The invention relates to a method of isolation of polyhydroxyalkanoates from biomass containing polyhydroxyalkanoates comprising the steps of extracting components of the biomass other than polyhydroxyalkanoates from the biomass by means of an extraction agent based on alkyl alcohol having 2 to 4 carbon atoms in the chain, separating the extract containing these components from the extraction solution thus obtained, removing the remainder of the extraction agent from the solid phase by distillation with an aqueous solution or by stripping with water vapour or by drying, extracting from the solid phase thus pre-cleaned polyhydroxyalkanoates by an extraction agent based on chlorinated hydrocarbon, separating the polyhydroxyalkanoates from the extraction solution thus obtained, and feeding this extract to a circulation loop in order to obtain a polyhydroxyalkanoates precipitate.
Method of isolation of polyhydroxyaikanoates (PHAs) from biomass fermented by microorganisms producing polyhydroxyaikanoates (PHAs) and/or from biomass containing at least one crop-plant producing polyhydroxyaikanoates

Technical field

The invention relates to a method of isolation of polyhydroxyaikanoates (PHAs) from biomass fermented by microorganisms producing polyhydroxyaikanoates and/or from biomass containing at least one crop-plant producing polyhydroxyaikanoates in which polyhydroxyaikanoates are separated by extraction from biomass with an extraction agent based on chlorinated hydrocarbon, whereupon an extract is separated from the extraction solution thus obtained and, subsequently, polyhydroxyaikanoates precipitate from the extract.

Background art

Polyhydroxyaikanoates (PHAs) are becoming more and more important, offering a promising alternative to conventional plastics, since they have favourable mechanical properties and, unlike other biopolymers, behave as thermoplastics. Furthermore, they can be recovered from renewable resources, such as biomass - namely either from biomass fermented by microorganisms producing PHAs during their life cycle as their food and energy reserves, or from biomass produced from or containing at least one crop-plant producing PHAs, such as genetically modified maize. Moreover, in the first case by selecting a strain of microorganisms and/or a carbon source for cultivation (saccharides/lipids), it is possible to obtain different compositions of PHAs, and as a result of providing suitable growth conditions for the employed microorganisms, the content of PHAs in their cells can reach up to 90%. In addition, when using the bacteria of the strain *Cupriavidus necator H16* during the fermentation it is possible to consume waste edible oils from thermal preparation of food as a carbon source, whose advantage is their low price and commercial availability. The best-known type of PHAs is polyhydroxybutyrate
(PHB) and its copolymers containing 3-hydroxyvalerate and 3-hydroxyhexanoate.

Nowadays, there are known several methods of separating PHAs from biomass containing PHAs in which various solvents are used, such as partially halogenated hydrocarbons (see e.g. EP 0015123 and US 4324907), carbonates (see e.g. US 4101533 and US 4140741), higher alcohols and their esters (see e.g. US 2007/0161096, WO 97/07229 and WO 2009/114464) and other substances, such as esters of dicarboxylic and tricarboxylic acids and gamma-butyrolactone (see e.g. US 4968611), etc., which extract PHAs from biomass and from which PHAs are subsequently separated in a suitable method. The disadvantage of these processes is the fact that due to the character of the solvents employed they take place at higher temperatures which at the same time cause thermal degradation of the isolated PHA.

From this point of view, the most advantageous solution is using extraction agents based on chlorinated hydrocarbons, since that enables to separate PHA from them at low temperatures (generally ranging approximately from 100 to 120 °C), at which thermal degradation of PHA does not occur yet (see e.g. US 4310684, EP 0014490, US 4562245, US 4705604 and US 5213976). However, during testing these methods it was found out that extraction agents based on chlorinated hydrocarbons extract apart from PHAs also other components from the biomass, which during subsequent separation precipitate in water together with PHAs, thus substantially decreasing their final purity. Consequently, the purity reaches approximately 90 % at the most (see e.g. the comparative example 1 hereinafter). In addition, in the method according to US 5213976 insufficient water turbulence during precipitation leads to the formation of large particles of PHA, which have to be additionally disintegrated.

