

【特許請求の範囲】**【請求項 1】**

少なくとも 1 つの燃料電池陽極に水素含有ガス流を供給する方法であって、
少なくとも 1 つの汚染物質を含む水素含有供給ガス流を供給する段階と、
少なくとも 1 つの第 1 の吸着体と、第 2 の吸着体、蒸気改質触媒、および水性ガス転化反応触媒から選択される少なくとも 1 つの第 2 の材料とを有し、第 1 の吸着体と第 2 の吸着体は化学的に異なる吸着体であり、第 1 の吸着体または第 2 の吸着体の少なくとも一方が、水素含有供給ガス流中の汚染物質を優先的に吸着して浄化された水素含有ガス流を発生させる吸着モジュールに水素含有供給ガス流を導入する段階と、
浄化された水素ガス含有ガス流を燃料電池陽極に導入する段階とを含む方法。

10

【請求項 2】

汚染物質が一酸化炭素であり、かつ第 1 の吸着体または第 2 の吸着体の少なくとも一方が一酸化炭素選択吸着体を含む、請求項 2 記載の方法。

【請求項 3】

一酸化炭素選択吸着体が、Na - L SX、Ca - L SX、Li - L SX、Li 交換斜方沸石、Ca 交換斜方沸石、Sr 交換斜方沸石、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物から選択される、請求項 2 記載の方法。

【請求項 4】

水素含有ガス流を約 80 から約 200 の温度で吸着モジュールに導入する段階をさらに含む、請求項 1 記載の方法。

20

【請求項 5】

少なくとも 1 つの追加の吸着体をさらに含む、請求項 1 記載の方法。

【請求項 6】

吸着モジュールが、ロータリ圧力スイシング吸着モジュールである、請求項 1 記載の方法。

【請求項 7】

燃料電池がポリマー電解質膜燃料電池を含む、請求項 1 記載の方法。

【請求項 8】

水素含有供給ガス流を発生させる改質システムまたは部分酸化システムを設ける段階をさらに含む、請求項 1 記載の方法。

30

【請求項 9】

一酸化炭素選択吸着体が、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物から選択される、請求項 2 記載の方法。

【請求項 10】

第 1 の吸着体が、水蒸気よりも二酸化炭素を優先的に吸着する、請求項 1 記載の方法。

【請求項 11】

第 1 の吸着体がアルカリ促進材料を含み、かつ蒸気改質触媒および水性ガス転化反応触媒の少なくとも一方が存在する、請求項 1 記載の方法。

【請求項 12】

蒸気改質触媒が、メタノール蒸気改質触媒またはメタン蒸気改質触媒から選択される、請求項 11 記載の方法。

40

【請求項 13】

少なくとも 1 つの燃料電池陽極に水素含有ガス流を供給する方法であって、
少なくとも第 1 の汚染物質および少なくとも第 2 の汚染物質を含む水素含有供給ガス流を供給する段階と、

第 1 の分離ゾーンで水素含有供給ガスから第 1 の汚染物質の少なくとも一部を優先的に分離する段階と、

第 2 の分離ゾーンで水素含有供給ガスから第 2 の汚染物質の少なくとも一部を優先的に分離する段階と、

結果として得られる浄化された水素含有ガス流を燃料電池陽極に導入する段階とを含む方

50

法。

【請求項 1 4】

第 1 の汚染物質が水蒸気であり、かつ第 2 の汚染物質が少なくとも 1 つの酸化炭素である、請求項 1 3 記載の方法。

【請求項 1 5】

第 2 の汚染物質を優先的に分離するよりも前に、第 1 の汚染物質を優先的に分離する、請求項 1 3 記載の方法。

【請求項 1 6】

第 1 の分離ゾーンは第 1 の吸着体層を含み、第 2 の分離ゾーンは第 2 の吸着体層を含む、請求項 1 3 記載の方法。

10

【請求項 1 7】

吸着によって第 1 および第 2 の汚染物質を優先的に分離する、請求項 1 3 記載の方法。

【請求項 1 8】

水素含有供給ガス流が、改質システムまたは部分酸化システムによって発生する、請求項 1 3 記載の方法。

【請求項 1 9】

燃料電池がポリマー電解質膜燃料電池を含む、請求項 1 3 記載の方法。

【請求項 2 0】

少なくとも 1 つの追加の分離ゾーンで少なくとも 1 つの追加の汚染物質を優先的に分離する段階をさらに含む、請求項 1 3 記載の方法。

20

【請求項 2 1】

第 1 の分離ゾーンでは水蒸気が優先的に分離され、第 2 の分離ゾーンでは二酸化炭素が優先的に分離され、第 3 の分離ゾーンでは一酸化炭素が分離される、請求項 2 0 記載の方法。

【請求項 2 2】

第 1 の分離ゾーンが乾燥剤を含み、第 2 の分離ゾーンがゼオライトを含み、第 3 の分離ゾーンがゼオライトを含む、請求項 2 1 記載の方法。

【請求項 2 3】

第 1 または第 2 の汚染物質が一酸化炭素を含み、かつ方法が、第 1 または第 2 の分離ゾーンで一酸化炭素を水蒸気と反応させる段階をさらに含む、請求項 1 3 記載の方法。

30

【請求項 2 4】

少なくとも 1 つの燃料電池陽極に水素含有ガス流を供給する方法であって、

少なくとも第 1 の汚染物質および少なくとも第 2 の汚染物質を含む水素含有供給ガス流を供給する段階と、

第 1 の汚染物質の少なくとも一部および第 2 の汚染物質の少なくとも一部を水素含有供給ガス流から分離するのに十分な条件の下で、水素含有供給ガス流を少なくとも第 1 の吸着体および少なくとも第 2 の吸着体に接触させる段階と、

結果として得られる浄化された水素含有ガス流を燃料電池陽極に導入する段階とを含む方法。

【請求項 2 5】

少なくとも 1 つの燃料電池陽極に供給された水素含有供給ガス流から一酸化炭素を分離する方法であって、

一酸化炭素を含む水素含有供給ガス流を供給する段階と、

Na - L S X、Ca - L S X、Li - L S X、Li 交換斜方沸石、Ca 交換斜方沸石、Sr 交換斜方沸石、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物から選択された少なくとも 1 つの吸着体を含む少なくとも 1 つのロータリ圧力スウェーリング吸着モジュールを設ける段階と、

水素含有供給ガス流をロータリ圧力スウェーリング吸着モジュールに導入して水素含有供給ガス流から一酸化炭素の少なくとも一部を分離する段階と

結果として得られる浄化された水素含有ガス流を燃料電池陽極に導入する段階とを含む方

40

50

法。

【請求項 2 6】

吸着体が、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物を含む、請求項 2 5 記載の方法。

【請求項 2 7】

少なくとも 1 つの燃料電池陽極に水素含有ガス流を供給する方法であって、

一酸化炭素を含む水素含有ガス流を供給する段階と、

少なくとも 1 つの一酸化炭素選択吸着体を含む圧力スティング吸着モジュールに水素含有ガス流を導入し、浄化された水素含有ガス流を発生させる段階と、

浄化された水素含有ガス流を燃料電池陽極に導入する段階とを含む方法。

10

【請求項 2 8】

一酸化炭素選択吸着体が、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物を含む、請求項 2 7 記載の方法。

【請求項 2 9】

少なくとも 1 つの燃料電池陽極に水素含有ガス流を供給する方法であって、酸素濃縮ガス流を供給する段階と、

酸素濃縮ガス流と燃料との混合物を自熱改質反応炉または部分酸化反応炉に入れ、少なくとも 1 つの酸化炭素汚染物質を含む水素含有ガス流を発生させる段階と、

水素含有ガス流から酸化炭素汚染物質の少なくとも一部を分離する段階と、

結果として得られる浄化された水素含有ガス流を燃料電池陽極に導入する段階とを含む方法。

20

【請求項 3 0】

酸素濃縮ガス流を発生させる圧力スティング吸着モジュールを設ける段階をさらに含む、請求項 2 9 記載の方法。

【請求項 3 1】

電流発生システムであって、

水素含有ガス供給源と、

水素含有ガスを少なくとも部分的に浄化することができ、少なくとも 1 つの第 1 の吸着体と、第 2 の吸着体、蒸気改質触媒、および水性ガス転化反応触媒から選択される少なくとも 1 つの第 2 の材料とを含み、第 1 の吸着体と第 2 の吸着体は化学的に異なる吸着体である、少なくとも 1 つの吸着モジュールと、

30

浄化された水素含有ガス流を吸着モジュールから受け入れることのできる陽極入口を形成している少なくとも 1 つの燃料電池とを含むシステム。

【請求項 3 2】

水素含有ガスが改質装置または部分酸化反応炉を含む、請求項 3 1 記載のシステム。

【請求項 3 3】

吸着モジュールが、ロータリ圧力スティング吸着モジュールを含む、請求項 3 1 記載のシステム。

【請求項 3 4】

第 1 の吸着体が第 1 のゾーンに配置され、第 2 の材料が第 2 のゾーンに配置される、請求項 3 1 記載のシステム。

40

【請求項 3 5】

第 1 のゾーンおよび第 2 のゾーンが、吸着モジュールに形成された水素含有ガス流路に沿って隣接して配置される、請求項 3 4 記載のシステム。

【請求項 3 6】

吸着モジュールに形成された燃料電池陽極出口と入口を流体連通させる陽極再循環導管をさらに含む、請求項 3 1 記載のシステム。

【請求項 3 7】

第 1 の吸着体または第 2 の吸着体の少なくとも一方は一酸化炭素選択吸着体を含む、請求項 3 1 記載のシステム。

50

【請求項 3 8】

一酸化炭素選択吸着体が、Na - LSX、Ca - LSX、Li - LSX、Li 交換斜方沸石、Ca 交換斜方沸石、Sr 交換斜方沸石、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物から選択される、請求項 3 7 記載のシステム。

【請求項 3 9】

蒸気改質触媒または水性ガス転化反応触媒が、ゼオライトケージに挿入されたCu - Zn O 触媒、遷移金属カルボニル錯体触媒、または遷移群金属を含む触媒から選択される、請求項 3 1 記載のシステム。

【請求項 4 0】

少なくとも 1 つの追加の吸着体の少なくとも 1 つの追加のゾーンをさらに含む、請求項 3 10 記載のシステム。

【請求項 4 1】

第 1 の吸着体が、水蒸気よりも二酸化炭素を優先的に吸着し、かつ蒸気改質触媒または水性ガス転化反応触媒の少なくとも一方が存在する、請求項 3 1 記載のシステム。

【請求項 4 2】

第 1 の吸着体がアルカリ促進材料を含む、請求項 4 1 記載のシステム。

【請求項 4 3】

一酸化炭素選択吸着体が、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物から選択される、請求項 3 1 記載のシステム。

【請求項 4 5】

第 1 の吸着体が乾燥剤を含み、第 2 の吸着体がゼオライトを含み、追加の吸着体がゼオライトを含む、請求項 4 0 記載のシステム。

【請求項 4 6】

第 1 の吸着体または第 2 の吸着体の少なくとも一方が、ゼオライト、活性炭、またはCu (I) 含有材料を含む、請求項 3 1 記載のシステム。

【請求項 4 7】

改質装置または部分酸化反応炉が第 1 のバーナーおよび第 2 のバーナーを含む、請求項 3 2 記載のシステム。

【請求項 4 8】

第 1 のバーナーが吸着モジュールから排気ガスを受け入れ、第 2 のバーナーは炭化水素燃料を受け入れる、請求項 4 7 記載のシステム。

【請求項 4 9】

電流発生システムであって、

水素含有ガス供給源と、

水素含有ガス供給源に流体連結され、少なくとも 1 つの一酸化炭素選択吸着体を含む、少なくとも 1 つの圧力スwing吸着モジュールと、

圧力スwing吸着モジュールに流体連結された少なくとも 1 つの燃料電池陽極とを含むシステム。

【請求項 5 0】

一酸化炭素選択吸着体が、Cu (I) 含有材料、Ag (I) 含有材料、またはそれらの混合物から選択される、請求項 4 9 記載のシステム。

【請求項 5 1】

燃料電池陽極に水素ガスを供給するシステムであって、

少なくとも第 1 の汚染物質および第 2 の汚染物質を含む水素含有ガスを排出する出口を含む水素ガス発生システムと、

水素ガス発生システムの出口と流体連通する第 1 の汚染物質分離ゾーンと、

第 1 の汚染物質分離ゾーンと流体連通し、浄化された水素ガスを排出する出口を含む、少なくとも 1 つの第 2 の汚染物質分離ゾーンと、

第 2 の汚染物質分離ゾーン用の出口と流体連通する少なくとも 1 つの燃料電池陽極とを含むシステム。

【請求項 5 2】

水素ガス発生システムが、改質装置または部分酸化反応炉を含み、かつ第1の汚染物質または第2の汚染物質の少なくとも一方が酸化炭素を含む、請求項51記載のシステム。

【請求項 5 3】

第1の汚染物質分離ゾーンが第1の吸着体を含み、かつ第2の汚染物質分離ゾーンが第2の吸着体を含む、請求項51記載のシステム。

【請求項 5 4】

第1の汚染物質分離ゾーンおよび第2の汚染物質分離ゾーンがロータリ圧力スウェイブ吸着モジュール内に配置される、請求項53記載のシステム。

【請求項 5 5】

燃料電池陽極に水素ガスを供給するシステムであって、

水素含有ガス供給源と、

水素含有ガスを少なくとも部分的に浄化することができ、Na-LSX、Ca-LSX、Li-LSX、Li交換斜方沸石、Ca交換斜方沸石、Sr交換斜方沸石、Cu(I)含有材料、Ag(I)含有材料、またはそれらの混合物から選択された少なくとも1つの吸着体を含む、少なくとも1つのロータリ圧力スウェイブ吸着モジュールと、
浄化された水素含有ガス流をロータリ圧力スウェイブ吸着モジュールから受け入れることのできる陽極入口を有する少なくとも1つの燃料電池とを含むシステム。

【請求項 5 6】

吸着体が、Cu(I)含有材料、Ag(I)含有材料、またはそれらの混合物から選択される、請求項55記載のシステム。

【請求項 5 7】

電流発生システムであって、

酸素濃縮ガス流を排出する出口を有する少なくとも1つの第1の圧力スウェイブ吸着モジュールと、

燃料および酸素濃縮ガス流を燃焼させて水素含有ガスを発生させることのできる自熱改質反応炉または部分酸化反応炉と、

水素含有ガスを少なくとも部分的に浄化することのできる少なくとも1つの第2の圧力スウェイブ吸着モジュールと、

浄化された水素含有ガスを第2の圧力スウェイブ吸着モジュールから受け入れることのできる陽極入口を有する少なくとも1つの燃料電池とを含むシステム。

【請求項 5 8】

水素含有ガス流および酸素濃縮ガス流を燃料電池に供給する方法であって、

酸素濃縮ガス流を発生させ、第1の圧縮器または第1の真空ポンプから選択された少なくとも1つの装置を含む、少なくとも1つの第1の圧力スウェイブ吸着モジュールを設ける段階と、

浄化された水素ガス流および分離排気ガス流を発生させ、第2の圧縮器または第2の真空ポンプから選択された少なくとも1つの装置を含む、少なくとも1つの第2の圧力スウェイブ吸着モジュールを設ける段階と、

酸素濃縮ガス流および浄化された水素ガス流を燃料電池に導入する段階と、

第1の圧縮器、第1の真空ポンプ、第2の圧縮器、第2の真空ポンプ、または発電機から選択された少なくとも1つの装置を駆動するための燃焼エンジンに、燃料として分離排気ガス流を導入する段階とを含む方法。

【請求項 5 9】

燃料エンジン用の燃料として、浄化された水素ガス流の一部を分離排気ガス流と混合する段階をさらに含む、請求項58記載の方法。

【請求項 6 0】

燃料電池が、水を含む陰極排気ガス流を発生させ、かつ方法が、陰極排気ガス流からの水で燃焼エンジンを冷却する段階をさらに含む、請求項58記載の方法。

【請求項 6 1】

10

20

30

40

50

燃焼エンジンからの冷却水を蒸発させる段階と、結果として得られた水蒸気を、水素含有ガス供給流を発生させる改質装置に導入する段階とをさらに含む、請求項 6 0 記載の方法。

【請求項 6 2】

燃焼エンジンがエンジン排気ガス流を発生させ、かつ方法が、エンジン排気ガス流で水素ガス発生システムを加熱する段階をさらに含む、請求項 6 0 記載の方法。

【請求項 6 3】

液体の水と炭化水素燃料流とを混合して冷却剤混合物を得る段階と、

燃焼エンジンと並置された冷却剤ジャケットに冷却剤混合物を導入する段階と、

冷却剤混合物を蒸発させて蒸気 / 燃料の蒸気混合物を形成する段階と、

水素含有ガス流を発生させるのに十分な反応条件に蒸気 / 燃料蒸気混合物をさらす段階と、

水素含有ガス流を第 2 の圧力スウェイブ吸着モジュールに導入する段階とをさらに含む、

請求項 5 8 記載の方法。

【請求項 6 4】

水素含有ガス流を燃料電池に供給する方法であって、

冷却剤通路、および水素含有ガス流を受け入れる陽極入口を形成する燃料電池を設ける段階と、

液体の水と炭化水素燃料流とを混合して冷却剤混合物を得る段階と、

冷却剤混合物を燃料電池の冷却剤通路に導入する段階と、

冷却剤混合物を蒸発させて蒸気 / 燃料の蒸気混合物を形成する段階と、

水素含有ガス流を発生させるのに十分な反応条件に蒸気 / 燃料蒸気混合物をさらす段階と、

水素含有ガス流を燃料電池陽極入口に導入する段階とを含む方法。

【請求項 6 5】

炭化水素燃料流がメタノール、エタノール、またはそれらの混合物を含む、請求項 6 4 記載の方法。

【請求項 6 6】

冷却剤混合物を蒸発させる段階が、冷却剤混合物を瞬間蒸発させる段階を含む、請求項 6 4 記載の方法。

【請求項 6 7】

水素含有ガス流を燃料電池陽極入口に導入する前に水素含有ガス流を浄化する段階をさらに含む、請求項 6 4 記載の方法。

【請求項 6 8】

圧力スウェイブ吸着によって水素含有ガス流が浄化される、請求項 6 7 記載の方法。

【請求項 6 9】

水蒸気 / 燃料混合物が改質または部分酸化を受けて水素含有ガス流を発生させる、請求項 6 4 記載の方法。

【請求項 7 0】

燃料電池が、陰極水蒸気を含む陰極排気ガス流を排出する陰極出口をさらに形成し、かつ方法が、陰極水蒸気の少なくとも一部を凝縮する段階と、結果として得られた液体水流を陰極排気ガス流から分離する段階と、液体水流を炭化水素燃料流と混合する段階とをさらに含む、請求項 6 4 記載の方法。

【請求項 7 1】

電流発生システムであって、

浄化された水素ガスを排出する第 1 の出口、および分離排気ガスを排出する第 2 の出口を含む、少なくとも 1 つの水素ガス分離モジュールと

水素ガス分離モジュールの第 1 の出口と流体連通する陽極入口を形成する少なくとも 1 つの燃料電池と、

水素ガス分離モジュールの第 2 の出口と流体連通する燃料入口を形成する燃焼エンジンと

10

20

30

40

50

を含むシステム。

【請求項 7 2】

水素ガス分離モジュールが圧力スティング吸着モジュールを含む、請求項 7 1 記載のシステム。

【請求項 7 3】

水素ガス分離モジュールがロータリ圧力スティング吸着モジュールを含む、請求項 7 2 記載のシステム。

【請求項 7 4】

酸素濃縮ガス流を排出する出口および少なくとも 1 つの圧縮器またはポンプを含む少なくとも 1 つの第 1 の圧力スティング吸着モジュールをさらに含み、燃焼エンジンに連結させたシャフトは、少なくとも 1 つの圧縮器またはポンプを駆動する、請求項 7 1 記載のシステム。

【請求項 7 5】

燃料電池が、水を含む陰極排気ガス流を排出する陰極出口をさらに形成し、燃焼エンジンが、冷却ジャケットをさらに含み、かつシステムが、燃料電池陰極出口と燃焼エンジン冷却ジャケットとを流体連通させる導管をさらに含む、請求項 7 1 記載のシステム。

【請求項 7 6】

水素ガス分離モジュールと流体連通する水素ガス発生システムをさらに含み、水素ガス発生システムが、改質装置または部分酸化反応炉を含み、燃焼エンジンが、改質装置または部分酸化反応炉と流体連通する水蒸気用の出口を形成する冷却ジャケットをさらに含む、請求項 7 1 記載のシステム。

【請求項 7 7】

燃料電池がポリマー電解質膜燃料電池を含む、請求項 7 1 記載のシステム。

【請求項 7 8】

電流発生システムであって、

水素含有ガス流を受け入れる陽極入口、および冷却剤入口と冷却剤出口とを有する冷却剤通路を形成する燃料電池、

冷却剤入口と流体連通する水供給源、

冷却剤入口と流体連通する炭化水素燃料供給源、

水素含有ガス流を排出する出口、および冷却剤出口と流体連通する燃料入口を含む水素ガス発生モジュール、ならびに

水素ガス発生モジュール出口と燃料電池陽極入口との間を流体連通させる第 1 の導管を含むシステム。

【請求項 7 9】

炭化水素燃料がメタノール、エタノール、またはそれらの混合物を含む、請求項 7 8 記載のシステム。

【請求項 8 0】

水素含有ガス流を燃料電池陽極入口に導入する前に水素含有ガス流を浄化する第 1 の圧力スティング吸着モジュールをさらに含む、請求項 7 8 記載のシステム。

【請求項 8 1】

圧力スティング吸着モジュールがロータリ圧力スティング吸着モジュールを含む、請求項 8 0 記載のシステム。

【請求項 8 2】

酸素濃縮水蒸気を排出する出口を含む圧力スティング吸着モジュールと、圧力スティング吸着モジュール出口と燃料電池陰極入口とを流体連通させる第 3 の導管とをさらに含む、請求項 7 8 記載のシステム。

【請求項 8 3】

圧力スティング吸着モジュールがロータリ圧力スティング吸着モジュールを含む、請求項 8 2 記載のシステム。

【請求項 8 4】

10

20

30

40

50

第1の圧力スウィング吸着モジュールが、浄化排気ガスを排出する出口を含み、かつシステムが、酸素濃縮流を排出する第1の出口と濃縮排気ガスを排出する第2の出口とを含む第2の圧力スウィング吸着モジュール、および浄化排気ガス出口と濃縮排気ガス出口と水素ガス発生モジュール用の少なくとも1つのバーナーとを流体連通させる第3の導管をさらに含む、請求項8-2記載のシステム。

【請求項8-5】

第1の導管と流体連通し、陰極排気ガス流から水を分離する分離器をさらに含む、請求項7-8記載のシステム。

【請求項8-6】

燃料電池が、陰極排気ガス流を排出する陰極出口をさらに形成し、かつシステムが、燃料電池陰極出口と冷却剤入口とを流体連通させる第2の導管をさらに含む、請求項7-8記載のシステム。 10

【発明の詳細な説明】

【0001】

関連出願の相互参照

本出願は、2000年10月27日に出願されたカナダ特許出願第2,324,699号、および2000年10月27日に出願されたカナダ特許出願第2,324,702号の利益を主張するものである。これらの出願は共に引用によって本明細書に組み入れられる。

【0002】

開示の分野

本開示は、燃料電池ベースの発電システムに関し、燃料電池の効率および耐久性を高める。

【0003】

背景

燃料電池は、環境にやさしい電流供給源を形成する。電流を発生させるのに用いられ、特に車両の推進力を得るためや、小規模な定常電力生成に用いられる燃料電池の一形態は、水素ガスの流れを受け入れる陽極流路と、酸素ガスを受け入れる陰極流路と、陽極流路を陰極流路から分離するポリマー電解質膜(PEM)とを含む。陰極に入った酸素ガスは、水素イオンに反応し、水素イオンが電解液を横切って電子の流れが発生する。副産物として環境に安全な水蒸気が発生する。 30

【0004】

(圧縮ガスまたは低温液体としての)水素を外部で発生させ、浄化し、供給し、貯蔵するにはコストの高い設備が必要であり、一方、車両上に水素燃料を貯蔵することは技術的にかなり難しく、コストもかかる。したがって、定常に電力を発生させるには、蒸気改質または部分酸化を行い、その後水性ガス転化反応を生じさせることによって天然ガスから水素を発生させることが好ましい。液体燃料を用いた燃料電池車両の場合、蒸気改質を行うか、または部分酸化および自熱改質を行い、その後やはり水性ガス転化反応を生じさせることによって、前者の場合はメタノールから、後者の場合はガソリンから水素を発生させることが好ましい。しかし、結果として得られる水素は、それぞれ微量レベルを超えてはPEM燃料電池触媒電極では耐えることのできない一酸化炭素不純物や二酸化炭素不純物などの汚染物質を含んでいる。 40

【0005】

PEM燃料電池に供給される水素から残留一酸化炭素を除去する従来の方法は触媒選択酸化であるが、低温酸化によって一酸化炭素と水素の一部との両方が消費され、燃焼熱が回収されないので効率が低い。パラジウム拡散膜を水素の浄化に使用することができるが、浄化された水素が低圧で供給されると共に、稀少でありコストのかかる材料が使用されるという欠点を有する。

【0006】

圧力スウィング吸着システム(PSA)は、顕著な汚染レベルをもたらさずに酸素・水素

10

20

30

40

50

ガスの連続供給源を形成することができるという魅力的な機能を有する。P S Aシステムおよび真空圧スティング吸着システム（V P S A）は、混合物の容易に吸着されないガス成分に対してより容易に吸着されるガスの部分を優先的に吸着する吸着器または吸着体層上で、圧力循環と流れ反転との調和をとることによってガス混合物からガスの一部を分離する。吸着器内のガス混合物の全圧は、ガス混合物が吸着器内をその第1の端部から第2の端部まで流れる間に高くなり、ガス混合物が吸着器内をその第2の端部から第2の端部に戻る間に低くなる。P S Aサイクルが繰り返されるにつれて、容易に吸着されない成分は吸着器の第2の端部に隣接する位置に集中し、一方、容易に吸着される成分は吸着器の第1の端部に隣接する位置に集中する。その結果、「軽」生成物（より容易に吸着される成分は無くなっているが、容易に吸着されない成分が濃縮された、ガスの部分）が吸着器の第2の端部から供給され、「重」生成物（より強く吸着される成分が濃縮されたガスの部分）が吸着器の第1の端部から排気される。

10

【0007】

多数の銅ベースのCO選択吸着体が、ラボ（R a b o）ら（米国特許第4,019,879号）、ヒライ（米国特許第4,587,114号）、ニシダら（米国特許第4,743,276号）、タジマら（米国特許第4,783,433号）、ツジら（米国特許第4,914,076号）、シエ（X i e）ら（米国特許第4,917,711号）、ゴールデン（G o l d e n）ら（米国特許第5,126,310号、第5,258,571号、および第5,531,809号）、ならびにハブル（H a b l e）ら（米国特許第6,060,032号）で開示されている。COを除去するかまたは集中させるための圧力スティング吸着処理でいくつかのこのようなCO選択吸着体を用いる方法が、産業スケールで商業的に確立されている。

20

【0008】

PEM燃料電池用のリフォーメートからCOを除去するにある種の吸着器を使用する方法は、1998年の年次レポート「米国エネルギー省高度輸送技術局の輸送プログラム用燃料電池（Fuel Cells for Transportation Program of the U. S. Department of Energy, Office of Advanced Transportation Technologies）」で報告されているようにアルゴンヌ国立研究所（A r g o n n e N a t i o n a l L a b o r a t o r y）の研究者によって調査されている。ベロウズ（B e l l o w s）（米国特許第5,604,047号）は、燃料電池へのリフォーメート供給物からCOを除去する蒸気排気バージサイクルにおける一酸化炭素吸着体として、選択された貴金属とある種の金属の炭化物および窒化物を用いる方法を開示している。

30

【0009】

しかし、圧力スティング吸着または真空圧スティング吸着を実施する従来のシステムは、吸着器を圧力源とシンクとに交互に順次接続する方向制御弁を各吸着器の各端部に持つ1つまたは複数の固定吸着器を並列に使用している。このシステムは、吸着器のサイズが大きく、必要な弁が複雑であるため、実施するのが厄介であり、コストがかかる。さらに、従来のP S AシステムではP S A処理に、吸着器が循環的に加圧され減圧される取消し不可能なガス膨張段階があるために、加えられたエネルギーは非効率的に使用される。従来のP S Aシステムは、サイクル周波数が低く、したがって吸着体の在庫量が多くなるため、極めてかさばり、かつ重すぎて車両用の燃料電池動力装置に適用することはできない。

40

【0010】

他の問題は、PEM燃料電池で高い電力密度および電圧効率に達するには、先行技術の燃料電池システムではP S Aなしで、実質的な機械的寄生負荷によって空気を圧縮し、P S Aを用いて酸素濃度を高める場合にはそれよりも低い程度に実質的な機械的寄生負荷によって空気を圧縮する必要があることである。通常どおりに、燃料電池から電力を供給される電動機によって機械的動力が与えられる場合、可変速度圧縮器駆動用の電力変換および条件付けの効率が著しく失われ、この寄生負荷と、有効な電力が供給される作用負荷を支持するには、燃料電池のスタックを実質的に大きくしなければならない。自動車およびそ

50

の他の輸送用途用の従来技術の PEM 燃料電池動力装置では、燃料電池の総電力出力の約 20 % が空気圧縮の寄生負荷に回される。

【 0 0 1 1 】

炭化水素燃料（たとえば、天然ガス、ガソリン、ディーゼル燃料）または酸素化燃料（たとえば、メタノール、エタノール、ジメチルエーテル）から純度の低いリフォーメート水素を発生させるために燃料処理反応用の熱を供給する必要がある際に他の問題が生じる。従来技術では、天然ガスまたはメタノールの蒸気改質に必要な熱は、燃料電池からの陽極排ガスとして供給された水素を燃焼させることによって少なくとも一部が供給される。特に、比較的低温で実行できるメタノール改質の場合、このような低グレードの熱を発生させるために貴重な水素を燃焼させることは全体的なエネルギー効率に対して大きな悪影響を与える。

