

administering the drug to vulnerable subjects or by reducing the drug 

dose and/or the frequency and/or duration of such dosing. 

- prediction of occurrence and degree of severity of minor side effects of 

drug treatments (e.g. nausea, drowsiness). 
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- selection of optimal pharmaceutical treatment (compound, dose, dose-

frequency and duration of course of treatment) based on maintaining an 

appropriate level of the active drug substance in the body whilst 

minimising side-effects. 

- avoidance of adverse reactions to medical, dental, veterinary procedures 

and substances e.g. anaesthetics such as halothane. 

- selection of appropriate medical, dental or veterinary procedures or 

treatments. 

(3) Drug development and licensing 

Drugs having different effects (e.g. efficacy, toxicity) in different subjects 

could be licensed under the proviso that pre-dose metabolic phenotyping would 

be carried out and treatments tailored accordingly. This would enable: 

- a reduction in 'attrition' (abandonment of compounds during the drug 

development process) because of variable responses either in efficacy or 

in toxicity. 

- recovery/relicensing of certain non-approved drugs where the problems 

in effectiveness or toxicity were limited to certain subsets of subjects 

rather than the population as a whole. 

In relation to drug development studies (e.g. for toxicity or efficacy) pre-dose 

metabolic phenotyping would enable: 

- interpretation of variable results where that variation resulted from 

phenotypic differences between different subjects or between different 

subsets of subjects. 
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- selection of desired test groups having certain required metabolic 

characteristics. 

(4) Biomarker identification 

Instead of being used directly for analysis of test data, appropriate models 

could be used to identify biomarkers or combinations of biomarkers with which 

to determine metabolic phenotype or with which to predict responses 

determined by metabolic phenotype. Having established the relevant 

biomarker(s), simplified methods of analysis, e.g. urine dipsticks or HPLC 

methods, could then be developed based on those biomarkers. This would 

reduce reliance on sophisticated technologies such as NMR spectroscopy and 

would enable more remote testing e.g. in local laboratories, pharmacies, 

hospitals or doctors' surgeries. 

The invention will now be described further, by way of example only, with 

reference to the accompanying drawings, in which: 

Figure 1.1 shows the variable urinary excretion of galactosamine after dosing 

with Galactosamine HCl (abbreviated GalN HCl) (800 mg/kg); 

Figure 1.2 shows the variable urinary excretion of an N-acetylated species after 

dosing with GalN HCl (800 mg/kg); 

Figure 1.3 shows some urinary changes induced by GalN HCl (800 mg/kg) in a 

responder; 

Figure 1.4 shows the altered urinary excretion of hippurate and histidine after 

dosing with galactosamine HCl (800 mg/kg); 

Figure 1.5 shows the scores plot on PC 1 vs. PC 5 from a PCA of the day -1 

(pre-dose) urine NMR spectra from the galactosamine study; 
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Figure 1.6 shows the loadings plot on PC 1 vs. PC 5 from the PCA of the day -

1 (pre-dose) urine NMR spectra from the galactosamine study; 

Figure 2.1 shows examples of the different patterns of N-acetylated metabolites 

seen in the NMR spectra of urine samples collected from 0-7 hours after dosing 

isoniazid (400 mg/kg) to male Sprague-Dawley rats; 

Figure 2.2 shows the scores plot on PC 1 vs. PC 2 from a PCA of the N-acetyls 

region (5 2.23 to 8 2.13) of the NMR spectra of the day 1 (0-7 hours from 

dosing) urine samples from the animals dosed with isoniazid (200 mg/kg); 

Figure 2.3 shows two optional initial pathways for isoniazid metabolism; 

Figure 3.1 shows pre-dose prediction of the ratio (peak height 'a'/peak height 

allantoin) in the NMR spectra of urine samples collected from 0-7 hours after 

dosing isoniazid (200 mg/kg); 

Figure 3.2 shows the regression coefficients pertaining to the PLS analysis 

which gave rise to the results described in Figure 3.1; 

Figure 3.3 shows pre-dose prediction of the amount of metabolite C excreted in 

the urine collected from 0-7 hours after dosing rats with isoniazid (200 mg/kg). 

Figure 3.4 shows pre-dose prediction of the ratio [(Fraction C)/(Fraction A + 

B)] in the urine collected from 0-7 hours after dosing rats with isoniazid (200 

mg/kg). 

Figure 3.5 shows the internal validation of the model relating to Figure 3.4. 

Figure 3.6 shows pre-dose predictions of [(Fraction C)/(Fraction A + B)] for an 

external test set. 

Figure 4.1 shows pre-dose prediction of the total urinary excretion of N-

acetylated compounds (8 ca. 2.22 - ca. 2.11) in the 24-hour period after dosing 

rats with paracetamol. (1st model for this parameter). 

Figure 4.2 shows pre-dose prediction of the amount of 'MA' excreted in the 

24-hour period after dosing rats with paracetamol. (1st model for this 

parameter). 



35 

Figure 4.3 shows pre-dose prediction of the total urinary excretion of N-

acetylated compounds (5 ca. 2.22 - ca. 2.11) in the 24-hour period after dosing 

rats with paracetamol. (2nd model for this parameter). 

Figure 4.4 shows the internal validation of the model relating to Figure 4.3. 

Figure 4.5 shows pre-dose prediction of the urinary excretion of paracetamol 

glucuronide ('G') in the 24-hour period after dosing rats with paracetamol. 

Figure 4.6 shows the internal validation of the model relating to Figure 4.5 

Figure 4.7 shows pre-dose prediction of the urinary excretion of 'MA' in the 

24-hour period after dosing rats with paracetamol. (2nd model for this 

parameter). 

Figure 4.8 shows the internal validation of the model relating to Figure 4.7 

Figure 4.9 shows the external validation of the model relating to Figure 4.7 

Figure 4.10 shows pre-dose prediction of the urinary excretion of 'P' in the 24-

hour period after dosing rats with paracetamol. 

Figure 4.11 shows the internal validation of the model relating to Figure 4.10 

Figure 4.12 shows the observed versus pre-dose predicted values for the 

amount of 'S' excreted in the 24-hour period after dosing rats with 

paracetamol. 

Figure 4.13 shows the observed versus pre-dose predicted values for the G/S 

ratio in the 24-hour urine samples obtained after dosing rats with paracetamol. 

Figure 5.1 shows pre-dose prediction of the total urinary excretion of N-

acetylated compounds (6 2.210 - 2.135) per kg of body mass in the first three 

hours after dosing human males with paracetamol. 

Figure 5.2 shows the external validation of the model relating to Figure 5.1. 

Figure 5.3 shows pre-dose prediction of the amount of paracetamol glucuronide 

('G') excreted in the urine per kg of body mass in the first three hours after 

dosing human males with paracetamol. 

Figure 5.4 shows the external validation of the model relating to Figure 5.3. 
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Figure 5.5 shows pre-dose prediction of the amount of 'P' excreted in the urine 

per kg of body mass in the first three hours after dosing human males with 

paracetamol. 

Figure 5.6 shows the external validation of the model relating to Figure 5.5. 

Figure 5.7 shows pre-dose prediction of the total urinary excretion of N-

acetylated compounds (5 2.210 - 2.135) per kg of body mass in the first six 

hours after dosing human males with paracetamol. 

Figure 5.8 shows the external validation of the model relating to Figure 5.7. 

A. Preferred features of the model building procedure 

1. The model building population. 

The subjects who form the model-building population should, as far as 

possible, be representative of the subjects who will form the test population. 

Diet can affect biofluid composition and inter-subject dietary variation could 

therefore be important in relation to biofluid-derived models. Ideally, the 

methods would be sufficiently robust so as to be unaffected by dietary variation 

but this would require testing for each model. As a precaution against the 

possible effect of a variable diet, it would be advisable for all the model 

building, validation and test data relating to a particular model to be acquired 

from subjects receiving the same diet. This is easier to achieve for laboratory 

animals than it is for humans. In fact, it could be advantageous if standard 

animal diets and a standard human diet were to specified for all relevant 

exercises as this would enable rapid checking of a test subject's urine sample 

against a range of different models. In general, the larger the size of the model-

building population, the more robust will be the model created. Once a model 

has been built it would need to be validated using a group of subjects who were 

not members of the model-building population. 
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2. Dosing 

The substance dosed, the dose level, the frequency of dosing and the means of 

dosing will depend on the application. Where the aim is to produce a method 

for metabolic phenotyping, the dosed substance would need to provide one or 

more metabolites with which to characterise the extent of the transformation(s) 

of interest. Ideally, the selected metabolites would only be affected by the 

transformation(s) of interest and would not be subject to other complications. 

It is, therefore, likely that the dosed compounds would be small uncomplicated 

chemical compounds with perhaps mono- or bi- chemical functionality. For 

building such phenotyping models it is likely that a single dose of the selected 

substance would be sufficient but this dose would need to be large enough to 

provide discrimination between metabolically-different individuals. Where the 

aim is to build a model for response prediction, the dosing regime should be 

identical to that for which the response is to be predicted in the test subjects. 

3. Samples 

a. Pre-dose samples 

The pre-dose sample(s) will need to be selected so as to contain relevant 

metabolic information. If necessary, samples of more than one type could be 

taken and their information content combined. Preferably the sample(s) would 

be easy to obtain and the sampling procedure(s) would cause minimal pain and 

inconvenience. To minimise the potential for changes in metabolic phenotype 

to occur between time of pre-dose sampling and the time of dosing, the pre-

dose samples should be obtained as near as possible to the time of dosing. 
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Urine is an ideal pre-dose sample because it contains a wealth of metabolic 

information and can be sampled with little or no inconvenience especially to 

human subjects. Additionally, with humans, urine can be sampled essentially 

on demand. Urine collection from animals such as rats is slightly more 

difficult; it cannot be obtained on demand and smaller animals such as rats 

would generally have to be housed within individual cages for several hours 

with special arrangements for urine collection. 

Blood also contains metabolic information and, in small quantities, is relatively 

easy to sample from larger animals or humans by a 'pin-prick' method. 

However, special arrangements have to be made to inhibit clotting e.g. the use 

of blood serum or of vials containing lithium heparin. Larger quantities of 

blood are more difficult to obtain especially from smaller animals and 

specialised techniques and phlebotomists may be required. Anaesthesia and/or 

sedation may be required depending on the site of blood sampling and the ease 

of immobilising the subject. Blood plasma or blood serum are the two blood-

derived fluids that would normally be analysed. 

Saliva, sweat, exhaled breath or exhaled breath condensate, tears and maternal 

milk are other body fluids which would be easy to obtain and might contain 

relevant metabolic information depending on the nature of the investigation. 

b. Post-dose samples 

The post-dose sample type will depend on the application. The post-dose 

sample could be the whole subject e.g. a human or a rat, or a sample derived 

from that organism, as in section a. above. Where necessary, samples of more 

than one type could be taken. 
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c. Sample stability 

Special arrangements need to be taken to ensure the stability of biological 

samples which would otherwise be subject to degradation by bacteria or other 

means. As stated above, special arrangements need to be made to prevent the 

clotting of blood or blood plasma. Urine samples, especially those which 

might have been subjected to faecal or other contamination, are best collected 

into vials containing an anti-bacterial agent such as sodium azide. Sodium 

azide has the benefit of being invisible to lH NMR spectroscopy. Where the 

urine sample is collected over a significant period of time, i.e. for hours rather 

than minutes, it is best if the collection vessel or bag is cooled by ice or other 

means. Once collected and stabilised, all biological fluids should either be 

analysed immediately or stored deep-frozen (-20C or below) pending analysis. 

Preferably, any 'solid' tissue samples would be 'snap' frozen in liquid nitrogen 

immediately after collection and subsequently stored at -80C pending analysis. 

Collection and storage vessels should be selected which will not contaminate 

the samples by leakage of plasticisers or other plastic components. 

4. Sample preparation 

Some sample preparation or treatment may be required prior to analysis. 