An alternative method in which the contamination of PHAs with undesired components of the biomass is eliminated is precipitation of PHAs with an organic solvent. However, costs of further disposal of this organic solvent (which is used in considerable excess) are high, and PHAs precipitate in the form of gel having a high moisture content, and so they have to be further dried.
The aim of the invention is to propose a method of isolation of polyhydroxyalkanoates from biomass fermented by microorganisms producing polyhydroxyalkanoates and/or from biomass containing at least one crop-plant producing polyhydroxyalkanoates, which would lead to their isolation with high purity and, as the case may be, also in the form of smallest possible particles.

Principle of the invention

The goal of the invention is achieved by a method of isolation of polyhydroxyalkanoates from biomass fermented by microorganisms producing polyhydroxyalkanoates and/or from biomass containing at least one crop-plant producing polyhydroxyalkanoates according to the invention in which polyhydroxyalkanoates are extracted with an extraction agent based on chlorinated hydrocarbon from the biomass which is - if fermented - first inspissated by isolation from a fermentation medium to a dry matter content of at least 20%, whereupon from this extraction solution thus obtained an extract is separated from which the extraction agent is removed and polyhydroxyalkanoates precipitate, whose principle consists in that before the extraction of polyhydroxyalkanoates from biomass by means of an extraction agent based on alkyl alcohol having 2 to 4 carbon atoms in the chain, which is added to the biomass in a weight ratio from 1:0.5 to 1.5, preferably from 1.2 to 1.3, components of the biomass other than polyhydroxyalkanoates are extracted, whereby this extraction is carried out for 5 to 90 minutes, preferably for 20 to 40 minutes, at a temperature in the range of 20 to 120 °C. After that the extract containing these components of the biomass is separated from the extraction solution thus obtained by filtration and/or decantation and/or centrifugation and the remainder of the extraction agent is removed from the solid phase by distillation from an aqueous solution or by stripping with water vapour or by drying solid content. From the solid phase thus pre-cleaned, polyhydroxyalkanoates are extracted by means of an extraction agent based on chlorinated hydrocarbon, which is added to it in a weight ratio between 1:5 and 1:20, whereby this extraction operation is carried out for 5 to 90 minutes, preferably for 20 to 40 minutes, at a temperature in the range of 20 to 120 °C, whereupon the extract containing polyhydroxyalkanoates is separated from the
extraction solution thus obtained by means of filtration and/or decantation
and/or centrifugation. This extract is subsequently fed or is being continuously
fed to a circulation loop filled with water having a temperature from 20 to 120
°C, or, as the case may be, by a mixture made from water and from up to 20 %
by weight of extraction agent based on chlorinated hydrocarbon used for the
extraction of polyhydroxyalkanoates, by which means the extraction agent is
removed from this extract and polyhydroxyalkanoates precipitate. The purity of
the polyhydroxyalkanoates recovered in this manner exceeds 99 %, achieving a
yield of 97% and more. The particle size of the polyhydroxyalkanoates obtained
is then approximately 1 mm.

In order to obtain PHA with a higher degree of purity, the extraction
process by means of an extraction agent based on alkyl alcohol having 2 to 4
carbon atoms in the chain may run in more stages, each of which is carried out
for 5 to 90 minutes, at a temperature in the range between 20 and 120 °C, and
before each succeeding stage the solid phase from the preceding stage is
concentrated by decantation and/or filtration and/or centrifugation.

Suitable alkyl alcohol extraction agents include ethanol, propanol,
isopropyl alcohol, butanol, isobutyl alcohol, tert-butyl alcohol, or a mixture of at
least two thereof.

So as to achieve a higher yield of polyhydroxyalkanoates, the extraction
process by means of an extraction agent based on chlorinated hydrocarbon can
run in more stages, each of which is carried out for 5 to 90 minutes, at a
temperature from 20 to 120 °C, and before each succeeding stage the solid
phase from the preceding stage is concentrated by decantation and/or filtration
and/or centrifugation.