【 0 0 1 2 】

同様に、ガソリンのようなより重い燃料を処理するのに必要な熱は、部分酸化または自熱改質処理において燃料を部分的に燃焼させることによって得られる。この場合も、高グレードの燃料の一部は、この燃料の残りの部分を、燃料電池で使用できるように浄化することのできる低純度の水素に改良するために消費される。低温燃料電池を用いた場合、高グレードの燃料が消費されるため、先行技術の処理システムの熱効率は極めて低い。輸送用途における高温燃料処理装置と低温燃料電池との効率的な熱統合はなされていない。

【 0 0 1 3 】

ガスタービンサイクルと燃料電池システムとが一体化された組合せサイクル動力装置が開示されている。一次動力装置として内燃エンジンを有する自動車および乗用鉄道車両用の燃料電池補助電力ユニットが提案されている。PCT特許出願国際公開公報第00/16425号では、PSAユニットをガスタービン動力装置、またはガスタービン補助エンジンを有する燃料電池動力装置といかに一体化するかについての例が示されている。

【 0 0 1 4 】

開示の概要

開示される燃料電池ベースの発電システムおよび方法は、先行技術の燃料セル発電システムの欠点に対処する。これは、リフォーメート水素の浄化、エネルギー効率の高い PSA 酸素濃縮、燃料電池スタックおよび / または水素 PSA 排ガスの燃焼による熱回収、酸素 PSA のための空気圧縮および PSA 真空ポンピングの熱出力に特に当てはまり、コストの高い燃料電池スタックのサイズを最小限に抑え、一方、原燃料からのエネルギー変換の全体的なエネルギー効率を最大にする。

【 0 0 1 5 】

一般に、開示された電流生成システムは、燃料電池、酸素ガス供給システム、および水素ガス供給システムを含んでいる。燃料電池は、供給された水素ガスを受け入れる陽極ガス入口を有する陽極流路、陰極ガス入口および陰極ガス出口を有する陰極流路、ならびに陽極流路と陰極流路との間のイオンの移動を容易にするように陽極流路および陰極流路と連通する電解液を含んでいる。酸素ガス供給システムは、陰極ガス入口に連結されており、陰極流路に空気または酸素（たとえば、酸素を豊富に含有する空気）を供給する。

【 0 0 1 6 】

酸素ガス供給システムは単なる送風機であってもよい。しかし、ある態様では、酸素ガス供給システムは、酸素圧力スティング吸着システムを組み込んでいてもよい。たとえば、固定子と、固定子に対して回転できる回転子とを有するロータリモジュールを含み、空気の酸素ガスを濃縮するロータリ PSA システムを使用することができる。回転子は、吸着体材料を受け入れ、第 1 のガス成分を、第 2 のガス成分に対する流路内の圧力上昇に応答して優先的に吸着するいくつかの流路を含んでいる。圧力スティング蒸着システムは、ロータリモジュールに連結され、流路内のガス流を推進し、第 1 のガス成分を第 2 のガス成分から分離する圧縮機を含んでいてもよい。PSA システムの前述の態様は、第 1 の固定子弁面、第 2 の固定子弁面、固定子弁面に開放する複数の機能区画を含んでいる。機能区画には、ガス供給区画、軽還流出口区画、軽還流戻り区画が含まれる。

【0017】

一変形態様では、圧縮機は、加圧された空気をガス供給区画に供給する圧縮器、ならびに軽還流出口区画と軽還流戻り区画との間に位置させられ、軽還流出口区画および軽還流戻り区画に流体連結された軽還流エキスパンダを含んでいる。ガス再循環圧縮器は、軽還流エキスパンダに連結され、陰極ガス出口から排気された酸素ガスを圧力下で陰極ガス入口に供給する。その結果、陰極ガス入口に供給される酸素ガスの圧力を高めるように、圧力スティング吸着システムから回収されたエネルギーを加えることができる。

【0018】

酸素ガス供給システムは、陰極ガス入口に連結され、陰極流路に酸素ガスを供給する。水素ガス供給システムは、浄化された水素ガスを陽極ガス入口に供給し、陽極流路内の不純物の蓄積を回避するように、水素ガスを純度を高めて陽極ガス出口から陽極ガス入口に再循環することができる。

10

【0019】

上述の態様の一変形態様では、酸素ガス分離システムは酸素圧力スティング吸着システムを含み、水素ガス分離システムは、炭化水素燃料から第1の水素ガス供給物を発生させる反応炉を含み、水素圧力スティング吸着システムは、反応炉に連結され、第1の水素ガス供給物から受け入れた水素ガスを浄化する。陽極出口からの水素ガスは、水素圧力スティング吸着システムに第2の水素ガス供給物として再循環することができる。どちらの圧力スティング吸着システムも、固定子と、固定子に対して回転可能な回転子とを有するロータリモジュールを含んでいてもよい。回転子は、吸着体材料を受け入れ、第1のガス成分を、第2のガス成分に対する流路内の圧力上昇に応答して優先的に吸着するいくつかの流路を含んでいる。機能区画には、ガス供給区画および重生成物区画が含まれる。

20

【0020】

水素PSAシステムに供給されるガスは、(たとえば、メタノール、天然ガス、もしくは軽炭化水素などの)蒸気改質、または(たとえば、天然ガス、ガソリン、もしくはディーゼル燃料などの)自熱改質もしくは部分酸化(「POX」)による当技術分野で知られている他の燃料処理方法で発生するリフォーメートガスまたは合成ガスである。メタノールリフォーメートのCO含有量(メタノールの比較的低温の蒸気改質によって発生する)は通常、約1%またはそれよりもいくらか少ない。他の燃料処理装置(たとえば、蒸気メタン改質装置や、任意の原料に対して作用するPOXまたは自熱改質装置)は、ずっと高い温度で動作し、好ましくはCO含有量を約1%以下に減らすより低温の水性ガス転化反応炉段階を含む。

30

【0021】

リフォーメートガスは、水素と、基本的な不純物成分であるCO₂、CO、および水蒸気とを含む。リフォーメートガスは、送風POXまたは自熱改質によって発生した場合、窒素およびアルゴンの多大な不活性部分を含む。不活性大気ガスの部分は、酸素PSAシステムを用いて、PSAから直接POXまたは自熱改質装置に供給するか、またはPSAから直接供給された酸素濃縮空気であり燃料電池陰極流路を通過した、湿気を含み依然として酸素が濃縮された空気としてPOXまたは自熱改質装置に供給する場合には、大幅に削減することができる。

40

【0022】

一つの変形態様では、酸素圧力スティング吸着システムは、ガス供給区画に連結され、加圧された空気をガス供給区画に供給する圧縮器と、圧縮器に連結され、重生成物区画から窒素生成物ガスを抽出する真空ポンプとを含んでいる。水素反応炉は、バーナーを含み、合成ガスを発生させる蒸気改質装置と、蒸気改質装置に連結され、いくらかのCOを水素に転化する水性ガス転化反応炉とを含む。水素圧力スティング吸着システムは、燃料ガスを重生成物区画からバーナーに供給する真空ポンプを含む。燃料ガスはバーナー内で燃焼され、そこから発生した熱を用いて、蒸気改質装置反応に必要な反応の発熱が供給される。結果として得られたリフォーメートガスは、水性ガス転化反応炉に供給されて不純物が除去され、次いで不純水素ガス供給物として水素圧力スティング吸着システムに供給され

50

る。

【 0 0 2 3 】

他の変形態様では、本発明は、燃料を燃焼させるバーナーを含んでいる。反応炉は、合成ガスを発生させる自熱改質装置と、自熱改質装置に連結され、合成ガスを不純水素ガス供給物に転化する水性ガス転化反応炉とを含んでいる。酸素圧力スティング吸着システムの圧縮器は、加圧された空気をバーナーに供給し、重生成物ガスは、バーナーで燃焼させられる排ガスとして水素圧力スティング吸着システムから供給される。酸素圧力スティング吸着システムの圧縮機は、圧縮器に連結され、バーナーから放出された高温の燃焼ガスから圧縮器を駆動するエキスパンダも含んでいる。エキスパンダを有する供給圧縮器は、モータ駆動装置を有する共通軸上に位置していてもよく、あるいは自動車のターボチャージャと同様の自由回転子を構成することができる。P S A処理を支援するように真空ポンプに同じエキスパンダまたは別のエキスパンダを連結することができる。この場合も、エキスパンダを有する真空ポンプは、自動車のターボチャージャと同様の自由回転子として設けることができる。バーナーからの熱によって、自熱改質装置に供給された空気および/または燃料を予め加熱しておくこともできる。

【 0 0 2 4 】

酸素を濃縮するのにP S Aを用いるかどうかとは無関係に、開示される方法およびシステムは、リフォーメートを浄化する水素P S A装置を設ける。水素P S Aは、高純度の水素を供給するように構成することも、または、それほど厳しい構成ではなく、CO、H₂S、ハロゲン、メタノールなどの有毒成分または汚染物質（燃料電池に有害）を適切に除去するように構成することもできる。後者の場合、水素P S Aはその第1のパスでは、それほど有害ではない構成成分（たとえば、N₂、Ar、CO₂）を部分的に除去するに過ぎない。この場合、陽極排ガスを、供給加圧段階で使用できるようにP S A入口の供給端に再循環することができ、したがって、機械的な再圧縮が不要になる。P S A用に水素純度が高く指定されているときでも、この特徴により、機器の不完全さまたは動作の過渡的な変動による汚染物質スリップが陽極流路に蓄積する恐れがある厳しいデッドヘッド構成を回避するうえで望ましい、陽極流路の端部から水素P S Aの供給加圧段階への少量の浸出が可能になる。

【 0 0 2 5 】

したがって、開示する方法およびシステムの第1の態様では、一酸化炭素を含む水素含有ガス流を供給する段階と、少なくとも1つの一酸化炭素選択吸着体を含む圧力スティング吸着モジュールに水素含有ガス流を導入し、浄化された水素含有ガス流を発生させる段階と、浄化された水素含有ガス流を燃料電池陽極に導入する段階が考えられる。水素含有ガス流を燃料電池陽極に供給する、さらなる開示の方法およびシステムは、少なくとも1つの第1の吸着体および少なくとも1つの第2の材料を有し、任意に第2の吸着体、蒸気改質触媒、および水性ガス転化反応触媒から選択された複数の材料を有する吸着モジュールに水素含有供給ガス流を導入する段階を含み、第1の吸着体と第2の吸着体は化学的に異なる吸着体であり、第1の吸着体と第2の吸着体の少なくとも一方は、水素含有供給ガス流中の汚染物質を優先的に吸着し、浄化された水素含有ガス流を発生させる。

【 0 0 2 6 】

水素P S Aユニット内の吸着器の動作温度は、大気温度よりも十分に高い温度に高めることができる。というのは、リフォーメートガスは、水性ガス転化後の温度が通常約200の状態で供給され、一方、P E M燃料電池の動作温度は約80から約100の範囲であるためである。または、吸着器は、リフォーメートを冷却する場合にはより低温で動作することができ、したがって、水およびメタノール蒸気を、水素P S Aユニットに入る前に凝縮によって部分的に除去することができる。適度に高い温度で動作することの利点は、（1）水素P S Aの上流側のリフォーメート冷却器および水凝縮器が不要であり、（2）大気温度と比べて適度な高温でP S Aによる水蒸気およびCO₂の除去をより容易に実現することができ、（3）Cu（I）が充填された吸着体上で、特に高温で、COをCO₂よりも選択的に吸着することができ、（4）より高い温度での、CO選択吸着体に対

10

20

30

40

50

するCOの吸着および脱着の動力学的性質を大幅に向上させることができる。したがって、ある種の態様では、吸着体の動作温度範囲は約80から約200であり、より特定の動作範囲は約100から約160である。本明細書では、「吸着器の動作温度」とは、吸着器を通って流れるガスの温度および/または吸着体層の温度を意味する。

【0027】

水素PSAユニットは、吸着器の第1の端部の温度が吸着器の第2の端部の温度よりも高くなるように、流路の長さに沿った温度勾配を維持するように構成することができる。

【0028】

特に、低純度の水素を陽極再循環と共に使用する場合、水素PSAは、イオン交換または適切な吸着体担体または支持体への含浸によって導入されるCu(I)やAg(たとえば、Ag(I))などのCO錯化イオンを有するCO選択吸着体を使用することができる。先行技術のCO選択吸着体は、担体としての様々なゼオライト、アルミナ、もしくは活性炭吸着体、または支持体としてのポリマーを使用している。CO選択吸着体を用いた場合、燃料電池陽極ループを循環する非CO不純物がいくらか蓄積するのに耐えつつ、水素の回収を向上させることができる。

【0029】

リフォーメートから水素を浄化するのに用いられるCO選択吸着体の潜在的な問題には、(1)吸着体を無効にするか、または含浸した成分を浸出させうる水蒸気との適合性、(2)CO錯化イオンを不活性金属形態に還元する水素による過還元、および(3)CO錯化の、物理的吸着と比べて比較的低速の動力学的性質が含まれる。

【0030】

開示の方法およびシステムにおける活性吸着体(CO選択的成分など)は、層化され、かつ流路を形成するようにスペーサによって間隔を置いて配置され、それによって、物質移動抵抗および流路圧力降下が最小限である表面積が大きな平行通路支持体を形成する、薄い吸着体シート上に支持することができる。ゼオライトなどの結晶性吸着体、およびアルミナゲルやシリカゲルなどの無定形吸着体を用いた場合、吸着体シートは、不活性材料、たとえば、ワイヤーメッシュ、金属箔、ガラスまたは鉱物纖維紙、織物または不織布の補強シート上に吸着体を被覆するかまたはインサイチュー合成することによって形成される。不活性材料の補強シート上に活性炭吸着体を被覆することもできるが、活性炭の吸着体シートを自己支持炭素纖維紙または布として設けることもできる。平坦なシートまたは湾曲したシートを積み重ねることによって、層化吸着体シート材料の吸着体を形成することができる。あるいは、吸着器は、各シート間の流路が吸着器の第1の端部から第2の端部まで延びるスパイラルロールであってよい。吸着器は一般に、所望の形状の吸着器ハウジングの体積を満たす。充填されらせん状に巻かれた吸着体による方法および構造の例は、2001年4月20日に出願され引用によって本明細書に組み入れられる、同一の所有者による同時係属中の米国仮出願特許第60/285527号で開示されている。吸着体シートの代表的な厚さは、約100ミクロンから約200ミクロンの範囲であってよく、一方、各シート間の流路間隔は約50ミクロンから200ミクロンの範囲であってよい。

【0031】

開示されるPSAユニットの一変形態様によれば、吸着器の第1の端部と第2の端部との間で流路に接触する吸着体材料としては一般に、流路に沿って第1の端部から第2の端部まで漸次異なる吸着体を有する一連のゾーン(たとえば、第1のゾーン、第2のゾーン、第3のゾーン、おそらく他のゾーン)を有するように、流路のそれぞれのゾーンにおいて異なるような吸着体材料を選択することができる。吸着体のそれぞれの異なるゾーンの代わりに、ガス流路に沿って吸着体濃度の可変勾配を含む層または混合物として設けることができる。ある吸着体から他の吸着体への遷移は、明確な遷移ではなく2つの吸着体の混合物であってよい。他のオプションとして、均質であってもなくてもよいそれぞれの異なる吸着体の混合物が設けられ、このような混合物を離散したゾーンと組み合わせることができる。

【0032】

10

20

30

40

50

高純度水素を供給するように構成された第1の変形態様では、第1の端部に隣接する吸着器の第1のゾーン内の吸着体は、その第1のゾーンで水蒸気を大量に除去する乾燥剤であり、吸着器の中央部分の第2のゾーン内の吸着体としては、CO₂を大量に除去し、COをいくらか除去するような吸着体が選択され、吸着器の第3のゾーン内の吸着体としては、COを最終的に除去し、窒素やアルゴンのような他の不活性成分を実質的に除去するような吸着体が選択される。第1のゾーン用の適切な乾燥剤は、制限なしにアルミナゲルである。第2のゾーン用の適切な吸着体は13Xゼオライトまたは5Aあるいは活性炭である。第3のゾーン用の適切な吸着体は、この場合も制限なしに、Na-LSX、Ca-LSX、Li-LSX、Li交換斜方沸石、Ca交換斜方沸石、Sr交換斜方沸石を含むがそれらに限らない群より選択される一酸化炭素および窒素を強力に選択する吸着体であってよい。この群のゼオライト吸着体は、有極分子に対する選択性に対応する強力な親水性を特徴とする。物理的吸着に依存するこの第1の変形態様は、約100°を大幅に超える可能性の低い比較的低温で最も効果的に動作する。ただし、Ca交換斜方沸石やSr交換斜方沸石のようなある種の吸着体は、約150°の温度までCOおよびN₂を効果的に除去することができる。10

【0033】

やはり高純度の水素を供給するように構成された第2の同様な変形態様では、第2のゾーンまたは第3のゾーン内の吸着体は、Cu(I)交換ゼオライトのような一酸化炭素をより強力に選択する吸着体であってもよい。ゼオライトはたとえば、X型またはY型ゼオライトや、モルデン沸石や、斜方沸石であってもよい。ほぼ純粋な水素に接触している間の過還元に対する安定性を得るために、ゼオライトの交換可能なイオンは、Cu(I)と、Na、Li、Ca、Sr、その他の遷移群金属、ラントニド群金属のような他のイオンとの混合物であってもよい。混合イオンは、CO選択性を高めるようにAgを微量成分としてさらに、または、代わりに含んでいてもよい。20

【0034】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第3の変形態様では、第1の端部に隣接する吸着器の第1のゾーン内の吸着体は、その第1のゾーンで水蒸気を大量に除去する乾燥剤であり、吸着器の中央部分の第2のゾーン内の吸着体としては、CO₂を大量に除去し、COをいくらか除去するような吸着体が選択され、吸着器の第3のゾーン内の吸着体としては、COを最終的に除去し、任意の窒素およびアルゴンを部分的に除去するような吸着体が選択される。第1のゾーン用の適切な乾燥剤はアルミナゲルであるが、限定されてはいない。第2のゾーン用の適切な吸着体は、この場合も限定されないが、Cu(I)が含浸したアルミナ、またはCu(I)が含浸した活性炭素である。第3のゾーン用の適切な吸着体は、第2のゾーンで使用されるのと同様の吸着体であっても、上記の第1または第2の変形態様と同様にCO選択吸着体および窒素選択吸着体であってもよい。30

【0035】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第4の変形態様では、吸着器のいくつかまたはすべてのゾーン内の吸着体は、活性炭素およびY型ゼオライトを非限定的に含む群より選択され、好ましくは吸着器の第2の端部に隣接するゾーン内のCO選択性を高めるようにCu(I)を含む、適度に疎水性の吸着体である。40

【0036】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第5の変形態様では、吸着器のいくつかまたはすべてのゾーン内の吸着体は、シリカライト(silicalite)および脱アルミされたY型ゼオライトを制限なしに含む群より選択される著しく疎水性の吸着体である。疎水性の吸着体は好ましくは、CO選択性を高めるようにCu(I)を含む。

【0037】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成さ50

れた第6の変形態様では、吸着器の第1または第2のゾーン内の吸着体は、水性ガス転化反応用のこのゾーンの動作温度で触媒として活性のある成分を含む。触媒として活性のある成分は、任意の既知の水性ガス転化触媒、たとえば、Cu-ZnOベースの触媒であってもよい。好ましくは、触媒として活性のある成分は、たとえば、X型またはY型ゼオライトのゼオライトケージに挿入された遷移群金属の金属カルボニル錯体または遷移群金属（たとえば、Cu、Ag、Ni、Pd、Pt、Rh、Ru、Fe、Moなど）の混合物であってもよい。この場合、触媒として活性のある成分上に吸着された一酸化炭素の一部は、水性ガス転化反応によって水蒸気と反応し、二酸化炭素および追加の水素を発生させることができる。X型ゼオライトまたはY型ゼオライト内で安定化されたルテニウム錯体は、従来の銅ベースの触媒よりも水性ガス転化触媒活動が活発であることが知られている [10 J. J. Verdonck, P. A. Jacobs, J. B. Uytterhoeven著「ファウジャサイト (Faujasite) 型ゼオライトにおいて異質化されたルテニウム錯体による触媒：水性ガス転化反応 (Catalysis by a Ruthenium Complex Heterogenized in Faujasite-type Zeolites: the Water Gas-shift Reaction)」J. C. S. Chem. Comm. 181~182ページ、1979年]。他の水性ガス転化触媒としてはセリア上に支持されたプラチナ、および遷移金属炭化物が当技術分野で知られている。鉄クロム触媒は高温での工業用水ガス転化反応に使用されている。

【0038】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第7の変形態様では、吸着器の第1のゾーン内の吸着体は、第1のゾーンのより高い動作温度で水蒸気よりも二酸化炭素を優先的に選択する吸着体である。当技術分野で知られている適切なこのような吸着体にはアルカリ促進材料が含まれる。アルカリ促進材料の例には、Li、Na、K、Cs、Rbなどのアルカリ金属、および/またはCa、Sr、Baなどのアルカリ土類金属の陽イオンを含む材料が含まれる。この材料は通常、アルカリ金属または土類金属の水酸化物、炭酸塩、重炭酸塩、酢酸塩、リン酸塩、硝酸塩、有機酸塩化合物として設けることができる。このような化合物は、アルミナのような任意の適切な基板上に堆積させることができる。特定の材料の例には、炭酸カリウムが含浸されたアルミナおよび炭酸カリウムで促進されるヒドロタルサイトが含まれる。吸着器の第2のゾーン内の吸着体は、水性ガス転化反応、および任意に、たとえばメタノールおよびメタンの蒸気改質反応用の、このゾーンの動作温度で触媒として活性のある成分を含む。上記の第6の変形態様と同様に、第2のゾーン内の触媒として活性のある成分は、既知の水性ガス転化触媒または蒸気改質触媒であっても、ゼオライトケージ内で分散され、第2のゾーンの動作温度で金属カルボニル錯体を取消し可能に形成する遷移群金属であってもよい。吸着器の第2のゾーンまたは好ましくは第3のゾーンは、このゾーンの動作温度で一酸化炭素および他の不純物成分に対するある有効動作容量を有する吸着体を含む。第1のゾーンでは一酸化炭素が強く吸着されるので、第2のゾーン内の二酸化炭素の濃度はPSA処理によって低いレベルに維持され、一方、第2のゾーンでは水蒸気濃度が比較的高い。したがって、この第7の変形態様では、第3のゾーンを通過する水素生成物への一酸化炭素の進入を防止しつつ、触媒として活性の第2のゾーンから水素と二酸化炭素の両方を連続して除去し、したがって、ほぼすべての一酸化炭素を消費して二酸化炭素および追加の水素を発生させるPSA処理によって、水性ガス転化反応平衡（および適用可能なら蒸気改質平衡）が連続して移行する。これは、水素を適切に浄化しつつ水性ガス転化反応を実質的に完了させるPSA反応炉または「吸着強化反応炉」の一例である。

【0039】

上述の改質および/または水性ガス転化反応触媒は、吸着体層の任意の部分に含めることができるが、改質反応および水性ガス転化反応の反応物質が水蒸気であるので、通常、水蒸気を除去する前の区間に含められる。

【0040】

同時に高純度および高回収率（～80%から85%）を実現するように工業的なH₂-P

10

20

30

40

50

S A は通常、かなり高い圧力 (> 10 気圧) で行われる。加圧メタノール改質装置と共に動作するか、またはガスター・ビンサイクルと一体化された燃料電池システムは、比較的高い圧力で動作することができる。しかし、大部分の PEM 燃料電池システムは大気圧から約 3 気圧までの圧力で動作する。 P S A の供給圧力と全体的な動作圧力との比が小さくなると、簡単なサイクルの生産性および回収率が低下する。 C O 選択吸着体は、所与の圧力条件の下で、窒素や二酸化炭素のような他の不純物に対する水素純度を緩めてよい場合、指定された生成物 C O 濃度での回収率は著しく向上するはずである。

【 0 0 4 1 】

供給圧力が非常に低い (たとえば、 2 ~ 3 気圧) の場合、 H₂ P S A で高い回収率を実現するのに補助的な圧縮が必要になることがある。真空ポンピングを用いて動作圧力比を広げるか、または「重還流」、すなわち、全圧での排気流の一部の再圧縮および P S A 供給物への再循環を用いて動作圧力比を広げることができる。 P S A システムでは、リフオーメートを浄化する場合に真空オプションと重還流オプションを組み合わせができる。特に C O 選択的ではない 1 3 X ゼオライト吸着体を用いた重還流オプションは、 3 気圧までの供給圧力および真空ポンピングなしの大気排出で合成メタノールリフオーメートから 95 % の回収率を実現した。

【 0 0 4 2 】

非常に低圧力の P S A において重還流を得るには、真空ポンプの流れの一部が P S A 供給物に再注入されるように真空ポンプを構成することができる。この場合、十分な重還流を汲み出すことによって (場合によってかなり低い全圧比で) 極端に高い水素回収率を得ることができる。真空レベルは、重還流の質量流量との兼ね合わせを図ることができる。

【 0 0 4 3 】

燃料電池は、独立式動力装置であっても、ある種の燃焼エンジンと一体化していくてもよい。独立式燃料電池の場合、エアハンドリング圧縮およびあらゆる酸素および / または水素 P S A ユニット用のすべての機械的動力を、適切なサイズの燃料電池スタックによる電力として供給しなければならない。この場合、 H₂ P S A によって、指定された純度で実現しなければならない回収レベルに、厳しい制約が適用される。高グレードの余熱が有効に使用されない場合、効率的な熱平衡を得るのには、燃焼可能な廃ガス (H₂ 、 C O 、および未反応燃料) の発熱量を燃料処理装置の熱需要に一致させる必要がある。燃料電池を蒸気改質 (たとえば、メタノールや天然ガス) と共に使用する場合、 P S A 排ガスが燃焼して改質装置が加熱されるため、 H₂ P S A による公称水素回収率は 75 % から 80 % である必要があり、一方、 P O X または自熱改質装置の場合、このような改質装置は、たとえば、供給酸素 / 空気および燃料反応物質を予め加熱する場合に、燃焼する P S A 排ガスまたは燃料電池陽極排ガスからの限られた量の外部燃焼熱しか使用できないため、 P S A による水素回収率を極端に高くする (少なくとも 90 % から 95 %) 必要がある。

【 0 0 4 4 】

P S A ユニットの高処理効率および高回収率を実現すると共に、燃料電池システムの全体的な効率を高めるには、酸素 P S A ユニットおよび水素 P S A ユニット用のエアハンドリングシステム圧縮器およびあらゆる真空ポンプを駆動する補助燃焼エンジンで水素 P S A 排ガスを燃焼させることができる。したがって、現在開示されている他の態様により、第 1 の圧縮器または第 1 の真空ポンプから選択される少なくとも 1 つの装置を含む、酸素濃縮ガス流を発生させる少なくとも 1 つの第 1 の圧力スウェイブ吸着モジュールを設ける段階と、第 2 の圧縮器または第 2 の真空ポンプから選択される少なくとも 1 つの装置を含む、浄化水素ガス流および分離排気ガス流を発生させる少なくとも 1 つの第 2 の圧力スウェイブ吸着モジュールを設ける段階と、酸素濃縮ガス流および浄化された水素ガス流を燃料電池に導入する段階と、通常、第 1 の圧縮器、第 1 の真空ポンプ、第 2 の圧縮器、第 2 の真空ポンプ、または発電機から選択される、少なくとも 1 つの補助装置を駆動する燃焼エンジンに分離排気ガス流を燃料として導入する段階とを含む方法およびシステムについて説明する。

【 0 0 4 5 】

10

20

30

40

50

比較的小さな設備の場合、ガスタービン構成と比べて内燃エンジンの方が魅力的である場合がある。いずれの場合も、排ガスを燃焼させることによって圧縮器および真空ポンプを駆動すると、圧縮機を寄生電気負荷として働かせるためのより大形の燃料電池スタックによるコスト増大の欠点が解消される。さらに、エンジン排気熱および／または冷却ジャケット熱を回収して、燃料反応物質を予め加熱して蒸発させ、以下に詳しく説明するようにメタノール改質装置用の改質熱の一部またはすべてを供給することができる。

【0046】

エンジンはピストン式エンジンであってもロータリエンジンであってもよい。エンジンは、水素 P S A 排ガスを直接燃料として吸引することも、あるいは P S A 排気からより多くの真空を引くようにターボチャージャーで過給することもできる。最新のバンケルデリバティブエンジンは、好ましい特定の排気量および出力密度を有する。したがって、補助内燃エンジンは、直接燃料として導入される排ガスにそれ自体の真空ポンプとして作用することができる。燃料電池陰極からのある酸素濃縮ガスは、重い CO_2 負荷を補償するために吸気の補助として供給することができる。このエンジンの燃料として使用される排ガスの水素、水、および二酸化炭素含有量を考慮すると、 NO_x およびその他の有毒な汚染物質の排出量が極めて低くなる条件が好ましい。ここで、P S A によって実現すべき必要な水素回収率に対する上記の厳しい熱平衡制約は、設計時に、動力装置の大部分の望ましい性能、排気量、および経済性について軽減させることができる。これは、排ガス燃焼により、補助圧縮負荷を熱によって駆動すると共に、燃料処理の発熱を供給することができるからである。燃焼エンジンは、 O_2 P S A 用のすべての圧縮器および真空ポンプを、 H_2 P S A 用の真空ポンプおよび／または重還流圧縮と共に駆動することができる。この補助ガスタービンサイクルにより、水素 P S A 排ガス燃焼の生成物を膨張させるターボエキスパンダによって重還流真空ポンプおよび圧縮器を駆動することができる。したがって、開示する方法およびシステムの1つの特徴は、真空ポンプと、排ガス燃焼によって駆動される燃焼エンジンが一体化されていることである。単一または複数のスプールガスタービン構成を燃焼エンジンと共に使用することができる。遠心機または軸流機を圧縮器およびポンプとして使用することができる。ガスタービンと燃料電池の一体化に基づく手法は、出力レベルが比較的高い場合に特に好ましい。

【0047】

他の開示される態様は、燃料電池に連結されたときの改良型蒸気改質方法（特にメタノール改質）に関する態様である。従来のメタノール改質手法では、液体反応物質の圧力が蒸発および蒸気相メタノール改質反応用のより高い圧力に高められる。この手法は、反応炉自体を小形にするのを可能にし、P S A またはパラジウム拡散膜による水素浄化用の駆動圧力をもたらす。