Samples for lH NMR spectroscopic analysis are typically prepared as follows 

although there may be much variation in the exact procedure used by different 

workers: 

a. Urine samples 
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Urine samples are typically prepared for NMR analysis by mixing 400 µl of 

urine with 200 µl of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M 

Na2HPO4 and 0.2 M NaH2PO4; pH 7.4); if insufficient urine is available the 

shortfall is made up with purified water with a minimum of 200 µl of urine 

being used. The urine-buffer mixture is left to stand for 10 minutes at room 

temperature to enable buffering to take place and then centrifuged at 13,000 

rpm for a further 10 minutes to remove suspended particulates. 500 µl of 

'clear' buffered urine is transferred to an NMR tube and 50 µl of a TSP/D2O 

solution added. TSP (sodium 3-trimethylsilyl-[2, 2, 3, 3-2H4]-l-propionate) is a 

chemical shift reference compound (8 0) used in the NMR experiment and the 

D2O provides a field/frequency lock for the NMR spectrometer. The 

concentration of the TSP/D2O solution is such as to give a final TSP 

concentration of 0.1 mM in the NMR tube. 

b. Plasma samples 

Plasma samples are typically prepared for 1H NMR analysis by mixing 150 µL 

of plasma with 350 µL of saline (0.9% (w/v) NaCl in a mixture of 10% (v/v) 

D2O and 90% (v/v) H2O). Chemical shift reference compounds such as TSP 

are not added because of the likelihood of binding to protein in the sample. 

Depending on the analytical technique to be employed, chemical derivatisation 

of the sample could be used to enhance data recovery. Thus, for example 

suitable chromophores could be attached to compounds which would otherwise 

be undetectable to spectrophotometric detectors monitoring the absorption of 

ultraviolet or visible light. Another option would be to attach fluorescent 

markers to enhance the detectability of compounds by fluorimetric analysis. 

By such chemical derivatisation, previously undetectable compounds could be 

made detectable and detection limits could be improved for others. Chemical 
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derivatisation could also be employed to facilitate the chromatographic 

separation of different sample components. Physical and/or chemical 

treatments could also be employed to remove undesirable sample components 

such as plasma proteins which might otherwise cause problems during the 

analysis. 

5. Physical-chemical analytical techniques 

a. Analysis of post-dose samples 

The analytical technique(s) need to be chosen with regard to the parameter(s) 

being measured and the number and nature of the samples e.g. whole organism 

or biofluid type. The huge range of parameters that might be of interest in 

different models means that a wide range of analytical instrumentation and 

methods could be required. 

If the appUcation is to measure specific response(s), e.g. the change in blood 

pressure, after dosing with a particular substance then the most appropriate 

technique(s) should be chosen, e.g. sphygmomanometer. If the toxicity of a 

substance is the focus of interest then it may be best to measure a range of 

blood plasma parameters, such as enzyme activities, using, for instance, an 

automated clinical analyser equipped with appropriate kits. Alternatively, 

histopathological findings could be classified according to type of effect or 

could be numerically scored according to degree of severity. Where the aim is 

to build a phenotyping model the post-dose analytical technique would 

normally need to provide quantitation, or at least relative quantitation, of one or 

more metabolites of the dosed substance. 

b. Analysis of pre-dose samples 
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As with the post-dose samples, the choice of analytical technique for the pre-

dose samples will be influenced by the nature of the samples but, additionally, 

the chosen pre-dose analytical technique would need to be able to reveal 

metabolic information. Preferably, analysis of a body fluid or body tissue 

would be by means of NMR spectroscopy or by another technique which is 

capable of undirected metabolite detection and quantitation i.e. the chosen 

technique would ideally detect and quantify individual metabolites without the 

need to specify analysis of those particular metabolites. This allows for the 

use, within the model, of the most useful metabolites even if they are not 

presently known. It also allows for the identification of new metabolite 

markers where that is of interest. For model-building, it is not necessary that 

each observed metabolite is identified but, rather, the analytical technique 

should provide a reliable quantitative fingerprint of each sample. Ideally, the 

chosen technique would be readily accessible but this might not always be 

possible because of the expense and the level of sophistication required. One 

possible technique, that is standard analytical equipment in most analytical 

chemistry laboratories, is High Performance Liquid Chromatography (HPLC) 

with, for instance, UV-Visible spectrophotometric detection. Although it can 

be rather time-corisuming, the HPLC technique would be capable of providing 

the type of data that is required from a pre-dose sample. The choice of the 

detector for HPLC would be a critical factor and data recovery could be 

facilitated by chemical derivatisation of the sample prior to analysis. The use 

of NMR spectroscopy would not be limited to any particular type of NMR 

experiment. 

c. Variable performance of different analytical instruments 
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Different analytical instruments may perform differently and the performance 

of a single piece of equipment may vary over time. Such instrumental variation 

could be particularly important where subtle pre-dose variation between 

samples needs to be characterised to build a successful model although data 

filtering such as OSC could help to minimise its effects in 'supervised' PR 

analyses. Therefore, in building a particular model, all measurements of a 

particular type would, ideally, be taken on a single occasion using one specific 

instrument. If it were not possible to carry out all the analyses on one occasion 

it would be necessary to ensure that instrument performance had not varied 

significantly between the different periods of use. Where multiple pieces or 

types of equipment were used in taking measurements from the model-building 

population, it would be necessary to carry out cross-checks to ensure similar 

performance from each instrument. Deselection or recalibration of instruments 

would need to be carried out where there was a significant difference in 

performance between different instruments. 

6. Data manipulation prior to multivariate PR analysis 

It may be helpful or necessary to carry out some data manipulation prior to PR 

analysis. 

Ideally, all the available physical and/or chemical data would be used in 

creating the input data for the chemometric analysis. However, depending on 

the type of data acquired, some data reduction may be required prior to 

multivariate analysis. With 1H NMR spectroscopic data of biofluids such as 

urine this has been used, despite buffering, to cope with small pH-induced 

shifts in the position of peaks on the chemical shift scale. Thus, after deleting 

certain regions such as the residual water signals, the remainder of each 1D 1H 

NMR spectrum is divided along its abscissa into sequential segments (typically 
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of 0.04 ppm width for a 600 MHz spectrometer) and an integral obtained for 

each segment. Where such data reduction is required it would be advisable to 

try a different data reduction method, e.g. to use different spectral segment 

widths, if the previous attempt had not yielded an adequate model. The use of 

a data filtering technique such as OSC could facilitate data reduction by 

assisting with variable selection. 

With biofluid NMR data it is common practice to 'normalise' each data-

reduced spectrum and there are a number of ways of doing that. Frequently, 

each NMR spectrum is normalised, or scaled, to give the same total integration 

as very other NMR spectrum in the data set. Additionally, other data 

manipulations may prove to be helpful e.g. scaling the 1H NMR data from 

urine samples to a constant integration for the allantoin peak at 8 5.4, if present, 

or to a constant integration for a creatinine peak. In man, urinary creatinine 

excretion is related to muscle mass which in turn is loosely related to body 

mass. Scaling urine data to constant creatinine should therefore help to 

eliminate differences in excretion that are related to body mass. Additionally, 

by determining a measure of metabolite concentrations in urine and by taking 

account of the amount of urine excreted by each subject it should be possible to 

obtain a data set which truly represents metabolite excretion by each subject. 

Where metabolite excretion has been determined, and body mass is also known 

but variable, it may be useful to normalise urine data to excretion per unit body 

mass. It may also be useful to 'block' the data so that variables with values 

falling within a particular range are treated as a discrete group. 

A particular limitation of analyses such as PCA, PLS or PLS-DA is that they 

rely on finding useful linear combinations of existing variables despite the fact 

that a non-linear combination of variables might be more instructive. Thus, 

before carrying out such analyses it would be sensible to extend the X data 
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matrix by adding non-linear combinations of the existing variables. In 

particular, the ratio of two variables is often more significant than the absolute 

value of either and taking ratios could be especially helpful in relation to 

metabolic phenotyping where the relative amounts of different metabolites are 

often important. Thus, the extended X matrix should include the original X 

variables together with the one-to-one ratios of all those original variables 

except for the ratio of one variable to itself. This approach is shown in the 

following simple example: 

Original X matrix: 

Sample or 

object 

A 

B 

C 

Variable 

XI 

25 

16 

8 

Variable 

X2 

25 

8 

2 

Extended X matrix: 

Sample or 

object 

A 

B 

C 

Variable 

XI 

25 

16 

8 

Variable 

X2 

25 

8 

2 

Variable 

X1/X2 

1 

2 

4 

In a slightly more complicated example three original X variables are extended 

to produce a new six variable matrix: 
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Original 3 variable matrix: 

Sample or Object 

A 

B 

C 

Variable XI 

25 

16 

8 

Variable X2 

25 

8 

2 

Variable X3 

50 

32 

4 

Extended matrix: 

Sample 

or object 

A 

B 

C 

Variable 

XI 

25 

16 

8 

Variable 

X2 

25 

8 

2 

Variable 

X3 

50 

32 

4 

Variable 

X1/X2 

1 

2 

4 

Variable 

X1/X3 

0.5 

0.5 

2 

Variable 

X2/X3 

0.5 

0.25 

0.5 

The potential benefit of this approach is demonstrated in the following simple 

PLS-type example where one wishes to predict a single Y variable from two X 

variables: 

Original data matrix: 

Sample or 

object 

A 

B 

C 

Variable 

XI 

25 

16 

8 

Variable 

X2 

25 

8 

2 

Variable 

Yl 

2 

4 

8 
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Extended matrix: 

Sample or 

object 

A 

B 

C 

Variable 

XI 

25 

16 

8 

Variable 

X2 

25 

8 

2 

Variable 

X1/X2 

1 

2 

4 

Variable 

Yl 

2 

4 

8 

In the original matrix there was no constant linear combination of XI and X2 

that would produce Yl. However, by extending the X matrix as described a 

very simple linear relationship becomes apparent i.e. Yl= 2(X1/X2). 

For each variable in the data set some form of scaling will normally be required 

prior to performing a chemometric analysis. Typical scaling approaches 

include mean-centring, unit variance scaling and pareto scaling. 

7. Chemometrics methodology 

It is important to realise that the scope of this invention is not limited to the use 

of particular specified chemometrics methodologies. Any such methodologies 

which could identify and establish pre-to-post-dose data correlations could be 

employed. 

Supervised pattern recognition (PR) methods such as PLS or PLS-DA would 

normally be employed to achieve targeted model building i.e. pre-to-post dose 

data correlations. It is possible that these supervised methods would be 

preceded by the use of unsupervised PR methods such as PCA e.g. to examine 

the variation in the responses to a dosed compound or to examine the variation 

in the metabolism of a dosed compound. Such unsupervised analysis could be 
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helpful in identifying outliers and in deciding whether to build a classification 

method or whether to build a numerical result model (see below). 

Occassionally, in a less sophisticated approach to achieving a model for pre-

dose discrimination of some aspect of metabolic phenotype or response 

prediction, it might be adequate to apply an unsupervised method such as PCA 

to the pre-dose data. This approach has a simphcity advantage although it 

would be much less able to determine subtle discriminators than the supervised 

methods. Such a method would rely on being able to code (e.g. colour code) 

the individual model building pre-dose data points according to post-dose 

behaviour. The success or otherwise of this approach would depend on the 

ease with which the coded populations could be distinguished pre-dose. In 

general, this unsupervised approach would only be suitable where there were 

relatively obvious pre-dose discriminators for the different response groups. It 

would not be suitable where the discriminators were complex and 'hidden' and, 

importantly, data filtering methods such as OSC could not be employed with 

this 'unsupervised' approach. 

The chemometrics method(s) to be employed in the model building will depend 

on the final application that is envisaged or required. Thus, a classification 

method such as PLS-DA would be appropriate when the objective was to 

achieve a method for classification of some aspect of metabolic phenotype (e.g. 

'fast' or 'slow' acetylation) or for prediction of the type of response to a dosed 

substance (e.g. 'adverse drug reaction' or 'no adverse drug reaction'). 

Alternatively, where the objective was to achieve a quantitative measure of 

some aspect of metabolic ability or to predict a numerical measure of some 

response to a dosed substance, methods such as PLS would be appropriate. 

Neural networks analysis (NNA) can be useful, depending on the application, 

and NNA has been proven to be advantageous in a classification role where 
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pre-dose discrimination may come from one of a number of independent 

sources e.g. if the X data is of type A or B or C then the response will be Yl, if 

the X data is not of those types then the response will be Y2. Importantly, 

neural networks methods do not readily enable identification of those pre-dose 

features which provide the discrimination of interest. Methods such as PCA, 

PLS and PLS-DA do readily enable the identification of discriminatory features 

and this would be an important advantage in understanding the scientific basis 

of any discrimination and where it was desired to derive other analytical 

methods to perform the same discrimination. 

Data filtering methods such as OSC would sometimes be employed to remove 

variation in the pre-dose data that is not correlated to the variation of interest in 

the post-dose data. For instance, OSC can help to minimise the effects of any 

variation in the performance of the analytical instrument(s) used in the physical 

and/or chemical analysis. 