Suitable extraction agents based on chlorinated hydrocarbon are
dichlormethan, chloroform, tetrachlormethan, dichlorethan, or a mixture of at
least two thereof.

From the point of view of reducing the amount of the extraction agent
used (both extraction agents based on alkyl alcohol having 2 to 4 carbon atoms
in the chain and extraction agents based on the chlorinated hydrocarbons), it is
advantageous if the individual stages of the extraction are performed in mutually
countercurrent operati
on, when the extract from each succeeding stage is returned to the preceding stage, the „pure” extraction agent being fed only to the last stage.

If the remainder of the extraction agent based on alkyl alcohol having 2 to 4 carbon atoms is removed from the solid phase by distillation, it is advantageous if the solid phase is first diluted with water in a weight ratio between 1:2 and 1:10, and the process of distillation then takes place in a rectification column at a pressure of 0.1 to 6 bar.

If the remainder of the extraction agent based on alkyl alcohol having 2 to 4 carbon atoms is removed from the solid phase by stripping with water vapour, this process of stripping is carried out in a rectification column at a pressure of 0.1 to 6 bar.

In order to accomplish more intense precipitation of PHA, it is advantageous if the extract containing PHA is before being fed to the circulation loop concentrated by evaporating off the extraction agent to obtain a concentration of polyhydroxyalkanoates of 5 to 10 %. The condensation heat obtained during this process can be subsequently used for evaporating off the extraction agent based on chlorinated hydrocarbon in the circulation loop.

Specific description

In the method of isolation of polyhydroxyalkanoates (PHAs) from biomass fermented by microorganisms which during their life cycle produce PHAs as their food and energy reserves (e.g. by the bacteria of the strain *Cupriavidus necator* H16, etc.) and/or from biomass containing at least one crop-plant producing PHAs (e.g. genetically modified maize, etc.) according to the invention, before the extraction of PHAs from the biomass, its components that could contaminate PHAs are removed and only after that PHAs are extracted from the biomass thus pre-cleaned into the extraction agent based on chlorinated hydrocarbon. The extract containing PHA is afterwards fed, or is being continuously fed to a circulation loop, where the extraction agent is removed and PHAs precipitate.

So as to remove the undesired components of the biomass, an extraction agent based on alkyl alcohol with 2 to 4 carbon atoms in the chain is used, such
as ethanol, propanol, isopropyl alcohol, butanol, isobutyl alcohol, tert-butyl alcohol, or a mixture of at least two thereof, which is added to the biomass in a weight ratio of 1:0.5 to 1:5, preferably in a weight ratio of 1:2 - 1:3. The extraction operation is carried out for 5 to 90 minutes, preferably for 20 to 40 minutes, at a temperature of 20 to 120 °C, preferably at a temperature by 5 °C lower than the boiling point of the particular extraction solution - the higher the temperature, the higher the proportion of the extracted components of the biomass and therefore also the resultant purity of PHAs. During this extraction the undesired components which would otherwise be extracted during the extraction of PHAs are extracted into the extraction agent based on alkyi alcohol from the biomass, without PHAs being extracted at the same time and without decreasing its concentration in the biomass. After the extraction is completed, the extract containing the undesired components of the biomass is separated from the extraction solution thus prepared by filtration and/or decantation and/or by centrifugation, and from the solid phase the remainder of the extraction agent employed, constituting a substantial portion of its moisture, is removed. This can be carried out, for example, by diluting the solid phase with water followed by boiling off the extraction agent in a rectification column at a pressure of 0.1 to 6 bar (i.e. by distillation from an aqueous solution), whereby the dilution of the solid phase must be sufficient, i.e. in the range of about 1:2 to 1:10 by weight in order to prevent blocking the rectification column. Surprisingly, it was revealed during the experiments that this procedure has also a positive impact on the speed of the subsequent extraction of PHAs into the extraction agent based on chlorinated hydrocarbon.