【0048】

本明細書では、低圧燃料電池から比較的高い熱回収率を得ることのできる蒸気メタノール改質用の新規の低圧処理を開示する。蒸気改質メタノールの吸熱のうちの 60% よりも多くの吸熱は、メタノールおよび水入力を沸騰させる蒸発熱である。燃料電池を冷却して供給液体燃料および水を燃料電池スタック動作温度で蒸発させた場合、システムは、熱回収によって、スタック冷却負荷の約 25% を吸収しつつ、水素が解放され電気が発生するため、より効率的になる。水に 14% のメタノールを溶かした水濃縮混合物は、大気圧および 85 度で沸騰し、化学量論上必要とされる 50/50 蒸気混合物を発生させるか、または液相のかなり過剰の水によって適度に高い温度で沸騰し、低 CO 濃度を確保するのに必要なやや過剰な水蒸気を得る。したがって、メタノールの一部を含む水の液体混合物を燃料電池スタック冷却剤として循環させ、次いで瞬間蒸発させ、燃料電池システム動作圧で改質触媒室に進入するメタノール - H_2O 蒸気混合物を発生させることができる。燃料電池が 85 よりも低い温度で動作する場合、燃料電池スタック廃熱を用いた蒸発によって、メタノール改質に必要な水の一部のみがもたらされるように、瞬間蒸発は、真空または比較的高い濃度のメタノールを用いて行われる（冬季条件に対する不凍特性を得る場合にも好ましい）可能性が高い。比較的高い P E M 燃料電池動作温度を使用すると、大気圧ま

10

20

30

40

50

たはそれよりも高い圧力で瞬間蒸発が可能になるか、またはスタック冷却剤流路内での温度差による駆動熱交換量が増大するため、この手法の実現可能性は高くなる。したがって、本明細書では、冷却剤通路、および水素含有ガス流を受け入れる陽極入口を形成する燃料電池を設ける段階と、液体水と炭化水素燃料流とを混合して冷却剤混合物を得る段階と、冷却剤混合物を燃料電池の冷却剤通路に導入する段階と、蒸気／燃料蒸気混合物を、水素含有ガス流を発生させるのに十分な反応条件にさらす段階と、水素含有ガス流を燃料電池陽極入口に導入する段階とを含む方法およびシステムを開示する。

【 0 0 4 9 】

より低い圧力の燃料電池（たとえば、約2気圧よりも低い絶対圧で動作する燃料電池）の場合、動作温度を大幅に高くしないかぎり、スタック熱回収を用いてメタノール改質反応物質を沸騰させた方が魅力的である。メタノール改質装置に供給されるすべての蒸気がスタック熱回収によって発生する場合、非常に低圧のPEM燃料電池（たとえば、1.5気圧よりも低い絶対圧で動作する燃料電池）の場合を除いて、改質装置反応物質蒸気混合物をいくらか機械的に圧縮する必要がある。このような非常に低圧の燃料電池にとってPSA O₂濃縮は非常に有利であることが予想される。これは、低い全圧で高い出力密度が得られるからである。しかし、この場合、酸素PSAユニットでも水素PSAユニットでも真空ポンピングが必要になり、特に水素PSAで高い水素回収率を得る場合に必要になる。

【 0 0 5 0 】

本発明内の他の手法では、燃料電池がいくらか高い圧力で動作し（たとえば、約2気圧または3気圧の絶対圧で動作する）、水とメタノールのスタック冷却剤液体混合物は比較的高濃度のメタノールを含み、したがって、このように発生した蒸気混合物は、メタノール改質装置用のすべてのメタノール蒸気を含むと共に、このメタノールを改質するのに必要な蒸気の一部のみを含む。次いで、他の熱源、たとえば、PSA機器を動作させるのに必要な供給空気圧縮器およびあらゆる真空ポンプを駆動するのに用いられる燃焼エンジンまたはタービンからの排気熱または冷却ジャケットによって補助蒸気が発生する。

【 0 0 5 1 】

POXまたは自熱ガソリン燃料処理装置の場合、改質反応用の吸熱は、改質反応炉内の燃料流の一部を燃焼させることによって発生する。したがって、改質プロセスを支援するために（たとえば、流入する空気流および燃料流を予め加熱しておくために）水素PSA排ガスを有效地に燃焼させる機会はあるにしても非常に限られている。なぜなら、POXおよび自熱改質装置内で豊富な高グレードの熱が発生するからである。水素PSA排ガスを燃焼させることによって得られた燃焼熱を他の目的に使用しない場合、水素PSAは極めて高い水素回収率（たとえば、90%から99%の範囲）を達成し、熱平衡を実現すると共に燃料を十分に利用する。上記で本発明内で行われたように、メタノール改質装置をスタック熱回収と共に使用して反応物質を沸騰させる場合、水素PSAは、スタックからの実質的な熱回収率に鑑みて非常に高い水素回収率（～90%）を達成し、メタノール熱需要を低減させる。

【 0 0 5 2 】

燃料電池動力装置と協働して供給空気圧縮およびあらゆる真空ポンピング負荷を少なくとも支援する補助燃焼エンジンまたはそのためのタービンを開示する。この場合、水素PSAユニットからの排ガスは、補助燃焼エンジンまたはタービン用の燃料として有效地に消費され、したがって、熱平衡および燃料利用に対する制約が緩和されるので、PSAユニットによって達成される必要な水素回収率をたとえば70%から90%の範囲に低減させることができる。したがって、水素PSAユニットを支援するための重還流圧縮および真空ポンピングの必要性が低くなるかまたはなくなる。同時に、補助燃焼エンジンまたはタービンは、燃料電池電気出力からPSA圧縮およびあらゆる真空ポンピングの負荷を排除し、したがって、燃料電池のサイズが小さくなりコストが下がる。

【 0 0 5 3 】

燃料処理装置を有する補助燃焼エンジンまたはタービンと燃料処理装置との熱的に統合さ

10

20

30

40

50

れた組合せにより、直接改質圧で水蒸気を発生させて吸熱反応炉を加熱し、たとえば水性ガス転化の発熱を回収する他の廃熱源が形成される。この熱的に統合された構造は、単に、燃料処理装置および補助燃焼エンジンの高温構成要素を、互いに近い距離で隣接し互いに類似の動作温度で動作するように共通のハウジングに入れることによって、たとえば伝導による環境への熱損失の熱非効率を最小限に抑えるように構成することもできる。

【0054】

前述の特徴および利点は、添付の図面を参照して行われるいくつかの態様についての以下の詳細な説明から明らかになろう。

【0055】

いくつかの態様の詳細な説明

10

図1～5

前述の方法およびシステムと共に使用される酸素濃縮ロータリPSAモジュールの一態様を図1～5Bに関して説明するが、開示される電流発生システムにおける水素濃縮（すなわち、分離）に同じまたは類似のPSAモジュール構成を使用することができる。本明細書では、「ロータリPSAユニット」は、吸着体層が固定弁または固定子に対して回転するPSA、または弁面または回転子が、固定された吸着体層に対して回転するPSAを含むが、これらに限定されない。

【0056】

図1は、吸着器ハウジング本体4内にいくつか（「N」個）の吸着器3を含むロータリPSAモジュール1を示している。各吸着器は、第1の端部5および第2の端部6、および（たとえば酸素濃縮用の）窒素選択吸着体に接触する、第1の端部5と第2の端部6との間の流路を有する。各吸着器は、吸着器ハウジング本体の軸7の周りに並べられている。ハウジング本体4は、軸7の周りを第1および第2の機能本体8および9に対して相対回転運動し、第1の弁面10を介して、供給ガス混合物が供給され重生成物が引き出される第1の機能本体8に係合し、第2の弁面11を介して、軽生成物が引き出される第2の機能本体9に係合する。

【0057】

特に図1～5に示されている態様では、吸着器ハウジング4は回転し、したがって吸着器回転子4と呼ばれ、一方、第1および第2の機能本体は固定されており、共にモジュールの固定アセンブリ12を構成する。したがって、第1の機能本体を第1の弁固定子8と呼び、第2の機能本体を第2の弁固定子9と呼ぶ。他の態様では、吸着器ハウジングを固定することができ、一方、第1および第2の機能本体は、回転散水機弁の回転子であってよい。

【0058】

図1～5に示されている態様では、各吸着器内の流路は軸7に平衡であり、したがって、流れ方向は軸方向であり、一方、第1および第2の弁面は、軸7に垂直な平坦で環状の円板として示されている。しかし、より一般的には、各吸着器内の流れ方向は軸方向でも半径方向でもよく、第1および第2の弁面は、軸7を中心とする任意の回転形であってよい。定義すべき方法の各段階および機能区画は、各吸着器内の半径方向または軸方向の流れ方向にかかわらず同じ角度関係にある。

【0059】

図2～5は、矢印12'～13'、14'～15'、および16'～17'によって定められる平面内のモジュール1の断面図である。各断面図の矢印20は、回転子4の回転方向を示している。図2は、吸着器回転子を横切る図1を横切る断面12'～13'を示している。この例では、「N」=72である。各吸着器3は、吸着器輪208の外側の壁21と内側の壁22との間に取り付けられている。各吸着器3は、吸着体シート23の矩形のフラットパックを含み、軸方向において流路を形成するためにシート間にスペーサ24を有している。空間を満たし、各吸着器間の漏れを防止するために各吸着器間に分離器25が設けられている。他の構成では、吸着体シートを湾曲したパックまたはらせん状のロールで形成することができる。

30

40

50

【0060】

好適な吸着体シートは、ゼオライト結晶のスラリーを結合剤構成物質で被覆して補強材料に取り付けることによって作られており、補強部材の適切な例には、不織ファイバーグラス布 (nonwoven fibre glass scrim)、金属織物 (woven metal fabric)、および展伸アルミニウム箔が含まれる。各吸着体シートは、吸着体材料が適切な結合剤を用いて取り付けられる補強材料、好ましい態様ではグラスファイバー、金属箔、またはワイヤーメッシュを含んでいる。水素浄化などの用途の場合、吸着体材料の一部またはすべてを織物形態または不織布形態の炭素纖維として設けることができる。吸着体シート 23 に隆起したパターンを印刷するかまたは浮き出させるか、あるいは互いに隣接して対になった吸着体シート間にスペーサを配置することによってスペーサ 24 が設けられている。他の好適なスペーサ 24 は、フォトリソグラフィックパターンがエッチングされた流路を有する金属織物スクリーン、不織ファイバーグラス布、および金属箔として設けた。

【0061】

代表的な実験上のシート厚みは 150 ミクロンであり、スペーサ高は 100 ミクロンから 150 ミクロンの範囲であり、吸着器流路長は約 20 cm である。X 型ゼオライトを用いた場合、1 分当たり 1 サイクルから少なくとも 150 サイクルまでの範囲、特に 1 分当たり少なくとも 25 サイクルの PSA サイクル周波数での、空気からの酸素の分離およびフォーメートからの水素の浄化において優れた性能が実現された。

【0062】

図 1 に示されているように、吸着器 3 は、流路の第 1 の端部 5 と第 2 の端部 6 との間に複数の異なるゾーンを含んでいてもよい。図 1 は、第 1 の端部 5 に隣接する第 1 のゾーン 26 と、各吸着器の中央に位置する第 2 のゾーン 27 と、第 2 の端部 6 に隣接する第 3 のゾーン 28 とを示している。これらのゾーンは、(任意の触媒を含む) 吸着体の局所組成に関して完全に異なるものでよく、あるいは連続した勾配を有する吸着体組成物と混合することができる。必要に応じて、ゾーンの数はこれより少なくても多くてもよい。第 1 のゾーンは通常、水またはメタノール蒸気、いくらかの二酸化炭素のような、供給ガス混合物の非常に強く吸着される成分を除去する吸着体または乾燥剤として選択された吸着体または乾燥剤を含む。第 2 のゾーンは、通常不純物を比較的高い濃度で大量に分離する吸着体として選択された吸着体を含み、第 3 のゾーンは、通常不純物を比較的低い濃度で除去する吸着体として選択された吸着体を含んでいる。

【0063】

複数のゾーンを有する態様では、各ゾーンの体積を、所望の結果を達成するように事前に選択することができる。たとえば、3 ゾーン態様では、第 1 のゾーンは、第 1 の端部からの流路長の最初の 10 % から 20 % であってよく、第 2 のゾーンは流路の次の概ね 40 % から 50 % であってよく、第 3 のゾーンは残りの部分であってよい。2 つの吸着器ゾーンのみを有する態様では、第 1 のゾーンは、第 1 の端部からの流路長の最初の 10 % から 30 % であってよく、第 2 のゾーンは残りの部分であってよい。各ゾーンは、対応するゾーンの流路長と同じ幅を有するバンド状の吸着体支持シート材料上にそれぞれの異なる吸着体を被覆することによって形成することができる。吸着体材料組成は、ゾーンの境界で急激に変化していても、境界を横切って滑らかに混合されていてよい。特に吸着器の第 1 のゾーンでは、吸着体は顕著な濃度の水蒸気に適合しなければならない。

【0064】

空気を分離して濃縮酸素を生成する場合、第 1 のゾーンでは水蒸気を除去するためにアルミナゲルを用いることができ、一方、第 2 および第 3 のゾーン内の代表的な吸着体は、通常リチウム、カルシウム、ストロンチウム、マグネシウム、および / またはその他の陽イオンと交換され、当技術分野で公知の最適化されたシリコン / アルミニウム比を有する、X 型、A 型、または斜方沸石型のゼオライトである。ゼオライト結晶は、吸着体シート基質内で、シリカ、粘土、およびその他の結合剤と結合するか、または自己結合する。

【0065】

10

20

30

40

50

高純度の水素を供給するように構成された第1の変形態様では、第1の端部に隣接する吸着器の第1のゾーン内の吸着体は、その第1のゾーンで水蒸気を大量に除去する乾燥剤であり、吸着器の中央部分の第2のゾーン内の吸着体としては、CO₂を大量に除去し、COをいくらか除去するような吸着体が選択され、吸着器の第3のゾーン内の吸着体としては、COを最終的に除去し、任意の窒素およびアルゴンを実質的に除去するような吸着体が選択される。第1のゾーン用の適切な乾燥剤はアルミナゲルである。第2のゾーン用の例示的な適切な吸着体は13Xゼオライトまたは5Aまたは活性炭である。第3のゾーン用の適切な吸着体は、この場合もNa-LSX、Ca-LSX、Li-LSX、Li交換斜方沸石、Ca交換斜方沸石、Sr交換斜方沸石を含むがこれらに限定されない群より選択される一酸化炭素および窒素を強力に選択する吸着体であってもよい。この群のゼオライト吸着体は、有極分子に対して選択的に対応する強力な親水性を特徴とする。物理的吸着に依存するこの第1の変形態様は、約100¹⁰を大幅に超えることは考えにくい比較的低温で最も有効に動作する。ただし、Ca交換斜方沸石やSr交換斜方沸石のようなある種の吸着体は、約150¹⁰の温度までCOおよびN₂を効果的に除去することができる。

【0066】

やはり高純度の水素を供給するように構成された第2の同様な変形態様では、第2のゾーンまたは第3のゾーン内の吸着体は、Cu(I)交換ゼオライトのような一酸化炭素をより強力に選択する吸着体であってよい。ゼオライトはたとえば、X型またはY型ゼオライトや、モルデン沸石や、斜方沸石であってよい。ほぼ純粋な水素に接触している間の過還元に対する安定性を得るために、ゼオライトの交換可能なイオンは、Cu(I)と、Na、Li、Ca、Sr、その他の遷移群金、ランタニド群金属のような他のイオンとの混合物であってよい。混合イオンは、CO選択性を高めるようにAg(I)を微量成分としてさらに、または、代わりに含んでいてもよい。

【0067】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第3の変形態様では、第1の端部に隣接する吸着器の第1のゾーン内の吸着体は、その第1のゾーンで水蒸気を大量に除去する乾燥剤であり、吸着器の中央部分の第2のゾーン内の吸着体としては、CO₂を大量に除去し、COをいくらか除去するような吸着体が選択され、吸着器の第3のゾーン内の吸着体としては、COを最終的に除去し、任意の窒素およびアルゴンを部分的に除去するような吸着体が選択される。第1のゾーン用の適切な乾燥剤は、アルミナゲルである。第2のゾーン用の適切な吸着体は、Cu(I)が含浸されたアルミナ、またはCu(I)が含浸された活性炭素である。第3のゾーン用の適切な吸着体は、第2のゾーンで使用されるのと同様の吸着体であっても、上記の第1または第2の変形態様と同様にCO選択吸着体および窒素選択吸着体であってもよい。

【0068】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第4の変形態様では、吸着器のいくつかまたはすべてのゾーン内の吸着体は、活性炭素およびY型ゼオライトを非制限的に含む群より選択され、好ましくは吸着器の第2の端部に隣接するゾーン内のCO選択性を高めるようにCu(I)を含む適度に疎水性の吸着体である。

【0069】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第5の変形態様では、吸着器のいくつかまたはすべてのゾーン内の吸着体は、シリカライト(silicalite)および脱アルミされたY型ゼオライトを非制限的に含む群より選択される著しく疎水性の吸着体である。疎水性の吸着体は好ましくは、CO選択性を高めるようにCu(I)を含む。

【0070】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第6の変形態様では、吸着器の第1または第2のゾーン内の吸着体は、水性ガス転化反応用のこのゾーンの動作温度で触媒として活性のある成分を含む。触媒として活性のあ

10

20

30

40

50

る成分は、任意の既知の水性ガス転化触媒、たとえば、Cu-ZnOベースの触媒であつてよい。好ましくは、触媒として活性のある成分は、たとえば、X型またはY型ゼオライトのゼオライトケージに挿入された遷移群金属の金属カルボニル錯体または遷移群金属（たとえば、Cu、Ag、Ni、Pd、Pt、Rh、Ru、Fe、Moなど）の混合物であつてよい。この場合、触媒として活性のある成分上に吸着された一酸化炭素の一部は、水性ガス転化反応によって水蒸気と反応し、二酸化炭素および追加の水素を発生させることができる。

【0071】

COがほぼ完全に除去された少なくとも部分的に浄化された水素を供給するように構成された第6の変形態様では、吸着器の第1のゾーン内の吸着体は、第1のゾーンのより高い動作温度で水蒸気よりも二酸化炭素を優先的に選択する吸着体である。当技術分野で知られている適切なこのようないくつかの吸着体には、炭酸カリウムが含浸されたアルミナ、および炭酸カリウムで促進されるヒドロタルサイトが含まれる。吸着器の第2のゾーン内の吸着体は、水性ガス転化反応、および必要に応じて蒸気改質反応用のこのゾーンの動作温度で触媒として活性のある成分を含む。上記の第6の変形態様と同様に、第2のゾーン内の触媒として活性のある成分は、既知の水性ガス転化触媒であつても、ゼオライトケージ内で分散され、第2のゾーンの動作温度で金属カルボニル錯体を取消し可能に形成する遷移群金属であつてもよい。吸着器の第2のゾーンまたは好ましくは第3のゾーンは、そのゾーンの動作温度で一酸化炭素および他の不純物成分に対するある有効動作容量を有する吸着体を含む。第3のゾーンの吸着体は、好ましくはこのゾーンの動作温度で水蒸気に対する有効動作容量を有する吸着体を含む。第1のゾーンでは一酸化炭素が強く吸着されるので、第2のゾーン内の二酸化炭素の濃度はPSA処理によって低いレベルに維持され、一方、第2のゾーンでは水蒸気濃度が比較的高い。したがって、この第7の変形態様では、第3のゾーンを通過する水素生成物への一酸化炭素の進入を防止しつつ、触媒として活性の第2のゾーンから水素と二酸化炭素の両方を連続して除去し、したがって、ほぼすべての一酸化炭素を消費して二酸化炭素および追加の水素を発生させるPSA処理によって、水性ガス転化反応平衡が連続して移行する。したがって、水素を適切に浄化しつつ、水性ガス転化反応を実質的に完了する。

【0072】

水性ガス転化反応は発熱反応であり、したがって、触媒が含まれる吸着器の反応性の第2のゾーンから熱を除去すべきである。開示が引用によって本明細書に組み入れられる係属中のPCT特許出願国際公開公報第00/76629号で開示されたように、個々の吸着器の閉込め壁を通して熱を伝達できるように吸着器ハウジングを熱交換機として構成することができる。反応の二酸化炭素生成物によって熱が除去されると共に、吸着体積層体の好ましくは金属の支持体による軸方向の伝導によって熱が除去されるように、第2のゾーンの温度を吸着器の第1の端部の温度よりも高くするか、または水素生成物によってかなりの熱として熱が除去されると共に、吸着体積層体の好ましくは金属の支持体による軸方向の伝導によって熱が除去されるように、第2のゾーンの温度を吸着器の第2の端部の温度よりも高くすることによって熱を除去することもできる。

【0073】

上述の第7の変形態様は、蒸気改質メタノールの重要な適用が可能になるように容易に適合させることができる。第1のゾーン内の吸着体は、二酸化炭素を優先的に吸着する促進ヒドロタルサイトであつてもよい。第2のゾーン内の触媒は、メタノール蒸気改質反応および水性ガス転化反応に対して活性の任意の触媒、たとえばCu-ZnOまたは貴金属触媒であつてよい。したがって、水性ガス転化によってメタノールの効果的な変換と一酸化炭素の除去とに関し反応平衡が移行するように、第2のゾーン全体にわたって、二酸化炭素の濃度は低下し、一方、水蒸気およびメタノール蒸気の濃度は高くなる。所与の温度で、反応率は従来の反応炉内の同じ触媒と比べて高くなる。

【0074】

蒸気相蒸気改質反応は発熱反応であり、したがって、触媒が含まれる吸着器の反応性の第

10

20

30

40

50

2のゾーンから熱を除去しなければならない。開示が引用によって本明細書に組み入れられる係属中のPCT特許出願国際公開公報第00/76629号で開示されたように、個々の吸着器の閉込め壁を通して熱を伝達できるように吸着器ハウジングを熱交換機として構成することができる。反応物質のかなりの熱として第2のゾーンに熱が供給されると共に、吸着体積層体の好ましくは金属の支持体を介した各吸着器の第1の端部からの軸方向の伝導によって第2のゾーンに熱が供給されるように、第2のゾーンの温度を各吸着器の第1の端部の温度よりも低くすることによって熱を供給することもできる。

【0075】

図3は、矢印14' - 15'および16' - 17'によって定められた平面内のそれぞれ第1および第2の弁面内の回転子4のポートを示している。吸着器ポート30により、各吸着器の第1または第2の端部からそれぞれ第1または第2の弁面まで直接流体連通されている。

【0076】

図4Aおよび4Bは、矢印14 - 15によって定められた平面内の第1の弁面10内の第1の固定子8の第1の固定子弁面100を示している。入口フィルタ102を通して供給ガスを導入する供給圧縮器101までの流体接続と、第2の生成物を第2の生成物供給導管104に供給する排気機103までの流体接続が示されている。圧縮器101および排気機103は駆動モータ105に連結されるように示されている。

【0077】

矢印20は、吸着器回転子による回転の方向を示している。周方向のシール106とシール107との間の環状の弁面内で、供給区画および排気区画のポートとして形成された第1の固定子弁面100の開放領域は、同じ参照符号111 - 116によって示されている機能区画と直接連通する第1の機能ポートに対応する明確な角セグメント111 - 116によって示されている。各機能区画間の弁面100の実質的に密閉された領域は、過度の漏れがなく摩擦および磨耗を低減せしめるように零すきま、好ましくは狭いすきまを有するスリッパーである斜線セクタ118および119によって示されている。代表的な閉鎖セクタ118は、区画115に対して開放される位置と区画115に対して開放される位置との間の、吸着体の遷移を実現する。新しい区画に対して開放された吸着体の均圧化が徐々に行われるよう、スリッパーと密閉面とのすきま流路を先細りにすることによって各セクタは徐々に開放される。各吸着器の一方の端部への流れまたはこの端部からの流れを、加圧または排出が他方の端部から行われるときに実質的に遮断するよう、ずっと幅の広い閉鎖セクタ(たとえば、119)が設けられている。

【0078】

供給圧縮器は、供給加圧区画111および112ならびに供給生成区画113に供給ガスを供給する。区画111および112は、連続的に高くなる動作圧を有しており、一方、区画113は、PSAサイクルの動作圧が区画111および112よりも高い。したがって、圧縮器101は、区画111および112の中間圧力レベルによって各吸着器を加圧し、次いで区画113を通して最終的な加圧および生成を行うように適切な体積の供給流を各区画に供給する多段圧縮器システムまたは分割流圧縮器システムであってよい。分割流圧縮器システムは、多段圧縮器として段間供給ポートに直列に設けても、各々が区画111から113の動作圧まで供給空気を供給する複数の圧縮器または圧縮器シリンドとして並列に設けてよい。あるいは、圧縮器101は、すべての供給ガスをより高い圧力まで供給することができる。

【0079】

同様に、排出機103は、向流排出区画114および115からこれらの区画の連続的に低下する動作圧で重生成物を排気し、最終的に、同じサイクルのより低い圧力を有する排気区画116から重生成物を排気する。圧縮器101と同様に、排出機103は、各段が、より低い圧力に下降する適切な中間圧の各流れを受け入れるように直列または並列に配置された、多段機または分割流機として設けることができる。

【0080】

10

20

30

40

50

図4 Aの態様例では、より低い圧力は大気圧であり、したがって、排気区画116は重生成物供給導管104と直接連通する。したがって、排気機103は、圧力を低下させてエネルギーを回収し、排出区画114および115に続くモータ105を支援する。簡単に言えば、排出機103は、区画114および115からの向流排出圧力低下手段としての絞り開口部で置き換えることができる。

【0081】

態様によっては、PSAサイクルのより低い圧力は大気圧よりも低い。この場合、排出機は、図4 Bに示されているように真空ポンプとして設けられる。この場合も、真空ポンプは、最も深い真空圧であるより低い圧力よりも高い動作圧で区画から出る向流排出流を受け入れるように直列または並列に並べられた別々の段を有する多段式または分割流式の真空ポンプであってよい。図4 Bでは、最初に区画114から出た向流排出流は大気圧で直接重生成物供給導管104に放出される。説明を簡単にするために、単一段真空ポンプを使用した場合、区画115からの向流排出流は、開口部を介してより低い圧力に絞られ、真空ポンプの入口で区画116からの流れに合流する。

【0082】

好都合なことに、水素PSAが、たとえばメタノールリリフォーメート供給物を用いて動作する場合と同様に、供給ガスがPSAサイクルのより高い圧力に少なくとも等しい高圧で供給される場合、圧縮器101は不要である。供給加圧区画、たとえば111への供給のための開口部を介した取消し不能な絞りによるエネルギー損失を減らすには、吸着器の再加圧が主として軽還流段階からの裏込めによる生成物の加圧によって行われるように、供給加圧段の数を減らすことができる。あるいは、供給加圧区画、たとえば111への供給ガスをより高い圧力の供給圧からその区画の中間圧まで膨張させ、真空ポンプ103を駆動するエネルギーを回収し、それによってより低い圧力を大気圧よりも低くしてPSA処理性能を高めるエキスパンダで部分的に、圧縮器101を置き換えることができる。

【0083】

図5 Aおよび5 Bは、図1の切断面16'-17'における第2の固定子弁面を示している。弁面の開放されたポートは、第2の固定子内の軽生成物供給区画121、いくつかの軽還流出口区画122、123、124、および125、ならびに同じ数の軽還流戻り区画126、127、128、および129と直接連通する第2の弁機能ポートである。第2の弁機能ポートは、周方向のシール131および132によって形成される環状のリング内に位置している。軽還流出口区画と軽還流戻り区画の各対は、PSA処理のそれぞれ供給裏込め機能、全均圧化または部分均圧化機能、および並流排出ページ機能用の軽還流圧力低下段を形成する。

【0084】

軽還流の圧力を低下させてエネルギーを回収するオプションの例として、4つの軽還流段の圧力を低下させてエネルギーを回収する分割流軽還流エキスパンダ140が図1および5 Aに示されている。軽還流エキスパンダ140は、図示のように、軽還流出口と各戻り区画との間、すなわち、122と129、123と128、124と127、125と126の間の4つの軽還流段のそれぞれの圧力を低下させる。軽還流エキスパンダ140は、PSAサイクルのより高い圧力よりも高い供給圧まで圧縮された酸素濃縮軽生成物を酸素供給導管147に供給する軽生成物ブースタ圧縮器145を駆動軸146によって駆動することができる。

【0085】

軽還流と軽生成物は概ね同じ純度を有するので、エキスパンダ140および軽生成物圧縮器145は、好都合なことに図1に示されているように第2の固定子と一体化することのできる単一のハウジングに気密に密閉することができる。個別の駆動モータを有さない「ターボコンプレッサ」軽生成物ブースタのこの構成は、軽生成物の有効な圧力上昇を外部モータおよび対応するシャフトシールなしで行うことができるため有利であり、かつ非常に高い軸速度で動作するように構成すると非常に小形にすることができる。

【0086】

10

20

30

40

50

図 5 B は、各軽還流段用の圧力低下手段として絞り開口部 131 を使用する他のより簡単な構成を示している。

【 0 0 8 7 】

再び図 1 を参照すると、矢印 125 で示されているように区画 113 に圧縮供給ガスが供給され、一方、矢印 126 で示されているように区画 117 から重生成物が排気される。回転子は、第 1 および第 2 の弁固定子と一緒に組み立てられた第 1 の固定子 8 内の回転子駆動軸 162 上にシャフトシール 161 を有する軸受 160 によって支持されている。吸着器回転子は、回転子駆動手段としてのモータ 163 によって駆動される。