Frequently, a relatively small number of outliers will need to be excluded from 

the model-building data because their data is in some way inconsistent or a 

hindrance to the model building, PCA scores plots and DmodX values may be 

used to identify outliers. In the case of PLS models, outliers could be 

legitimately excluded by any of the following means: 

a) An examination of the X scores (tl/t2) 

b) An examination of the X residuals (DmodX) 

c) An examination of the correlation between the scores in the X and Y 

spaces (e.g. tl/ul). 

d) An examination of the Y scores (e.g. ul/u2) 

e) An examination of the Y residuals (DmodY). 
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8. Response prediction applications 

Substances dosed to living organisms will frequently be subject to a variety of 

different metabolic transformations. Each of the ensuing metabolites might 

then in turn undergo a variety of further transformations and so on and so forth. 

Thus, the complete metaboUsm of one original compound could involve an 

extremely complex morass of different pathways and many different enzymes. 

Consequently a multiplicity of different phenotypic influences could contribute 

to the nature of the response to a dosed substance and it could be very difficult 

to deconvolve all those different influences. Therefore, in regard to response 

prediction applications, it is preferred that the invention is used to directly 

predict the response without deconvolving the different influences. Thus, for 

instance, the vastly variable degree of liver damage (as shown by 

histopathology and clinical chemistry parameters) caused when male Sprague-

Dawley rats are dosed galactosamine HCl (800 mg/kg) (see Example 1) might, 

in principle, be directly correlated with variation in pre-dose urine so as to 

provide a predictive model for susceptibility to galactosamine HCl, without 

needing to understand the metabolic factors that are determinants of the 

response. 

B. Preferred features of the model validation procedure 

Verification of model validity is of great importance in all types of 

mathematical modelling. Validation of a model's robustness and predictive 

ability requires a validation data set that is independent of the data used for 

model building. The predictive ability of a model is assessed according to the 

magnitude of the errors associated with the model-based predictions for the 
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validation data set. The robustness of a model can be judged by comparing the 

magnitude of the estimated error for the model with the magnitude of the error 

associated with the model-based predictions for the validation data set. For a 

model to be considered as reliable for future predictions of 'unknown' samples 

both requirements, predictability and robustness, should be fulfilled. 

In the case of PLS models, both 'internal' and 'external' validation may be 

performed as follows: 

'Internal' validation of PLS models may be effected firstly by determining the 

R2Y and Q2Y values and secondly by observing the effect, on those values, of 

randomising the positions of the Y data in relation to their corresponding rows 

in the X matrix (typically 20 separate row permutations would be performed). 

R2Y provides a measure of the ability of the PLS model to explain the Y data 

from the X data, with all the data included in the model. However, spuriously 

high R2Y values can be obtained by over-fitting and the real test of a PLS 

model is its predictive ability. Q2Y provides a measure of the predictive ability 

of a PLS model and is obtained by a cross-validation procedure wherein 

different portions of the XY data are sequentially held out for X to Y prediction 

using models derived from the remainder of the data. Both R2Y and Q2Y have 

a theoretical maximum value of 1, although Q2Y should normally be less than 

R2Y. Subject to the actual values of R2Y and Q2Y, a value of Q2Y close to R2Y 

implies good predictive ability. In the second stage of the internal validation of 

a PLS model, the positions of the Y data are randomised and both the R2Y and 

Q Y values should decrease substantially if the original model was valid. 

Randomisation of the positions of the Y data relative to their corresponding 

rows in the X matrix should result in a large decrease in Q2Y, ideally to zero. 

R2Y values should also decrease substantially on randomisation of the Y data 

but would not necessarily decrease to zero because the modelling procedure 
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will always try to find something in the X data, even noise, that can predict the 

randomised Y data. 

'External' validation of PLS models may be performed by taking a test set of 

animals that do not form part of the model-building population and whose Y 

values approximately span the range of the Y data in the model. For the model 

to be taken as valid the prediction errors for the test samples (In the SIMCA 

software from Umetrics this is designated RMSEP - root mean square error of 

prediction) must be in the same range as the estimation errors for the model 

samples (In the SIMCA software from Umetrics this is designated RMSEE -

root mean square error of estimation). 

C. Preferred features of the testing procedure 

One very important feature of this invention concerns the identification of 

subjects with unusual or extreme metabolic phenotypes. Subjects such as 

these may be particularly prone to suffering adverse or idiosyncratic drug 

reactions. Given the practical limitations that apply to the numbers of subjects 

that can be included in any model building exercise, it is impossible to build a 

model based on the full range of metabolic phenotypes and rare phenotypes are 

unlikely to be included. Additionally ethnic differences are likely to be 

important sources of phenotypic variation. However, it is an important feature 

of the current invention that, at the testing stage, any phenotype that does not 

conform to the range of phenotypes in the model will be identifiable as an 

outlier. In the case of PCA and PLS models, for example, these outliers will be 

detected either in the direction of the model plane or hyper-plane described by 

the PC- or PLS-scores or in the model residual direction, the distance to model 

(DModX, Y). Additionally, in the case of PLS modelling, outliers in the scores 

direction can be present in X-space (T), in Y-space (U) and in the inner relation 
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between X and Y (TAJ). With test subjects identified as outliers, then-

metabolic phenotype would not be identifiable, or their response to the dosing 

substance in question would not be predictable, with adequate confidence. 

Therefore, in response prediction applications, it would be sensible either not to 

dose the substance at all to such outliers or to proceed with great caution e.g. 

with an initial low dose. Thus, despite the practical limitations of the model 

building procedure, the model should be able to provide useful information 

with respect to all of the test subjects. 

A single NMR spectrum of, say, a subject's urine could be compared against a 

variety of models to predict mat subject's responses to a variety of treatments 

or to assess several aspects of the subject's metabolic phenotype. The NMR 

spectrum could be stored electronically for use as and when required. This 

type of approach would reduce the amount of physical and/or chemical testing 

required although testing at different stages of a subject's life could be required 

to allow for age-related alterations in metabolic phenotype. 

Normally, a new model would be required for each substance of interest 

although a model derived for one substance might be useable in conjunction 

with a closely related substance. 

Preferred features of each aspect of the invention are as for each of the oth 

aspects mutatis mutandis. The prior art documents mentioned herein 

incorporated to the fullest extent permitted by law. 

Examples 

Example 1. The variable response of Sprague-Dawley rats to dosing with 

galactosamine hydrochloride. An example of a possible response 
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prediction method based on the use of a simple response-coded PCA of the 

NMR spectra of pre-dose biofluid samples. 

Thirty young adult age-matched male Sprague-Dawley rats were obtained from 

Charles River, France. After observation to ensure that they each appeared 

healthy they were placed in individual metabolism cages with free access to 

water and a standard commercial laboratory diet (diet A04C from Usine 

d'Alimentation Rationnelle, Villemoisson-sur-Orge, France). The laboratory 

temperature was maintained at 20 ± 2 degrees C and the relative humidity at 60 

± 20 %. The laboratory air was filtered and changed 14 times per hour. A 

fixed '12 hours light - 12 hours dark' cycle was imposed. The study 

commenced after a short period of cage 'acclimatisation'. The sampling 

regime is as shown in Table 1.1. 

Table 1.1: The sampling regime for tihe Galactosamine HCl study. B, U 

and P denote sampling for blood, urine and pathology respectively. Dosing 

was carried out at the start of day 1. 

GroupXDay 

Urine 

collection 

period/hrs 

Late 

euthanased 

group 

Early 

euthanased 

group 

-3 

0-7 

B 

U 

B 

U 

-2 

0-7 

U 

U 

-1 

0-7 

U 

U 

1 

0-7 

U 

u 

1 

7-24 

U 

U 

2 

0-7 

U 

BP 

3 

0-7 

U 

4 

0-7 

U 

5 

0-7 

U 

6 

0-7 

U 

7 

0-7 

U 

8 

1 

I 

BP 

1 
i 
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At the time of dosing (at the start of day 1) the growing rats were each 

approximately 260g in mass. Galactosamine (abbreviated GalN) HC1 (from 

Sigma, France) was dissolved in physiological saline and dosed by 

intraperitoneal injection at either 200 mg/kg or at 800 mg/kg; ten animals (nos. 

101-110) received the low dose and ten animals (nos. 201-210) received the 

high dose. Ten control animals (nos. 1-10) received an oral dose of corn oil. 

Five of each group of ten rats were euthanased by means of CO2 on day 2 with 

the remainder being euthanased by the same technique on day 8. The early-

euthanased rats were numbers 6-10, 106-110 and 206-210. The late-

euthanased rats were numbers 1-5,101-105 and 201-205. 

Pre- and post-dose urine samples were collected for 7 hours daily into ice-

cooled vessels containing sodium azide (0.100 ml of a 10% (w/v) solution of 

sodium azide in water) as an antibacterial preservative. There was an 

additional overnight urine collection on the day of dosing (from 7-24 hours 

post-dose). The urine collection apparatus was cleaned prior to each collection 

to rninimise bacterial, food and faecal contamination. The urine samples were 

deep-frozen pending NMR analysis. 

Blood was sampled from the orbital sinus, under isoflurane anaesthesia. Blood 

was sampled from all animals on day -3 and just prior to euthanasia on either 

day 2 or day 8. Following euthanasia each rat was sampled for 

histopathological examination with the sampling including taking ten liver 

samples from each rat (two from each liver lobe). The blood samples were 

collected into vials containing lithium heparin as anticoagulant and 

immediately centrifuged at approx. minus four degrees C to separate plasma. 

A portion of each plasma sample was analysed at thirty degrees C on an 

AU600 multiparamerric clinical analyser (Olympus) for a range of clinical 
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chemistry parameters including alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) amongst many others. 

Urine samples were prepared for NMR analysis by mixing 400 µl of urine with 

200 µl of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na2HPO4 and 0.2 

M NaH2PO4; pH 7.4); if insufficient urine was available the shortfall was made 

up with purified water with a minimum of 200 µl of urine being used. The 

urine-buffer mixture was left to stand for 10 minutes at room temperature to 

enable buffering to take place and then centrifuged at 13,000 rpm for a further 

10 minutes to remove suspended particulates. 500 µl of 'clear' buffered urine 

was transferred to an NMR tube and 50 µl of a TSP/D2O solutioni added. TSP 

(sodium 3-trimethylsilyl-[2, 2, 3, 3-2H4]-l-propionate) is a chemical shift 

reference compound (8 0) used in the NMR experiment and the D2O provided a 

field/frequency lock for the NMR spectrometer. The concentration of the 

TSP/D2O solution was such as to give a final TSP concentration of 0.1 mM in 

the NMR tube. The NMR analyses were carried out at thirty degrees C on a 

Bruker AMX 600 MHz NMR spectrometer with the NOESYPRESAT pulse 

sequence (Claridge, 1999) used to reduce the size of the water signal. The 

principal acquisition parameters were: 

Spectrometer Frequency: 600 MHz 

Spectral Width: ca. 7200 Hz (12 ppm) 

Bruker Pulse Program: noesyprld 

Number of Data Points in Time Domain: 65536 

Number of Scans: 64 

Number of Dummy Scans: 4 

Acquisition Time: ca. 4.55 seconds 

Presaturation Time: 3 seconds 

Mixing Time: 0.1 second 
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After acquisition, the NMR spectra were Fourier-transformed into 32768 data 

points following application of 0.3 Hz line-broadening by means of an 

exponential multiplication applied to the free induction decay signal. The 

spectra were phased to give an even baseline around the NMR signals and the 

chemical shift scale was set by assigning the value of 8 0 to the TSP peak. 

Prior to data-reduction, the baseline of each day -1 spectrum was moved to 

zero intensity using a straight-line baseline correction algorithm. All these 

spectral processing operations were carried out on a Silicon Graphics computer 

using the 'xwinnmr' software (Bruker GmBH). 

Visual examination of the post-dose urine NMR spectra revealed great inter-

animal variation in respect of the effects of galactosamine HC1 (800 mg/kg) on 

endogenous metabolites (see Table 1.5 and figures 1.3 and 1.4). On the basis 

of this visual examination, animals could be readily categorised as either (i) 

'responders' or (ii) as 'weak or non-responders'. Additionally, the responders 

were found to excrete much greater amounts of galactosamine in their urine 

over the period from 0-24 hours post-dosing than did the weak/non-responders 

(see Figure 1.1 and Table 1.6) and this indicates a connection between 

galactosamine metabolism and its toxicity. 