Another applicable method of removal of the remainder of the extraction agent from the solid phase is stripping with water vapour in the rectification column at a pressure of 0.1 to 6 bar, or its drying.

The extract separated from the extraction solution constitutes the waste of the method of isolation of PHAs according to the invention. It is advantageous if the extraction agent contained in it is recycled from it, for example, by means of distillation from an aqueous solution. At the same time, with the decrease in the concentration of this extraction agent the extracted
components of the biomass precipitate. These can be subsequently separated, for example, by filtration and/or decantation and/or centrifugation.

For the purpose of obtaining PHAs with a higher degree of purity, the extraction using an extraction agent based on alkyl alcohol having 2 to 4 carbon atoms can run in more stages (preferably e.g. in two to five stages, or, in case of need, even more), each of which is carried out for the above-mentioned period of time and at the above-mentioned temperature, whereby before each succeeding stage, the solid phase from the preceding stage is concentrated by filtration and/or decantation and/or centrifugation. The conditions of the individual stages of extraction may be the same, or at least one stage may differ from the others by the temperature and/or duration of the extraction. Preferably, the individual stages are carried out in countercurrent operation, i.e. the extract from each next succeeding stage is fed to the preceding stage, whereby the „pure” extraction agent without the extracted substances is fed only to the last stage. Thus it is possible to achieve the same effect as with individual stages being carried out in a co-current arrangement, but the amount of the extraction agent is considerably reduced.

For the extraction of PHAs from the solid phase thus obtained and pre-cleaned, or from the biomass, extraction agent based on chlorinated hydrocarbon is used, added to it in a weight ratio between 1:5 and 1:20. Owing to the fact that the content of PHAs in the extraction solution has an essential influence on the viscosity of the solution and on the subsequent separation of the extract from the solid phase, it is advantageous to select the ratio of the extraction agent to the solid phase in such a manner that the resultant extraction solution has PHA concentration of 1 to 10 %, preferably from 3 to 5 %. Also, an important parameter is a content of water in the solid phase, which has influence on the speed of extraction - with a low content of water in the biomass it is difficult to extract PHAs into the extraction agent; on the other hand, a higher content of water in the biomass facilitates the process of extraction of PHAs, and so it is not advisable to distill the water. A favourable content of water is in the range between 40 and 70 %. The extraction of PHAs is then carried out for 5 to 90 minutes, preferably for 20 to 40 minutes, at a
temperature of 20 to 120 °C, preferably, however, by 5 °C lower than is the
boiling point of the particular extraction solution.

An extract containing PHA is separated from the extraction solution thus
prepared by filtration and/or decantation and/or centrifugation. This extract is
fed, or is being continuously fed, to a circulation loop filled with water having a
temperature of 20 to 120 °C, into which from this extraction phase the extraction
agent is isolated and PHAs precipitate. Thus, with time passing, the water in the
circulation loop turns into a mixture of water and the extraction agent having a
concentration of this extraction agent of up to 20 % (whereby it does not yet
prevent the precipitation of PHA). The circulation loop is composed of a U-
shaped pipeline whose rising passage is led to the side of a liquid separator,
and their falling passage is led from the bottom of this separator. The circulation
of the liquid in the circulation loop is achieved by the siphon effect caused by
partial evaporation of the extraction agent during the contact of the extract with
the liquid in the loop. Spray application is taken to the lower portion of the rising
passage of the circulation loop. This procedure enables to achieve high
turbulence in the circulation loop, whereby the speed of the liquid in its rising
passage is from 5 to 10 m/s, which causes the precipitation of PHA in the form
of small particles which do not have to be subsequently disintegrated.

Before feeding the extract containing PHAs into the circulation loop it is
advantageous if this extract is concentrated to reach the PHA concentration of 5
to 10 %. This is achieved, for example, by evaporating off the extraction agent,
preferably at an increased pressure (1 to 6 bar, preferably 2 to 4 bar), whereby
the condensation heat of the vapour can be further used (see below).