【 0 0 8 8 】

第 2 の弁面 11 上の外周シール 131 を横切る漏れは、軽生成物の純度を損なうことがある、さらに重要なことには、各吸着器の第 2 の端部に湿気を進入させ、窒素選択的吸着剤または CO 選択的吸着剤を無効にする恐れがあるので、シール 131 とシール 171 との間の緩衝室 171 をより確実に密閉する緩衝シール 170 を含めることができる。第 2 の弁面のいくつかのゾーン内の動作圧は大気圧よりも低い場合がある（真空ポンプが排出機 103 として使用される場合）ので、緩衝室には、大気圧よりもかなり高い緩衝圧の乾燥した軽生成物ガスが満たされる。したがって、軽生成物の軽微な漏れがあるが、湿気を有する供給ガスが緩衝室内に漏れることはない。漏れを最小限に抑えシール摩擦トルクを減らすために、緩衝シール 171 は、周方向シール 131 の直径よりもずっと小さな直径で密封面 172 を密封する。緩衝シール 170 は、吸着体回転子 4 の回転子延長部 175 と密封面 172 との間を第 2 の弁回転子 9 上で密封し、延長部 175 は第 2 の弁回転子 9 の後部を覆って緩衝室 171 を形成している。第 1 の弁固定子 8 と第 2 の弁固定子 9 との間の構造接続部として固定子ハウジング部材 180 が設けられている。このようなシールを設けることに代わる方法として、吸着器を固定子面に直接取り付ける方法が、2001年6月28日に出願され引用によって本明細書に組み入れられる、同一の所有者による同時係属中の米国仮出願特許第 60/301723 号に記載されている。

【 0 0 8 9 】

この開示の添付のシステム図では、簡略図により PSA 装置またはモジュールが表されている。これらの高度に簡略化された図は、第 1 の弁面 10 への単一の供給導管 181 および第 1 の弁面 10 からの単一の重生成物導管 182 と、第 2 の弁面 11 と連通する圧力低下手段を有する軽生成物供給導管 147 および単一の代表的な軽還流段 184 とを示している。上述の PSA ユニットに関する参照番号は、酸素濃縮 PSA または VPSA ユニットについてはプライム符号なしで示し、水素浄化 PSA または VPSA ユニットについてプライム符号付きで示す。他の種類の吸着モジュールまたはガス膜分離システムを含む、任意の種類のガス分離装置で PSA を代用することができる。ただし、現在、ロータリ PSA システムが好ましいシステムとみなされている。開示されたシステムおよび方法は、PEM 燃料電池以外の燃料電池タイプと共に使用することができる。

【 0 0 9 0 】

図 6

図 6 は、燃料電池 202、蒸気改質燃料処理装置 204、水素浄化 PSA システム 205 および酸素濃縮 VPSA システム 206 を含む燃料電池動力装置 200 を示している。燃料電池 202 は、陽極ガス入口 210 および陽極ガス出口 212 を含む陽極流路 208 と、陰極ガス入口 216 および陰極ガス出口 218 を含む陰極流路 214 と、PEM 電解質膜 220 とを含んでいる。膜 220 は、陽極流路 208 および陰極流路 214 と協働して陽極流路 208 と陰極流路 214 との間のイオン交換を容易にする。

【 0 0 9 1 】

酸素 VPSA システム 206 は、供給空気から酸素ガスを抽出し、通常、PSA ロータリモジュール 1 と、加圧された供給空気をロータリモジュール 1 の供給区画に供給する圧縮器 101 とを含んでいる。酸素 VPSA システム 206 は、圧縮器 101 に連結され、ロータリモジュール 1 の排出区画および排気区画から重生成物ガスとして窒素濃縮ガスを引き出し、窒素濃縮ガスを導管 225 から排出する真空ポンプ 103 を含んでいる。ロータ

10

20

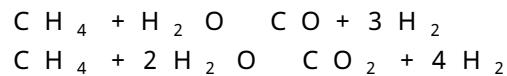
30

40

50

リモジュール 1 の吸着器 3 は、水蒸気を実質的に除去するアルミナゲルのような適切な乾燥剤が充填された第 1 のゾーン 26 と、ゼオライト、一般には窒素選択的ゼオライトが充填された第 2 のゾーン 27 とを有している。VPSA モジュール 1 の軽生成物ガスとしての乾燥した酸素濃縮空気は、導管 157 によって水管理室 230 に供給されて増湿され、そこから導管 231 によって陰極入口 216 に供給される。電流が発生すると酸素の一部が水素イオンと反応し、陰極内に水を形成する。前よりも少ない酸素（しかし、通常、酸素の量は依然として周囲空気組成と比べてかなり多い）を含む陰極排気ガスは、導管 232 によって陰極出口 218 から引き出される。陰極排気ガスの一部は、導管 233 および流量調節弁 234 によって導管 232 から除去され、蓄積された窒素およびアルゴンをバージするために大気中に放出することも、PSA サイクルのより高い圧力よりも低い中間圧の供給加圧流として PSA モジュール 1 の第 1 の弁面 10 に戻すこともできる。残りの陰極排気ガスは、陰極ガス再循環手段として働くエゼクタ 242 の吸気口 240 に供給される。エゼクタ 242 は、ノズル 244 を通して導管 147 から濃縮酸素を受け入れる。ノズル 244 は、吸気口 240 からの陰極排気ガスの再循環を駆動し、ディヒューバ 246 内で圧力を回収する前に濃縮酸素と再循環陰極排気ガスを混合し、組み合わされた酸素濃縮ガス流を、余分の水が凝縮される水管理室 230 に供給する。余分の水は、弁 250 を通して排出されるか、または水ポンプ 252 によって導管 254 を通して燃料処理装置 204 への水反応物質として供給される。

10


20

30

40

【0092】

炭化水素燃料は、供給ポンプまたは圧縮器 260 によって燃料処理装置 204 に供給され、導管 254 からの水と組み合わされ、熱交換機 262 内で気化され予め加熱される。予熱した燃料および水蒸気の流れは次いで、煙道ガスが熱交換機 262 を加熱するバーナー 266 によって加熱される蒸気改質触媒室 264 に入る。燃料がメタンである例では、以下の蒸気改質反応が起こる。

【0093】

結果として得られたリリフォーメートすなわち「合成ガス」（主不純物に概ね等量の CO および CO₂ と、微量不純物に非反応性の CH₄ および N₂ を含み、乾燥組成約 70% が H₂）は、約 250 まで冷却され、次いで水性ガス転化反応ゾーン 268 に渡され、CO の大部分が水蒸気と反応してより多くの H₂ および CO₂ が発生する。

【0094】

水素濃縮リリフォーメートは、水素ガス転化後も依然として、実質的な量の二酸化炭素および水蒸気と共に約 1% から 2% の CO を含んでいる。高性能で長持ちする PEM 燃料電池を得るには、その CO 濃度を 100 ppm よりもかなり低く、好ましくは 10 ppm よりも低くすべきである。したがって、不純なリリフォーメートは、ロータリ PSA モジュール 1' を含む水素 PSA ユニット 205 の高圧供給ポートに導管 270 によって送り込まれる。ロータリモジュール 1' の吸着器 3' は、水蒸気を実質的に除去するアルミナゲルのような適切な乾燥剤が充填された第 1 のゾーン 26' と、CO を選択的に除去し、CO₂ を少なくとも部分的に大量に除去する吸着体が充填された第 2 のゾーン 27' と、CO をさらに除去し N₂ のような他の不純物を少なくとも部分的に除去するのに適した吸着体が充填された第 3 のゾーン 28' とを有している。上述のように、水素 PSA 吸着器の 3 つのゾーンに適した吸着体には多数の組合せおよび変形態様が可能である。これらのゾーンは、互いに離散したゾーンであっても、拡散した境界を有してもよく、態様によっては、各ゾーンごとに選択された材料を均一に移動させることができる。

【0095】

水素 PSA モジュール 1' からの浄化された水素軽生成物は、水素濃縮陽極ガスを燃料電池陽極流路 208 を通して部分的に再循環させる再循環手段であるエゼクタ 242' へ導管 147' によって供給される。エゼクタ 242' からの水素濃縮ガスは、陽極入口 21

50

0 に供給され、陽極流路 208 を通過し、次いで陽極出口 212 から部分的にエゼクタ 242' の吸気口に排気される。エゼクタ 242' における陽極ガスの再循環は任意であり、したがってこのエゼクタを省略することができる。陽極排気ガスの残りの部分（エゼクタ 242' を省略する場合にはすべて）は導管 280 によって水素 PSA モジュール 1' の第 1 の弁面 10' の供給加圧ポートに搬送され、水素 PSA ユニットを用いて不純物を陽極ガスループから廃棄しつつ、システム内に水素が保持される。N₂ や、おそらくいくらかの CO₂ ような他の不純物をいくらか通過させつつ CO をほぼ完全に除去する、吸着体と PSA 処理との組合せを選択すると、陽極ガスの大部分はこのように PSA ユニットに再循環される。逆に、吸着体と PSA サイクルが CO およびその他の不純物もほぼ完全に除去することによって高純度の水素を得るように構成されるときは、誤って不純物が蓄積されるのを防止するために、PSA には少量の陽極排気ガスしか再循環されない。

10

【0096】

水素 PSA モジュール 1' からの第 2 の排気生成物ガスは、導管 285 によって弁面 10' からバーナー 266 に排気される。

【0097】

当業者には、吸着器の順次ゾーン内の吸着体に上記の指定された組合せおよび変更を加えることにより、重炭化水素燃料と軽炭化水素燃料とを処理して、CO およびその他の不純物を除去しなければならない水素濃縮リフォーメートを発生させる、部分酸化反応炉または自熱反応炉を含んだ他の燃料処理装置と共に、本発明の水素 PSA ユニットを適用できることが理解されよう。

20

【0098】

図 7 ~ 9

図 7 ~ 9 は、燃料電池 202、蒸気改質燃料処理装置 204、水素浄化 PSA システム 205、および酸素濃縮 PSA または VPSA システム 206 を含む燃料電池動力装置 200 を示している。燃料電池 202 は、陽極ガス入口 210 および陽極ガス出口 212 を含む陽極流路 208 と、陰極ガス入口 216 および陰極ガス出口 218 を含む陰極流路 214 と、PEM 電解質膜 220 とを含んでいる。膜 220 は、陽極流路 208 および陰極流路 214 と協働して陽極流路 208 と陰極流路 214 との間のイオン交換を容易にする。

【0099】

酸素 PSA または VPSA システム 206 は、供給空気から酸素ガスを抽出し、通常、ロータリモジュール 1 と、加圧された供給空気をロータリモジュール 1 の供給区画に供給する圧縮器 101 とを含んでいる。ロータリモジュール 1 の排出区画および排気区画からの重生成物ガスとしての窒素濃縮ガスは導管 182 によって引き出され、図 7 のように直接大気に排出されるか、または図 8 のように真空ポンプ 103 に送られて排出される。ロータリモジュール 1 の吸着器 3 は、水蒸気を実質的に除去するアルミナゲルのような適切な乾燥剤が充填された第 1 のゾーン 26 と、窒素選択的ゼオライトが充填された第 2 のゾーン 27 とを有している。VPSA モジュール 1 の軽生成物ガスとしての乾燥した酸素濃縮空気は、導管 147 によって増湿室 230 に供給され、そこから導管 231 によって陰極入口 216 に供給される。電流が発生すると酸素の一部が水素イオンと反応し、陰極内に水を形成する。前よりも少なくなった酸素（しかし、通常、酸素の量は依然として周囲空気組成と比べてかなり多い）と水を含む陰極排気ガスは、導管 232 によって陰極出口 218 から分離器 233 に引き出される。

30

【0100】

図 7 および 9 では、湿気を含んだ陰極排気ガスの一部（または水凝縮物）は導管 234 によって分離器 233 から除去され、導管 234 は、水を移送し、酸素を、陰極流路 214 を通して再循環されるように増湿室 230 に再循環する。導管 234 におけるあらゆる酸素再循環は、送風機やエゼクタのような適切な再循環圧力ブースト手段によって駆動しなければならない。

40

【0101】

図 7 および 8 の燃料処理装置 204 が部分酸化改質装置または自熱改質装置である場合、

50

残りの酸素（とあらゆる蓄積されたアルゴンおよび窒素）および燃料電池生成水は導管 235 によって分離器 233 から燃料処理装置 204 に供給される。陰極排気がこのように改質装置に供給されることによって濃縮酸素が発生し、蒸気および凝縮物としての燃料電池の水生成物と共に、部分酸化処理または自熱改質処理を助け、さらに、いくらかの燃料電池廃熱を伝達して、改質装置への反応物質を予め加熱しつつ燃料電池スタックの冷却を助ける。図 7 および 8 の燃料処理装置 204 が蒸気改質反応炉である場合、燃料電池生成水は導管 235 によって分離器 233 から燃料処理装置 204 に供給される。この場合、陰極流路 214 に蓄積されたアルゴンおよび窒素を、図 9 に示されているように、PSA モジュール 1 の第 1 の弁面 10 への導管 236 によって、分離器 233 から酸素 PSA ユニット 1 に、PSA サイクルのより高い圧力よりも低い中間圧の供給加圧流として再循環するか、または大気中にバージすることができる。
10

【0102】

炭化水素燃料は、導管 235 からの水と組み合わされた供給ポンプまたは圧縮器 260 によって燃料処理装置 204 に供給され、熱交換機 262 内で気化され予め加熱される。次いで、予熱した燃料および水蒸気の流れは改質触媒室 264 に入る。燃料がメタンである例では、以下の蒸気改質反応が起こる。

自熱改質装置の場合は部分燃焼も起こる。

【0103】

結果として得られたリリフォーメートまたは「合成ガス」（主不純物に概ね等量の CO および CO₂ と、微量不純物に非反応性の CH₄ および N₂ とを含み、乾燥組成約 70% が H₂ ）は、約 250 まで冷却され、次いで、CO の大部分を水蒸気と反応させてより多くの H₂ および CO₂ を発生させる水性ガス転化反応炉ゾーン 268 に渡される。CO + H₂O → CO₂ + H₂

【0104】

水素濃縮リリフォーメートは、水素ガス転化後も依然として、実質的な量の二酸化炭素および水蒸気と共に約 1% から 2% の CO を含んでいる。高性能で長持ちする PEM 燃料電池を得るには、その CO 濃度を 100 ppm よりもかなり低く、好ましくは 10 ppm よりも低くすべきである。したがって、不純なリリフォーメートは、ロータリ PSA モジュール 1' を含む水素 PSA ユニット 205 の高圧供給ポートに導管 270 によって送り込まれる。上述のように、ロータリモジュール 1' の吸着器 3' は、水蒸気を実質的に除去するアルミナゲルのような適切な乾燥剤が充填された第 1 のゾーン 26' と、CO を選択的に除去し、CO₂ を少なくとも部分的に大量に除去する吸着体が充填された第 2 のゾーン 27' と、CO をさらに除去し N₂ のような他の不純物を少なくとも部分的に除去するのに適した吸着体が充填された第 3 のゾーン 28' とを有している
30

【0105】

水素 PSA モジュール 1' からの浄化された水素軽生成物は、導管 147' によって陽極入口 210 に供給され、陽極流路 208 を通過し、次いで陽極出口 217 から水素 PSA モジュール 1' の第 1 の弁面 10' 内の供給加圧区画に排気される。このシステムは、他の場合には陽極 208 上に蓄積するであろう不純物を、水素 PSA ユニット 1' を用いて廃棄しつつ、導管 147' および 280 ならびに陽極流路 208 を含む燃料電池陽極ループ内に水素を保持する。
40

【0106】

水素 PSA モジュール 1' からの第 2 の排気生成ガスは、水蒸気と、CO₂ と、H₂、CO、および改質装置からの未反応の燃料を含む可燃物とを含んでいる。このガスは、導管 285 によって弁面 10' から低圧バーナー 290 に排気され、そこでこの燃料は、この低 BTU ガスを安定に燃焼させ、NO_x の形成を抑制するように、場合によっては適切な触媒を介して完全に酸化される。バーナー 290 は、改質装置反応炉ゾーン 264 および 50

プレヒーターゾーン 262 への熱を回収できるように向流熱接触している熱交換流路 292 に燃焼の高温生成物を供給する。バーナー 290 からの煙道ガスは、流路 292 内で冷却され、さらに熱交換機 296 内で冷却された後、排気導管 294 によって大気中に排出される。

【0107】

水素 PSA モジュールは、メタノールなどの未反応の燃料成分と、CO のような不完全に反応した燃料成分、および埋立てガスなどの燃料によって発生する可能性のある硫化水素やハロゲンのような他の汚染物質を含む、燃料電池陽極に悪影響を与えるほぼすべての汚染物質を除去するように水素を浄化する。水素中のすべてのそのような燃料副産物不純物の発熱量は、PSA 排ガスを燃焼させ、燃料処理装置、および / または補助圧縮負荷および場合によっては他の機械的負荷を駆動する補助熱エンジンサイクルを加熱することによって回収される。メタノールは PEM 燃料電池に有害であるので、従来技術のメタノール改質装置は、水素濃縮リリフォーメートガスへのメタノールスリップを最小限に抑えるように非常に高い変換率を実現するように構成され、したがって、大量の触媒在庫をそれに対応して大きな反応炉容器に格納する必要があった。現在開示されている方法およびシステムでは、メタノール改質装置は、リリフォーメートガス（合成ガス）への比較的大きなメタノールスリップを用いて動作することができる。なぜなら、このガスは、水素 PSA モジュールによって浄化され、水素からメタノール不純物が除去され、この水素が水素 PSA 排ガスに供給され、有効な燃焼によって発熱量が回収されるからである。したがって、メタノール改質装置は有利なことに、より低いメタノール変換率で動作するように構成することができ、したがって、必要なメタノール改質触媒在庫の量が少なくなり、反応炉容器サイズが小さくなる。

【0108】

燃料処理装置 204 は、燃料ポンプ 260 の一部を導管 301 によって導入することのできる高圧バーナー 300 と熱的に統合されている。圧縮空気は、供給圧縮器 101 から導管 302、熱交換機 296（排気煙道ガスからの伝熱交換用）、および熱交換機流路 304 を通してバーナー 300 に供給される。熱交換機流路 304 は、改質反応が正味発熱のための部分酸化を含む場合に水性ガス転化反応炉ゾーン 268 および改質装置反応炉ゾーン 264 から熱を回収できるように向流熱接触している。燃焼室 300 からの燃焼高温生成物〔窒素および未反応の酸素を含む〕は、シャフト 316 によって圧縮器 101 に連結されたエキスパンダービン 315 へ導管 310 によって搬送される。圧縮器 101 とエキスパンダ 315 との組合せは、自動車のターボチャージャに類似の自由回転子ターボコンプレッサ 320 として示されている。または、始動、駆動支援、または正味エネルギー供給のために、シャフト 316 に駆動モータまたは発電機を連結することができる。図 7 および 8 では、圧縮器 101 への入口圧力を増大させ、必要に応じて通常の動作時の供給空気の圧縮を助ける、モータ 332 によって駆動される送風機 330 が設けられているが、通常、送風機 330 はターボコンプレッサ 320 の回転を開始する始動装置としてのみ設けられ、その場合、通常の動作時には始動後にバイパス弁 334 が開かれる。

【0109】

エキスパンダ 315 によって排出された依然として高温のガスは、導管 336 によって低圧バーナー 290 に排出され、熱および酸素を供給してバーナー 290 での触媒燃焼を助ける。必要に応じて、始動時または通常の動作の任意の局面で低圧バーナー 290 に補助空気または酸素を供給することができる。

【0110】

図 7 は、より低い動作圧が大気圧である態様を示しており、一方、図 8 は、酸素 PSA ユニットおよび水素 PSA ユニットの性能を高め、おそらく燃料電池の動作圧を低下させることができるように酸素 PSA ユニットおよび水素 PSA ユニットに真空が加えられる態様を示している。もちろん、酸素 PSA ユニットおよび水素 PSA ユニットの各々に別個の真空ポンプを設けてもよい。真空ポンプ 338 は、それぞれ導管 182 および 182' によって酸素 PSA 1 と水素 PSA 1' との両方から大気圧よりも低い圧力で第 2 の生成

物排気ガスを受け入れ、組み合わされた流れを導管 285 によって触媒低圧バーナー 290 に供給する。真空ポンプ 338 は、シャフト 346 を通してポンプ 338 を駆動するエキスパンダ 345 を有するターボコンプレッサ 340 として設けられている。エキスパンダ 345 は、高圧バーナー 300 から導管 310 によって供給された高温のガスを膨張させるようにエキスパンダ 315 に並列または直列に配置されている。

【0111】

補助圧縮機を駆動する燃焼タービン態様は、容易に入手可能で低コストのターボチャージャー機器を使用するという重要な利点を有している。図 9 は、ロータリ内燃エンジン 400 を用いて軸継手 405 によって酸素 PSA 206 の圧縮器 101 および任意の真空ポンプ 103 を駆動し、一方、水素 PSA 205 の必要に応じてそれ自体が真空吸入を行う他の態様を示している。エンジン 400 は、水素 PSA 205 用に設けることのできる他のあらゆる圧縮器または真空ポンプと、発電機のようなあらゆる補助装置を駆動することができる。エンジン 400 の燃料の少なくとも一部は水素 PSA 排ガスであり、エンジン 400 は始動電動機 410 (または補助動力発生装置 410) を有している。

10

【0112】

エンジン 400 は、内燃エンジンや燃焼強化ターボチャージャーのような任意の種類の燃焼エンジンであってよいが、ここでは、バンケルエンジンとして示されている。作動室 412 は回転子 414 とケーシング 415 との間に形成されている。回転子は、内歯車 416 によって駆動軸 405 に連結されている。ケーシング 415 には吸気口 421、排気口 422、および点火プラグ 423 が設けられている。水冷却ジャケット 425 が設けられている。エンジンは、気化器 427 および吸気口 421 に空気を供給する空気フィルタ 426 を有している。気化器では、排気導管 182' によって気化器 427 へ供給される水素 PSA 排気ガスと空気とが混合される。

20

【0113】

図 9 は、例示的な水管理システムの詳細を示している。燃料電池 202 の生成水は、冷却コイル 430 を含む分離器 233 で捕捉され、液体水マニフォルド 432 に供給される。水の一部は、マニフォルド 432 からポンプ 435 に供給され、そこから流量調節弁 436 によって酸素増湿室 230 に供給され、流量調節弁 437 によってエンジン冷却ジャケット 425 に供給されてもよい。エンジン冷却ジャケットからの湯は、瞬間蒸発し、減圧開口部 485 および導管 486 を通してメタノール改質反応炉触媒ゾーン 264 に供給される。メタノール改質反応炉触媒ゾーン 264 は、流路 440 のエンジン排気口と熱交換接觸している。エンジン排気は、反応炉ゾーン 264 内で発熱メタノール蒸気相改質反応を起こすために導管 442 を介して排気口 422 から流路 440 に供給され、次いで排気制御処理後触媒 443 および排気管 444 を通して大気中に排出される。

30

【0114】

リフォーメート水素は、導管 450 によって反応炉ゾーン 264 から供給水素 PSA ユニット 205 に供給される。リフォーメートの一部は、流量調節弁 452 によって導管 450 から気化器 427 にエンジン 400 用の補助燃料として供給することができる。

【0115】

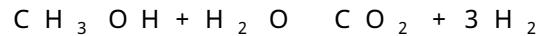
分離器 233 からの水凝縮物の一部をポンプ 460 によって導管 434 を介して液体燃料混合室 465 に供給することができ、液体燃料混合室 465 はまた、燃料ポンプ 260 によって供給される液体メタノール燃料を受け入れる。ポンプ 260 および 460 の流量は、導管 466 によって混合室 465 から出る水 / メタノール混合物の所望の濃度比を達成するように調整され、この混合物は、冷却通路 468 を通り燃料電池スタック 202 を通って循環される燃料電池冷却剤として混合される。冷却剤の圧力は、冷却剤を冷却通路内で液相に維持するのに十分に高い圧力に維持される。混合物に存在するメタノールは、冷却剤混合物に有効な不凍特性を付与することができる。冷却通路 468 から出た水 / メタノール混合物の一部は、減圧弁 475 により、分離器 474 内で概ね改質反応炉ゾーン 264 の動作圧になるまで瞬間蒸発され、結果として得られた蒸気混合物は、導管 480 によって改質反応炉触媒ゾーン 264 に供給される。水 / メタノール混合物冷却剤の残りの

40

50

部分は、ポンプ 470 によって冷却放熱器 471 を通して再加圧されて再循環され、回収されていない燃料電池スタック熱は廃棄され、水およびメタノールの反応物質は気化される。または、水／メタノール混合物をエンジン冷却ジャケット 425 に供給し、蒸発させ、次いで改質反応炉に供給することができる。

【0116】


必要に応じて、燃料電池から回収された水を冷却通路 468 またはエンジン冷却ジャケット 425 にのみ供給することができる。または、外部供給源からの水を冷却通路 468 に供給し、炭化水素燃料と混合することも、外部供給源からの水をエンジン冷却ジャケット 425 に供給することもできる。

【0117】

または、メタノール蒸気の蒸気改質が水素 PSA ユニット 205 内で行われるように図 9 の態様を適合させることができる。上述のメタノール改質反応ゾーンは、水素 PSA ユニット 205 の第 2 のゾーン 27' への流路 264 から取り除くことができる。流路 440 のエンジン排気によって加熱される流路 264 は、メタノール蒸気と水蒸気の反応物質混合物を予め加熱するためだけに用いられる。水素 PSA ユニット 205 では、第 1 のゾーン 26' は、約 300 から 450 の第 1 ゾーン動作温度で水蒸気およびメタノール蒸気が存在するときに二酸化炭素を選択する吸着体、たとえば促進ヒドロタルサイトを含んでいる。第 2 のゾーン 27' は、約 150 から 300 の動作温度で水性ガス転化に対して活性であるメタノール改質触媒、たとえば Cu-ZnO を含んでいる。第 3 のゾーン 28' は、約 150 から 80 の動作温度で水蒸気およびメタノール蒸気を選択する吸着体、たとえば、アルミナ、13X、または Y 型ゼオライトもしくはシリカライトなどの疎水性ゼオライトを含んでいる。疎水性吸着体は、水蒸気よりもメタノール蒸気を選択することができ、したがって、反応ゾーン全体にわたって十分に高い水蒸気／メタノール比が確実に維持され、おそらくいくらかの水スリップが水素生成物を増湿させることも可能になる。

【0118】

したがって、蒸気メタノール改質反応でほぼ 100% の変換および選択性 (CO を実質的に完全に除去することに相当する) が実現される。

【0119】

図 6～9 に示されているシステムは一例に過ぎず、異なる構成で装置および導管を有する他のシステム、または装置および導管が追加された、もしくは装置および導管がより少ない他のシステムも使用されうる。

【図面の簡単な説明】

【図 1】ロータリ PSA モジュールの軸方向断面図である。

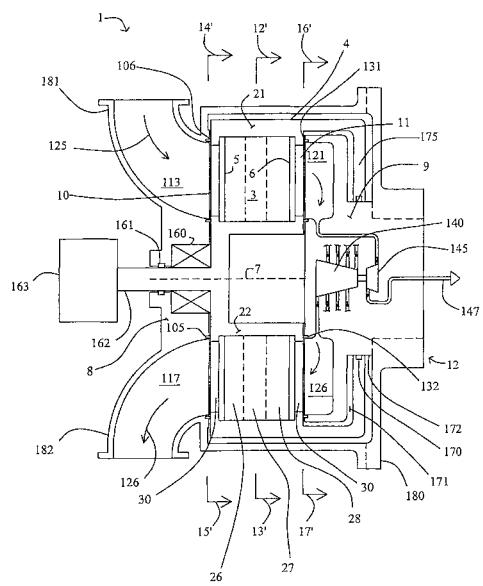
【図 2 から 5B】図 1 のモジュールの横断面図である。

【図 6】蒸気改質燃料処理装置と、少なくとも CO を除去することによるリフォーメート水素浄化用の PSA ユニットと、酸素濃縮用の VPSA ユニットとを有する燃料電池動力装置の簡略図である。

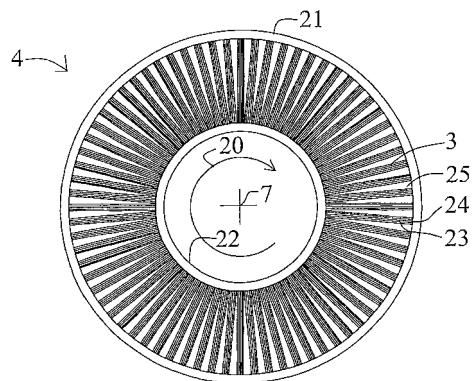
【図 7】改質された蒸気改質燃料処理装置を含む燃料電池動力装置の他の態様の簡略図である。

【図 8】真空ポンプを含む燃料電池動力装置の他の態様の簡略図である。

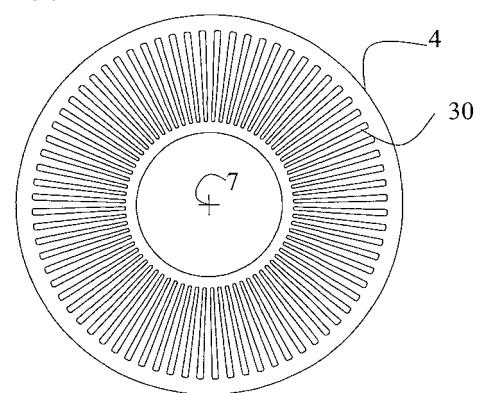
【図 9】内燃エンジンと改良型燃料電池スタックとを含む燃料電池動力装置の他の態様の簡略図である。

