A process for the preparation of piroxicam: beta-cyclodextrin inclusion compounds
Prozess für die Vorbereitung von Piroxicam: Beta-Cyclodextrin Einschlusskomplexe
Procédé pour la préparation des composés d’inclusion piroxicam: beta-cyclodextrine

References cited:
EP-A- 0 153 998
WO-A-91/13100
WO-A- 0 295 476
WO-A-95/28965

- NAGARSENKER, MANGAL S. ET AL: "Influence of hydroxypropyl beta-cyclodextrin on dissolution of piroxicam and on irritation to stomach of rats upon oral administration" INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES (1997), 59(4), 174-180 , XP008007119
The present invention relates to a process for the preparation of inclusion compounds of piroxicam with \(\beta \)-cyclodextrin.

More particularly, according to the process of the invention, the aqueous solution of two components is subjected, before drying, to a freezing process at very high rate. The resulting products have physico-chemical characteristics as well as technological and biopharmaceutical properties which are advantageous compared with those obtained according to the prior art processes. The resulting products are suitable for preparing pharmaceutical compositions for the oral administration.

TECHNOLOGICAL BACKGROUND

Piroxicam is a compound belonging to the class of the Non Steroidal Anti-Inflammatory Drugs (NSAIDs) widely applied in rheumatoid arthritis, osteoarthritis, acute pain in musculoskeletal disorders, post-operative and post-traumatic pain and dysmenorrhoea.

Piroxicam is poorly soluble in water (0.003% at pH 5, 37°C) and exhibits a low surface wettability (water contact angle 76°) and a high crystal lattice as demonstrated by its melting point (198-200°C).

Since said molecule exhibits good membrane permeation characteristics, its low solubility is responsible for the slow dissolution rate in the gastro-intestinal fluids, which in turn results in slow absorption and delay in the onset of action.

Slow dissolution can also exacerbate local side effects associated to the drug (e.g. gastric irritation).

The handling of piroxicam is complicated due to its possible tautomeric switches and polymorphism. Said molecule indeed can exist in two polymorphic forms \(\alpha \) and \(\beta \), which have the same intramolecular structure EZE (I) but different intra- and intermolecular hydrogen bond interactions and in the pseudopolymorph which is the hydrate of the zwitter-ionic form ZZZ; one of the possible resonance forms of which is represented by formula (II) (Reck et al Pharmazie 1988, 43, 477; Bordner et al Acta Crystallogr 1984, C40, 989).

An efficient method for overcoming the problems related to the low solubility of piroxicam relies on the preparation of inclusion complexes with cyclodextrins as claimed in EP 153998. In the following disclosure, the terms complexes, inclusion complexes and inclusion compounds are used indifferently.

Cyclodextrins (CDs) are natural cyclic oligosaccharides having a torus-like macro-ring shape obtained by enzymatic degradation of starch. The three major cyclodextrins consist of 6 (\(\alpha \)), 7 (\(\beta \)) or 8 (\(\gamma \)) (1 \(\rightarrow \) 4) D-glucopyranosidic units. Among them, \(\beta \)-CD turned out to be the most useful for complexing piroxicam.

Pre-clinical and clinical studies have demonstrated that piroxicam:\(\beta \)-cyclodextrin inclusion compound (hereinafter indicated as \(\beta \)CD) is characterized by an oral absorption pattern that is faster and more efficient than that of piroxicam alone (Deroubaix et al Eur J Clin Pharmacol 1995, 47, 531). In particular, the bioavailability of the active ingredient in terms of rate as well as of extent of absorption in the first two hours is greatly enhanced. As far as the stoichiometry is concerned, the inclusion complex with the molar ratio 1:2.5 was better compared with complexes with ratios of 1:1 or 1:4 (Acerbi, Drug Invest 1990, 2(4), 42).