The solid phase separated from the extraction solution constitutes the
waste of the method of isolation of PHAs according to the invention. It is
advantageous if the remainder of the extraction agent is removed from it, for
example, by dilution with water and subsequent boiling off (i.e. by distillation).
Preferably, this process can be performed in the rectification column, whereby
the dilution of the solid phase with water has to be sufficient, i.e. in a range of
1:2 to 1:10, in order to prevent this column from being blocked. It is thus
possible to decrease the content of chlorinated substances in this solid phase to
less than 1 ppm. The solid residues that have been boiled off can be then separated by filtration and/or decantation and/or centrifugation.

So as to obtain higher yield of PHAs, the extraction using an extraction agent based on chlorinated hydrocarbon can run in more stages (preferably, for example, from two to five stages, or, in case of need, even more), each of which is carried out for the above-mentioned period of time and at the above-mentioned temperature, whereby before each succeeding stage the solid phase is separated from the extraction solution by filtration and/or decantation and/or centrifugation. The conditions of the individual stages of the extraction can be the same, or at least one stage can differ from the others by the temperature and/or duration of the extraction. Preferably, the individual stages are carried out in a countercurrent operation, i.e. the extract from each succeeding stage is fed to the preceding stage, whereby the "pure" extraction agent without the extracted substances is fed only to the last stage. Thus it is possible to achieve the same effect as if the individual stages were carried out in a cocurrent operation, but the amount of the extraction agent is considerably reduced. Subsequently, the extracts separated in the individual stages of the extraction are mixed together and are fed to the circulation loop.

The benefit of this process is the fact that for evaporating off the extraction agent based on chlorinated hydrocarbon from the extract, it is possible to employ the condensation heat of the vapour of this extraction agent obtained during the concentration of the extract containing PHAs. The heat is fed to the circulation loop through a heat exchanger arranged in its rising passage, which considerably reduces the overall operational costs of the isolation of PHAs. Another variation of a heat source is, for example, a vapour condensate.

PHAs are fed from the circulation loop in the form of suspension, preferably through a centrifugal filter, on which it is possible to achieve a low moisture content of the product - in the range between approximately 10 and 20%. After that, in case of need, the product is further dried.

Before starting the process of isolation of PHAs according to the invention, it is favourable to concentrate the biomass or the fermentation
solution obtained by its fermentation to obtain a concentrate having a dry matter content of 20 to 80 %, preferably between 40 and 60 %. As an advisable method of concentration e.g. decantation is recommended, since it also enables to remove from the biomass waste edible oil which has been used as a source of carbon during the fermentation of the biomass and has not been consumed. Beside that, it is also possible to use filtration and/or centrifugation.

Described hereinafter are two concrete examples of employing the method of isolation of PHAs from biomass fermented by microorganisms producing PHAs according to the invention. However, it is clear from the gist of the matter that if other substances are used (especially extraction agents), or if there are other parameters of individual extractions or stages of extractions or, as the case may be, other techniques used in individual steps mentioned above as well as in the patent claims, the result of the isolation of PHAs will be the same or substantially the same.

Example 1

40 kg of 80% aqueous solution of isopropyl alcohol were added to 20 kg of biomass (weight ratio 1:1.6) obtained by centrifugation of a fermentation solution having a dry matter concentration of 45 % and PHAs content in the dry matter of 75 %, by which means an extraction solution was obtained. The extraction of components of the biomass other than PHAs was then conducted under constant stirring for 30 minutes at a temperature of 75 °C. After that this extraction solution was concentrated by centrifugation and another 40 kg of 80% aqueous solution of isopropyl alcohol were added to 19.1 kg of isolated solid phase (weight ratio 1:1.68). The second stage of extraction then took place under the same conditions as the first one, and after its completion the extraction solution was concentrated by centrifugation.