Figure 1.1 shows three NMR spectra. Spectrum 'a' is of the day 1 urine 

collected from animal 201 from 0-7 hours after dosing. Spectrum 'b' was 

obtained from authentic GalN HC1. Spectrum 'c' is of the day 1 urine collected 

from animal 203 from 0-7 hours after dosing. Spectra 'a' and 'c' are scaled to 

constant allantoin (5 5.4) peak height. GalN is clearly present in the urine from 

animal 201 but not in the urine from animal 203. 
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Furthermore, in the NMR spectra of the urine samples collected from 24-31 

hours post-dosing, the responders showed the presence of a certain N-acetyl 

peak that was, at least largely, absent from the spectra of the weak/non-

responders (see Figure 1.2). This peak was provisionally assigned to N-

acetylgalactosamine. The great inter-animal variability in response to the 800 

mg/kg dose was also reflected in the histopathology and clinical chemistry data 

(see Tables 1.2 tol.4). 

Figure 1.2 shows NMR spectra of the day 2 urine samples collected from 

animals 202 (spectrum 'a') and 203 (spectrum 'b') from 24-31 hours after 

dosing. The spectra are scaled to constant creatinine. An N-acetylated species, 

believed to be N-acetylgalactosamine, is clearly present in spectrum 'a' but not 

in spectrum 'b'. 

PCA was then carried out on the NMR spectra of the day - 1 (pre-dose) urine 

samples for the animals that were subsequently dosed with galactosamine 

hydrochloride (800 mg/kg). This data set consisted of nine spectra because 

there was insufficient day -1 urine to obtain an NMR spectrum for animal 206. 

Prior to the PCA each day - 1 spectrum was 'data-reduced' in a fixed manner 

using the 'AMIX' software (Bruker GmBH). Certain spectral regions were 

excluded with the retained regions being 8 9.0 - 8 6.25 and 8 4.5-8 2.76 and 8 

2.48 - 8 0.5. The retained regions were divided as far as possible into 

sequential 0.04 ppm-wide segments and an integral obtained for each segment 

of each spectrum. The data-reduced values were then normalised uniformly to 

give a total integration value of 1000 for each 'spectrum'. The resultant data 

set was loaded into a multivariate statistical analysis software package 

('Pirouette' from Infometrix). The PCA was then carried out using mean-

centred scaling for each variable. The resultant scores plots were colour-coded 

according to post-dose behaviour and, by inspection, it was found that the 
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scores plot for PC1 versus PC5 gave separation of responders and non-

responders. This plot and the corresponding loadings plot are presented as 

Figures 1.5 and 1.6 respectively. Examination of Figure 1.5 suggests that an 

individual rat's response to dosing with galactosamine HC1 (800 mg/kg) could 

be predicted from the appropriate pre-dose PCA scores plot depending on how 

it mapped in relation to known responders and non-responders. Figure 1.6 

demonstrates how such an analysis could reveal the pre-dose features that 

enable discrimination of responders and non-responders. 

The various figures and tables that follow provide some details of the variable 

responses of the different rats to galactosamine HC1 (800 mg/kg) and show 

how PCA can be used to distinguish responders and non-responders pre-dose. 

It is likely that a supervised PR method using PLS, PLS-DA or neural networks 

analysis would be able to achieve much better pre-dose discrimination of 

responders and non-responders than the unsupervised PR approach described 

here. 
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Table 1.2: Summary of histopathological changes in galactosamine HC1-

dosed rats. 

Day 

2 

8 

Dose of galactosamine hydrochloride 

200 mg/kg 

No differences from 

controls 

No differences from 

controls 

800 mg/kg 

Multifocal randomly scattered foci of 

hepatocellular necrosis were present in 4/5 

animals. Severity of changes: 

208 - none 

207-mild 

206, 210-marked 

209 - severe 

Most necrotic hepatocytes were rounded 

with a deeply eosinophilic cytoplasm and 

pyknotic nucleus. Some degenerated 

hepatocytes showed fine cytoplasmic 

vacuolation. Necrotic foci and portal spaces 

were infiltrated by mixed inflammatory 

cells while foci of haemorrhage were 

occasionally seen. 

Minimal bile duct hyperplasia was found in 

2/5 animals (201 and 202) this change being 

accompanied by slight hepatocellular 

anisocaryosis and a few scattered 

hemosiderin laden macrophages. 
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Table 1.3: Clinical chemistry analysis of plasma sampled at 24 hours post-

dosing. See Table 1.4 for key to abbreviations and for units of measurement. 

STUDY 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

ANIMAL 

6 

7 

8 

9 

10 

106 

107 

108 

109 

110 

206 

207 

208 

209 

210 

5'-NT 

23 

27 

21 

18 

26 

23 

21 

21 

19 

27 

156 

23 

17 

203 

35 

A/G 

1.4 

1.4 

1.3 

1.5 

1.5 

1.3 

1.4 

1.5 

1.4 

1.4 

1.7 

2.1 

1.5 

2.4 

1.8 

ALAT 

51 

52 

62 

46 

50 

43 

46 

49 

38 

47 

2350 

178 

45 

4300 

479 

ALB 

34 

33 

33 

32 

34 

33 

33 

37 

34 

33 

32 

33 

34 

33 

31 

AP 

635 

688 

732 

497 

492 

606 

495 

566 

697 

637 

787 

983 

666 

999 

852 

ASAT 

82 

77 

103 

75 

86 

107 

84 

73 

67 

75 

4320 

264 

79 

10600 

832 

TBA 

69.0 

24.0 

29.0 

20.0 

16.0 

48.0 

22.0 

29.0 

23.0 

29.0 

493 

43.0 

20.0 

1300 

65.0 

STUDY 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

99023 

ANIMAL 

6 

7 

8 

9 

10 

106 

107 

108 

109 

BILI 

0.11 

0.09 

0.1 

0.1 

0.09 

0.05 

0.11 

0.1 

CHOL 

72 

77 

78 

70 

62 

73 

60 

91 

72 

CREA 

0.5 

0.4 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.4 

GGT 

0 

0 

0 

0 

0 

0 

0 

0 

GLUC 

144 

186 

173 

185 

176 

173 

184 

167 

138 

PROT 

58 

56 

58 

53 

57 

59 

56 

61 

58 

TRIG 

108 

93 

142 

130 

96 

94 

158 

140 

109 

UREA 

27 

23 

22 

31 

24 

29 

40 

33 

28 
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99023 

99023 

99023 

99023 

99023 

99023 

110 

206 

207 

208 

209 

210 

0.12 

1.26 

0.06 

0.11 

1.37 

0.12 

81 

60 

15 

61 

42 

46 

0.5 

0.4 

0.4 

0.5 

0.4 

0.4 

0 

2 

0 

0 

5 

1 

182 

100 

162 

168 

80 

130 

57 

51 

49 

56 

47 

48 

127 

38 

89 

148 

95 

38 

28 

45 

24 

29 

40 

25 

Table 1.4: Plasma chemistry abbreviations and units 

Abbreviation 

5'-NT 

A/G 

ALAT 

ALB 

AP 

ASAT 

TBA 

BILI 

CHOL 

CREA 

GGT 

GLUC 

PROT 

TRIG 

UREA 

Parameter 

5'-nucleotidase 

albumin/globulin ratio 

alanine aminotransferase 

albumin 

alkaline phosphatase 

aspartate aminotransferase 

total bile acids 

bilirubin 

total cholesterol 

creatinine 

Y-glutamyl transferase 

glucose 

total protein 

triglycerides 

urea 

Units 

JU/L 

none 

IU/L 

g/L 

IU/L 

IU/L 

fxmol/L 

mg/dL 

mg/dL 

mg/dL 

IU/L 

mg/dL 

g/L 

mg/dL 

mg/dL 
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Table 1.5: Summary of urinary changes observed by NMR in 

galactosamine HCl-dosed rats. These results refer to the late-euthanased 

group of rats (animals 1-5,101-105 and 201-205). 
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samples from animals 201 and 202. Threonine levels 

appeared to be normal in all the other high dose samples. 

Alanine: was clearly elevated in the day 3 samples from 

animals 201 and 202 but was otherwise normal. 

Glucose: appeared to be elevated in the day 2 and day 3 

urine samples from animals 201 and 202. Occasionally 

elevated glucose was shown by other high dose animals 

(animal 204 on day 3; animal 205 on day 7). 

A doublet at ca. 5 5.21, arising from an unidentified 

compound, was clearly present in the day 2 urine spectra 

from animals 201 & 202. This doublet was not clearly 

visible in the spectra of any urine samples from animals 

201-205. 

Hippurate: was depleted in the day 3 samples from 

animals 201 and 202. 

Glutamate and glutamine were elevated in the day 3 

urine spectrum from animal 201 and possibly also 

elevated in the day 3 urine spectrum from animal 202. 

Other unlisted changes occurred. 

Figure 1.3 shows a portion of the noesypresat NMR spectra of the day -1 and 

day +3 urine samples from animal 202. The pre-dose sample (spectrum 'a') 

was collected from 24-17 hours before dosing. The post-dose sample 
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(spectrum 'b') was collected from 48-55 hours post-dosing. The spectra are 

scaled to constant creatinine. In comparison to spectrum 'a', spectrum 'b' 

shows increases in creatine, betaine, guanidinoacetic acid (GAA) and taurine 

and decreases in trimethylamine-N-oxide (TMAO) and 2-oxoglutarate. 

Figure 1.4 shows a portion of the noesypresat NMR spectra of the day -1 and 

day +3 urine samples from animal 201. The pre-dose sample (spectrum 'a') 

was collected from 24-17 hours before dosing. The post-dose sample 

(spectrum 'b') was collected from 48-55 hours post-dosing. The spectra are 

scaled to constant allantoin. In comparison to spectrum 'a', spectrum 'b' 

shows increased excretion of histidine and decreased excretion of hippurate. 

Table 1.6: The variability of response to galactosamine HC1 (800 mg/kg) in 

relation to the amount of galactosamine excreted in the urine. This table 

shows, for each animal, the amount of galactosamine excreted in the urine 

collected from 0-24 hours post-dosing and hsts whether or not a toxic response 

was observed. 

Animal 

Number 

201 

202 

203 

204 

205 

206 

Total amount of 

galactosamine 

excreted in the 

urine from 0-24 

hours post-

dosing (mg) 

40.0 

26.2 

0.4 

0.1 

0.3 

14.9 

Responder (R) 

or non-

responder (NR) 

R 

R 

NR 

NR 

NR 

R 

Source of evidence regarding R/NR 

classification 

Urine NMR, Histopathology 

Urine NMR, Histopathology 

Urine NMR, Histopathology 

Urine NMR, Histopathology 

Urine NMR, Histopathology 

Histopathology 
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207 

208 

209 

210 

8.4 

2.3 

28.2 

30.5 

NR (or weak 

R) 

NR 

R(severe) 

R 

Histopatholbgy 

Histopathology 

Histopathology 

Histopathology 

The measured amount of galactosamine excreted by animal 206 was somewhat 

lower than expected, given that it was a strong responder, and this may be 

because of urine retained in the bladder. Only 3.7 ml of urine was excreted by 

animal 206 over the period from 0-24 hours post-dosing and this was the 

lowest amount of urine produced by any anrmal during that period. Metabolite 

excretion is most likely to be underestimated when the measured urine volume 

is very low; this is because there may be a significant amount of highly 

concentrated urine in the bladder which is insufficient to cause urination. 

Figure 1.5 shows a PC scores plot obtained by PCA of the 1H NMR spectra of 

the nine available day -1 urine samples for the high dose (800 mg/kg) animals; 

insufficient day -1 urine was available to obtain an NMR spectrum for animal 

206. The data points are coded using diamonds for non-responders (animal 

nos. 203, 204, 205, 207 and 208) and crosses for responders (animal nos. 201, 

202, 209, 210), but it should be noted that animal 207 was on the borderline 

between responder and non-responder. This plot shows that there are features 

in the pre-dose urine spectra which can distinguish between those animals 

which will and will not be badly affected by galactosamine 800 mg/kg. The 

responders had higher pre-dose levels of urinary creatine than non-responders 

and all but one of the responders (animal 201) had a lower pre-dose ratio of 

urinary 2-oxoglutarate/creatinine than non-responders (see also Figure 1.6). 
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Each of the plotted points of Figure 1.6 is labelled according to the centre of 

the 0.04 ppm-wide spectral segment that it represents. Thus, for instance, the 

point labelled 3.02 represents the spectral segment (or variable) from 5 3.04 to 

8 3.00 ppm. The points of interest are those that make substantial, non-zero, 

contributions to PCs 1 and 5. Comparison of Figures 1.5 and 1.6 indicates that, 

in comparison to the responders, the non-responders have a relatively high 

value for the integral of the spectral segment centred at 5 3.02. This difference 

appears to be attributable to a higher level of 2-oxoglutarate in the non-

responders and 2-oxoglutarate also contributes to the segment centred at 5 2.46. 