The inclusion complex formation produces faster dissolution and absorption rate of piroxicam than any technological modification of the crystalline form known so far (Acerbi et al.: A pilot pharmacokinetic study after single oral administration of a sachet formulation of piroxicam: \(\beta \)-cyclodextrin inclusion complex versus a lyotablet formulation of plain piroxicam in healthy volunteers, Poster presented at the 8th International Cyclodextrin Symposium, Budapest, March 30 - April 2, 1999).
Also in this case, the preparation of 1:3 PβCD with steam, in powder form, are mixed together, then co-ground in a high-energy mill whose grinding chamber has been saturated with steam. The FT-Raman spectrum, obtained by simply packing the powder into a cup, is reported in Figure 1. It shows the following main peaks in the 1650-1000 cm\(^{-1}\) range (accuracy \(\pm 1\) cm\(^{-1}\)):

- 1613 cm\(^{-1}\) (sh), 1593 (s), 1578 (sh), 1561 (w), 1525 (br), 1519 (br), 1464 (m), 1436 (m), 1394 (s), 1331 (brm)/1306 (sh), 1280 (w), 1260 (w), 1234 (w), 1217 (vw), 1186 (w), 1158 (m), 1119 (m), 1083 (w), 1053 (w), 1036 (w), 992 (w), 947 (brw).

Legend: sh = shoulder; s = strong; m = medium; w = weak; vw = very weak; br = broad

The thermal trace after differential scanning calorimetry (DSC) analysis does not show any endothermal melting peak at 190-200°C typical of crystalline piroxicam. A typical DSC curve is shown in Figure 2. The conditions are the following: starting temperature of 20°C; scanning rate of 10°C/min; final temperature of 250°C.

In general terms, cyclodextrin inclusion complexes can be prepared on the basis of liquid state, solid state or semi-solid state reactions between the components. The first is accomplished by dissolving the cyclodextrin and the drug in a suitable solvent and subsequently isolating the solid state complex by crystallization, evaporation, spray-drying (Tokomura et al Yakuzaigaku 1985, 45, 1) and freeze-drying (Kurozumi et al Chem Pharm Bull 1975, 23, 3062).

In the semi-solid state, the two components are kneaded in the presence of small amounts of a suitable solvent, and the resulting complex is oven dried, screened and homogenized (Torricelli et al Int J Pharm 1991, 75, 147). In the solid state method, the two components may be optionally screened to uniform particle size and thoroughly mixed whereafter they are ground in a high-energy mill with optional heating, screened and homogenized.

Said methods have also been applied to the preparation of inclusion compounds constituted of piroxicam (P) and cyclodextrins (CDs).

For instance, EP 153998 discloses that complexes of P and CDs in a molar ratio comprised between 1:1 and 1:10 can be prepared in different ways:

a) by crystallization from an aqueous or an organic/aqueous solution containing the two ingredients;
b) by evaporation of a water/ammonia solution
c) by freeze-drying or atomization in air stream (spray drying) of a water/ammonia solution.

All the examples refer to preparations of 1:2.5 PβCD on a lab scale (from milligram to grams).

EP 449167 discloses a process for preparing P:CD complexes characterized in that the two ingredients, both in powder form, are mixed together, then co-ground in a high-energy mill whose grinding chamber has been saturated with steam.

Also in this case, the preparation of 1:2.5 PβCD showing the best performance was obtained on a gram scale.

In the example 2 of EP 449167, the dissolution rate of tablets containing as active ingredient the 1:2.5 PβCD prepared according to the claimed process was compared with that of analogous pharmaceutical composition containing the same active ingredient obtained by different methods and with a piroxicam composition in the form of capsules available on the market. The conditions of the dissolution test are not specified.

In this test, although the rate of dissolution of piroxicam from the inclusion complex obtained according to the method of the patent was the highest, \(\geq 90\%\) of dissolved piroxicam in ten min (600") was achieved from all the formulations, including the capsules.

[0011] The more rapid onset of action makes PβCD particularly effective as analgesics, i.e. for the management of diseases such as dental pain, post-traumatic pain, headache and dysmenorrhea.

[0012] The successful results achieved with the use of cyclodextrins rely on the fact that, through complexation, it is possible to obtain a stable amorphous structure: since the amorphous form has a larger surface area and its lattice energy is much less than in crystals, both wettability and aqueous solubility of piroxicam are increased. Amorphous piroxicam as such is, indeed, a metastable form which crystallises within few hours (Redenti et al Int J Pharm 1996, 129, 289).