150 kg of water were subsequently added to 18 kg of the solid phase obtained (weight ratio 1:8.3) and the mixture thus prepared was thoroughly stirred. Thereafter the mixture thus obtained was sprayed into the head of a rectification column with structured packing with 10 theoretical plates, to which simultaneously vapour was supplied from the bottom. 16 kg of the solid phase
with a dry matter content of 49.5% and the PHAs content in the dry matter of 85.1% were obtained by centrifugation of the column bottom stream from the rectification column, the content of isopropyl alcohol in it being less than 1 ppm.

Subsequently, 120 kg of chloroform were added to 10 kg of the solid phase thus obtained (weight ratio 1:12), by which means an extraction solution was obtained. The extraction of PHAs with chloroform was then carried out under constant stirring for a period of 30 minutes at a temperature of 50 °C. After its completion the extraction solution was centrifuged and another 120 kg of chloroform were added to 8.1 kg of the solid phase (weight ratio 1:14.8). The second stage of the extraction of PHAs then took place under the same conditions as the first one. After it had ended, 6.8 kg of the solid phase were obtained by centrifugation of the extraction solution and 0.78 kg of insoluble residues with the PHAs content of 10.8% was further obtained by drying the solid phase at a temperature of 80 °C.

The extracts containing PHAs obtained in the individual stages of the extraction were admixed and concentrated to PHAs concentration of 5%. The extract thus obtained was afterwards continuously fed to the lower portion of the circulation loop filled with water pre-heated to 70 °C, in the rising passage of which was arranged a vertical heat exchanger malleablized by water having a temperature of 85 °C. The speed of the liquid in the falling passage of the circulation loop was 2.5 m/s and in the rising passage of the circulation loop 8 m/s. The mean size of the particles of PHAs precipitated from this liquid in the extract was approximately 1 mm. Subsequently, the resultant suspension was filtered through a nutch filter and the filtered particles of PHAs were dried at a temperature of 80 °C, by which means 4.15 kg PHAs with 99.2% purity were obtained (which represents 98% yield).

Example 2

25 kg of 90% aqueous solution of ethanol were added to 16 kg of biomass (weight ratio 1:1.4) obtained by centrifugation of a fermentation solution having a dry matter concentration of 47% and PHAs content in the dry matter of 76% by which means an extraction solution was obtained. The extraction of the components of the biomass other than PHAs was then carried
out under constant stirring for 30 minutes at a temperature of 65 °C. After that this extraction solution was concentrated by centrifugation and another 25 kg of 90% aqueous solution of ethanol were added to 15.3 kg of the isolated solid phase (weight ratio 1:1.47). The second stage of extraction was performed under the same conditions as the first one and after its completion the extraction solution was concentrated by centrifugation.

Subsequently, 150 kg of water were added to 15 kg of the solid phase obtained (weight ratio 1:10) and the mixture thus prepared was thoroughly stirred up. Afterwards this stirred mixture was sprayed to the head of the rectification column with an oriented filling having 10 theoretical floor levels to which simultaneously vapour was supplied from the bottom. 13 kg of the solid phase with a dry matter content of 49.5 % and PHAs content in the dry matter of 87.2 % were obtained by centrifugation of the residual flow from the rectification column, the content of ethanol in it being less than 1 ppm.

50 kg of tetrachlormethane were then added to 5 kg of the solid phase thus prepared (weight ratio 1:10), by which means an extraction solution was obtained. The extraction of PHA with tetrachlormethane was then carried out under constant stirring for a period of 30 minutes at a temperature of 60 °C. After its completion, the extraction solution was centrifuged and another 50 kg of tetrachlormethane were added to 4 kg of the solid phase (weight ratio 1:12.5). The second stage of extraction of PHAs then took place under the same conditions as the first one. After its completion, 3.1 kg of the solid phase were obtained by centrifugation of the extraction solution. Then the solid phase was dried at a temperature of 80 °C and 0.33 kg of insoluble residues were further obtained with PHAs content of 19.9 %.