Trimethylamine-N-oxide makes a major contribution to the segment centred at 

5 3.26 and non-responders could therefore have high urinary levels of TMAO. 

One possible explanation for this is that the non-responders were slow 

acetylators. 

Example 2. Variable urinary isoniazid metabolite patterns and their 

relationship to the toxicity of isoniazid in rats. An example of the major 

significance of inter-individual differences in metabolic capacities. 

Thirty young adult age-matched male Sprague-Dawley rats were obtained from 

Charles River, France. After observation to ensure that they each appeared 

healthy they were placed in individual metabolism cages with free access to 

water and a standardised diet (diet A04C from Usine d'Alimentation 

Rationnelle, Villemoisson-sur-Orge, France). The laboratory temperature was 

maintained at 20 ± 2 degrees C and the relative humidity at 60 ± 20 %. The 

laboratory air was filtered and changed 14 times per hour. A fixed '12 hours 

light - 12 hours dark' cycle was imposed. The study commenced after a short 

period of cage 'acclimatisation' when the rats were about 6 weeks old and 

about 200g in mass. 
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Dosing was on the day designated as 'day 1' when the growing rats were each 

approximately 250g in mass. Isoniazid (from Sigma, France) was dissolved in 

physiological saline and dosed by intraperitoneal injection at either 200 mg/kg 

or at 400 mg/kg; ten animals (nos. 101-110) received the low dose and ten 

animals (nos. 201-210) received the high dose. Ten control animals (nos. 1-10) 

received an intraperitoneal injection of saline. 

Pre- and post-dose seven hour urine samples were collected daily into ice-

cooled vessels containing sodium azide (0.1 ml of a 10% (w/v) solution of 

sodium azide in water) as an antibacterial preservative. There was an 

additional overnight urine collection from 7-24 hours post-dosing. The urine 

collection apparatus was cleaned prior to each collection to minimise bacterial, 

food and faecal contamination. The final volume of each urine sample was 

determined without making any correction for the azide solution. The urine 

samples were stored frozen pending analysis. 

It was intended that post-dose blood samples would be taken immediately 

before euthanasia with euthanasia being immediately followed by sampling for 

histopathology. As in Example 1, the intention was that five of each group of 

ten rats would be euthanased by means of CO2 at one day after dosing thereby 

providing early blood and histopathology samples; the remainder were to be 

euthanased by the same technique at seven days after dosing thereby providing 

late blood and histopathology samples. It was planned that the early-

euthanased rats would be numbers 6-10, 106-110 and 206-210 whilst the late-

euthanased rats would be numbers 1-5, 101-105 and 201-205. However, some 

animals (nos. 204, 205, 207 and 209) from the group which received the high 

dose of isoniazid, suffered unexpected convulsions and either died or had to be 

euthanased early to prevent suffering. Remarkably, by comparison, the other 

animals (nos. 201-203,206,208 and 210) from the high dose group showed no 
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obvious clinical signs of ill effects. The urine samples were deep-frozen 

pending NMR analysis. 

Urine samples were prepared for NMR analysis by mixing 400 µl of urine with 

200 µl of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na2HPO4 and 0.2 

M NaH2PO4); if insufficient urine was available the shortfall was made up with 

purified water with a minimum of 200 µl of urine being used. The urine-buffer 

mixture was left to stand for 10 minutes at room temperature to enable 

buffering to take place and then centrifuged at 13,000 rpm for a further 10 

minutes to remove suspended particulates. 500 µl of 'clear' buffered urine was 

transferred to an NMR tube and 50 µl of a TSP/D2O solution added. TSP 

(sodium 3-trimethylsilyl-[2, 2, 3, 3-2H4]-l-propionate) is a chemical shift 

reference compound (6 0) used in the NMR experiment and the D2O provided a 

field/frequency lock for the NMR spectrometer. The concentration of the 

TSP/D2O solution was such as to give a final TSP concentration of 0.1 mM in 

the NMR tube. The NMR analyses were carried out at 303K on a Bruker AMX 

600 MHz NMR spectrometer with the NOESYPRESAT pulse sequence 

(Claridge, 1999) used to reduce the size of the water signal. The principal 

acquisition parameters were: 

Spectrometer Frequency: 600 MHz 

Spectral Width: ca. 7200 Hz (12 ppm) 

Bruker Pulse Program: noesypr1d 

Number of Data Points in Time Domain: 65536 

Number of Scans: 64 

Number of Dummy Scans: 4 

Acquisition Time: ca. 4.55 seconds 

Presaturation Time: 3 seconds 

Mixing Time: 0.1 second 
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After acquisition the NMR spectra were Fourier-transformed into 32768 data 
points following application of 0.3 Hz line-broadening by means of an 
exponential multiplication applied to the free induction decay signal. The 
spectra were phased to give an even baseline around the NMR signals and the 
chemical shift scale was set by assigning the value of 5 0 to the TSP peak. 
Spectra and selected expansions were plotted on paper. Where a set of spectra 
was to be examined by multivariate pattern recognition methods, the baseline 
of each spectrum was moved to zero intensity using a straight-line baseline 
correction algorithm. These spectral processing operations were carried out on 
a Silicon Graphics computer using the 'xwinnmr' software (Bruker GmBH). 

Visual examination of the NMR spectra collected from 0-7 hours post-dosing 
revealed substantial variation in the patterns of certain metabolites which are 
believed to be derived from isoniazid. This variation was particularly obvious 
in three peaks in the region of 2 ppm which are thought to originate from three 
different N-acetylated species. These peaks at ca. 2.22,2.20 and 2.15 ppm are 
henceforth designated as peaks 'a', 'b' and 'c' respectively and the compounds 
from which they arise are henceforth designated as compounds 'A', 'B' and 
'C . At each dose there appeared to be essentially two different types of 
pattern of these metabolites and examples of these different patterns, referred to 
as Type 1 and Type 2, are shown in Figure 2.1. 

PCA of the data-reduced NMR spectra of the urine samples collected from 0-7 
hours after dosing isordazid (200 mg/kg) also revealed the metabolic variation 
(see Figure 2.2). To achieve this analysis the NMR spectra of the nine 
available samples were first 'data-reduced' in a fixed manner using the AMIX 
program (Bruker GmBH). All spectral regions except for the N-acetyls region 
from δ 2.23 to 8 2.13 were discarded. The remaining portion of each spectrum 
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was divided into two consecutive 0.05 ppm-wide segments and an integral 

obtained for each segment. The data-reduced values were then normalised to 

give a total integration value of 1000 for each 'spectrum'. The resultant data 

set was loaded into a multivariate statistical analysis software package 

('Pirouette' from Infometrix) and Principal Components Analysis (PCA) 

carried out using mean-centred scaling of each variable (spectral segment). 

With only two input variables this was a trivial example of PCA but it 

supported the presence of two different types of N-acetyls patterns as 

previously determined, the Type 1 animals being animals 101,103 and 109 and 

the Type 2 animals being animals 102, 105, 106, 107, 108 and 110. In Figure 

2.2 me data points for the Type 1 animals are marked with crosses whilst the 

data points for the Type 2 animals are marked with diamonds. 

Isoniazid is a classic example of a substance whose metabolism, in humans, is 

affected by N-acetylator phenotype and the different metabolite patterns that 

were observed in this example suggested the existence of slow and fast N-

acetylators within the test group. The isoniazid metabolite patterns were 

somewhat dose-dependent but it was possible, regardless of dose level, to 

assign all the day 1 (0-7 hours) urine spectra as having either Type 1 or Type 2 

patterns on the basis of fixed peak height ratio criteria (see Table 2.1). : 

Remarkably it was observed, at the high dose level, that only those animals 

showing the Type 2 pattern of N-acetyls developed certain toxic responses 

which included loss of kidney function (revealed by increased urinary glucose 

and/or lactate), convulsions and death (see Table 2.1). 
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Table 2.1. Summary of the metabolic and other behaviour observed after 

dosing isoniazid to male Spague-Dawley rats at 200 and 400 mg/kg. 

Table 2.1, 

Animal 

No. 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

part 1. 

Dose 

(mg/kg) 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

400 

400 

400 

400 

400 

400 

400 

400 

400 

400 

a = 2.22 ppm pk. ht. 

5 

14 

3 

no spectrum 

14.5 

185 

12 

41 

6 

17 

9 

10 

95 

215 

125 

45 

34 

14 

34 

6.5 

b = 2.20 p p m pk. 

ht. 

30 

62.5 

22 

no spectrum 

101 

79 

42 

140 

29 

70 

44 

48 

49 

99.5 

68 

157 

113 

81 

128 

41 

c = 2.15 ppm p 

ht 

665 

75 

49 

no spectrum 

52.5 

110 

44.5 

101 

89 

47.5 

65.5 

76.5 

72 

28.5 

14 

69.5 

25 

114.5 

31.5 

77 
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The peak heights (abbreviated pk.ht.) were measured in millimetres from the 

plotted spectra after subtraction of a local baseline. 

Table 2.1, part 

Animal No. 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

2. 

Dose 

(mg/kg) 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

400 

400 

400 

400 

400 

400 

400 

400 

400 

400 

c/b pk. ht. ratio 

2.2 

1.2 

2.2 

no spectrum 

0.8 

1.4 

1.1 

0.7 

3.1 

0.7 

1.5 

1.6 

1.5 

0.3 

0.2 

0.4 

0.2 

1.4 

0.2 

1.9 

c/a pk. ht. ratio 

13.3 

5.4 

16.3 

no spectrum 

5.7 

5.9 

3.7 

2.5 

14.8 

2.8 

7.3 

7.7 

7.6 

1.3 

1.1 

1.5 

0.7 

8.2 

0.9 

11.8 

Acetyls type 

1 

2 

1 

no spectrum 

2 

2 

2 

2 

1 

2 

1 

1 

1 

2 

2 

2 

2 

1 

2 

1 
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Criteria for determination of N-acetyls pattern type: 

Low dose: Type 1: c/b ≥ 2.2; c/a ≥ 13.3 Type 2: c/b ≤ 1.4; c/a ≤ 5.9 

High dose: Type 1: c/b ≥ 1.4; c/a ≥ 7.3 Type 2: c/b ≤ 0.4; c/a ≤ 1.5 

Either dose: Type 1: c/a ≥ 7.3 Type 2: c/a ≤ 5.9 

Type 1: c/b ≥ 1.4 Type 2: c/b ≤ 1.4 

Table 2.1, part 3. No loss of kidney function was detected at the 200 mg/kg 
dose but some animals showed impaired kidney function at the 400 mg/kg 
dose. Furthermore, there is a correlation, at the 400 mg/kg dose, between the 
type of acetyls pattern observed and whether or not there was any loss of 
kidney function. Only the Type 2 animals showed a loss of Mdney function as 
evidenced by increased urinary levels of glucose and lactate. As an animal 
producing the Type 2 acetyls pattern, animal 206 showed somewhat anomalous 
behaviour in regard to urinary lactate. However, it is noteworthy that this 
animal was at the extreme edge of Type 2 region as defined by the acetyls peak 
height ratios. 
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Table 2.1 part 3 

Animal 

No. 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

Dose 

(mg/kg) 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

400 

400 

400 

400 

400 

400 

400 

400 

400 

400 

Acetyls type 

1 

2 

1 

no spectrum 

2 

2 

2 

2 

1 

2 

1 

1 

1 

2 

2 

2 

2 

1 

2 

1 

Increased lactate? 

No 

No 

No 

no spectrum 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

No 

Increased 

glucose? 

No 

No 

No 

no spectrum 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 
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Table 2.1, part 4. There is a further association, at the 400 mg/kg dose, 

between the type of acetyls pattern observed and whether or not convulsions 

and premature death occurred. Only Type 2 animals suffered convulsions and 

premature death. Again animal 206 was anomalous in that it was Type 2 but 

did not die prematurely. 