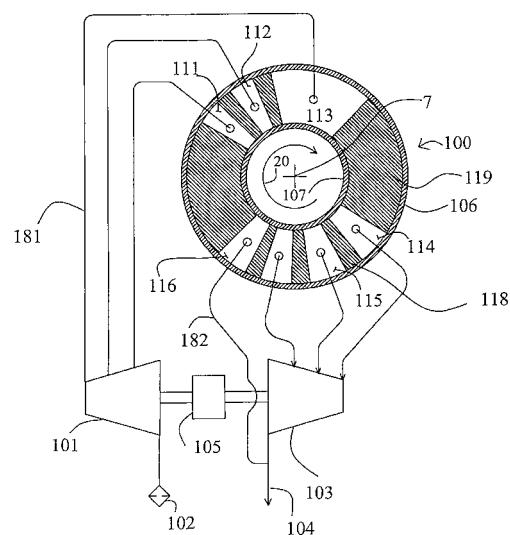

10

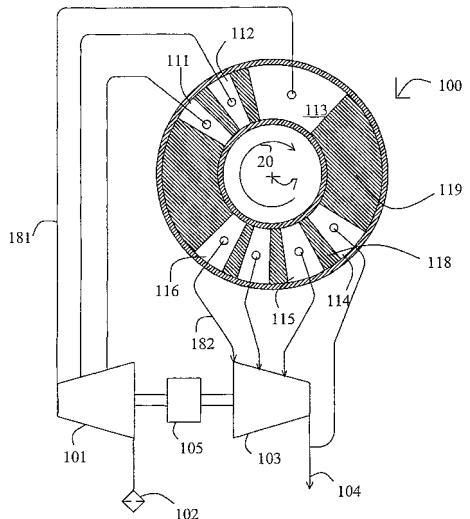
20

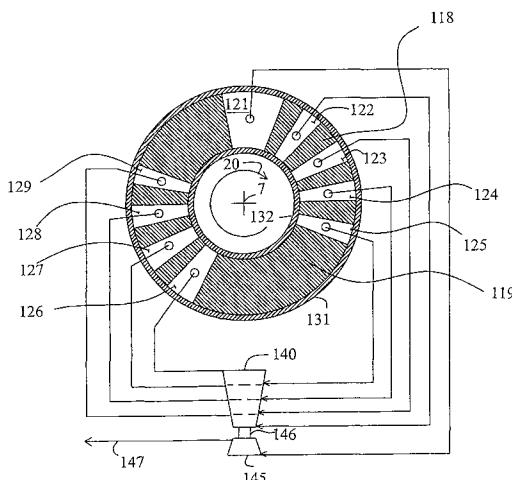

30

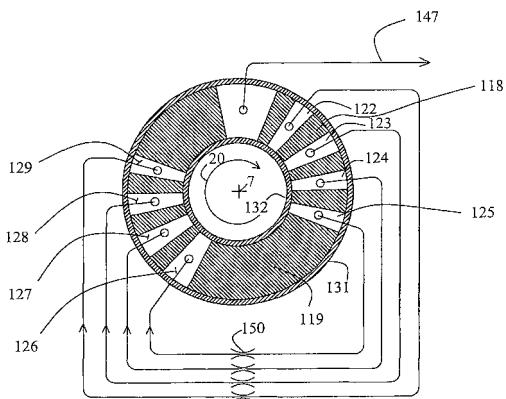
40

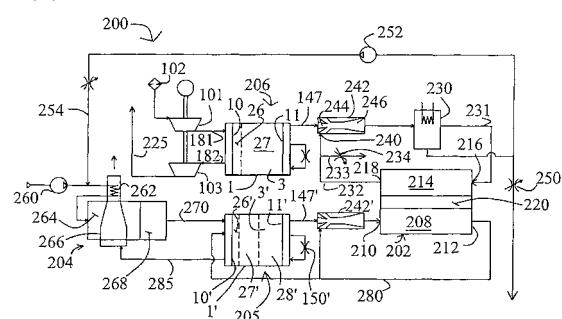

【図 1】

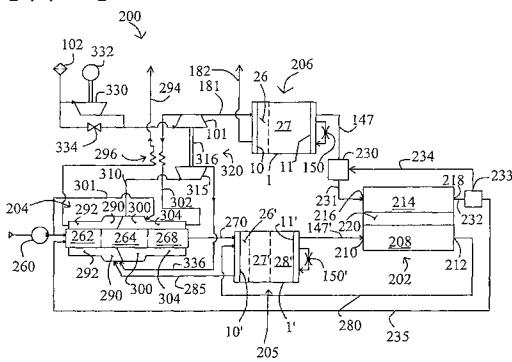

【図 2】

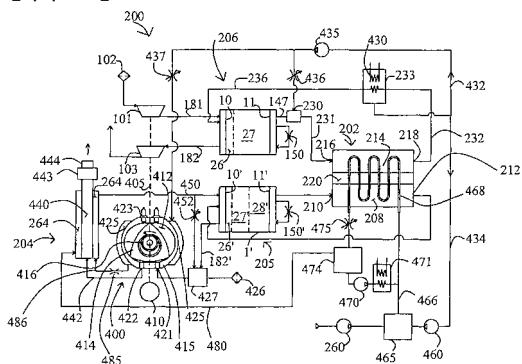

【図 3】

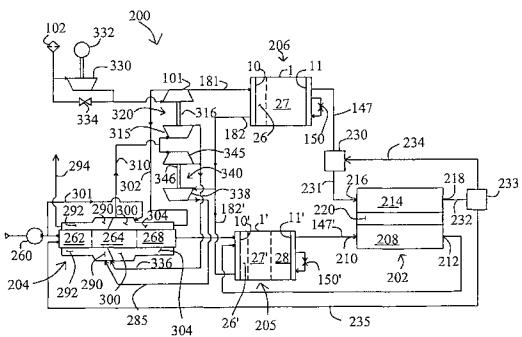

【図 4 A】


【図 4 B】


【図5A】


【 図 5 B 】


〔 図 6 〕


【図7】

【 図 9 】

【 図 8 】

WO 02/35623 A2

CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EC, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/35623

PCT/CA01/01523

**SYSTEMS AND PROCESSES FOR PROVIDING
HYDROGEN TO FUEL CELLS****CROSS REFERENCE TO RELATED APPLICATIONS**

5 This application claims the benefit of Canadian Patent Application No. 2,324,699, filed October 27, 2000, and Canadian Patent Application No. 2,324,702, filed October 27, 2000, the disclosures of which are incorporated herein by reference.

FIELD OF THE DISCLOSURE

10 The present disclosure relates to a fuel cell-based electrical generation system that enhances the efficiency and durability of the fuel cell.

BACKGROUND

15 Fuel cells provide an environmentally friendly source of electrical current. One form of fuel cell used for generating electrical power, particularly for vehicle propulsion and for smaller scale stationary power generation, includes an anode channel for receiving a flow of hydrogen gas, a cathode channel for receiving a flow of oxygen gas, and a polymer electrolyte membrane (PEM) which separates the anode channel from the cathode channel. Oxygen gas which enters the cathode, reacts with hydrogen ions, which cross the electrolyte to generate a flow of electrons.

20 Environmentally safe water vapor is produced as a byproduct.

External production, purification, dispensing and storage of hydrogen (either as compressed gas or cryogenic liquid) requires costly infrastructure, while storing of hydrogen fuel on vehicles presents considerable technical and economic barriers. Accordingly, for stationary power generation, it is preferred to generate hydrogen from natural gas by steam reforming or partial oxidation followed 25 by water gas shift reaction. For fuel cell vehicles using a liquid fuel, it is preferred to generate hydrogen from methanol by steam reforming or from gasoline by partial oxidation or autothermal reforming, again followed by water gas shift reaction. However, the resulting hydrogen contains contaminants, such as carbon monoxide and carbon dioxide impurities, that cannot be tolerated respectively by the PEM fuel cell catalytic electrodes in more than trace levels.

30 The conventional method of removing residual carbon monoxide from the hydrogen feed to PEM fuel cells has been catalytic selective oxidation, which compromises efficiency as both the carbon monoxide and a fraction of the hydrogen are consumed by low temperature oxidation, without any recovery of the heat of combustion. Palladium diffusion membranes can be used for hydrogen purification, but have the disadvantages of delivering purified hydrogen at low pressure, and also the use of rare and costly materials.

35 Pressure swing adsorption systems (PSA) have the attractive features of being able to provide continuous sources of oxygen and hydrogen gas, without significant contaminant levels. PSA systems and vacuum pressure swing adsorption systems (VPSA) separate gas fractions from a gas

mixture by coordinating pressure cycling and flow reversals over an adsorber or adsorbent bed, which preferentially adsorbs a more readily adsorbed gas component relative to a less readily adsorbed gas component of the mixture. The total pressure of the gas mixture in the adsorber is elevated while the gas mixture is flowing through the adsorber from a first end to a second end thereof, and is reduced while the gas mixture is flowing through the adsorbent from the second end back to the first end. As the PSA cycle is repeated, the less readily adsorbed component is concentrated adjacent the second end of the adsorber, while the more readily adsorbed component is concentrated adjacent the first end of the adsorber. As a result, a "light" product (a gas fraction depleted in the more readily adsorbed component and enriched in the less readily adsorbed component) is delivered from the second end of the adsorber, and a "heavy" product (a gas fraction enriched in the more strongly adsorbed component) is exhausted from the first end of the adsorber.

5 Numerous copper-based, CO-selective adsorbents have been disclosed by Rabo et al (U.S. Patent No. 4,019,879), Hirai (U.S. Patent No. 4,587,114), Nishida et al. (U.S. Patent No. 4,743,276), Tajima et al. (U.S. Patent No. 4,783,433), Tsuji et al. (U.S. Patent No. 4,914,076), Xie et al. (U.S. Patent No. 4,917,711), Golden et al. (U.S. Patent Nos. 5,126,310; 5,258,571; and 5,531,809), and Hable et al. (U.S. Patent No. 6,060,032). Use of some such CO-selective adsorbents in pressure swing adsorption processes for removal or concentration of CO has been commercially established at industrial scale.

10 Using certain adsorbents for removing CO from reformate for PEM fuel cells has been investigated by researchers at the Argonne National Laboratory, as reported in the 1998 annual report of the Fuel Cells for Transportation Program of the U.S. Department of Energy, Office of Advanced Transportation Technologies. Bellows (U.S. Patent No. 5,604,047) discloses using selected noble metals, and the carbides and nitrides of certain metals, as carbon monoxide adsorbents in a steam displacement purge cycle for removing CO from reformate feed to fuel cells.

15 20 25 However, the conventional system for implementing pressure swing adsorption or vacuum pressure swing adsorption uses two or more stationary adsorbents in parallel, with directional valving at each end of each adsorber to connect the adsorbents in alternating sequence to pressure sources and sinks. This system is cumbersome and expensive to implement due to the large size of the adsorbents and the complexity of the valving required. Further, the conventional PSA system use of applied energy inefficiently because of irreversible gas expansion steps as adsorbents are cyclically pressurized and depressurized within the PSA process. Conventional PSA systems could not be applied to fuel cell power plants for vehicles, as such PSA systems are far too bulky and heavy because of their low cycle frequency and consequently large adsorbent inventory.

30 35 Another problem is the need for air compression with a substantial mechanical parasitic load to achieve high power density and high voltage efficiency with PEM fuel cells, either in the absence of PSA in prior art fuel cell systems, or to a lesser extent with the use of PSA to increase oxygen concentration. If, as usual by the case, mechanical power is provided by an electric motor powered by

the fuel cell, significant efficiency losses occur in electrical power conversion and conditioning for variable speed compressor drive, and the fuel cell stack must be substantially larger to support this parasitic load as well as the application load to which useful power is delivered. In prior art PEM fuel cell power plants for automotive and other transportation applications, approximately 20% of the gross power output of the fuel cell is diverted to the parasitic load of air compression.

5 Yet another problem arises in the need to provide heat for endothermic fuel processing reactions to generate low purity reformate hydrogen from hydrocarbon fuels (e.g. natural gas, gasoline or diesel fuel) or oxygenate fuels (e.g. methanol, ethanol or dimethyl ether). In the prior art, the necessary heat for steam reforming of natural gas or methanol is provided least in part by burning 10 hydrogen provided as anode tail gas from the fuel cell. Especially in the case of methanol reforming, which can be performed at relatively low temperature, combustion of valuable hydrogen to generate such low grade heat is extremely detrimental to overall energetic efficiency.

15 Likewise, the necessary heat for processing heavier fuels, such as gasoline, is achieved by combusting a portion of the fuel in a partial oxidation or autothermal reforming process. Again, a portion of the high-grade fuel is consumed to upgrade the remainder of that fuel to low purity hydrogen than can be purified for use in the fuel cell. With a low temperature fuel cell, thermal efficiency of prior art fuel processing systems has been extremely low, as high grade fuel is consumed. No opportunity has been found for efficient thermal integration between a high 20 temperature fuel processor and a low temperature fuel cell in transport applications.

20 Combined cycle power plants with a gas turbine cycle integrated with a fuel cell system have been disclosed. Fuel cell auxiliary power units have been proposed for automobiles and passenger railcars with internal combustion engines as primary power plants. PCT Patent Application Publication No. WO 00/16425 provides examples of how PSA units may be integrated with gas turbine power plants, or with fuel cell power plants having a gas turbine auxiliary engine.

25 **SUMMARY OF THE DISCLOSURE**

The disclosed fuel-cell-based electrical generation systems and processes address the deficiencies of the prior art fuel cell electrical generation systems. This is particularly true for 30 purification of reformate hydrogen, energy-efficient PSA oxygen enrichment, heat recovery from the fuel cell stack and/or from combustion of hydrogen PSA tail gas, and thermal powering of air compression for the oxygen PSA and of any PSA vacuum pumping so as to minimize the size of the costly fuel cell stack while maximizing overall energetic efficiency of energy conversion from the raw fuel.

In general, the disclosed electrical current generating systems comprise a fuel cell, an oxygen 35 gas delivery system, and a hydrogen gas delivery system. The fuel cell can include an anode channel having an anode gas inlet for receiving a supply of hydrogen gas, a cathode channel having a cathode gas inlet and a cathode gas outlet, and an electrolyte in communication with the anode and cathode channel for facilitating ion transport between the anode and cathode channel. The oxygen gas

delivery system is coupled to the cathode gas inlet and delivers air or oxygen (e.g. oxygen enriched air) to the cathode channel.

The oxygen gas delivery system may simply be an air blower. However, in certain embodiments it may incorporate an oxygen pressure swing adsorption system. For example, a rotary 5 PSA system can be used comprising a rotary module having a stator and a rotor rotatable relative to the stator, for enriching oxygen gas from air. The rotor includes a number of flow paths for receiving adsorbent material therein for preferentially adsorbing a first gas component in response to increasing pressure in the flow paths relative to a second gas component. The pressure swing adsorption system also may include compression machinery coupled to the rotary module for facilitating gas flow 10 through the flow paths for separating the first gas component from the second gas component. Described embodiments of the PSA system include a stator having a first stator valve surface, a second stator valve surface, and plurality of function compartments opening into the stator valve surfaces. The function compartments include a gas feed compartment, a light reflux exit compartment and a light reflux return compartment.

15 In one variation, the compression machinery comprises a compressor for delivering pressurized air to the gas feed compartment, and a light reflux expander positioned between and fluidly coupled to the light reflux exit compartment and the light reflux return compartment. A gas recirculating compressor is coupled to the light reflux expander for supplying oxygen gas, exhausted from the cathode gas outlet, under pressure to the cathode gas inlet. As a result, energy recovered 20 from the pressure swing adsorption system can be applied to boost the pressure of oxygen gas delivered to the cathode gas inlet.

The oxygen gas delivery system is coupled to the cathode gas inlet and delivers oxygen gas to the cathode channel. The hydrogen gas delivery system supplies purified hydrogen gas to the anode gas inlet, and may recirculate hydrogen gas from the anode gas exit back to the anode gas inlet 25 with increased purity so as to avoid accumulation of impurities in the anode channel.

In one variant of the above-described embodiments, the oxygen gas separation system 30 comprises an oxygen pressure swing adsorption system, the hydrogen gas separation system comprises a reactor for producing a first hydrogen gas feed from hydrocarbon fuel, and a hydrogen pressure swing adsorption system is coupled to the reactor for purifying hydrogen gas received from the first hydrogen gas feed. Hydrogen gas from the anode exit may be recirculated to the hydrogen 35 pressure swing adsorption system as a second hydrogen gas feed. Both pressure swing adsorption systems may include a rotary module having a stator and a rotor rotatable relative to the stator. The rotor includes a number of flow paths for receiving adsorbent material therein for preferentially adsorbing a first gas component in response to increasing pressure in the flow paths relative to a second gas component. The function compartments include a gas feed compartment and a heavy product compartment.

The feed gas to the hydrogen PSA system is reformate gas or syngas, generated in alternative

fuel processing methods known to the art by steam reforming (e.g. of methanol or natural gas or light hydrocarbons), or by autothermal reforming or partial oxidation ("POX") (e.g. of natural gas, gasoline or diesel fuel). The CO content of methanol reformate (generated by relatively low temperature steam reforming of methanol) is typically about 1% or somewhat less. Other fuel processors (e.g. steam 5 methane reformers, and POX or autothermal reformers operating on any feedstock) operate at a much higher temperature, and preferably include a lower temperature water gas shift reactor stage to reduce to CO content to about 1% or less.

The reformate gas contains hydrogen plus the basic impurity components of CO₂, CO and water vapor. If generated by air-blown POX or autothermal reforming, the reformate gas will also 10 contain a large inert fraction of nitrogen and argon. The fraction of inert atmospheric gases can be greatly reduced if an oxygen PSA system is used to supply the POX or autothermal reformer, either directly from the PSA, or as humid and still oxygen enriched air that has been passed through the fuel cell cathode channel, which was directly fed oxygen-enriched air from the PSA.

In one variation, the oxygen pressure swing adsorption system includes a compressor 15 coupled to the gas feed compartment for delivering pressurized air to the gas feed compartment, and a vacuum pump coupled to the compressor for extracting nitrogen product gas from the heavy product compartment. The hydrogen reactor comprises a steam reformer, including a burner, for producing syngas, and a water gas shift reactor coupled to the steam reformer for converting some CO to hydrogen. The hydrogen pressure swing adsorption system includes a vacuum pump for delivering 20 fuel gas from the heavy product compartment to the burner. The fuel gas is burned in the burner, and the heat generated therefrom is used to supply the endothermic heat of reaction necessary for the steam reformer reaction. The resulting reformate gas is delivered to the water gas shift reactor for removal of impurities, and then delivered as the impure hydrogen gas feed to the hydrogen pressure swing adsorption system.

In another variation, the invention includes a burner for burning fuel. The reactor comprises 25 an autothermal reformer for producing syngas, and a water gas shift reactor coupled to the autothermal reformer for converting the syngas to the impure hydrogen gas feed. The compressor of the oxygen pressure swing adsorption system delivers pressurized air to the burner, and the heavy product gas is delivered from the hydrogen pressure swing adsorption system as tail gas to be burned 30 in the burner. The compression machine of the oxygen pressure swing adsorption system also includes an expander coupled to the compressor for driving the compressor from hot gas of combustion emitted from the burner. The feed compressor with the expander may be on a common shaft with a motor drive, or may constitute a free rotor similar to an automotive turbocharger. The same expander or another expander may be coupled to a vacuum pump to assist the PSA process.

Again, the vacuum pump with its expander may be provided as a free rotor similar to an automotive 35 turbocharger. Heat from the burner may also be applied to preheat air and/or fuel supplied to the autothermal reformer.

Independently of whether PSA is used for oxygen enrichment, the disclosed processes and systems provide a hydrogen PSA apparatus for purifying the reformate. The hydrogen PSA may be designed to deliver high purity hydrogen, or else may be designed less stringently to achieve adequately high removal of noxious components or contaminants (harmful to the fuel cell) such as CO, H₂S, halogens, methanol, etc. In the latter case, the hydrogen PSA would in its first pass only achieve partial removal of less harmful constituents (e.g., N₂, Ar and CO₂). In that case, anode tail gas may be recycled to the feed end of the PSA inlet for use in a feed pressurization step, thus avoiding any need for mechanical recompression. Even when high hydrogen purity is specified for the PSA, this feature enables a small bleed from the end of the anode channel back to the feed pressurization step of the hydrogen PSA, as would be desirable for avoiding a strict dead-headed configuration with the risk of accumulation in the anode channel of any contaminant slip due to equipment imperfections or operational transient upsets.

Accordingly, a first embodiment of the disclosed processes and systems contemplates providing a hydrogen-containing gas stream that includes carbon monoxide, introducing the hydrogen-containing gas stream into a pressure swing adsorption module that includes at least one carbon monoxide-selective adsorbent to produce a purified hydrogen-containing gas stream, and introducing the purified hydrogen-containing gas stream to the fuel cell anode. A further disclosed process and system for providing a hydrogen-containing gas stream to a fuel cell anode involves introducing a hydrogen-containing feed gas stream into an adsorption module having at least a first adsorbent and at least one second material, and optionally plural materials selected from a second adsorbent, a steam reforming catalyst, and a water gas shift reaction catalyst, wherein the first adsorbent and the second adsorbent are chemically distinct and at least one of the first adsorbent or the second adsorbent preferentially adsorbs a contaminant in the hydrogen-containing feed gas stream to produce a purified hydrogen-containing gas stream.

Operating temperature of the adsorbents in the hydrogen PSA unit can be elevated well above ambient, as the reformate gas is supplied at a temperature after water gas shift of typically about 200°C, while operating temperatures of PEM fuel cells may extend from about 80°C to about 100°C. Alternatively, the adsorbents may be operated at a lower temperature if the reformate is cooled, thus providing an opportunity for partial removal of water and any methanol vapor by condensation before admission to the hydrogen PSA unit. Advantages of operation at moderately elevated temperature are (1) reformate coolers and water condensers upstream of the hydrogen PSA can be avoided, (2) PSA removal of water vapor and CO₂ may be more readily achieved at moderately elevated temperature compared to ambient temperature, (3) CO can be more selectively adsorbed than CO₂ over Cu(I)-loaded adsorbents, particularly at elevated temperature, and (4) kinetics of CO sorption and desorption on CO-selective sorbents may be greatly enhanced at higher temperature. Consequently, in certain embodiments the operating temperature range for the adsorbents is from about 80°C to about 200°C, and a more particular operating range is from about 100°C to about 160°C. As used herein,

"operating temperature of the adsorbers" denotes the temperature of a gas flowing through the adsorbers and/or the temperature of the adsorber beds.

The hydrogen PSA unit may be configured to support a temperature gradient along the length of the flow channels, so that the temperature at the first end of the adsorbers is higher than the 5 temperature at the second end of the adsorbers.

Especially for low purity hydrogen with anode recycle, the hydrogen PSA may use CO-selective adsorbents with CO-complexing ions, such as Cu(I) or Ag (e.g., Ag(I)), introduced by ion exchange or impregnation into a suitable adsorbent carrier or support. Prior art CO-selective adsorbents have used a wide diversity of zeolites, alumina or activated carbon adsorbents as carriers 10 or polymers as supports. With CO-selective adsorbents, enhanced hydrogen recovery may be achieved while tolerating some accumulation of non-CO impurities circulated through the fuel cell anode loop.

Potential problems with CO-selective adsorbents used to purify hydrogen from reformate include (1) compatibility with water vapor that may deactivate the adsorbent or cause leaching of 15 impregnated constituents, (2) over-reduction by hydrogen, causing the CO-complexing ion to reduce to inert metallic form, and (3) relatively slow kinetics of CO-complexing as compared to physical adsorption.

The active adsorbent in the disclosed processes and systems (such as a CO-selective component) can be supported on thin adsorbent sheets, which are layered and spaced apart by spacers 20 to define flow channels, thereby providing a high-surface-area, parallel passage support with minimal mass transfer resistance and flow channel pressure drop. With crystalline adsorbents such as zeolites, and amorphous adsorbents such as alumina gel or silica gel, the adsorbent sheet is formed by coating or in-situ synthesis of the adsorbent on a reinforcement sheet of inert material, e.g. a wire mesh, a metal foil, a glass or mineral fiber paper, or a woven or nonwoven fabric. Active carbon adsorbent 25 may also be coated onto a reinforcement sheet of inert material, but adsorbent sheets of active carbon may also be provided as self-supporting carbon fiber paper or cloth. Adsorbents of the layered adsorbent sheet material may be formed by stacking flat or curved sheets. Alternatively, adsorbents may be a spiral roll, with the flow channels between the sheets extending from the first end of the adsorber to the second end thereof. The adsorbents generally fill the volume of the adsorber housing 30 of the desired shape. Examples of methods and structures with packed, spirally wound adsorbents are disclosed in commonly-owned, co-pending U.S. Provisional Application No. 60/285,527, filed April 20, 2001, and incorporated herein by reference. Typical thickness of the adsorbent sheet may be in the range of about 100 to about 200 microns, while flow channel spacing between the sheets may be in the range of about 50 to about 200 microns.

According to one variation of the disclosed PSA units, the adsorbent material contacting the flow channels between the first and second ends of the adsorbents may in general be selected to be 35 different in distinct zones of the flow channels, so that the adsorbents would have a succession of zones

(e.g. a first zone, a second zone, a third zone, a perhaps additional zones) with distinct adsorbents proceeding along the flow channels from the first end to the second end. As an alternative to distinct zones of adsorbents, the different adsorbents may be provided in layers or mixtures that include varying gradients of adsorbent concentrations along the gas flow path. The transition from one adsorbent to another may also be a blended mixture of the two adsorbents rather than a distinct transition. A further option is to provide a mixture of the different adsorbents that may or may not be homogeneous and such mixture may be combined with a discrete zone or zones.

In a first variant configured to deliver high purity hydrogen, the adsorbent in a first zone of the adsorbents adjacent the first end will be a desiccant to achieve bulk removal of water vapor in that first zone, the adsorbent in a second zone in the central portion of the adsorbents will be selected to achieve bulk removal of CO₂ and some removal of CO, and the adsorbent in a third zone of the adsorbents will be selected to achieve final removal of CO and substantial removal of any additional inert components, such as nitrogen and argon. A suitable desiccant, without limitation, for the first zone is alumina gel. A suitable adsorbent for the second zone is 13X zeolite, or 5A, or active charcoal. Suitable adsorbents for the third zone, again without limitation, may be a strongly carbon monoxide and nitrogen selective adsorbent selected from the group including but not limited to Na-LSX, Ca-LSX, Li-LSX, Li-exchanged chabazite, Ca-exchanged chabazite, Sr-exchanged chabazite. The zeolite adsorbents of this group are characterized by strong hydrophilicity, corresponding to selectivity for polar molecules. This first variant relying on physical adsorption will operate most effectively at relatively lower temperatures, unlikely to exceed much more than about 100°C although certain adsorbents such as Ca- or Sr-exchanged chabazite would remain adequately effective for CO and N₂ removal at temperatures to about 150°C.

In a second similar variant also configured to deliver high purity hydrogen, the adsorbent in the second or third zone may be a more strongly carbon monoxide selective adsorbent such as a Cu(I)-exchanged zeolite. The zeolite may be, for example, be an X- or a Y-type zeolite, mordenite, or chabazite. For stability against over-reduction while contacting nearly pure hydrogen, the exchangeable ions of the zeolite may be a mixture of Cu(I) and other ions such as Na, Li, Ca, Sr, other transition group metals or lanthanide group metals. The mixed ions may also or alternatively include Ag as a minor component for enhanced CO-selectivity.

In a third variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in a first zone of the adsorbents adjacent the first end will be a desiccant to achieve bulk removal of water vapor in that first zone, the adsorbent in a second zone in the central portion of the adsorbents will be selected to achieve bulk removal of CO₂ and some removal of CO, and the adsorbent in a third zone of the adsorbents will be selected to achieve final removal of CO and partial removal of any nitrogen and argon. A suitable desiccant for the first zone, without limitation, is alumina gel. A suitable adsorbent for the second zone, again without limitation, is alumina gel impregnated with Cu(I), or active carbon impregnated with Cu(I). Suitable adsorbents for

the third zone may be similar to those used in the second zone, or may be a CO- and nitrogen selective adsorbent as in the first or second variants above.

In a fourth variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in some or all zones of the adsorbers will be a moderately hydrophobic adsorbent selected from the group including, but not limited to, active carbon and Y-zeolite, and preferably containing Cu(I) for enhanced CO₂ selectivity in a zone adjacent the second end of the adsorbers.

In a fifth variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in some or all zones of the adsorbers will be a strongly hydrophobic adsorbent selected from the group including but not limited to silicalite and dealuminified Y-type zeolite. The hydrophobic adsorbent may preferably contain Cu(I) for enhanced CO selectivity.

In a sixth variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in the first or second zone of the adsorbers will include a component catalytically active at the operating temperature of that zone for the water gas shift reaction. The catalytically active component may be any known water gas shift catalyst, e.g. Cu-ZnO based catalysts. Preferably, the catalytically active component may be metal carbonyl complexes of a transition group metal or a mixture of transition group metals (e.g. Cu, Ag, Ni, Pd, Pt, Rh, Ru, Fe, Mo, etc.) inserted into the zeolite cages of, for example, an X or Y-type zeolite. A portion of the carbon monoxide sorbed onto the catalytically active component may then react with water vapor by the water gas shift reaction to generate carbon dioxide and additional hydrogen. It is known [J.J. Verdonck, P.A. Jacobs, J.B. Uytterhoeven, "Catalysis by a Ruthenium Complex Heterogenized in Faujasite-type Zeolites: the Water Gas-shift Reaction", J.C.S. Chem. Comm., pp. 181-182, 1979] that ruthenium complexes stabilized within X or Y zeolites provide greater water-gas shift catalytic activity than conventional copper based catalysts. Other water gas shift catalysts known in the art include platinum supported on ceria and transition metal carbides. Iron-chrome catalysts are used for industrial water gas shift reactions at higher temperatures.

In a seventh variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in the first zone of the adsorbers is an adsorbent selective at the elevated operating temperature of the first zone for carbon dioxide in preference to water vapor. Suitable such adsorbents known in the art include alkali-promoted materials. Illustrative alkali-promoted materials include those containing cations of alkali metals, such as Li, Na, K, Cs, Rb, and/or alkaline earth metals, such as Ca, Sr, and Ba. The materials typically may be provided as the hydroxide, carbonate, bicarbonate, acetate, phosphate, nitrate or organic acid salt compound of the alkali or alkaline earth metals. Such compounds may be deposited on any suitable substrate such as alumina. Examples of specific materials include alumina impregnated with potassium carbonate and hydrotalcite promoted with potassium carbonate. The adsorbent in the second zone of the adsorbers

will include a component catalytically active at the operating temperature of that zone for the water gas shift reaction, and optionally also for a steam reforming reaction of e.g. methanol or methane. As in the sixth variant above, the catalytically active component in the second zone may be a known water gas shift or steam reforming catalyst, or may be a transition group metal dispersed in zeolite cages and reversibly forming a metal carbonyl complex at the operating temperature of the second zone. The second or preferably third zone of the adsorbers contains adsorbent with some useful working capacity for carbon monoxide and other impurity components at the operating temperature of that zone. Because carbon dioxide is strongly adsorbed in the first zone, the concentration of carbon dioxide in the second zone is maintained at a reduced level by the PSA process, while water vapor concentration remains relatively high in the second zone. Hence, in this seventh variant the water gas shift reaction equilibrium (and the steam reforming equilibrium if applicable) is continually shifted by the PSA process, which continually removes both hydrogen and carbon dioxide from the catalytically active second zone while preventing passage of carbon monoxide into the hydrogen product passing the third zone, so that essentially all carbon monoxide is consumed to generate carbon dioxide and additional hydrogen. This is an example of a PSA reactor or "sorption enhanced reactor", driving the water gas shift reaction substantially to completion while achieving adequate purification of the hydrogen.