The extracts containing PHAs obtained in the individual stages of extraction were admixed and by evaporating off the tetrachlormethane were concentrated to achieve PHA concentration of 5 %. The extract thus obtained was then continuously fed to the lower portion of the circulation loop filled with water pre-heated to 70 °C, which had in its rising passage a vertical heat exchanger malleabiized by water having a temperature of 85 °C. The speed of the liquid in the falling passage of the circulation loop was 2.5 m/s, whereas in the rising passage of the circulation loop it was 8 m/s. The mean size of the
particles of PHAs precipitated in this liquid from the extract was approximately 1 mm. The resultant suspense was subsequently filtered through a nutch filter and the filtered particles of PHA were dried at 80 °C, by which means 2.14 kg of PHA with the purity of 99.4% were obtained (which represents yield of 97%).

Comparative example 1 - a method according to US 5213976

During the process of testing and verifying the method of isolation of PHAs from biomass according to the US patent 5213976 it was revealed that extraction agents based on chlorinated hydrocarbon are capable of extracting from biomass, apart from PHAs, also other its components which during subsequent precipitation into water precipitate together with PHAs, thus contaminating the PHAs. The purity of PHAs in this case reaches about 92% at the most.

40 kg of chloroform were added to 3.5 kg of the biomass (weight ratio 1:1.4) obtained by centrifugation of a fermentation solution with a dry matter concentration of 47% and with PHAs content in dry matter of 76%, by which means an extraction solution was formed. The extraction of PHAs with chloroform was then carried out under constant stirring for 30 minutes at a temperature of 50 °C. Afterwards this extraction solution was concentrated by centrifugation, by which means 1.9 kg of aqueous phase, 4.5 kg of the phase of insoluble residues and 37 kg of extract containing PHAs were obtained. By drying the phase of insoluble residues at 80 °C, 0.42 kg of insoluble residues with PHAs content of 32.1% were obtained.

The extract containing PHAs was sprayed through a nozzle to a stirred vessel having a capacity of 200 l with water heated to 80 °C, in which PHA precipitated in the form of flakes of the mean size of about 7 mm. The resultant suspension was subsequently filtered through a nutch filter and the filtered particles were dried at a temperature of 80 °C, by which means 1.15 kg of PHAs was obtained with the purity of 90.6% (which represents 88% yield).

As the foregoing examples show, the method of isolation of PHAs from biomass according to the invention results in a significantly higher degree of purity of PHAs (approximately by 8 to 9%), with considerably higher yields (approximately by 10%), and at the same time leads to the formation of
substantially smaller particles of PHA, which do not need to be further disintegrated (having a diameter seven times smaller).
PATENT CLAIMS

1. A method of isolation of polyhydroxyalkanoates from biomass fermented by microorganisms producing polyhydroxyalkanoates and/or from biomass containing at least one crop-plant producing polyhydroxyalkanoates in which from the biomass which - if fermented - is first inspissated by isolation from a fermentation medium to a dry matter content of at least 20%, polyhydroxyalkanoates are extracted into an extraction agent based on chlorinated hydrocarbon, whereupon an extract is separated from the extraction solution thus obtained and after removing the extraction agent from this extract polyhydroxyalkanoates precipitate, characterized in that before the extraction of the polyhydroxyalkanoates from the biomass by means of an extraction agent based on alkyl alcohol having 2 to 4 carbon atoms in the chain, which is added to the biomass in a weight ratio biomass:extraction agent from 1:0.5 to 1:5, components of the biomass other than polyhydroxyalkanoates are extracted, whereby this extraction is carried out for 5 to 90 minutes at a temperature in the range of 20 to 120 °C, whereupon the extract containing these components of the biomass is separated from the extraction solution thus obtained by filtration and/or decantation and/or centrifugation and the remainder of the extraction agent is removed from the solid phase by distillation from an aqueous solution or by stripping with water vapour or by drying, and polyhydroxyalkanoates are extracted from the solid phase thus pre-cleaned by an extraction agent based on chlorinated hydrocarbon, which is added to it in a weight ratio biomass:extraction agent from 1:5 to 1:20, whereby this extraction operation is carried out for 5 to 90 minutes, at a temperature in the range of 20 to 120 °C, whereupon the extract containing the polyhydroxyalkanoates is separated by filtration and/or decantation and/or centrifugation from the extraction solution thus prepared, and this extract is subsequently fed or is continuously fed to a circulation loop filled with water having a temperature from 20 to 120 °C, or, as the case may be, with a mixture made from water and from up to 20 % by weight of the extraction agent based on chlorinated hydrocarbon used for the extraction of polyhydroxyalkanoates, by which means the extraction agent is removed from this extract and polyhydroxyalkanoates precipitate.
2. The method of isolation of polyhydroxyalkanoates from biomass according to the Claim 1, characterized in that the extraction using an extraction agent based on alkyl alcohol having 2 to 4 carbon atoms in the chain runs in at least two stages, each of which is carried out for 5 to 90 minutes, at a temperature of 20 to 120 °C, whereby before each succeeding stage the solid phase from the preceding stage is concentrated by decantation and/or filtration and/or centrifugation.