Animal No. 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

Dose 

(mg/kg) 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

400 

400 

400 

400 

400 

400 

400 

400 

400 

400 

Acetyls type 

1 

2 

1 

BO spectrum 

2 

2 

2 

2 

1 

2 

1 

1 

1 

2 

2 

2 

2 

1 

2 

1 

Impaired kidney 

function? 

No 

No 

NQ._ 

^IG spectrum 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes (mild) 

Yes 

No 

Yes 

No 

Premature 

Death? 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

No 
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Table 2.1 suggests that some metabolic difference, reflected in the N-acetyls 

patterns, has a critical effect on isoniazid toxicity. The critical metabolic step 

is suspected to be the initial transformation of isoniazid which may proceed 

either 1) to N-acetylisoniazid, by N-acetylation, or 2) to hydrazine and 

isonicotinic acid, by hydrolysis of the amide group of isoniazid (see Figure 

2.3). 

We suspect that hydrazine was responsible for the observed convulsions and 

we postulate that the animals showing the toxic responses in this study had a 

particular N-acetylator phenotype i.e. that they were relatively slow N-

acetylators and that they therefore produced more toxic hydrazine from the 4GG 

mg/kg dose of isoniazid than did the other high dose animals which were 

presumably relatively fast N-acetylators. To confirm the nature of the 

factor(s) underlying the variable effects of isoniazid (400 mg/kg) that were 

observed in this study, compounds 'A' and 'B' giving rise to peaks 'a', 'b' ' 

must be identified. Compound ' C has already been identified as N-

acetylisoniazid. 

This example demonstrates, as is well known, that the metabolite patterns of a 

dosed substance can be used to distinguish different metabolic phenotypes. 

This example also shows that these metabolite patterns may be interrogated by 

the use of PR methodology. This example also demonstrates the crucial 

importance of metabolic phenotype in determining an individual's response to 

being dosed with a particular substance. In the next example it is demonstrated 

that the present invention allows variation in post-dose metabolic behaviour to 

be correlated with pre-dose variation in biological samples so as to provide a 

predictive model. 
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Example 3. Pre-dose prediction of urinary isoniazid metabolite quantities 

in male Sprague-Dawley rats subsequently dosed with isoniazid (200 

mg/kg). An example showing that numerical pre-dose to post-dose 

predictions can be achieved. 

75 young adult age-matched male Sprague-Dawley rats were obtained from 

Charles River, France. After screening to ensure that they appeared healthy 

they were assigned numbers 101-175 and placed in individual metabolism 

cages with free access to water and a standardised diet (diet A04C from Usine 

d'Alimentation Rationnelle, Villemoisson-sur-Orge, France). The laboratory 

temperature was maintained at 20 ± 2 degrees C and the relative humidity at 60 

± 20 %. The laboratory air was filtered and changed 14 times per hour. A 

fixed '12 hours light - 12 hours dark' cycle was imposed. The study 

commenced after a short period of cage 'acclimatisation' when the rats were 

about 6 weeks old and about 200g in mass. Dosing was carried out when the 

growing rats were each approximately 250g in mass. Isoniazid (from Sigma, 

France) was dissolved in physiological saline and dosed to each rat by 

intraperitoneal injection at 200 mg/kg. 

Individual pre-dose (48-41 hours before dosing) and post-dose (0-7 hours after 

dosing) urine samples were collected into ice-cooled vessels containing sodium 

azide (0.1 ml of a 10% (w/v) solution of sodium azide in water) as an 

antibacterial preservative. The urine collection apparatus was cleaned prior to 

each collection to minimise bacterial, food and faecal contamination. The final 

volume of each urine sample was determined without making any. correction 

for the azide solution. 
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The urine samples were prepared for NMR analysis by mixing 400 µl of urine 

with 200 µl of phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na2HPO4 and 

0.2 M NaH2PO4; pH 7.4); if insufficient urine was available the shortfall was 

made up with purified water with a minimum of 200 µl of urine being used. 

The urine-buffer mixture was left to stand for 10 minutes at room temperature 

to enable buffering to take place and then centrifuged at 13,000 rpm for a 

further 10 minutes to remove suspended particulates. 500 µl of 'clear' buffered 

urine was transferred to an NMR tube and 50 µl of a TSP/D2O solution added. 

TSP (sodium 3-trimethylsilyl-[2, 2, 3, 3-2H4]-l-propionate) is a chemical shift 

reference compound (8 0) used in the NMR experiment and the D2O provided a 

field/frequency lock for the NMR spectrometer. The concentration of the 

TSP/D2O solution was such as to give a final TSP concentration of 0.1 mM in 

the NMR tube. 

The NMR analyses of the prepared urine samples were carried out at thirty 

degrees C on Bruker 600 MHz NMR spectrometers with the NOESYPRESAT 

pulse sequence (Claridge, 1999) used to reduce the size of the water signal. A 

Bruker DRX spectrometer was used to acquire the post-dose NMR data whilst 

a Bruker AMX spectrometer was used to acquire the pre-dose NMR data. The 

principal acquisition parameters were: 

Spectrometer Frequency: 600 MHz 

Spectral Width: ca. 7200 Hz (12 ppm) 

Bruker Pulse Program: noesyprld 

Number of Data Points in Time Domain: 65536 

Number of Scans: 32 (post-dose spectra); 64 (pre-dose spectra) 

Number of Dummy Scans: 4 

Acquisition Time: ca. 4.55 seconds 

Presaturation Time: 3 seconds 
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Mixing Time: 0.1 second 

After acquisition the NMR spectra were Fourier-transformed into 32768 data 

points following application of 0.3 Hz line-broadening by means of an 

exponential multiplication applied to the free induction decay signal. The 

spectra were phased to give an even baseline around the NMR signals and the 

chemical shift scale was set by assigning the value of 5 0 to the TSP peak. 

Each of the post-dose NMR spectra was plotted on paper and peak height 

measurements were made manually on selected peaks after localised baseline 

correction. The peaks whose heights were measured were the allantoin peak at 

δ 5.4, the three peaks at ca, δ 2.22, δ 2.20 and δ 2.15, knownaspeaks 'a' 'b' 

and 'c' respectively as in Example 2, and the TSP peak at 8 0. Prior to data 

reduction leading to multivariate statistical analysis, the baseline of each digital 

spectrum was moved to zero intensity using a straight-line baseline correction 

algorithm. The spectral processing and plotting operations described above 

were carried out on a Silicon Graphics computer using the 'xwinnmr' software 

(Bruker GmBH). 

After data reduction, PCA of the 'N-acetyls' region (8 2.3 to 8 2.1) of the post-
dose NMR spectra was carried out using the 'Pirouette' software from 
Infometrix. However, in contrast to the results for Example 2, distinct 
groupings for Type 1 and Type 2 spectra were not observed despite the wide 
range of patterns present in the data set. As it was not possible to identify 
suitable natural boundaries within the distribution, the individual post-dose 
spectra were better described by numerical measures rather than by 
membership of a particular class. This in turn meant that the following pre-
dose to post-dose correlation analysis would be better based on numerical 
prediction rather than on class prediction. 
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There are certain problems associated with achieving useful measurements of 

urinary metabolite excretion and, consequently, two different approaches were 

taken to quantifying the excretion of the different N-acetylated species in the 

post-dose samples. The first approach was to quantify the excretion of 

metabolites A, B and C (designated as in Example 2) with respect to an 

endogenous urinary component, allantoin. Thus, the intensities of peaks a, b 

and c in each NMR spectrum were described as peak height ratios with respect 

to the allantoin peak at 5 5.4. The allantoin peak was a convenient internal 

reference point although the creatinine methylene signal at 8 4.05 could also 

have been used for that purpose. The second approach was to make some 

measure o f the absolute excretion of components A, B andGby reference to 

the size of the TSP signal, which was added in known constant quantity to each 

NMR sample, and taking into account the volume of urine produced by each 

rat. Thus, for example, a relative measure of the absolute excretion of 

compound C by different animals was obtained using the formula (height of 

peak 'c'/height of TSP peak)*(volume of urine collected). It is important to 

note here that this measurement is valid because all of the post-dose NMR 

samples were prepared in a constant fashion using 400 µl of urine except for 

animal 138 where no urine was available and no NMR sample was prepared. 

Peak heights were measured in millimetres and urinary volumes were measured 

in millilitres. The limitation of this second approach is that the urine collected 

from an animal over a set period may not be representative of what was passed 

to the bladder during that period and experience has shown that such excretion 

'errors' are particularly likely when very little urine is collected. The limitation 

of the first approach to quantitation is that the excretion of the endogenous 

reference compound, allantoin in this case, may not be invariant although prior 

experience has indicated it to be a useful reference point. 
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Each pre-dose NMR spectrum was 'data-reduced' in a constant fashion using 

the AMIX program (Bruker GmBH). Certain spectral regions were discarded 

(e.g. the regions containing the TSP and residual water signals) before dividing 

the remainder of each spectrum into sequential 0.04 ppm-wide segments and 

obtaining an integral for each segment. The data-reduced spectra were then 

normalised to give the same total intensity for each 'spectrum'. PLS analyses 

were then carried out in an attempt to find pre-dose features that would enable 

prediction of the post-dose excretion of the various N-acetylated metabolites, 

'A', 'B' and 'C' These PLS analyses were carried out using the SIMCA 

software from Umetrics. 

It was found that, for certain animals, the heights of peaks 'a' and 'b', relative 

to the height of the allantoin peak at 5 5.4, in the NMR spectra of the urine 

samples collected from 0 - 7 hours after dosing isoniazid (200 mg/kg), could 

be predicted surprisingly well from the pre-dose data (see Figures 3.1 and 3.2 

which relate to peak 'a'). Considering the case of peak 'a', its peak height ratio 

with respect to allantoin provides a relative measure of the ratio of (amount of 

compound A /amount of allantoin) in the NMR sample. If allantoin excretion 

over the 7 hour urine collection period on day 1 is assumed to be constant for 

all the rats in this study, the ratio (height of peak 'a'/height of allantoin peak) 

provides a relative measure of the amounts of compound A excreted by the 

different rats during that period. Thus, these findings indicate that, with a 

suitable model, the amounts of compounds A and B excreted after dosing 

isoniazid (200 mg/kg) are predictable, for some rats, from the pre-dose data. 

It was also found that, for the vast majority of animals that produced more than 

3 ml of urine during the 0 - 7 hour collection period on day 1, the quantity 

(height of peak 'c'/height of TSP peak)*(volume of urine collected) could be 

predicted from the pre-dose data (see Figure 3.3). Given that the NMR 
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samples and associated spectra were all prepared and obtained in the exact 

same way, this quantity is a relative measure of the amount of compound C 

excreted by each rat. Thus, with a suitable model, it is possible to predict, from 

pre-dose data, the amount of compound C excreted after dosing isoniazid (200 

mg/kg). 

Figure 3.1 shows the model building and validation data for a PLS model 

predicting, from pre-dose urinary NMR spectroscopic data, the values of 

(height of peak 'a'/height of allantoin peak) in the NMR spectra of urine 

samples collected from 0 - 7 hours after dosing isoniazid (200 mg/kg) to male 

Sprague-Dawley rats. The data points are marked and coded using unfilled 

triangles for model building data and filled triangles for validation data. The 

unfilled triangles show the observed and predicted results for the rats whose 

data was used to build the predictive PLS model. The filled triangles show the 

observed and predicted results for eleven rats (numbers 110, 111, 122, 125, 

128, 135, 140, 144, 147, 167 and 172) whose data were excluded from the 

model-building process. Visual assessment of this figure indicates that a valid 

model has been obtained and that it is possible to predict the level of excretion 

of peak 'a' relative to the level of allantoin from an analysis of the pre-dose 

data. 

The regression coefficients pertaining to the PLS analysis of Figure 3.1 are 

shown in Figure 3.2 for each of the variables used in the analysis. As 

previously described, these variables were derived from integrals of 

consecutive segments of the pre-dose spectra. The different variables used in 

the PLS analysis are identified, in Figure 3.2, according to the chemical shift at 

the centre of the relevant 0.04 ppm-wide spectral segments. The greater the 

magnitude, either positive or negative, of the regression coefficient for a 

spectral segment, the greater the predictive contribution of that segment and, 
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for example, the pre-dose spectral segment centred at 8 3.42 is negatively 

correlated with the concentration of A post-dose. 