The reforming and/or water gas shift reaction catalyst(s) described above may be included in any part of the adsorber bed, but typically are included in the section prior to removal of the water vapor since water vapor is a reactant for the reforming and water gas shift reactions.

Industrial H₂ PSA is normally conducted at considerably elevated pressures (> 10 bara) to achieve simultaneous high purity and high recovery (~ 80%-85%). Fuel cell systems operating with pressurized methanol reformers or integrated with gas turbine cycles may operate at relatively high pressures. However, most PEM fuel cell systems operate at ambient to about 3 bara pressure. As feed pressure and the overall working pressure ratio of the PSA are reduced, productivity and recovery of a simple cycle deteriorate. Under given pressure conditions, use of CO-selective adsorbents should significantly improve recovery at specified product CO concentration, if hydrogen purity with respect to other impurities such as nitrogen and carbon dioxide can be relaxed.

At very low feed pressures (e.g. 2-3 bara), the H₂ PSA may need supplemental compression to achieve high recovery. Vacuum pumping may be used to widen the working pressure ratio, or alternatively "heavy reflux," which is recompression and recycle to the PSA feed of a fraction of its exhaust stream at full pressure. Vacuum and heavy reflux options may be combined in PSA systems for reformate purification. The heavy reflux option using 13X zeolite adsorbent, which is not particularly CO-selective achieved ~ 95% recovery from synthetic methanol reformate at ~3 bara feed pressure and atmospheric exhaust without vacuum pumping.

To get heavy reflux in a very low pressure PSA, the vacuum pump may be configured so that part of its flow is reinjected into the PSA feed. Extremely high hydrogen recovery can then be

obtained (even at a fairly low overall pressure ratio) by pumping enough heavy reflux. The vacuum level can be traded against the mass flow of heavy reflux.

A fuel cell may be a standalone power plant, or else it may be integrated with some type of combustion engine. In the case of a standalone fuel cell, all mechanical power for air handling 5 compression and any oxygen and/or hydrogen PSA units must be provided as electrical power by the appropriately sized fuel cell stack. In this case, tight constraints apply to the recovery level that must be achieved by the H₂ PSA at specified purity. In the absence of any useful export use for high grade heat, an efficient heat balance requires that the heating value of combustible waste gases (H₂, CO and unreacted fuel) be matched to the heat demand of the fuel processor. For a fuel cell with steam reforming (e.g. methanol or natural gas), nominal hydrogen recovery by the H₂ PSA has to be about 10 75% to 80% as the PSA tail gas is burned to heat the reformer; while for a POX or autothermal reformer, hydrogen recovery by the PSA needs to be extremely high (at least 90% to 95%) as such reformers can only use a limited amount of external combustion heat from burning PSA tail gas or fuel cell anode tail gas, e.g. for preheating feed oxygen/air and fuel reactants to the reformer.

15 In order to achieve high process efficiency and high recovery of the PSA units along with high overall efficiency of the fuel cell system, the hydrogen PSA tail gas may be burned in an auxiliary combustion engine to drive the air handling system compressor and any vacuum pumps for the oxygen and hydrogen PSA units. Thus, according to another presently disclosed embodiment, a process and system is described that includes providing at least one first pressure swing adsorption 20 module that produces an oxygen-enriched gas stream, the first pressure swing adsorption module including at least one device selected from a first compressor or first vacuum pump; providing at least one second pressure swing adsorption module that produces a purified hydrogen gas stream and a separation exhaust gas stream, the second pressure swing adsorption module including at least one device selected from a second compressor or second vacuum pump; introducing the oxygen-enriched 25 gas stream and the purified hydrogen gas stream into a fuel cell; and introducing the separation exhaust gas stream as a fuel into a combustion engine for driving at least one auxiliary device, typically selected from the first compressor, first vacuum pump, second compressor, second vacuum pump, or an electric generator.

For smaller plants, internal combustion engines may be attractive relative to gas turbine 30 configurations. Either way, powering the compressor and vacuum pump(s) by burning tail gas avoids the cost penalty of a bigger fuel cell stack in order to run compression machinery as parasitic electrical loads. The engine exhaust heat and/or cooling jacket heat may be further recovered to preheat and vaporize fuel reactants and to provide some or all of the heat of reforming for a methanol reformer as described below in more detail.

35 The engine could be a reciprocator or a rotary engine. It may aspirate the hydrogen PSA tail gas directly as fuel, or else be turbocharged to pull greater vacuum from the PSA exhaust. Modern Wankel derivative engines have favourable specific displacement and power density. Thus, an

auxiliary internal combustion engine could act as its own vacuum pump on tail gas being inducted directly as fuel. Some oxygen enriched tail gas from the fuel cell cathode could be fed as a supplement to intake air to make up for the heavy CO₂ load. In view of the hydrogen, water and carbon dioxide content of the tail gas fueling this engine, conditions are favourable for extremely low emissions of NO_x and other noxious contaminants. Here, the above strict heat balance constraints on necessary hydrogen recovery to be achieved by the PSA may be relaxed in designing for most desirable technical, emissions and economic performance of the power plant because tail gas combustion can thermally power auxiliary compression loads as well as provide endothermic heat of fuel processing. The combustion engine may power all compressors and vacuum pumps for the O₂ PSA, along with vacuum pump and/or heavy reflux compression for the H₂ PSA. This auxiliary gas turbine cycle allows a heavy reflux vacuum pump and compressor to be driven by the turboexpander which expands the products of hydrogen PSA tail gas combustion. Thus, one feature of disclosed processes and systems is integration of the vacuum pump(s) with the combustion engine powered by tail gas combustion. Either single or multiple spool gas turbine configurations may be considered in connection with the combustion engine. Centrifugal or axial machines may be used as the compressors and pumps. Approaches based on integration of gas turbines and fuel cells are particularly favourable for larger power levels.

Further disclosed embodiments are directed to improved steam reforming processes (particularly methanol reforming) when coupled to a fuel cell. The conventional approach for methanol reforming is to increase the pressure of liquid reactants to an elevated pressure for vaporization and the vapor phase methanol reforming reaction. This approach enables the reactor itself to be compact, and provides driving pressure for hydrogen purification by PSA or palladium diffusion membranes.

A novel low pressure process is disclosed herein for steam methanol reforming that can get enhanced heat recovery from a low pressure fuel cell. More than 60% of the endothermic heat of steam reforming methanol is the heat of vaporization to boil the methanol and the water inputs. If the fuel cell is cooled to vaporize feed liquid fuel and water at the fuel cell stack working temperature, the system may be more efficient due to heat recovery, which liberates hydrogen to generate electricity while absorbing about 25% of the stack cooling load. A water-rich mix of 14% methanol in water boils at atmospheric pressure and 85°C to generate a 50/50 vapor mix as required by stoichiometry, or at a modestly higher temperature with a larger excess of water in the liquid phase to obtain a small excess of steam as actually required to ensure low CO concentration. Therefore the liquid mixture of water containing a fraction of methanol may be circulated as fuel cell stack coolant, and then flash evaporated to generate a methanol-H₂O vapor mix to be admitted into the reforming catalyst chamber at fuel cell system working pressure. If the fuel cell operates at less than 85°C, flash evaporation likely would be performed under vacuum or else with a higher concentration of methanol (as also desirable for antifreeze characteristics for winter conditions) so that only a fraction of the water

required for methanol reforming is provided by vaporization using fuel cell stack waste heat. As higher PEM fuel cell operating temperatures are considered, this approach becomes more viable as permitting either atmospheric or higher pressure for flash evaporation, or else a larger temperature differential driving heat exchange in the stack coolant channels. Thus, there is disclosed herein a 5 process and system that involves providing a fuel cell defining a coolant passage and an anode inlet for receiving a hydrogen-containing gas stream; mixing liquid water and a hydrocarbon fuel stream resulting in a coolant mixture; introducing the coolant mixture into the coolant passage of the fuel cell; vaporizing the coolant mixture to form a steam/fuel vapor mixture; subjecting the steam/fuel vapor mixture to reaction conditions sufficient for generating a hydrogen-containing gas stream; and introducing the hydrogen-containing gas stream into the fuel cell anode inlet.

Using stack heat recovery to boil the methanol reforming reactants is more attractive for a relatively low pressure fuel cell (e.g., operating at a pressure below about 2 bars absolute), unless the working temperature were greatly increased. If all the steam feed to the methanol reformer is generated by stack heat recovery, some mechanical compression of the reformer reactant vapor 10 mixture generally is needed except for a very low pressure PEM fuel cell (e.g. operating at a pressure below 1.5 bars absolute). Such a very low pressure fuel cell would be expected to benefit greatly from PSA O₂ enrichment as enabling high power density at low total pressure. However, vacuum pumping would then be required for both the oxygen PSA and a hydrogen PSA unit, particularly to obtain high recovery of hydrogen in the hydrogen PSA.

15 An alternative approach within the invention is to operate the fuel cell at somewhat higher pressure (e.g. operating at a pressure of about 2 or 3 bars absolute), with the stack coolant liquid mixture of water and methanol containing a higher concentration of methanol, so that the vapor mixture thus generated contains all the methanol vapor for the methanol reformer, plus only a portion of the steam required for reforming that methanol. Supplementary steam is then generated by an 20 alternative heat source, for example exhaust heat or cooling jacket heat from a combustion engine or turbine used to drive the feed air compressor and any vacuum pumps required to operate the PSA equipment.

25 In the case of a POX or autothermal gasoline fuel processor, the endothermic heat for the reforming reaction is generated by burning a portion of the fuel stream within the reforming reactor. Hence, there is at most a very limited opportunity for burning the hydrogen PSA tail gas usefully to 30 support the reforming process (e.g. to preheat incoming air and fuel streams), because ample high grade heat is generated within POX and autothermal reformers. If there is no other use for combustion heat from burning the hydrogen PSA tail gas, the hydrogen PSA achieves extremely high hydrogen recovery (in the range of e.g. 90% to 99%) to achieve heat balance and full utilization of fuel. In the case of a methanol reformer with stack heat recovery to boil the reactants as provided 35 above within the present invention, the hydrogen PSA would have to achieve very high hydrogen recovery (~ 90%) in view of the substantial heat recovery from the stack to reduce the methanol

reformer heat demand.

An auxiliary combustion engine or turbine therefore is disclosed, cooperating with the fuel cell power plant to at least assist the feed air compression and any vacuum pumping loads. Tail gas from the hydrogen PSA unit is now usefully consumed as fuel for the auxiliary combustion engine or turbine, so that the necessary hydrogen recovery achieved by the PSA unit may be relaxed to the range of e.g. 70% to 90% as the heat balance and fuel utilization constraints are opened. Hence, the need for heavy reflux compression and vacuum pumping to assist the hydrogen PSA unit is reduced or eliminated. Simultaneously, the auxiliary combustion engine or turbine unloads the PSA compression and any vacuum pumping load from the fuel cell electrical output, thus reducing the size and cost of the fuel cell.

5 The thermally integrated combination of the auxiliary combustion engine or turbine with the fuel processor provides alternative waste heat sources for vaporizing steam directly at the reforming pressure, for heating an endothermic reactor, and for recovering exothermic heat e.g. of water gas shift. A thermally integrated design can also be configured to minimize thermal inefficiencies, e.g. of 10 heat loss by conduction to the environment, simply by placing hot components of the fuel processor and the auxiliary heat engine within a common housing, and with components at similar operating 15 temperatures in close adjacent proximity.

10 The foregoing features and advantages will become more apparent from the following detailed description of several embodiments that proceeds with reference to the accompanying 15 figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an axial section of a rotary PSA module.

FIGS. 2 through 5B show transverse sections of the module of FIG. 1.

20 FIG. 6 is a simplified schematic of a fuel cell power plant with a steam reforming fuel processor, a PSA unit for reformate hydrogen purification by at least removal of CO, and a VPSA unit for oxygen enrichment.

25 FIG. 7 is a simplified schematic of an additional embodiment of a fuel cell power plant that includes a modified steam reforming fuel processor.

FIG. 8 is a simplified schematic of another embodiment of a fuel cell power plant that 30 includes a vacuum pump.

FIG. 9 is a simplified schematic of a further embodiment of a fuel cell power plant that includes an internal combustion engine and a modified fuel cell stack.

DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS**FIGS. 1-5**

One embodiment of an oxygen-enrichment rotary PSA module for use with the described methods and systems is described below in connection with FIGS. 1-5B, but the same or similar rotary PSA module configuration could be used for hydrogen enrichment (i.e., separation) in the disclosed electrical current generating systems. As used herein, a "rotary PSA" includes, but is not limited to, either a PSA wherein the adsorbent bed rotates relative to a fixed valve face or stator or a PSA wherein the valve face or stator rotates relative to a fixed adsorbent bed.

FIG. 1 shows a rotary PSA module 1, which includes a number "N" of adsorbers 3 in adsorber housing body 4. Each adsorber has a first end 5 and a second end 6, with a flow path therebetween contacting a nitrogen-selective adsorbent (for oxygen enrichment). The adsorbers are arrayed about axis 7 of the adsorber housing body. The housing body 4 is in relative rotary motion about axis 7 with first and second functional bodies 8 and 9, being engaged across a first valve face 10 with the first functional body 8 to which feed gas mixture is supplied and from which the heavy product is withdrawn, and across a second valve face 11 with the second functional body 9 from which the light product is withdrawn.

In embodiments as particularly depicted in FIGS. 1-5, the adsorber housing 4 rotates and shall henceforth be referred to as the adsorber rotor 4, while the first and second functional bodies are stationary and together constitute a stator assembly 12 of the module. The first functional body shall henceforth be referred to as the first valve stator 8, and the second functional body shall henceforth be referred to as the second valve stator 9. In other embodiments, the adsorber housing may be stationary, while the first and second function bodies may be the rotors of rotary distributor valves.

In the embodiment shown in FIGS. 1-5, the flow path through the adsorbers is parallel to axis 7, so that the flow direction is axial, while the first and second valve faces are shown as flat annular discs normal to axis 7. However, more generally the flow direction in the adsorbers may be axial or radial, and the first and second valve faces may be any figure of revolution centred on axis 7. The steps of the process and the functional compartments to be defined will be in the same angular relationship regardless of a radial or axial flow direction in the adsorbers.

FIGS. 2-5 are cross sections of module 1 in the planes defined by arrows 12'-13', 14'-15', and 16'-17'. Arrow 20 in each section shows the direction of rotation of the rotor 4. FIG. 2 shows section 12'-13' across FIG. 1, which crosses the adsorber rotor. In this example, "N" = 72. The adsorbers 3 are mounted between outer wall 21 and inner wall 22 of adsorber wheel 208. Each adsorber 3 comprises a rectangular flat pack of adsorbent sheets 23, with spacers 24 between the sheets to define flow channels here in the axial direction. Separators 25 are provided between the adsorbers to fill void space and prevent leakage between the adsorbers. In other configurations, the adsorbent sheets may be formed in curved packs or spiral rolls.

Satisfactory adsorbent sheets have been made by coating a slurry of zeolite crystals with

binder constituents onto the reinforcement material, with successful examples including nonwoven fibreglass scrims, woven metal fabrics, and expanded aluminium foils. The adsorbent sheets comprise a reinforcement material, in preferred embodiments glass fibre, metal foil or wire mesh, to which the adsorbent material is attached with a suitable binder. For applications such as hydrogen purification, 5 some or all of the adsorbent material may be provided as carbon fibers, in woven or nonwoven form to serve as its own reinforcement material. Spacers 24 are provided by printing or embossing the adsorbent sheet 23 with a raised pattern, or by placing a fabricated spacer between adjacent pairs of adsorbent sheets. Alternative satisfactory spacers 24 have been provided as woven metal screens, non-woven fibreglass scrims, and metal foils with etched flow channels in a photolithographic pattern.

10 Typical experimental sheet thicknesses have been 150 microns, with spacer heights in the range of 100 to 150 microns, and adsorber flow channel length approximately 20 cm. Using X-type zeolites, excellent performance has been achieved in oxygen separation from air and hydrogen purification from reformatte at PSA cycle frequencies in the range of 1 at least to 150 cycles per minute particularly at least 25 cycles per minute.

15 As shown in FIG. 1, the adsorbers 3 may comprise a plurality of distinct zones between the first end 5 and the second end 6 of the flow channels. FIG. 1 illustrates a first zone 26 adjacent the first end 5, a second zone 27 in the middle of the adsorbers, and a third zone 28 adjacent the second end 6. These zones may be entirely distinct as to the local composition of adsorbent (including any catalyst), or else may be blended with a continuous gradient of adsorbent composition. Fewer or 20 more zones may be provided as desired. The first zone typically contains an adsorbent or desiccant selected for removing very strongly adsorbed components of the feed gas mixture, such as water or methanol vapor, and some carbon dioxide. The second zone contains an adsorbent typically selected for bulk separation of impurities at relatively high concentration, and the third zone contains an adsorbent typically selected for removing impurities at relatively low concentrations.

25 In embodiments with multiple zones, the volume of each zone may be preselected to achieve a desired result. For example, with a 3-zone embodiment the first zone may be the first 10% to 20% of the flow channel length from the first end, the second zone may be the next roughly 40% to 50% of the channel length, and the third zone the remainder. In embodiments with only two adsorber zones, the first zone may be the first 10% to 30% of the flow channel length from the first end, and the 30 second zone the remainder. The zones may be formed by coating the different adsorbents onto the adsorbent support sheet material in bands of the same width as the flow channel length of the corresponding zone. The adsorbent material composition may change abruptly at the zone boundary, or may be blended smoothly across the boundary. Particularly in the first zone of the adsorber, the adsorbent must be compatible with significant concentrations of water vapor.

35 For air separation to produce enriched oxygen, alumina gel may be used in the first zone to remove water vapor, while typical adsorbents in the second and third zones are X, A or chabazite type zeolites, typically exchanged with lithium, calcium, strontium, magnesium and/or other cations, and

with optimized silicon/aluminium ratios as well known in the art. The zeolite crystals are bound with silica, clay and other binders, or self-bound, within the adsorbent sheet matrix.

In a first variant configured to deliver high purity hydrogen, the adsorbent in a first zone of the adsorbents adjacent the first end will be a desiccant to achieve bulk removal of water vapor in that first zone, the adsorbent in a second zone in the central portion of the adsorbents will be selected to achieve bulk removal of CO₂ and some removal of CO, and the adsorbent in a third zone of the adsorbents will be selected to achieve final removal of CO and substantial removal of any nitrogen and argon. A suitable desiccant for the first zone is alumina gel. Illustrative suitable adsorbents for the second zone are 13X zeolite, or 5A, or active charcoal. Suitable adsorbents for the third zone may be 10 strongly carbon monoxide and nitrogen selective adsorbent selected from the group including, but not limited to, Na-LSX, Ca-LSX, Li-LSX, Li- exchanged chabazite, Ca- exchanged chabazite, Sr- exchanged chabazite. The zeolite adsorbents of this group are characterized by strong hydrophilicity, corresponding to selectivity for polar molecules. This first variant relying on physical adsorption will operate most effectively at relatively lower temperatures, unlikely to exceed much more than about 150°C, although certain adsorbents such as Ca- or Sr-exchanged chabazite remain adequately effective for CO and N₂ removal at temperatures up to about 150°C.

In a second similar variant also configured to deliver high purity hydrogen, the adsorbent in the second or third zone may be a more strongly carbon monoxide selective adsorbent such as a Cu(I)-exchanged zeolite. The zeolite may for example be an X or Y-type zeolite, mordenite, or chabazite. For stability against over-reduction while contacting nearly pure hydrogen, the exchangeable ions of the zeolite may be a mixture of Cu(I) and other ions such as Na, Li, Ca, Sr, other transition group metals or lanthanide group metals. The mixed ions may also or alternatively include Ag(I) as a minor component for enhanced CO-selectivity.

In a third variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in a first zone of the adsorbents adjacent the first end will be a desiccant to achieve bulk removal of water vapor in that first zone, the adsorbent in a second zone in the central portion of the adsorbents will be selected to achieve bulk removal of CO₂ and some removal of CO, and the adsorbent in a third zone of the adsorbents will be selected to achieve final removal of CO and partial removal of any nitrogen and argon. A suitable desiccant for the first zone is alumina gel. A suitable adsorbent for the second zone is alumina gel impregnated with Cu(I), or active carbon impregnated with Cu(I). Suitable adsorbents for the third zone may be similar to those used in the second zone, or may be a CO- and nitrogen selective adsorbent as in the first or second variants above.

In a fourth variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in some or all zones of the adsorbents will be a moderately hydrophobic adsorbent selected from the group including but not limited to active carbon and Y-zeolite, and preferably containing Cu(I) for enhanced CO-selectivity in a zone adjacent the second

end of the adsorbers.

In a fifth variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in some or all zones of the adsorbers will be a strongly hydrophobic adsorbent selected from the group including but not limited to silicalite and dealuminified Y-zeolite. The hydrophobic adsorbent may preferably contain Cu(I) for enhanced CO-selectivity.

In a sixth variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in the first or second zone of the adsorbers will include a component catalytically active at the operating temperature of that zone for the water gas shift reaction. The catalytically active component may be any water gas shift catalyst, e.g. Cu-ZnO based catalysts. Preferably, the catalytically active component may be metal carbonyl complexes of a transition group metal or a mixture of transition group metals (e.g. Cu, Ag, Ni, Pd, Pt, Rh, Ru, Fe, Mo, etc.) inserted into the zeolite cages of e.g. an X or Y zeolite. A portion of the carbon monoxide sorbed onto the catalytically active component may then react with water vapor by the water gas shift reaction to generate carbon dioxide and additional hydrogen.

In a seventh variant configured to deliver at least partially purified hydrogen with CO nearly completely removed, the adsorbent in the first zone of the adsorbers is an adsorbent selective at the elevated operating temperature of the first zone for carbon dioxide in preference to water vapor. Suitable such adsorbents known in the art include alumina impregnated with potassium carbonate, and hydrotalcite promoted with potassium carbonate. The adsorbent in the second zone of the adsorbers will include a component catalytically active at the operating temperature of that zone for the water gas shift reaction and if desired a steam reforming reaction. As in the sixth variant above, the catalytically active component in the second zone may be a known water gas shift catalyst, or may be a transition group metal dispersed in zeolite cages and reversibly forming a metal carbonyl complex at the operating temperature of the second zone. The second or preferably third zone of the adsorbers contains adsorbent with some useful working capacity for carbon monoxide and other impurity components at the operating temperature of that zone. The third zone of the adsorbers preferably contains an adsorbent with useful working capacity for water vapor at the operating temperature of that zone. Because carbon dioxide is strongly adsorbed in the first zone, the concentration of carbon dioxide in the second zone is maintained at a reduced level by the PSA process, while water vapor concentration remains relatively high in the second zone. Hence, in this seventh variant the water gas shift reaction equilibrium is continually shifted by the PSA process which continually removes both hydrogen and carbon dioxide from the catalytically active second zone while preventing passage of carbon monoxide into the hydrogen product passing the third zone, so that essentially all carbon monoxide is consumed to generate carbon dioxide and additional hydrogen. The water gas shift reaction is thus driven substantially to completion, while achieving adequate purification of the hydrogen.

The water gas shift reaction is exothermic, and consequently heat should be removed from the reactive second zone of the adsorbers in which the catalyst is contained. As disclosed in pending patent application PCT publication WO 00/76629, the disclosure of which is incorporated herein by reference, the adsorber housing may be configured as a heat exchanger so that heat may be transferred through the containment walls of the individual adsorbers. Heat may also be removed by allowing the temperature of the second zone to rise above the temperature of the first ends of the adsorbers so that heat is removed by the carbon dioxide product of reaction and by axial conduction through the preferably metallic support of the adsorbent laminate, and/or by allowing the temperature of the second zone to rise above the temperature of the second ends of the adsorbers so that heat is removed by the hydrogen product as sensible heat and by axial conduction through the preferably metallic support of the adsorbent laminate.

The above described seventh variant may be readily adapted for the important application of steam reforming methanol. The adsorbent in the first zone may be promoted hydrotalcite, which preferentially adsorbs carbon dioxide. The catalyst in the second zone may be any catalyst active for the methanol steam reforming and water gas shift reactions, e.g. Cu-ZnO or a noble metal catalyst. The adsorbent in the third zone is selective for water and methanol vapor. Consequently, the concentration of carbon dioxide is depressed, while the concentrations of steam and methanol vapor are elevated, over the second zone so as to shift the reaction equilibria for high conversion of methanol and removal of carbon monoxide by water gas shift. At a given temperature, the reaction rate will be enhanced compared to the same catalyst in a conventional reactor.

The vapor phase steam reforming reaction is endothermic, and consequently heat must be provided to the reactive second zone of the adsorbers in which the catalyst is contained. As disclosed in our pending patent application PCT publication WO 00/76629, the disclosure of which is incorporated herein by reference thereto, the adsorber housing may be configured as a heat exchanger so that heat may be transferred through the containment walls of the individual adsorbers. Heat may also be supplied by allowing the temperature of the second zone to fall below the temperature of the first ends of the adsorbers so that heat is delivered to the second zone as sensible heat of the reactants and also by axial conduction through the preferably metallic support of the adsorbent laminate from the first end of the adsorbers.

FIG. 3 shows the porting of rotor 4 in the first and second valve faces respectively in the planes defined by arrows 14-15', and 16-17'. An adsorber port 30 provides fluid communication directly from the first or second end of each adsorber to respectively the first or second valve face.

FIGS. 4A and 4B show the first stator valve face 100 of the first stator 8 in the first valve face 10, in the plane defined by arrows 14-15. Fluid connections are shown to a feed compressor 101 inducting feed gas through inlet filter 102, and to an exhauster 103 delivering second product to a second product delivery conduit 104. Compressor 101 and exhauster 103 are shown coupled to a drive motor 105.

Arrow 20 indicates the direction of rotation by the adsorber rotor. In the annular valve face between circumferential seals 106 and 107, the open area of first stator valve face 100 ported to the feed and exhaust compartments is indicated by clear angular segments 111-116 corresponding to the first functional ports communicating directly to functional compartments identified by the same reference numerals 111-116. The substantially closed area of valve face 100 between functional compartments is indicated by hatched sectors 118 and 119 which are slippers with zero clearance, or preferably a narrow clearance to reduce friction and wear without excessive leakage. Typical closed sector 118 provides a transition for an adsorber, between being open to compartment 114 and open to compartment 115. Gradual opening is provided by a tapering clearance channel between the slipper and the sealing face, so as to achieve gentle pressure equalization of an adsorber being opened to a new compartment. Much wider closed sectors (e.g. 119) are provided to substantially close flow to or from one end of the adsorbers when pressurization or blowdown is being performed from the other end.

The feed compressor provides feed gas to feed pressurization compartments 111 and 112, and to feed production compartment 113. Compartments 111 and 112 have successively increasing working pressures, while compartment 113 is at the higher working pressure of the PSA cycle. Compressor 101 may thus be a multistage or split stream compressor system delivering the appropriate volume of feed flow to each compartment so as to achieve the pressurization of adsorbers through the intermediate pressure levels of compartments 111 and 112, and then the final 20 pressurization and production through compartment 113. A split stream compressor system may be provided in series as a multistage compressor with interstage delivery ports; or as a plurality of compressors or compression cylinders in parallel, each delivering feed air to the working pressure of a compartment 111 to 113. Alternatively, compressor 101 may deliver all the feed gas to the higher pressure, with throttling of some of that gas to 111 and 112 at their respective intermediate pressures.

25 Similarly, exhauster 103 exhausts heavy product gas from countercurrent blowdown compartments 114 and 115 at the successively decreasing working pressures of those compartments, and finally from exhaust compartment 116, which is at the lower pressure of the cycle. Similarly to compressor 101, exhauster 103 may be provided as a multistage or split stream machine, with stages in series or in parallel to accept each flow at the appropriate intermediate pressure descending to the lower pressure.

In the example embodiment of FIG. 4A, the lower pressure is ambient pressure, so exhaust compartment 116 communicates directly to heavy product delivery conduit 104. Exhauster 103 thus is an expander which provides pressure letdown with energy recovery to assist motor 105 from the countercurrent blowdown compartments 114 and 115. For simplicity, exhauster 103 may be 30 replaced by throttling orifices as countercurrent blowdown pressure letdown means from compartments 114 and 115.

In some embodiments, the lower pressure of the PSA cycle is subatmospheric. Exhauster

103 is then provided as a vacuum pump, as shown in FIG. 4B. Again, the vacuum pump may be multistage or split stream, with separate stages in series or in parallel, to accept countercurrent blowdown streams exiting their compartments at working pressures greater than the lower pressure which is the deepest vacuum pressure. In FIG. 4B, the early countercurrent blowdown stream from compartment 114 is released at ambient pressure directly to heavy product delivery conduit 104. If, for simplicity, a single stage vacuum pump were used, the countercurrent blowdown stream from compartment 115 is throttled down to the lower pressure over an orifice to join the stream from compartment 116 at the inlet of the vacuum pump.

If the feed gas is provided at an elevated pressure at least equal to the higher pressure of the PSA cycle, as may conveniently be the case of a hydrogen PSA operating with e.g. methanol reformate feed, compressor 101 would be eliminated. To reduce energy losses from irreversible throttling over orifices to supply feed pressurization compartments e.g. 111, the number of feed pressurization stages may be reduced, so that adsorber repressurization is largely achieved by product pressurization, by backfill from light reflux steps. Alternatively, compressor 101 may be replaced in part by an expander which expands feed gas to a feed pressurization compartment, e.g. 111, from the feed supply pressure of the higher pressure to the intermediate pressure of that compartment, so as to recover energy for driving a vacuum pump 103, which reduces the lower pressure below ambient pressure so as to enhance the PSA process performance.

FIGS. 5A and 5B show the second stator valve face, at section 16'-17' of FIG. 1. Open ports of the valve face are second valve function ports communicating directly to a light product delivery compartment 121; a number of light reflux exit compartments 122, 123, 124 and 125; and the same number of light reflux return compartments 126, 127, 128 and 129 within the second stator. The second valve function ports are in the annular ring defined by circumferential seals 131 and 132. Each pair of light reflux exit and return compartments provides a stage of light reflux pressure letdown, respectively for the PSA process functions of supply to backfill, full or partial pressure equalization, and concurrent blowdown to purge.