3. The method of isolation of polyhydroxyalkanoates from biomass according to the Claim 2, characterized in that the individual stages of the extraction are carried out in a mutually countercurrent operation.

4. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, characterized in that the extraction agent based on alkyl alcohol having 2 to 4 carbon atoms in the chain is added to the biomass in a weight ratio from 1:2 to 1:3.

5. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, characterized in that extraction using an extraction agent based on alkyl alcohol having 2 to 4 carbon atoms in the chain is carried out for 20 to 40 minutes.

6. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, characterized in that the extraction agent based on alkyl alcohol is an extraction agent from the group of ethanol, propanol, isopropyl alcohol, butanol, isobutyl alcohol, tert-butyl alcohol and mixtures of at least two thereof.

7. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, characterized in that extraction by means of an extraction agent based on chlorinated hydrocarbon runs in at least two stages, each of which is carried out for 5 to 90 minutes, at a temperature of
20 to 120 °C, whereby after each stage insoluble residues are separated from the extraction solution by decantation and/or filtration and/or centrifugation.

8. The method of isolation of polyhydroxyalkanoates from biomass according to the Claim 7, **characterized in that** the individual stages of the extraction are carried out in a mutually countercurrent operation.

9. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, **characterized in that** extraction by means of an extraction agent based on chlorinated hydrocarbon is carried out for 20 to 40 minutes.

10. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, **characterized in that** the extraction agent based on chlorinated hydrocarbon is an extraction agent from the group of dichiormethan, chloroform, tetrachlormethan, dichlorethan, or a mixture of at least two thereof.

11. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, **characterized in that** the solid phase is diluted with water before the distillation of the extraction agent in a ratio of 1:2 to 1:10 and distillation from this aqueous solution is performed in a rectification column at a pressure of 0.1 to 6 bar.

12. The method of isolation of polyhydroxyalkanoates from biomass according to any of the Claims 1 to 10, **characterized in that** stripping with water vapour is carried out in a rectification column at a pressure 0.1 to 6 bar.

13. The method of isolation of polyhydroxyalkanoates from biomass according to any of the preceding Claims, **characterized in that** the extract containing polyhydroxyalkanoates is prior to being fed into the circulation loop concentrated by evaporating off the extraction agent to reach a concentration of polyhydroxyalkanoates 5 to 10 %.
14. The method of isolation of polyhydroxyalkanoates from biomass according to the Claim 13, characterized in that for evaporating off the extraction agent based on chlorinated hydrocarbon in the circulation loop, the condensation heat of the vapour of the extraction agent obtained during the concentration of the extract containing polyhydroxyalkanoates is utilized.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C08G63/90 C12P7/62

ADD.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08G C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 324 907 A (SENIOR PETER J ET AL) 13 April 1 1982 (1982-04-13) cited in the application on claims example 4 column 2, lines 34-47</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search: 21 September 2015

Date of mailing of the international search report: 29/09/2015

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer: Schl i cke, Benedi kt
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4324907</td>
<td>13-04-1982</td>
<td>NON E</td>
<td></td>
</tr>
</tbody>
</table>