Figure 3.3 shows the model building and validation data for a PLS model 

predicting, from pre-dose urinary NMR spectroscopic data, the post-isoniazid 

(200 mg/kg) excretion of compound C by Sprague-Dawley rats. The data 

points in Figure 3.3 are marked and coded using unfilled triangles for model 

building data and filled triangles for validation data. The unfilled triangles 

show the observed and predicted values for the various rats whose data was 

used in building the model. The filled triangles show the observed and 

predicted results-for-eight- rats (numbers 105, 108, 115, 116, 121, 142, 157 and 

163) whose data were excluded from the model-building process. The relative 

amount of metabolite C excreted by each animal was measured as (height of 

peak 'c'/height of TSP peak)*(volume of urine produced). Visual assessment 

of this figure indicates that a valid model has been obtained. 

In a further analysis of the data, a different approach was taken to the 

quantitation of the compounds A, B and C that were excreted after dosing 

isoniazid. In this approach the region from 5 2.24 - 2.12, containing the three 

peaks 'a', 'b' and 'c' was first integrated as a whole. Then separate 

integrations for the regions 8 2.24 - 2.17 (containing peaks 'a' and 'b') and 8 

2.17 - 2.12 (containing peak 'c') were obtained as fractions of the total 8 2.24 -

2.12 integration, giving 'Fraction A + B' and 'Fraction C', The ratio [Fraction 

C/(Fraction A + B)] was then calculated from the latter two quantities. The 

rationale for this approach was that integrations should provide better estimates 

of relative amounts than are obtainable from peak height measurements, whilst 

recognising that the individual ratios (Amount C/Amount A) and (Amount 

C/Amount B), that provided phenotypic discrimination, might be usefully 

replaced by the single ratio [Fraction C/(Fraction A + B)]. Knowledge of 
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either Fraction A + B or Fraction C means that the ratio [Amount C/(Amount A 

+ Amount B)] can be calculated. Thus, using the SIMCA software from 

Umetrics, we attempted to build PLS models for predicting Fraction A + B, 

Fraction C and [Fraction C/(Fraction A + B)] from the pre-dose data. This 

gave three possible ways of arriving at a successful prediction of [Fraction 

C/(Fraction A + B)]. 

Using pre-dose NMR data normalised to constant total spectral area (after 

excluding certain spectral regions), we found that PLS models were obtained 

that were successful in individually predicting each of the three quantities, 

Fraction A + B, Fraction C and the ratio [Fraction C/(Fraction A + B)], from 

that pre-dose data. 

Figure 3.4 shows a plot of the observed versus pre-dose predicted values for 

[Fraction C/(Fraction A + B)] in the urine collected from 0-7 hours after dosing 

male Sprague-Dawley rats with isomazid (200 mg/kg). The results shown are 

for modelling data only. This plot indicates that correlation between the pre-

and post-dose data can be detected. 

Figure 3.5 shows the results of the internal model validation analysis proving ' 

that the observed correlation between the pre-dose data and the post-dose 

values of [Fraction C/(Fraction A + B)] was not random. 

Figure 3.6 shows the prediction of [Fraction C/(Fraction A + B)] for an 

externally generated test set. In this case a pre-to-post dose prediction model 

built using the present isoniazid study data was used in an attempted pre-to-

post dose prediction of the results for 9 low dose animals from the isomazid 

study described in Example 2. The prediction set (filled circles) was 

comprised of six Type 2 animals and three Type 1 animals and the results 
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showed that [Fraction C/(Fraction A + B)] could be successfully predicted for 

the Type 2 test animals but was not well predicted for the Type 1 test animals 

(RMSEE = 0.1524; RMSEP (Types 1 and 2) = 0.4416; RMSEP (Type 2) = 

0.2325). However, examination of the modelling data (unfilled circles) 

indicated that it was almost entirely composed of Type 2 animals and this 

provides a likely explanation why Type 2 test data could be better predicted 

than Type 1. However, it is important to note that the model was sufficiently 

robust to provide some useful predictions for test data obtained in a separate 

study. 

With further work it may prove possible to make pre-dose predictions of 

susceptibility or non-susceptibility to isoniazid (400 mg/kg)-induced toxicity as 

seen in Example 2. However, the crucial result obtained here is that certain 

metabolic phenotype-determined post-dose results can be predicted from pre-

dose biofluid NMR spectra. 

Example 4. Pre-dose prediction of urinary paracetamol metabolite 

quantities in male Sprague-Dawley rats subsequently dosed with 

paracetamol (600 mg/kg). An example showing that numerical pre-dose to 

post-dose predictions can be achieved. 

75 male Sprague-Dawley rats were obtained which were matched for age and 

body mass. At 3 days before dosing the mean body mass of the rats was 

260.2g (standard deviation: 12.6g) and at the time of dosing the rats were 

approximately 7 weeks old. They were kept in individual cages in a 

temperature-, humidity- and light/dark- controlled laboratory with free access 

to water and a standard rodent diet. The study commenced after a period of 
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cage acclimatisation. 65 of the rats were dosed orally with paracetamol (600 

mg/kg) in an aqueous solution containing methylcellulose (0.5% w/v) and 

Tween 80 (0.1% w/v). 10 of the rats were used as a control set and were orally 

dosed with the dosing vehicle only. Individual pre- and post-dose 24-hour 

urine samples were collected from each rat into ice-cooled vessels, which also 

contained a fixed volume of sodium azide solution as a preservative. The pre-

dose urine samples were collected from 48-24 hours before dosing. The post-

dose urine samples were collected from 0-24 hours after dosing. The final 

volume of each urine sample was determined without making any correction , 

for the azide solution. The urine samples were all prepared for NMR analysis 

according to a standard procedure that- involved the use of fixed volumes of 

urine, of a pH buffer solution and of a TSP/D2O solution. The *£! NMR spectra 

were acquired at 600 MHz on a Bruker NMR spectrometer equipped with a 

flow probe, using Bruker's 'xwinnmr' and 'iconnmr' software. Water 

suppression was achieved using the 'noesyprld' program. The post-dose 

spectra of the paracetamol-dosed rats showed extra N-acetyl signals which 

were found to be located at ca. 2.18, 2.165, 2.155 and 2.15 ppm after resolution 

enhancement. These signals were initially assigned to paracetamol sulphate 

(now designated 'S'), paracetamol glucuronide (now designated 'G'), the 

mercapturic acid derived from paracetamol (now designated 'MA'), and . 

paracetamol itself (now designated 'P'), respectively. The mercapturic acid of 

paracetamol (MA) is also sometimes referred to as the N-acetylcysteine 

conjugate of paracetamol. Spiking with paracetamol glucuronide and 

paracetamol confirmed their peak assignments and the assignment of the MA 

acetyl was confirmed from the similarly sized peak at 1.86 ppm. Reference to 

the literature (Bales et al. (1984) Urinary excretion of acetaminophen and its 

metabolites as studied by proton NMR spectroscopy, Clin. Chem., 30, 10, 

1631-1636) suggested that the N-acetyl peak of the cysteine conjugate of 

paracetamol would potentially overlap the N-acetyl peak of paracetamol but, in 
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fact, it seems more likely that the N-acetyl peak of the cysteine conjugate 

would overlap the equivalent N-acetyl peak from the mercapturic acid. This 

leaves some uncertainty over the quantitation of both MA and P and, 

henceforth, when we refer to models and data for MA and P, it should be 

remembered that the measured quantities might contain some contribution from 

the cysteine conjugate. No significant interferences were present in the spectra 

of the post-dose control samples. Quantitation of the various paracetamol-

related urinary metabolites, including paracetamol itself, was achieved by 

reference to the relevant acetyl signals in the chemical range 2.22 - 2.11 ppm 

although other signals could also potentially have been used. The complete 

cluster of N acetyls signals from ca.-2.22 to ca. 2.41 -ppm was first integrated 

relative to the TSP signal, in the post-dose spectra, giving a measure of the total 

amount of N-acetylated species in each NMR sample. A relative measure of 

the total excretion of N-acetylated species by each rat in the 0-24 hr post-dose 

period was then calculated as (total N-acetyls integration/TSP 

integration)*volume of urine collected (in millilitres). Subsequently, each 

post-dose spectrum was resolution-enhanced using a gaussian multiplication (lb 

- 1 , gb 0.5) and the signals from the four components S, G, MA and P were 

integrated relative to one another. These values were summed and then the 

amount of each component was calculated as a fraction of the total. As other 

components of the N-acetyls cluster were relatively insignificant, combining 

these fractional values for S, G, MA and P with the value for the total acetyls 

excretion for each animal gave an estimate of the amount of each component 

excreted by that animal. The S/G ratio was calculated. The pre-dose spectra 

were normalised in two different ways. In the first approach, the total spectral 

integration between 9.5 and 0.5 ppm was adjusted to constant total area after 

excluding the region from 6.3 - 4.0 ppm, which contained the residual water 

signals and the signal from urea, which is affected by the water suppression 

procedure. In the second approach, the pre-dose spectra were normalised 
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relative to TSP, which had been added in constant amount to each NMR 

sample. Subsequently, each of the TSP-normalised pre-dose spectra was 

multiplied by the relevant volume (in millilitres) of urine collected during the 

pre-dose collection. Thus, in this second approach, a relative measure was 

obtained of the 24-hour excretion of each of the pre-dose urinary metabolites. 

The TSP signal was excluded prior to carrying out the chemometrics analyses. 

PLS models for pre-dose to post-dose prediction were constructed using the 

SIMCA software from Umetrics. 

Figure 4.1 shows a plot of the observed versus PLS-predieted values for the 

total 0-24 hour excretion of N-acetylated compounds by rats dosed with 

paracetamol (600 mg/kg). The results shown are for modelling data only and 

relate to the first model for this parameter. This plot indicates clear correlation 

between the pre-dose and post-dose data. The value of RMSEE for the model 

is 7.98. 

Figure 4.2 shows a plot of the observed versus PLS-predicted values for the 0-

24 hour excretion of MA by rats dosed with paracetamol (600 mg/kg). The 

results shown are for modelling data only and relate to the first model for this 

parameter. This plot indicates clear correlation between the pre-dose and post-

dose data. The value of RMSEE for the model is 1.28. 

Figure 4.3 shows a plot of the observed versus PLS-predicted values for the 

total 0-24 hour excretion of N-acetylated compounds by rats dosed with 

paracetamol (600 mg/kg). The results shown are for modelling data only and 

relate to the second model for this parameter. This plot indicates clear 

correlation between the pre-dose and post-dose data. The value of RMSEE for 

the model is 12.99. 
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Figure 4.4 shows the successful internal validation of the model that generated 

the pre-dose predictions shown in Figure 4.3. This plot proves that the 

correlation between the pre- and post-dose data, indicated by Figure 4.3, is not 

random. External validation of the model was also successful and produced an 

RMSEP value of 12.89, which was comparable with the RMSEE value of 

12.99 for the model. 

Figure 4.5 shows a plot of the observed versus PLS-predicted values for the 0-

24 hour excretion of paracetamol glucuronide ('G') by rats dosed with 

paracetamol (600 mg/kg). The results shown are for modelling data only. 

This plot indicates clear correlation between the pre-dose and post-dose data. 

The value of RMSEE for the model is 6.99. 

Figure 4.6 shows the successful internal validation of the model that generated 

the pre-dose predictions shown in Figure 4.5. This plot proves that the 

correlation between the pre- and post-dose data, indicated by Figure 4.5, is not 

random. External validation of the model was also successful and produced an 

RMSEP value of 7.27, which is comparable with the RMSEE value of 6.99 for 

the model. 

Figure 4.7 shows a plot of the observed versus PLS-predicted values for the 0-

24 hour excretion of 'MA' by rats dosed with paracetamol (600 mg/kg). The 

results shown are for modelling data only and relate to the second model for 

this parameter. This plot indicates clear correlation between the pre-dose and 

post-dose data. The value of RMSEE for the model is 1.90. 

Figure 4.8 shows the successful internal validation of the model that generated 

the pre-dose predictions shown in Figure 4.7. This plot proves that the 
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correlation between the pre- and post-dose data, indicated by Figure 4.7, is not 

random. External validation of the model was also successful and produced an 

RMSEP value of 1.32, which is comparable with the RMSEE value of 1.90 for 

the model. The external validation is shown in Figure 4.9 where the unfilled 

circles are the model-building data and the filled circles are test data that were 

not used in the model-building exercise. 

Figure 4.10 shows a plot of the observed versus PLS-predicted values for the 

excretion of 'P' by rats dosed with paracetamol (600 mg/kg). The results 

shown are for modelling data only. This plot indicates that there is correlation 

between the pre-dose and post-dose data. The value of RMSEE for the model 

is 3.51. 