Illustrating the option of light reflux pressure letdown with energy recovery, a split stream light reflux expander 140 is shown in FIGS. 1 and 5A to provide pressure let-down of four light reflux stages with energy recovery. Light reflux expander 140 provides pressure let-down for each of four light reflux stages, respectively between light reflux exit and return compartments 122 and 129, 123 and 128, 124 and 127, and 125 and 126 as illustrated. The light reflux expander 140 may power a light product booster compressor 145 by drive shaft 146, which delivers the oxygen enriched light product to oxygen delivery conduit 147 compressed to a delivery pressure above the higher pressure of the PSA cycle.

Since the light reflux and light product have approximately the same purity, expander 140 and light product compressor 145 may be hermetically enclosed in a single housing, which may be conveniently integrated with the second stator as shown in FIG. 1. This configuration of a

"turbocompressor" light product booster without a separate drive motor is advantageous, as a useful pressure boost of the light product can be achieved without an external motor and corresponding shaft seals, and can also be very compact when designed to operate at very high shaft speeds.

FIG. 5B shows the simpler alternative of using a throttle orifice 150 as the pressure letdown means for each of the light reflux stages.

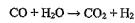
Turning back to FIG. 1, compressed feed gas is supplied to compartment 113 as indicated by arrow 125, while heavy product is exhausted from compartment 117 as indicated by arrow 126. The rotor is supported by bearing 160 with shaft seal 161 on rotor drive shaft 162 in the first stator 8, which is integrally assembled with the first and second valve stators. The adsorber rotor is driven by motor 163 as rotor drive means.

As leakage across outer circumferential seal 131 on the second valve face 11 may compromise light product purity, and more importantly may allow ingress of humidity into the second ends of the adsorbers which could deactivate the nitrogen-selective or CO-selective adsorbent, a buffer seal 170 may be included to provide more positive sealing of buffer chamber 171 between seals 131 and 171. Even though the working pressure in some zones of the second valve face may be subatmospheric (in the case that a vacuum pump is used as exhauster 103), buffer chamber is filled with dry light product gas at a buffer pressure positively above ambient pressure. Hence, minor leakage of light product outward may take place, but humid feed gas may not leak into the buffer chamber. In order to further minimize leakage and to reduce seal frictional torque, buffer seal 171 seals on a sealing face 172 at a much smaller diameter than the diameter of circumferential seal 131. Buffer seal 170 seals between a rotor extension 175 of adsorber rotor 4 and the sealing face 172 on the second valve stator 9, with rotor extension 175 enveloping the rear portion of second valve stator 9 to form buffer chamber 171. A stator housing member 180 is provided as structural connection between first valve stator 8 and second valve stator 9. Direct porting of adsorbers to the stator face is an alternative to providing such seals and is described in commonly-owned, co-pending U.S.

Provisional Application No. 60/301,723, filed June 28, 2001, and incorporated herein by reference.


In the following system figures of this disclosure, simplified diagrams will represent a PSA apparatus or module. These highly simplified diagrams will indicate just a single feed conduit 181 to, and a single heavy product conduit 182 from, the first valve face 10; and the light product delivery conduit 147 and a single representative light reflux stage 184 with pressure let-down means communicating to the second valve face 11. Reference numerals pertaining to PSA units as described above will be unprimed for an oxygen enrichment PSA or VPSA unit, and primed for a hydrogen purification PSA or VPSA unit. Any type of gas separation device could be substituted for the PSA, including other types of adsorption modules or gas membrane separation systems, although rotary PSA systems currently are deemed preferred systems. The disclosed systems and processes also could be used with fuel cell types other than PEM fuel cells.

FIG. 6


FIG. 6 shows a fuel cell power plant 200 comprising a fuel cell 202, a steam reforming fuel processor 204, a hydrogen purification PSA system 205, and an oxygen enrichment VPSA system 206. Fuel cell 202 comprise an anode channel 208 including an anode gas inlet 210 and an anode gas outlet 212, a cathode channel 214 including a cathode gas inlet 216 and a cathode gas outlet 218, and a PEM electrolyte membrane 220. Membrane 220 cooperates with the anode channel 208 and the cathode channel 214 to facilitate ion exchange between the anode channel 208 and the cathode channel 214.

The oxygen VPSA system 206 extracts oxygen gas from feed air, and typically comprises a PSA rotary module 1 and a compressor 101 for delivering pressurized feed air to the feed compartments of the rotary module 1. The oxygen VPSA system 206 includes a vacuum pump 103 coupled to the compressor 101 for withdrawing nitrogen enriched gas as heavy product gas from the blowdown and exhaust compartments of the rotary module 1, and discharging the nitrogen enriched gas from conduit 225. The adsorbers 3 of rotary module 1 have a first zone 26 loaded with a suitable desiccant such as alumina gel for substantially removing water vapor, and a second zone 27 loaded with a zeolite, generally nitrogen-selective zeolite. Dry oxygen enriched air as the light product gas of VPSA module 1 is delivered by conduit 147 to water management chamber 230 for humidification, and thence by conduit 231 to cathode inlet 216. A portion of the oxygen reacts with hydrogen ions when electric current is generated, to form water in the cathode. The cathode exhaust gas now containing a reduced amount of oxygen (but still typically oxygen-enriched well above ambient air composition) is withdrawn from cathode exit 218 by conduit 232. A portion of the cathode exhaust gas is removed from conduit 232 by conduit 233 and flow control valve 234, and may either be vented to atmosphere for purging nitrogen and argon accumulations, or else returned to the first valve face 10 of PSA module 1 as a feed pressurization stream at an intermediate pressure below the higher pressure of the PSA cycle. The remaining cathode exhaust gas is supplied to suction port 240 of an ejector 242, which serves as cathode gas recirculation means. Ejector 242 receives enriched oxygen from conduit 147 through nozzle 244, which drives recirculation of cathode exhaust gas from suction port 240, mixes the enriched oxygen and recirculating cathode exhaust gas before pressure recovery in diffuser 246 and delivers the combined oxygen enriched gas stream to water management chamber 230 where excess water is condensed. The excess water is either exhausted through valve 250, or else is delivered as water reactant to fuel processor 204 by water pump 252 through conduit 254.

A hydrocarbon fuel, supplied to the fuel processor 204 by a feed pump or compressor 260, is combined with water from conduit 254, and is vaporized and preheated in heat exchanger 262. The preheated stream of fuel and steam is then admitted to steam reforming catalytic chamber 264, which is heated by burner 266 whose flue gas heats the heat exchanger 262. In the example that the fuel is methane, the following steam reforming reactions take place:

The resulting reformat or "syngas" (dry composition approximately 70% H₂ with roughly equal amounts of CO and CO₂ as major impurities, and unreacted CH₄ and N₂ as minor impurities) is cooled to about 250°C, and then passed to the water gas shift reaction zone 268 for reacting most of the CO with steam to produce more H₂ and CO₂:

The hydrogen rich reformat still contains about 1% to 2% CO after water gas shift, along with substantial amounts of carbon dioxide and water vapor. For high performance and longevity of a PEM fuel cell, its CO concentration should be reduced well below 100 ppm and preferably below 10 ppm. Consequently, the impure reformat is admitted by conduit 270 to the higher pressure feed port of hydrogen PSA unit 205, including rotary PSA module 1'. Adsorbers 3' of rotary module 1' have a first zone 26' loaded with a suitable desiccant, such as alumina gel, for substantial removal of water vapor, a second zone 27' loaded with an adsorbent selective for CO removal, and at least partial bulk removal of CO₂, and a third zone 28' loaded with an adsorbent suitable for further removal of CO and at least partial removal of other impurities, such as N₂. There can be numerous combinations and variations of suitable adsorbents for the three zones of the hydrogen PSA adsorbers, as already recited above. These zones may be discrete, may have diffused boundaries, or in some embodiments the materials selected for each zone may be homogeneously mixed.

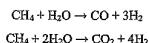
Purified hydrogen light product from the hydrogen PSA module 1' is delivered by conduit 147' to an ejector 242' which is a recirculation means for partial recirculation of hydrogen rich anode gas through fuel cell anode channel 208. The hydrogen rich gas from ejector 242' is delivered to anode inlet 210, passed through anode channel 208, and then exhausted from anode exit 212 in part back to the suction inlet of ejector 242'. Recirculation of anode gas through the ejector 242' is optional, so this ejector may be omitted. The remaining portion of the anode exhaust gas (or all of it in the case that ejector 242' is omitted) is conveyed by conduit 280 back to a feed pressurization port in the first valve surface 10' of hydrogen PSA module 1', so as to retain hydrogen within the system while using the hydrogen PSA unit to reject impurities from the anode gas loop. A larger fraction of anode gas is recycled in this manner back to the PSA unit when adsorbent and PSA process combinations are selected that remove CO almost completely while allowing some passage of other impurities such as N₂ and perhaps some CO₂. Conversely, only a small amount of anode exhaust gas is recycled back to the PSA to prevent inadvertent impurity accumulations, when the adsorbents and PSA cycle are designed to achieve high purity hydrogen with nearly complete removal of CO and other impurities as well.

Exhaust second product gas from the hydrogen PSA module 1' is exhausted from valve face 10' by conduit 285 to burner 266.

It will be understood by those of ordinary skill in the art that the hydrogen PSA unit of this invention, with the above specified combinations and variations of adsorbents in the sequential zones of the adsorbers, may be applied in conjunction with alternative fuel processors, including partial oxidation or autothermal reactors for processing of heavy as well as light hydrocarbon fuels to generate hydrogen rich reformate, from which CO and other impurities must be removed.

FIGS. 7-9

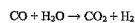
FIGS. 7-9 show a fuel cell power plant 200 that includes a fuel cell 202, a steam reforming fuel processor 204, a hydrogen purification PSA system 205, and an oxygen enrichment PSA or VPSA system 206. Fuel cell 202 comprises an anode channel 208 including an anode gas inlet 210 and an anode gas outlet 212, a cathode channel 214 including a cathode gas inlet 216 and a cathode gas outlet 218, and a PEM electrolyte membrane 220. Membrane 220 cooperates with the anode channel 208 and the cathode channel 214 to facilitate ion exchange between the anode channel 208 and the cathode channel 214.


The oxygen PSA or VPSA system 206 extracts oxygen gas from feed air, and comprises a PSA module 1, typically a rotary module 1, and a compressor 101 for delivering pressurized feed air to the feed compartments of the rotary module 1. Nitrogen enriched gas as heavy product gas from the blowdown and exhaust compartments of the rotary module 1 is withdrawn by conduit 182, either for discharge directly by atmosphere as in FIG. 7 or to a vacuum pump 103 for discharge as in FIG. 8. The adsorbers 3 of rotary module 1 have a first zone 26 loaded with a suitable desiccant, such as alumina gel, for substantial removal of water vapor, and a second zone 27 loaded with a nitrogen-selective zeolite. Dry oxygen enriched air as the light product gas of VPSA module 1 is delivered by conduit 147 to humidification chamber 230 and thence by conduit 231 to cathode inlet 216. A portion of the oxygen reacts with hydrogen ions when electric current is generated, to form water in the cathode. The cathode exhaust gas now containing a reduced amount of oxygen (but still typically oxygen-enriched well above ambient air composition) plus water is withdrawn from cathode exit 218 by conduit 232 to separator 233.

In FIGS. 7 and 8, a portion of the humid cathode exhaust gas (or water condensate) is removed from separator 233 by conduit 234, which transfers water and any recycle oxygen back to humidification chamber 230 for recirculation through cathode channel 214. Any oxygen recirculation through conduit 234 must be driven by appropriate recirculation pressure boost means, such as a blower or an ejector.

If fuel processor 204 in FIGS. 7 and 8 is a partial oxidation or autothermal reformer, the remaining oxygen (plus any accumulated argon and nitrogen) and the fuel cell product water are delivered from separator 233 by conduit 235 to the fuel processor 204. This delivery of cathode exhaust to the reformer provides enriched oxygen to assist the partial oxidation or autothermal reforming process, together with water product of the fuel cell as vapor and condensate, and also

carries some fuel cell waste heat to assist in cooling the fuel cell stack while preheating reactants to the reformer. If fuel processor 204 in FIGS. 7 and 8 is a steam reforming reactor, the fuel cell product water condensate is delivered from separator 233 by conduit 235 to the fuel processor 204. In that event, accumulations of argon and nitrogen in the cathode channel 214 can be recycled from separator 233 back to the oxygen PSA unit 1 as shown in FIG. 9 by conduit 236 to the first valve face 10 of PSA module 1 as a feed pressurization stream at an intermediate pressure below the higher pressure of the PSA cycle, or else purged to atmosphere.


5 A hydrocarbon fuel is supplied to the fuel processor 204 by a feed pump or compressor 260, combined with water from conduit 235, and vaporized and preheated in heat exchanger 262. The
10 preheated stream of fuel and steam is then admitted to reforming catalytic chamber 264. In the example that the fuel is methane, the following steam reforming reactions take place,

in addition to partial combustion in the case of an autothermal reformer:

15 $\text{CH}_4 + 1/2\text{O}_2 \rightarrow \text{CO} + 2\text{H}_2$

The resulting reformate or "syngas" (dry composition approximately 70% H₂ with roughly equal amounts of CO and CO₂ as major impurities, and unreacted CH₄ and N₂ as minor impurities) is cooled to about 250°C, and then passed to the water gas shift reaction zone 268 for reacting most of
20 the CO with steam to produce more H₂ and CO₂:

The hydrogen rich reformate still contains about 1% to 2% CO after water gas shift, along with substantial amounts of carbon dioxide and water vapor. For high performance and longevity of a
25 PEM fuel cell, its CO concentration should be reduced well below 100 ppm and preferably below 10 ppm. Consequently, the impure reformate is admitted by conduit 270 to the higher pressure feed port of hydrogen PSA unit 205, including rotary PSA module 1'. As described above, the adsorbers 3' of rotary module 1' have a first zone 26' loaded with a suitable desiccant, such as alumina gel, for substantial removal of water vapor, a second zone 27' loaded with an adsorbent selective for CO
30 removal, and at least partial bulk removal of CO₂, and a third zone 28' loaded with an adsorbent suitable for further removal of residual CO and at least partial removal of other impurities, such as N₂.

Purified hydrogen light product from the hydrogen PSA module 1' is delivered by conduit
147' to anode inlet 210, passed through anode channel 208, and then exhausted from anode exit 217
back to a feed pressurization compartment in the first valve surface 10' of hydrogen PSA module 1'.
35 This system retains hydrogen within the fuel cell anode loop, including conduits 147' and 280, and anode channel 208, while using the hydrogen PSA unit 1' to reject impurities that otherwise would accumulate on the anode 208.

Exhaust second product gas from the hydrogen PSA module 1' contains water vapor, CO₂, and combustible values including H₂, CO and any unreacted fuel from the reformer. This gas is exhausted from valve face 10' by conduit 285 to low pressure burner 290, where this fuel is oxidized completely, possibly over a suitable catalyst to ensure stable combustion of this low BTU gas and to suppress NO_x formation. Burner 290 delivers hot products of combustion to heat exchange channel 292, which is in countercurrent thermal contact for heat recovery to reformer reactor zone 264 and preheater zone 262. After cooling in channel 292 and further cooling in heat exchanger 296, the flue gas from burner 290 is discharged to atmosphere by exhaust conduit 294.

The hydrogen PSA module purifies the hydrogen so as to remove essentially all contaminants deleterious to the fuel cell anode, including unreacted fuel components such as methanol, as well as incompletely reacted fuel components such as CO, and also other contaminants such as hydrogen sulphide and halogens that might originate with fuels such as landfill gas. The heating value of all such fuel byproduct impurities in the hydrogen is recovered by combustion of the PSA tail gas, to heat the fuel processor and/or an auxiliary thermal engine cycle powering auxiliary compression loads and possibly other mechanical loads. As methanol is harmful to PEM fuel cells, prior art methanol reformers for PEM fuel cells have been designed to achieve very high conversion to minimize methanol slip into the hydrogen-rich reformate gas, hence requiring a large catalyst inventory in a correspondingly large reactor vessel. The presently disclosed processes and systems allow methanol reformers to operate with relatively greater slip of methanol into the reformate gas (syngas), as that gas will be purified by the hydrogen PSA module to remove the methanol impurity from the hydrogen and deliver it to the hydrogen PSA tail gas for recovery of its heating value by useful combustion. Hence, a methanol reformer can advantageously be designed to operate at less than necessary conversion of methanol, thus reducing the required methanol reforming catalyst inventory and reactor vessel size.

Fuel processor 204 is also thermally integrated with a high pressure burner 300, to which a portion of the fuel from fuel pump 260 may be introduced by conduit 301. Compressed air is supplied to burner 300 from feed compressor 101 through conduit 302, heat exchanger 296 (for recuperative heat exchange from exhaust flue gas) and heat exchange channel 304, which is in countercurrent thermal contact for heat recovery from water gas shift reaction zone 268 and reformer reactor zone 264 if the reforming reaction includes partial oxidation for net exothermicity. Hot products of combustion [including nitrogen and unreacted oxygen] from combustion chamber 300 are conveyed by conduit 310 to expander turbine 315, coupled by shaft 316 to compressor 101. The combination of compressor 101 and expander 315 are shown as a free rotor turbocompressor 320, similar to an automotive turbocharger. Alternatively a drive motor or a generator may be coupled to shaft 316, for starting, power assist, or net energy delivery. In FIGS. 7 and 8, a blower 330 driven by motor 332 is provided to boost the inlet pressure to compressor 101, if desired to assist the compression of feed air in normal operation, but typically only as a starting device to initiate rotation

of turbocompressor 320, in which case bypass valve 334 is opened during normal operation after starting.

5 The still hot gas discharged by expander 315 is discharged by conduit 336 to low pressure burner 290, providing heat and oxygen to support catalytic combustion therein. Supplemental air or oxygen may be provided to low pressure burner 290 if required during starting or any phase of normal operation.

10 While FIG. 7 shows an embodiment whose lower working pressure is atmospheric, FIG. 8 shows an embodiment with vacuum applied to the oxygen and hydrogen PSA units to improve their performance, perhaps to enable a reduced working pressure of the fuel cell. Of course, separate vacuum pumps could be provided for each of the oxygen and hydrogen PSA units. Vacuum pump 338 receives the second product exhaust gases at subatmospheric pressure from both the oxygen PSA 1 and the hydrogen PSA 1' by respectively conduits 182 and 182', and delivers the combined stream to the catalytic low pressure burner 290 by conduit 285. Vacuum pump 338 is provided as a turbocompressor 340 with expander 345 driving pump 338 through shaft 346. Expander 345 is arranged in parallel or series with expander 315 to expand hot gas delivered by conduit 310 from high pressure burner 300.

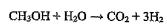
15 The combustion turbine embodiments for powering auxiliary compression machinery have the important advantage of using readily available and low cost turbocharger equipment. FIG. 9 shows an alternative embodiment using a rotary internal combustion engine 400 to power the compressor 101 and optional vacuum pump 103 of the oxygen PSA 206 by shaft coupling 405, while itself providing vacuum suction if desired for the hydrogen PSA 205. The engine 400 may also power any other compressors or vacuum pumps that may be provided for the hydrogen PSA 205 as well as any auxiliary devices such as an electric generator. Engine 400 is fuelled, at least in part, by hydrogen PSA tail gas, and has a starter motor 410 (or supplemental power output generator 410).

20 Engine 400 may be any type of combustion engine such as an internal combustion engine or a combustion-enhanced turbocharger, but is here shown as a Wankel engine. Working chambers 412 are defined between rotor 414 and casing 415. The rotor is coupled to drive shaft 405 by internal gear 416. An intake port 421, exhaust port 422 and spark plugs 423 are provided in casing 415. A water cooling jacket 425 is provided. The engine has an air filter 426 delivering air to carburetor 427, and to intake port 421. The carburetor mixes the air with hydrogen PSA exhaust gas delivered by exhaust conduit 182' to carburetor 427.

25 FIG. 9 shows details of an illustrative water management system. Product water of fuel cell 202 is captured in separator 233 that includes a cooling coil 430, and is delivered to liquid water manifold 432. A portion of the water may be delivered from manifold 432 to pump 435, and thence by flow control 436 to the oxygen humidification chamber 230 and by flow control 437 to engine cooling jacket 425. Hot water from the engine cooling jacket is flash evaporated and delivered 30 through depressurization orifice 485 and conduit 486 to methanol reforming reactor catalyst zone

264, which in turn is in heat exchange contact with the engine exhaust in channel 440. Engine exhaust is delivered from exhaust port 422 via conduit 442 to channel 440 for exhaust heat recovery to the endothermic methanol vapor phase reforming reaction in reactor zone 264, and then through emission control after-treatment catalyst 443 and exhaust pipe 444 to atmosphere.

5 Reformate hydrogen is delivered from reactor zone 264 by conduit 450 to feed hydrogen PSA unit 205. A portion of the reformate may be diverted to carburetor 427 from conduit 450 by flow control 452 as supplemental fuel for engine 400.


10 A portion of the water condensate from separator 233 may be delivered via conduit 434 by pump 460 to liquid fuel mixing chamber 465, which also receives liquid methanol fuel delivered by fuel pump 260. The flow rates of pumps 260 and 460 are adjusted to achieve a desired concentration ratio of the water/methanol mixture exiting the mixing chamber 465 by conduit 466 delivering this mixture as fuel cell stack coolant circulated through cooling passage 468 through the fuel cell stack 202. The coolant pressure is maintained high enough to maintain it in the liquid phase within the cooling passage. The methanol present in the mixture may provide useful antifreeze properties to the 15 coolant mixture. A portion of the water/methanol mixture coolant exiting cooling passage 468 is flash evaporated in separator 474 by depressurization valve 475 to approximately the working pressure of reforming reactor zone 264, and the resulting vapor mixture is delivered by conduit 480 to the reforming reactor catalytic zone 264. The balance of the water/methanol mixture coolant is 20 repressurized and recirculated by pump 470 through cooling radiator 471 to reject fuel cell stack heat that has not been recovered to vaporize the water and methanol reactants. Alternatively, a water/methanol mixture could be delivered to the engine cooling jacket 425, vaporized, and then delivered to a reforming reactor.

25 If desired, the recovered water from the fuel cell could be delivered to only the cooling passage 468 or engine cooling jacket 425. Alternatively, water from an outside source could be delivered to cooling passage 468 and mixed with hydrocarbon fuel or water from an outside source could be delivered to the engine cooling jacket 425.

30 Alternatively, the embodiment of FIG. 9 may be adapted so that steam reforming of methanol vapor is conducted in the hydrogen PSA unit 205. The methanol reforming reaction zone as described above may be removed from channel 264 to the second zone 27' of the hydrogen PSA unit 205. Channel 264 being heated by engine exhaust in channel 440 is used only to preheat the reactant mixture of methanol vapor and steam. In the hydrogen PSA unit 205, first zone 26' contains an adsorbent selective for carbon dioxide in the presence of steam and methanol vapor, e.g. promoted hydrotalcite at a working temperature of the first zone at about 300° to 450°C. Second zone 27' 35 contains the methanol reforming catalyst, e.g. Cu-ZnO, which is also active for water gas shift, at a working temperature of about 150° to 300°C. The third zone 28' contains an adsorbent selective for steam and methanol vapor, e.g. alumina, 13X or a hydrophobic zeolite such as Y zeolite or silicalite, at a working temperature of about 150° to 80°C. A hydrophobic adsorbent can be more selective for

methanol vapor than water vapour, thus ensuring that a sufficiently high steam/methanol ratio is maintained throughout the reaction zone, and also perhaps allowing some slip of water to humidify the hydrogen product.

Accordingly, essentially 100% conversion and selectivity (equivalent to substantially complete removal of CO) are achieved in the reaction of steam methanol reforming:

The systems shown in FIGS. 6-9 are only examples and other systems with difference arrangements of devices and conduits, or with additional or fewer devices and conduits could also be used.

10

WE CLAIM:

1. A process for providing a hydrogen-containing gas stream to at least one fuel cell anode, comprising:
 - 5 providing a hydrogen-containing feed gas stream that includes at least one contaminant;
 - introducing the hydrogen-containing feed gas stream into an adsorption module having at least a first adsorbent and at least one second material selected from a second adsorbent, a steam reforming catalyst, and a water gas shift reaction catalyst, wherein the first adsorbent and the second adsorbent are chemically distinct and at least one of the first adsorbent or the second adsorbent 10 preferentially adsorbs the contaminant in the hydrogen-containing feed gas stream to produce a purified hydrogen-containing gas stream; and
 - introducing the purified hydrogen-containing gas stream to the fuel cell anode.
2. The process according to claim 2, wherein the contaminant is carbon monoxide and 15 at least one of the first adsorbent or second adsorbent comprises a carbon monoxide-selective adsorbent.
3. The process according to claim 2, wherein the carbon monoxide-selective adsorbent is selected from Na-LSX, Ca-LSX, Li-LSX, Li-exchanged chabazite, Ca-exchanged chabazite, Sr-exchanged chabazite, a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.
4. The process according to claim 1, further comprising introducing the hydrogen-containing feed gas stream into the adsorption module at a temperature of about 80°C to about 200°C.
- 25 5. The process according to claim 1, further comprising at least one additional adsorbent.
6. The process according to claim 1, wherein the adsorption module comprises a rotary pressure swing adsorption module.
- 30 7. The process according to claim 1, wherein the fuel cell comprises a polymer electrolyte membrane fuel cell.
8. The process according to claim 1, further comprising providing a reforming or 35 partial oxidation system that produces the hydrogen-containing feed gas stream.

9. The process according to claim 2, wherein the carbon monoxide-selective adsorbent is selected from a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

10. The process according to claim 1, wherein the first adsorbent preferentially adsorbs 5 carbon dioxide compared to water vapor.

11. The process according to claim 1, wherein the first adsorbent comprises an alkali-promoted material and at least one of the steam reforming catalyst and the water gas shift reaction catalyst is present.

12. The process according to claim 11, wherein the steam reforming catalyst is selected 10 from a methanol steam reforming catalyst or a methane steam reforming catalyst.

13. A process for providing a hydrogen-containing gas stream to at least one fuel cell 15 anode, comprising:

providing a hydrogen-containing feed gas stream that includes at least a first contaminant

and at least a second contaminant;

preferentially separating at least a portion of the first contaminant from the hydrogen-containing feed gas stream in a first separation zone;

20 preferentially separating at least a portion of the second contaminant from the hydrogen-containing feed gas stream in a second separation zone; and

introducing the resulting purified hydrogen-containing gas stream to the fuel cell anode.

14. The process according to claim 13, wherein the first contaminant is water vapor and 25 the second contaminant is at least one carbon oxide.

15. The process according to claim 13, wherein the preferential separation of the first contaminant occurs prior to the preferential separation of the second contaminant.

30 16. The process according to claim 13, wherein the first separation zone comprises a first adsorbent bed and the second separation zone comprises a second adsorption bed.

17. The process according to claim 13, wherein the preferential separation of the first 35 and second contaminants occurs via adsorption.

18. The process according to claim 13, wherein the hydrogen-containing feed gas stream is produced by a reforming or partial oxidation system.

19. The process according to claim 13, wherein the fuel cell comprises a polymer electrolyte membrane fuel cell.

5 20. The process according to claim 13, further comprising preferentially separating at least one additional contaminant in at least one additional separation zone.

10 21. The process according to claim 20, wherein water vapor is preferentially separated in the first separation zone, carbon dioxide is preferentially separated in the second separation zone, and carbon monoxide is separated in a third separation zone.

15 22. The process according to claim 21, wherein the first separation zone comprises a desiccant, the second separation zone comprises a zeolite, and the third separation zone comprises a zeolite.

23. The process according to claim 13, wherein the first or second contaminant comprises carbon monoxide and the process further comprises reacting the carbon monoxide with water vapor in the first or second separation zones.

20 24. A process for providing a hydrogen-containing gas stream to at least one fuel cell anode, comprising:
providing a hydrogen-containing feed gas stream that includes at least a first contaminant and at least a second contaminant;
contacting the hydrogen-containing feed gas stream with at least a first adsorbent and at least 25 a second adsorbent under conditions sufficient to separate at least a portion of the first contaminant and at least a portion of the second contaminant from the hydrogen-containing feed gas stream; and introducing the resulting purified hydrogen-containing gas stream to the fuel cell anode.

25 25. A process for separating carbon monoxide from a hydrogen-containing gas stream that is provided to at least one fuel cell anode, comprising:
providing a hydrogen-containing feed gas stream that includes carbon monoxide;
providing at least one rotary pressure swing adsorption module that includes at least one adsorbent selected from Na-LSX, Ca-LSX, Li-LSX, Li-exchanged chabazite, Ca-exchanged chabazite, Sr-exchanged chabazite, a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof;

introducing the hydrogen-containing feed gas stream into the rotary pressure swing module to separate at least a portion of the carbon monoxide from the hydrogen-containing feed gas stream; and

introducing the resulting purified hydrogen-containing gas stream into the fuel cell anode.

5

26. The process according to claim 25, wherein the adsorbent comprises a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

27. A process for providing a hydrogen-containing gas stream to at least one fuel cell anode, comprising:

10 providing a hydrogen-containing gas stream that includes carbon monoxide; introducing the hydrogen-containing gas stream into a pressure swing adsorption module that includes at least one carbon monoxide-selective adsorbent to produce a purified hydrogen-containing gas stream; and

15 introducing the purified hydrogen-containing gas stream to the fuel cell anode.

28. A process according to claim 27, wherein the carbon monoxide-selective adsorbent comprises a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

29. A process for providing a hydrogen-containing gas stream to at least one fuel cell anode, comprising:

20 providing an oxygen-enriched gas stream; providing a mixture of the oxygen-enriched gas stream and a fuel in an autothermal reforming or partial oxidation reactor to produce a hydrogen-containing gas stream that includes at least one carbon oxide contaminant; separating at least a portion of the carbon oxide contaminant from the hydrogen-containing gas stream; and

25 introducing the resulting purified hydrogen-containing gas stream into the fuel cell anode.

30. The process according to claim 29, further comprising providing a pressure swing adsorption module for producing the oxygen-enriched gas stream.

31. An electrical current generating system comprising:

a hydrogen-containing gas source;

35 at least one adsorption module that can at least partially purify the hydrogen-containing gas, wherein the adsorption module includes at least a first adsorbent and at least one second material

selected from a second adsorbent, a steam reforming catalyst, and a water gas shift reaction catalyst, the first adsorbent and the second adsorbent being chemically distinct; and at least one fuel cell defining an anode inlet that can receive the purified hydrogen-containing gas stream from the adsorption module.