Figure 4.11 shows the internal validation of the model that generated the pre-

dose predictions shown in Figure 4.10. This plot proves that the correlation 

between the pre- and post-dose data, indicated by Figure 4.10, is not random. 

External validation of the model was also successful and produced an RMSEP 

value of 3.30, which is comparable with the RMSEE value of 3.51 for the 

model. 

Direct pre-dose prediction of the amount of 'S' excreted post-dose was not 

achieved. However, by subtracting the predictions for the amounts of 'G', 'P' 

and 'MA' excreted from the prediction for the total excretion of N-acetylated 

species it was possible to generate a pre-dose prediction for the amount of 'S' 

excreted by each rat in the 24-hour post-dose period. By combining that 

prediction for 'S' with the appropriate prediction for 'G' it was possible to 

obtain a pre-dose prediction for the post-dose G/S ratio for each rat. Figure 

4.12 shows the observed versus predicted values for the amount of 'S' 
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excreted. Figure 4.13 shows the observed versus predicted values for the G/S 

ratio. 

The results of this study demonstrate that the new methodology is not limited 

simply to predictions of responses determined by acetylator phenotype. The 

results presented here indicate that pre-dose predictions can be made regarding 

the amounts, and the relative extent, of glucuronidation and mercapturic acid 

formation and that occur on dosing paracetamol. Prediction of the amount of 

paracetamol sulphate excreted in the urine was not so readily achieved but the 

results obtained suggested that it might be predictable 'by difference'. MA, the 

mercapturic acid derived from paracetamol, has special toxicological 

significance as it thought to originate from the conjugation of a toxic, reactive 

intermediate with glutathione. Glucuronidation, sulphation and glutathione 

conjugation are three of the most important transformations of Phase 2 

metabolism and each has a major defensive role in regard to a variety of 

exogenous substances. Thus, the present data indicate that subject-specific 

pre-dose predictions might be made with respect to the metabolism and toxicity 

of a large number of exogenous compounds. Given the examples shown, there 

is every reason to believe that pre-dose urinary discriminators exist for a wide 

variety of other aspects of metabolic phenotype i.e. that pre-dose prediction 

models could be built for a wide variety of aspects of metabolic phenotype and 

for dosing responses governed by one or more of those aspects. 

Example 5. Pre-dose prediction of urinary paracetamol metabolite 

quantities in human males subsequently dosed with paracetamol (1000 

mg). An example showing that numerical pre-dose to post-dose 

predictions can be achieved in humans. 
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99 adult human male subjects were recruited for an ethically-approved clinical 

trial. Certain dietary restrictions were stipulated such as not eating fish and not 

drinking alcohol for a certain period. To be eligible for the study, it was 

necessary that the subjects were not taking paracetamol or other drugs for a 

certain period prior to the study. The weight and height of each subject was 

recorded. On the day of the study, a 'snapshot' mid-stream pre-dose urine 

sample was first provided by each subject. Subsequently, each subject took 2 

x 500 mg tablets of paracetamol BP with a fixed volume of water. After 

dosing, each subject was required to provide all of the urine that he produced 

over two consecutive time periods, namely 0-3 hours and 3-6 hours from 

dosing. At the end of each of those time periods, each subject was requested 

to empty his bladder as completely as possible and the mass of urine produced 

by each subject over each post-dose time period was recorded. The urine 

samples were all prepared for NMR analysis according to a standard procedure, 

which involved the use of 440 microlitres of urine. The 1H NMR spectra were 

acquired at 600 MHz on a Bruker NMR spectrometer using Bruker's 

'xwinnmr' and 'iconnmr' software. Water suppression was achieved using the 

'noesypr1d' program. In the post-dose spectra, the N-acetyls signals from 

2.210 to 2.135 ppm were first integrated relative to TSP and a measure of the 

total excretion of N-acetylated species by each subject for each period was 

determined as (acetyls integration/TSP integration)*mass of urine collected (in 

g). This formula is based on the assumption that the density of the urine 

samples is nearly constant. As a check, the sample densities of a number of 

representative samples were measured and were found to he in the range 1.00 -

1.04 g/ml i.e. the assumption of nearly constant density was reasonable. 

Subsequently, the post-dose spectra were resolution-enhanced using a gaussian 

multiplication of the FID (lb - 1 , gb 0.5). Where possible, the amounts of 

paracetamol sulphate (S), paracetamol glucuronide (G) and unchanged 

paracetamol (P) were then measured directly as fractions of the total integration 
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from 2.210 - 2.135 ppm. It was not possible to obtain an accurate measure of 

the amounts of unchanged paracetamol (P) excreted during the 3-6 hour 

collection and this data was not used. The level of paracetamol mercapturic 

acid (MA) was not generally high enough to be measurable with accuracy. The 

amounts of the individual paracetamol metabolites (S, G and P) excreted by 

each subject during a particular collection period were calculated by 

multiplying the total excretion of N-acetylated species for that subject and 

period (previously calculated) by the relevant fractions of the 2.210 - 2.135 

ppm integration. Where appropriate the data for the two collections was 

summed to give data for the whole 0-6 hour post-dose period. Because the 

effective dose of paracetamol received by any particular subject was dependent 

on his body mass, the excretion results for total N-acetyls, S, G and P were 

combined with the body mass data to give excretion per kg of body mass. It 

should be noted that, as with the paracetamol study in the rat, it is possible that 

the cysteine conjugate of paracetamol could have influenced the quantitation of 

unchanged paracetamol. The pre-dose spectra were normalised in two different 

ways (to total spectral area, after excluding certain regions, and to constant 

creatinine) and PLS models for pre-dose to post-dose prediction were 

constructed using the SIMCA software from Umetrics. 

Figure 5.1 shows the observed versus PLS-predicted values for the total 

excretion of N-acetylated compounds (0-3 hour collection) per kg of body mass 

for male volunteers who took paracetamol (1000 mg). The results shown are 

for modelling data only. This plot indicates that clear correlation was found 

between the pre-dose and post-dose data. The value of RMSEE for the model 

was 1.12. 

Figure 5.2 shows the observed versus PLS-predicted values for the total 

excretion of N-acetylated compounds (0-3 hour collection) per kg of body mass 
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for an external test set that was analysed in relation to the model underlying 

Figure 5.1. The RMSEP value was 0.80, which compares favourably with the 

model's RMSEE value of 1.12. 

Figure 5.3 shows the observed versus PLS-predicted values for the excretion of 

paracetamol glucuronide ('G') (0-3 hour collection) per kg of body mass for 

male volunteers who took paracetamol (1000 mg). The results shown are for 

modelling data only. This plot indicates that correlation was found between the 

pre-dose and post-dose data. The value of RMSEE for the model was 0.84. 

Figure 5.4 shows the observed versus PLS-predicted values for the excretion of 

'G' (0-3 hour collection) per kg of body mass for an external test set that was 

analysed in relation to the model underlying Figure 5.3. The RMSEP value 

was 0.70, which compares favourably with the model's RMSEE value of 0.84. 

Figure 5.5 shows the observed versus PLS-predicted values for the excretion of 

'P' (0-3 hour collection) per kg of body mass for male volunteers who took 

paracetamol (1000 mg). The results shown are for modelling data only. This 

plot indicates that correlation was found between the pre-dose and post-dose 

data. The value of RMSEE for the model was 0.185. 

Figure 5.6 shows the observed versus PLS-predicted values for the excretion of 

'P' (0-3 hour collection) per kg of body mass for an external test set that was 

analysed in relation to the model underlying Figure 5.5. The RMSEP value 

was 0.170, which compares favourably with the model's RMSEE value of 

0.185. 
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Figure 5.7 shows the observed versus PLS-predicted values for the total 

excretion of N-acetylated compounds (0-6 hour period) per kg of body mass for 

male volunteers who took paracetamol (1000 mg). The results shown are for 

modelling data only. This plot indicates that clear correlation was found 

between the pre-dose and post-dose data. The value of RMSEE for the model 

was 1.47. 

Figure 5.8 shows the observed versus PLS-predicted values for the total 

excretion of N-acetylated compounds (0-6 hour period) per kg of body mass for 

an external test set that was analysed in relation to the model underlying Figure 

5.7. The RMSEP value was 1.13, which compares favourably with the model's 

RMSEE value of 1.47. 

The results from this study confirm the principle that the methodology can be 

extended from rats to humans and it is assumed that the methodology could be 

applied successfully to all mammals. In particular, it is notable that the method 

worked in humans who were not subject to full dietary control and, with such 

control in place, improved results would be expected. The findings presented 

here represent a preliminary analysis of the samples and data and improved 

models may well be possible. It is possible that use of a standard analytical 

method, such as HPLC with UV-Visible detection, in relation to the post-dose 

samples would provide improved quantitation of the paracetamol metabolites 

and would therefore facilitate the model building. In particular, the use of such 

a technique should permit improved quantitation of P and MA compared to the 

NMR method used here. Furthermore, it is believed that improved models 
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might be obtained by taking ratios and other combinations of the pre-dose 

variables (which, in this case, are the 0.04 ppm wide segments of the pre-dose 

NMR spectra) before carrying out the PLS analysis. 

Hypothetical examples 

A principal feature of the present invention is to be able to predict responses to 

dosing and thereby to select appropriate dosing substances and treatment 

regimes e.g. pharmaceutical treatments, anaesthetics etc. Such methods would 

enable, on the basis of pre-determined criteria, such as toxicity, efficacy and 

side-effects, the identification of appropriate dosing substances, the 

identification of maximum or minimum doses, the identification of appropriate 

doses, appropriate dosing frequencies, appropriate numbers of doses and the 

selection of appropriate controlled-release formulations. Typical construction 

of these methods is shown in the following hypothetical example, which 

involves identifying the minimum dose of an antibacterial substance for 

clearing an infection of a particular type within a set period of time. Thus, 

different model building populations suffering from the specified infection , 

would be treated with different levels of the antibacterial. Data pertaining to 

dose levels which did not clear up the infection in any of the subjects within the 

set period would be deleted from the analysis. For each of the other data sets, a 

classification model would be built to identify the pre-dose characteristics of 

those subjects that met the clear-up criterion and the pre-dose characteristics of 

those subjects that did not. Test data of a subject would be analysed in relation 

to each of the models to find the minimum dose commensurate with clear-up of 

the infection in a subject of that phenotype. This dose would not necessarily be 

administered; such administration might depend, for instance, on whether 

unacceptable side effects would be expected in the subject at that dose level. 
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Another feature of the present invention is the ability to select a phenotypically 

homogenous set of subjects for whatever purpose. Typically, the requirement 

would be to select a group of subjects which were homogenous with respect to 

one element of metabolic phenotype e.g. N-acetylator phenotype. For this 

example a model would be built using a dosing substance that challenged N-

acetylation. A classification model would then be built according to imposed 

homogeneity criteria. Test data relating to subjects of unknown N-acetylator 

phenotype would be examined in relation to the model and the subject 

classified accordingly. The subjects falling into one class would be considered 

as phenotypically homogenous with respect to N-acetylation of the dose 

substance. 

Likewise the invention permits the rationalisation of variable data obtained in 

studies such as studies of toxicity or efficacy. For instance, a dosing regime 

which caused toxicity in one group but not in another group might be 

rationalised if it was found, by use of pre-dose phenotyping, that one group 

were fast O-methylators whilst the other group were slow O-methylators. Such 

an indication would lead to a consideration of the metabolism of the dosed 

substance and possibly to the identification of a critical O-methylation step 

which either produced or eliminated a toxic metabolite. 

Another feature of the present invention is to facilitate the identification of pre-

dose biomarkers or biomarker combinations, which by their presence or 

concentrations in a pre-dose sample would indicate a particular metabolic 

phenotype or a particular response to a potential dosing substance. For 

example, in a PCA, a scores plot which provides separation of the different 

classes of interest would be compared to the corresponding loadings plot. The 

pre-dose variables that provide the discrimination, and the positive or negative 
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nature of their correlation to the class separation, can then be identified. 

Sometimes these variables may be directly attributable to particular 

compounds. In the case of NMR spectroscopic data, a particular variable or 

combination of variables would indicate the spectral regions containing the 

discriminating features. By examination of those regions of the model building 

spectra the discriminating compound(s) (or "biomarkers") could then, in 

principle, be identified. 

Sometimes it would be necessary to take samples from a number of subjects to 

be representative of a wider group of subjects. For instance, one would 

normally only be able to sample a few plants from a field of such plants. From 

analysis of the characteristics of the selected plants one might then wish to 

select a particular dose of herbicide for the whole field. 
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