5 32. The system according to claim 31, wherein the hydrogen-containing gas source comprises a reformer or partial oxidation reactor.

10 33. The system according to claim 31, wherein the adsorption module comprises a rotary pressure swing adsorption module.

34. The system according to claim 31, wherein the first adsorbent is disposed in a first zone and the second material is disposed in a second zone.

15 35. The system according to claim 34, wherein the first zone and the second zone are disposed adjacently along a hydrogen-containing gas flow path defined in the adsorption module.

20 36. The system according to claim 31, further comprising an anode recirculation conduit fluidly communicating between a fuel cell anode outlet and an inlet defined in the adsorption module.

37. The system according to claim 31, wherein at least one of the first adsorbent or second adsorbent comprises a carbon monoxide-selective adsorbent.

25 38. The system according to claim 37, wherein the carbon monoxide-selective adsorbent is selected from Na-LSX, Ca-LSX, Li-LSX, Li-exchanged chabazite, Ca-exchanged chabazite, Sr-exchanged chabazite, a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

30 39. The system according to claim 31, wherein the steam reforming catalyst or the water gas shift reaction catalyst is selected from a Cu-ZnO catalyst, a transition metal carbonyl complex catalyst, or a catalyst comprising a transition group metal inserted into a zeolite cage.

40. The system according to claim 34, further comprising at least one additional zone of 35 at least one additional adsorbent.

41. The system according to claim 31, wherein the first adsorbent preferentially adsorbs carbon dioxide compared to water vapor and at least one of the steam reforming catalyst or the water gas shift reaction catalyst is present.

5 42. The system according to claim 41, wherein the first adsorbent comprises an alkali-promoted material.

10 43. The system according to claim 31, wherein the carbon monoxide-selective adsorbent is selected from a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

15 45. The system according to claim 40, wherein the first adsorbent comprises a desiccant, the second adsorbent comprises a zeolite, and the additional adsorbent comprises a zeolite.

15 46. The system according to claim 31, wherein at least one of the first adsorbent or second adsorbent comprises a zeolite, an activated charcoal, or a Cu(I)-containing material.

20 47. The system according to claim 32, wherein the reformer or partial oxidation reactor comprises a first burner and a second burner.

25 48. The system according to claim 47, wherein the first burner receives an exhaust gas from the adsorption module and the second burner receives a hydrocarbon fuel.

49. An electrical current generating system comprising:
25 a hydrogen-containing gas source;
at least one pressure swing adsorption module fluidly coupled to the hydrogen-containing gas source, the pressure swing adsorption module including at least one carbon monoxide-selective adsorbent; and
at least one fuel cell anode fluidly coupled to the pressure swing adsorption module.

30 50. The system according to claim 49, wherein the carbon monoxide-selective adsorbent is selected from a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

35 51. A system for supplying hydrogen gas to a fuel cell anode, comprising:
a hydrogen gas generating system that includes an outlet for discharging a hydrogen-containing gas that includes at least a first contaminant and a second contaminant;

a first contaminant separation zone that fluidly communicates with the outlet of the hydrogen gas generating system;

at least one second contaminant separation zone that fluidly communicates with the first contaminant separation zone and includes an outlet for discharging a purified hydrogen gas; and

5 at least one fuel cell anode that fluidly communicates with the outlet for the second contaminant separation zone.

52. The system according to claim 51, wherein the hydrogen gas generating system comprises a reformer or partial oxidation reactor and at least one of the first contaminant or second contaminant comprises a carbon oxide.

10 53. The system according to claim 51, wherein the first contaminant separation zone comprises a first adsorbent and the second contaminant separation zone comprises a second adsorbent.

15 54. The system according to claim 53, wherein the first contaminant separation zone and the second contaminant separation zone are disposed within a rotary pressure swing adsorption module.

20 55. A system for supplying hydrogen gas to a fuel cell anode, comprising:
a hydrogen-containing gas source;
at least one rotary pressure swing adsorption module that can at least partially purify the hydrogen-containing gas, wherein the rotary pressure swing adsorption module includes at least one adsorbent selected from Na-LSX, Ca-LSX, Li-LSX, Li-exchanged chabazite, Ca-exchanged
25 chabazite, Sr-exchanged chabazite, a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof; and
at least one fuel cell having an anode inlet that can receive the purified hydrogen-containing gas stream from the rotary pressure swing adsorption module.

30 56. The system according to claim 55, wherein the adsorbent is selected from a material that includes a Cu(I)-containing material, a Ag(I)-containing material, or a mixture thereof.

57. An electrical current generating system comprising:
35 at least one first pressure swing adsorption module having an outlet for discharging an oxygen-enriched gas stream;
an autothermal reforming or partial oxidation reactor that can combust fuel and the oxygen-enriched gas stream to produce a hydrogen-containing gas;

at least one second pressure swing adsorption module that can at least partially purify the hydrogen-containing gas; and
at least one fuel cell having an anode inlet that can receive the purified hydrogen-containing gas from the second pressure swing adsorption module.

5 58. A process for providing a hydrogen-containing gas stream and an oxygen-enriched gas stream to a fuel cell, comprising:

providing at least one first pressure swing adsorption module that produces an oxygen-enriched gas stream, the first pressure swing adsorption module including at least one device selected
10 from a first compressor or first vacuum pump;

providing at least one second pressure swing adsorption module that produces a purified hydrogen gas stream and a separation exhaust gas stream, the second pressure swing adsorption module including at least one device selected from a second compressor or second vacuum pump;

introducing the oxygen-enriched gas stream and the purified hydrogen gas stream into a fuel
15 cell; and

introducing the separation exhaust gas stream as a fuel into a combustion engine for driving
at least one device selected from the first compressor, first vacuum pump, second compressor, second
vacuum pump, or an electric generator.

20 59. The process according to claim 58, further comprising mixing a portion of the purified hydrogen gas stream with the separation exhaust gas stream as a fuel for the combustion engine.

25 60. The process according to claim 58, wherein the fuel cell produces a cathode exhaust gas stream that includes water and the process further comprises cooling the combustion engine with the water from the cathode exhaust gas stream.

30 61. The process according to claim 60, further comprising vaporizing the coolant water from the combustion engine and introducing the resulting water vapor into a reformer that produces the hydrogen-containing gas feed stream.

62. The process according to claim 58, wherein the combustion engine produces an engine exhaust gas stream and the process further comprises heating a hydrogen gas generating system with the engine exhaust gas stream.

35 63. The process according to claim 58, further comprising:
mixing liquid water and a hydrocarbon fuel stream resulting in a coolant mixture;

introducing the coolant mixture into a coolant jacket juxtaposed with the combustion engine;
vaporizing the coolant mixture to form a steam/fuel vapor mixture;
subjecting the steam/fuel vapor mixture to reaction conditions sufficient for generating a
hydrogen-containing gas stream; and
5 introducing the hydrogen-containing gas stream into the second pressure swing adsorption
module.

64. A process for providing a hydrogen-containing gas stream to a fuel cell;
providing a fuel cell defining a coolant passage and an anode inlet for receiving a hydrogen-
10 containing gas stream;
mixing liquid water and a hydrocarbon fuel stream resulting in a coolant mixture;
introducing the coolant mixture into the coolant passage of the fuel cell;
vaporizing the coolant mixture to form a steam/fuel vapor mixture;
subjecting the steam/fuel vapor mixture to reaction conditions sufficient for generating a
15 hydrogen-containing gas stream; and
introducing the hydrogen-containing gas stream into the fuel cell anode inlet.

65. The process according to claim 64, wherein the hydrocarbon fuel stream comprises
methanol, ethanol, or a mixture thereof.
20

66. The process according to claim 64, wherein the vaporizing of the coolant mixture
comprises flash evaporating of the coolant mixture.

67. The process according to claim 64, further comprising purifying the hydrogen-
25 containing gas stream prior to introducing the hydrogen-containing gas stream into the fuel cell anode
inlet.

68. The process according to claim 67, wherein the purification of the hydrogen-
containing gas stream occurs via pressure swing adsorption.
30

69. The process according to claim 64, wherein the steam/fuel vapor mixture is
subjected to reforming or partial oxidation to generate the hydrogen-containing gas stream.

70. The process according to claim 64, wherein the fuel cell further defines a cathode
35 outlet for discharging a cathode exhaust gas stream that includes cathode water vapor, the process
further comprising condensing at least a portion of the cathode water vapor, separating the resulting

liquid water stream from the cathode exhaust gas stream, and mixing the liquid water stream with the hydrocarbon fuel stream.

71. An electrical current generating system, comprising:
5 at least one hydrogen gas separation module that includes a first outlet for discharging a purified hydrogen gas and a second outlet for discharging a separation exhaust gas;
at least one fuel cell defining an anode inlet that fluidly communicates with the first outlet of the hydrogen gas separation module; and
a combustion engine defining a fuel inlet that fluidly communicates with the second outlet of
10 the hydrogen gas separation module.

72. The system according to claim 71, wherein the hydrogen gas separation module comprises a pressure swing adsorption module.

15 73. The system according to claim 72, wherein the hydrogen gas separation module comprises a rotary pressure swing adsorption module.

20 74. The system according to claim 71, further comprising at least one first pressure swing adsorption module that includes an outlet for discharging an oxygen-enriched gas stream and at least one compressor or pump, wherein a shaft coupled to the combustion engine drives at least the compressor or pump.

25 75. The system according to claim 71, wherein the fuel cell further defines a cathode outlet for discharging a cathode exhaust gas stream that includes water, the combustion engine further includes a cooling jacket, and the system further comprises a conduit fluidly communicating between the fuel cell cathode outlet and the combustion engine cooling jacket.

30 76. The system according to claim 71, further comprising a hydrogen gas generating system that fluidly communicates with the hydrogen gas separation module, wherein the hydrogen gas generating system comprises a reformer or partial oxidation reactor and the combustion engine further includes a cooling jacket that defines an outlet for a water stream that fluidly communicates with the reformer or partial oxidation reactor.

35 77. The system according to claim 71, wherein the fuel cell comprises a polymer electrolyte membrane fuel cell.

78. An electrical current generating system, comprising:

a fuel cell defining an anode inlet for receiving a hydrogen-containing gas stream, and a coolant passage having a coolant inlet and a coolant outlet;

5 a water source fluidly communicating the coolant inlet;

a hydrocarbon fuel source fluidly communicating with the coolant inlet;

5 a hydrogen gas generating module that includes an outlet for discharging a hydrogen-containing gas stream and a fuel inlet that fluidly communicates with the coolant outlet; and

10 a first conduit fluidly communicating between the hydrogen gas generating module outlet and the fuel cell anode inlet.

10 79. The system according to claim 78, wherein the hydrocarbon fuel comprises methanol, ethanol, or a mixture thereof.

15 80. The system according to claim 78, further comprising a first pressure swing adsorption module for purifying the hydrogen-containing gas stream prior to introduction of the hydrogen-containing gas stream into the fuel cell anode inlet.

15 81. The system according to claim 80, wherein the pressure swing adsorption module comprises a rotary pressure swing adsorption module.

20 82. The system according to claim 78, further comprising a pressure swing adsorption module that includes an outlet for discharging an oxygen-enriched stream, and a third conduit fluidly communicating between the pressure swing adsorption module outlet and a fuel cell cathode inlet.

25 83. The system according to claim 82, wherein the pressure swing adsorption module comprises a rotary pressure swing adsorption module.

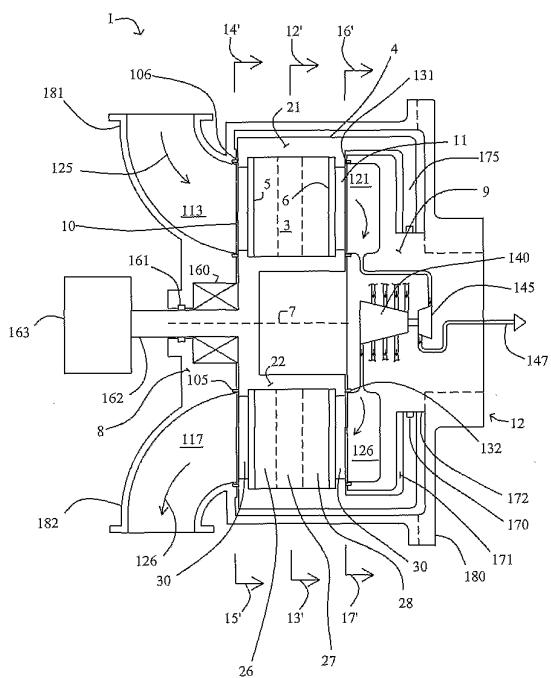
25 84. The system according to claim 82, wherein the first pressure swing adsorption module includes an outlet for discharging a purification exhaust gas, and the system further comprises a second pressure swing adsorption module that includes a first outlet for discharging an oxygen-enriched stream and a second outlet for discharging an enrichment exhaust gas, and a third conduit fluidly communicating between the purification exhaust gas outlet, the enrichment exhaust gas outlet, and at least one burner for the hydrogen gas generating module.

30 85. The system according to claim 78, further comprising a separator fluidly communicating with the first conduit for separating water from the cathode exhaust gas stream.

35 86. The system according to claim 78, wherein the fuel cell further defines a cathode

WO 02/35623

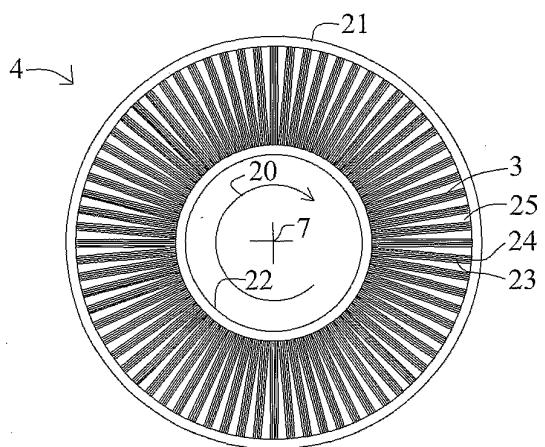
PCT/CA01/01523


outlet for discharging a cathode exhaust gas stream, and the system further comprises a second conduit fluidly communicating between the fuel cell cathode outlet and the coolant inlet.

WO 02/35623

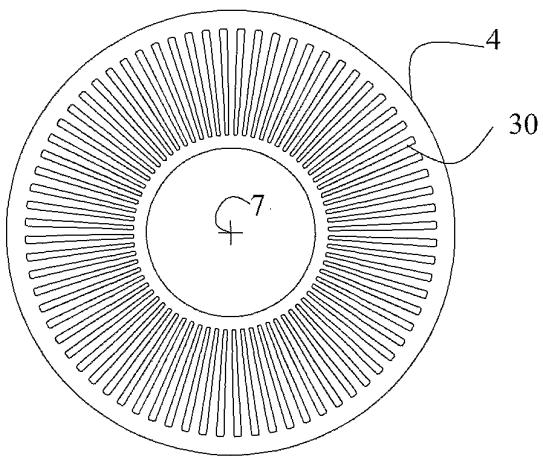
PCT/CA01/01523

1/11


Fig. 1

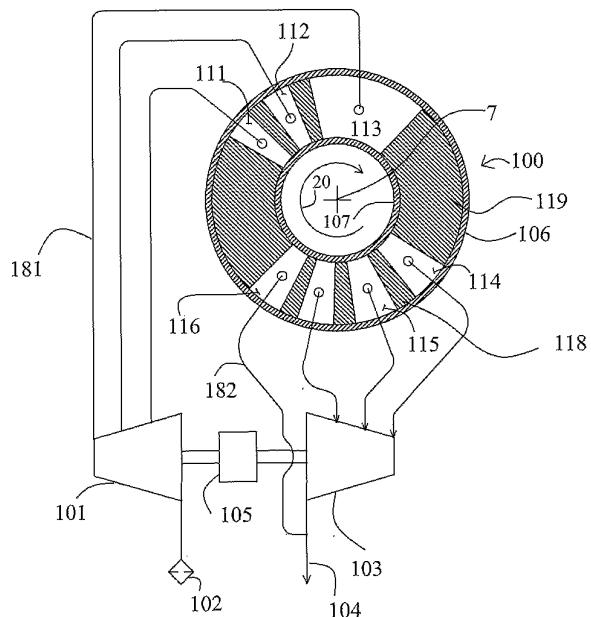
SUBSTITUTE SHEET (RULE 26)

2/11


Fig. 2

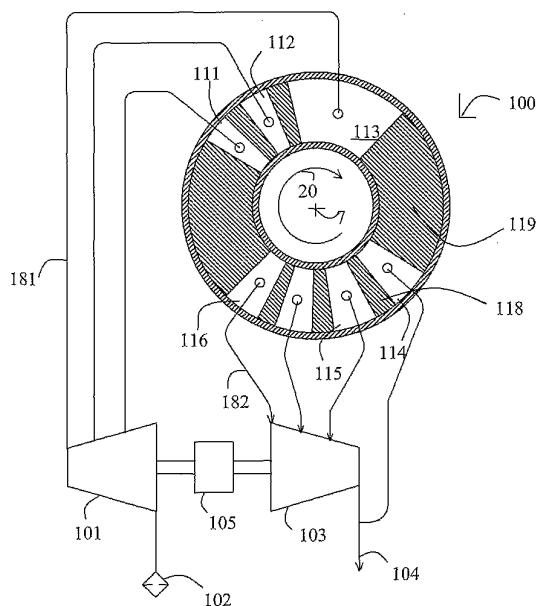
SUBSTITUTE SHEET (RULE 26)

3/11


Fig. 3

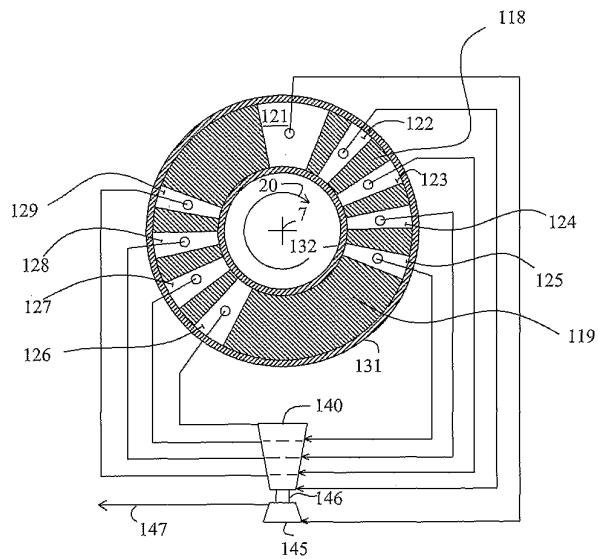
SUBSTITUTE SHEET (RULE 26)

4/11


Fig. 4A

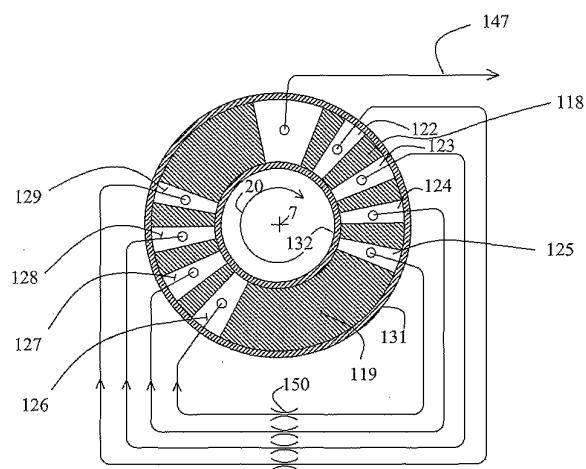
SUBSTITUTE SHEET (RULE 26)

5/11


Fig. 4B

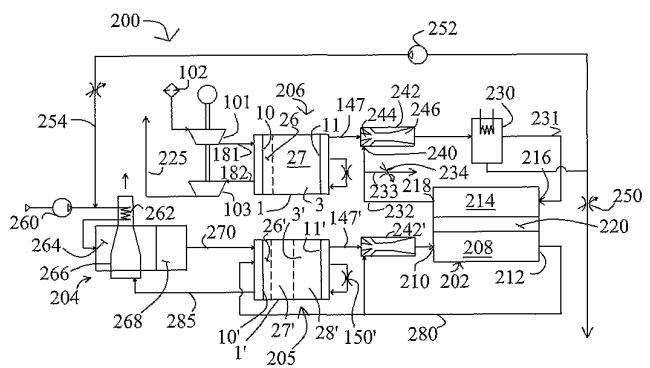
SUBSTITUTE SHEET (RULE 26)

6/11


Fig. 5A

SUBSTITUTE SHEET (RULE 26)

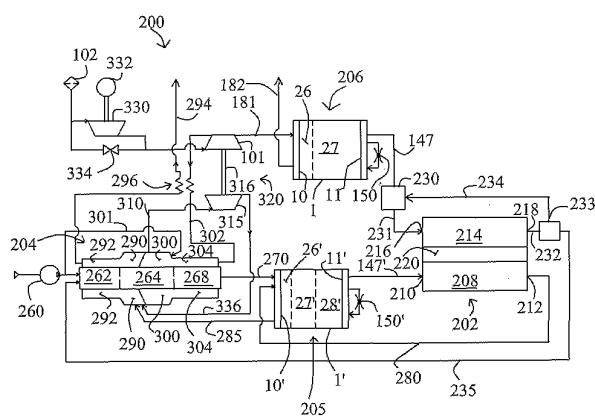
7/11


Fig. 5B

SUBSTITUTE SHEET (RULE 26)

8/11

Fig. 6

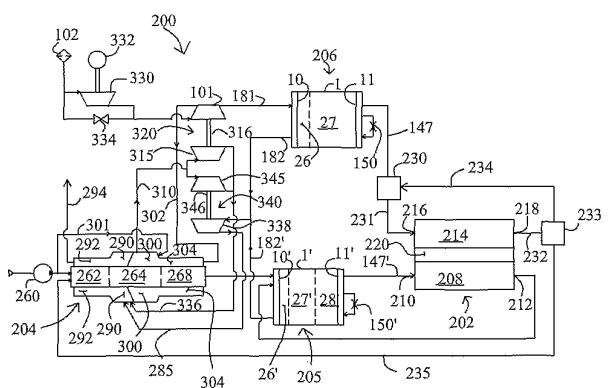

SUBSTITUTE SHEET (RULE 26)

WO 02/35623

PCT/CA01/01523

9/11

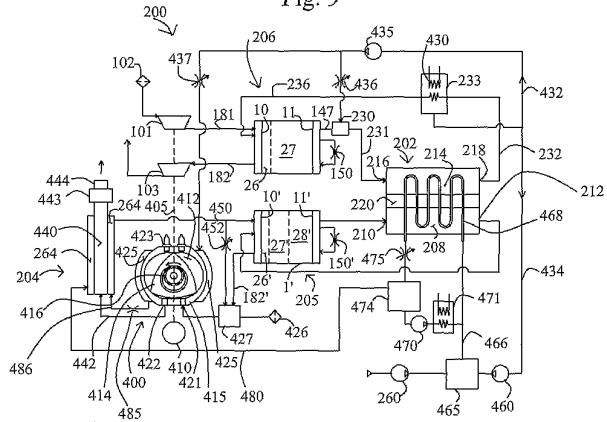
Fig. 7


SUBSTITUTE SHEET (RULE 26)

WO 02/35623

PCT/CA01/01523

10/11


Fig. 8

SUBSTITUTE SHEET (RULE 26)

11/11

Fig. 9

SUBSTITUTE SHEET (RULE 26)

WO 02/035623 A3

LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PT, RO, RU, SD, SI, SG, SI, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AL, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IL, IT, LU, MC, NL, PT, SI, TR), OAPI patent (BF, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NF, SN, TD, TG).

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

(88) Date of publication of the international search report:

6 September 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/035623 A3

(utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KI, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Published:*with international search report*

(88) Date of publication of the international search report:
6 September 2002

(48) Date of publication of this corrected version:
30 October 2003

(15) Information about Correction:
see PCT Gazette No. 44/2003 of 30 October 2003, Section II
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No PCT/CA 01/01523
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 HO1M8/06		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO1M		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 271 916 A (VANDERBORGH NICHOLAS E ET AL) 21 December 1993 (1993-12-21) claims 1-24	13,24
A	EP 0 750 361 A (EXXON RESEARCH ENGINEERING CO) 27 December 1996 (1996-12-27) claims 1-11	1-63, 71-77
A	WO 00 16880 A (ALLIED SIGNAL INC) 30 March 2000 (2000-03-30) claims 1-41	1-63, 71-77
X	PATENT ABSTRACTS OF JAPAN vol. 012, no. 246 (E-632), 12 July 1988 (1988-07-12) & JP 63 034862 A (MITSUBISHI ELECTRIC CORP), 15 February 1988 (1988-02-15) abstract	64,65, 78,79
	---	---
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents :		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the international filing date		
U document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
C document pertaining to an oral disclosure, use, exhibition or other means		
D document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
X document of particular relevance, the claimed invention consisting of a combination of features which are not taught alone to involve an inventive step when the document is taken alone		
Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
Z document member of the same patent family		
Date of the actual completion of the international search 3 July 2002	Date of mailing of the International search report 10.07.02	
Name and mailing address of the ISA European Patent Office, P.B. 5018 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (31 70) 390-2000, Tx. 31 651 epo nl Fax. (31 70) 390-3016	Authorized officer Battistig, M	

Form PCT/ISA/210 (second sheet) (July 1999)

INTERNATIONAL SEARCH REPORT		International Application No PCT/CA 01/01523
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 360 679 A (LOUIE CRAIG ET AL) 1 November 1994 (1994-11-01) claims 1-13 -----	64-70, 78-86

Form PCT/ISA210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		International application No. PCT/CA 01/01523				
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
<p>This International Search Report has not been established in respect of certain claims under Article 17(2)(e) for the following reasons:</p> <ol style="list-style-type: none"> 1. <input type="checkbox"/> Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: 2. <input type="checkbox"/> Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: 3. <input type="checkbox"/> Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). 						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
<p>This International Searching Authority found multiple inventions in this International application, as follows:</p> <p style="text-align: center;">see additional sheet</p> <ol style="list-style-type: none"> 1. <input checked="" type="checkbox"/> As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. 2. <input type="checkbox"/> As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. <input type="checkbox"/> As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: 4. <input type="checkbox"/> No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 						
<p>Remark on Protest</p> <table style="width: 100%; border: none;"> <tr> <td style="width: 30%; text-align: center;"><input type="checkbox"/></td> <td>The additional search fees were accompanied by the applicant's protest.</td> </tr> <tr> <td style="text-align: center;"><input checked="" type="checkbox"/></td> <td>No protest accompanied the payment of additional search fees.</td> </tr> </table>			<input type="checkbox"/>	The additional search fees were accompanied by the applicant's protest.	<input checked="" type="checkbox"/>	No protest accompanied the payment of additional search fees.
<input type="checkbox"/>	The additional search fees were accompanied by the applicant's protest.					
<input checked="" type="checkbox"/>	No protest accompanied the payment of additional search fees.					

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

International Application No. PCT/CA 01/01523

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-63,71-77

An electrical current generating system comprising a system for supplying hydrogen gas to a fuel cell anode comprising a adsobtion module for purifying the hydrogen-containing gas stream and process for providing a purified hydrogen containing gas stream.

2. Claims: 64-70,78-86

An electrical current generating system comprising a fuel cell defining an anode inlet for receiving a hydrogen-containing gas stream and a coolant passage, and a process for providing a hydrogen-containing gas stream to a fuel cell through the coolant passage.

INTERNATIONAL SEARCH REPORT				International Application No PCT/CA 01/01523	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date		
US 5271916 A 21-12-1993	NONE				
EP 0750361 A 27-12-1996	US 5604047 A 18-02-1997 CA 2174374 A1 24-12-1996 DE 69604340 D1 28-10-1999 DE 69604340 T2 11-05-2000 EP 0750361 A1 27-12-1996 JP 9010838 A 14-01-1997				
WO 0016880 A 30-03-2000	US 6245214 B1 12-06-2001 AU 740302 B2 01-11-2001 AU 5928499 A 10-04-2000 CN 1326376 T 12-12-2001 EP 1115470 A1 18-07-2001 WO 0016880 A1 30-03-2000 US 2001037948 A1 08-11-2001				
JP 63034862 A 15-02-1988	NONE				
US 5360679 A 01-11-1994	AU 668488 B2 02-05-1996 AU 7631094 A 21-03-1995 CA 2146326 A1 02-03-1995 DE 69429332 D1 17-01-2002 EP 0671059 A1 13-09-1995 JP 8502855 T 26-03-1996 WO 9506335 A1 02-03-1995				

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(51) Int.Cl. ⁷	F I	テーマコード(参考)
C 0 1 B 3/40	B 0 1 J 20/18	D
C 0 1 B 3/48	B 0 1 J 20/18	E
C 0 1 B 3/56	C 0 1 B 3/32	A
H 0 1 M 8/10	C 0 1 B 3/38	
// H 0 1 M 8/00	C 0 1 B 3/40	
	C 0 1 B 3/48	
	C 0 1 B 3/56	Z
	H 0 1 M 8/10	
	H 0 1 M 8/00	Z

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,PH,PL,PT,R0,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZW

(72)発明者 サワダ ジェイムズ エイ.

カナダ国 ブリティッシュ コロンビア バンクーバー ウエスト 7ス アベニュー # 2 2 5
- 1 8 4 4

(72)発明者 ヨハネス エリック ピー.

カナダ国 ブリティッシュ コロンビア バーナビー ハリファクス ストリート # 1 6 0 5 -
7 3 7 6

(72)発明者 ロイ スラジット

カナダ国 ブリティッシュ コロンビア バーナビー ウィリンドン アベニュー # 2 1 0 - 6
4 4 4

(72)発明者 ブラウン マイケル ジェイ.

カナダ国 ブリティッシュ コロンビア ウエスト バンクーバー ネバール クレセント 1 2
2 0

F ターム(参考) 4G066 AA61B AA62B BA42 CA35 CA43 DA04 EA20 GA14
4G068 AA01 AB01 AC02 AC07 AD40 AD49 AF31 AF40
4G140 EA02 EA03 EA06 EA07 EB32 EB34 EB37 EB42 EC01 FA02
FB02 FB04 FC03 FD01 FD07 FE01 FE06
5H026 AA06
5H027 AA06 BA16 BC06