[0013] Moreover, it has also been demonstrated by Raman studies that piroxicam, in the β-cyclodextrin inclusion compound, assumes a zwitter-ionic structure with positive and negative charges delocalized similar to that of the hydrate pseudopolymorph (III). This structure is stabilized due to the chemical interaction with β-cyclodextrin via electrostatic and hydrogen bonds. The dipolar character of the zwitter-ionic structure improves the solubility and the dissolution rate of piroxicam and thus its rate of absorption (Bertoluzza et al J Mol Struct 1999, 480-481, 535).

Therefore, in order to ensure the best performances in terms of dissolution rate and absorption rate, so important for an analgesic action, the manufacturing process of PβCD should be able to achieve not only the completeness of the inclusion reaction but also the complete amorphization of the whole product. Moreover, since the dissolution profile is strictly dependent on the intramolecular structure assumed by piroxicam in the inclusion compound, the manufacturing process should be able to achieve the complete conversion of piroxicam in the zwitter-ionic form.

The amorphous PβCD inclusion compound in the 1:2.5 molar ratio and in which piroxicam is completely present in the zwitter-ionic form can be characterized by its Raman spectrum, X-ray powder diffraction pattern and thermal behavior.

[0016] The FT-Raman spectrum, obtained by simply packing the powder into a cup, is reported in Figure 1. It shows the following main peaks in the 1650-1000 cm\(^{-1}\) range (accuracy \(\pm 1\) cm\(^{-1}\)):

- 1613 cm\(^{-1}\) (sh), 1593 (s), 1578 (sh), 1561 (w), 1525 (br), 1519 (br), 1464 (m), 1436 (m), 1394 (s), 1331 (brm)/1306 (sh), 1280 (w), 1260 (w), 1234 (w), 1217 (vw), 1186 (w), 1158 (m), 1119 (m), 1083 (w), 1053 (w), 1036 (w), 992 (w), 947 (brw).

Legend: sh = shoulder; s = strong; m = medium; w = weak; vw = very weak; br = broad

[0017] The thermal trace after differential scanning calorimetry (DSC) analysis does not show any endothermal melting peak at 190-200°C typical of crystalline piroxicam. A typical DSC curve is shown in Figure 2. The conditions are the following: starting temperature of 20°C; scanning rate of 10°C/min; final temperature of 250°C.

In general terms, cyclodextrin inclusion complexes can be prepared on the basis of liquid state, solid state or semi-solid state reactions between the components. The first is accomplished by dissolving the cyclodextrin and the drug in a suitable solvent and subsequently isolating the solid state complex by crystallization, evaporation, spray-drying (Tokomura et al Yakuzaigaku 1985, 45, 1) and freeze-drying (Kurozumi et al Chem Pharm Bull 1975, 23, 3062).

In the semi-solid state, the two components are kneaded in the presence of small amounts of a suitable solvent, and the resulting complex is oven dried, screened and homogenized (Torricelli et al Int J Pharm 1991, 75, 147). In the solid state method, the two components may be optionally screened to uniform particle size and thoroughly mixed whereafter they are ground in a high-energy mill with optional heating, screened and homogenized.

[0020] Said methods have also been applied to the preparation of inclusion compounds constituted of piroxicam (P) and cyclodextrins (CDs).

[0021] For instance, EP 153998 discloses that complexes of P and CDs in a molar ratio comprised between 1:1 and 1:10 can be prepared in different ways:

a) by crystallization from an aqueous or an organic/aqueous solution containing the two ingredients;
b) by evaporation of a water/ammonia solution
c) by freeze-drying or atomization in air stream (spray drying) of a water/ammonia solution.

[0022] EP 449167 discloses a process for preparing P:CD complexes characterized in that the two ingredients, both in powder form, are mixed together, then co-ground in a high-energy mill whose grinding chamber has been saturated with steam.

[0023] Also in this case, the preparation of 1:2.5 PβCD showing the best performance was obtained on a gram scale.

[0024] In the example 2 of EP 449167, the dissolution rate of tablets containing as active ingredient the 1:2.5 PβCD prepared according to the claimed process was compared with that of analogous pharmaceutical composition containing the same active ingredient obtained by different methods and with a piroxicam composition in the form of capsules available on the market. The conditions of the dissolution test are not specified.

[0025] In this test, although the rate of dissolution of piroxicam from the inclusion complex obtained according to the method of the patent was the highest, \(\geq 90\%\) of dissolved piroxicam in ten min (600") was achieved from all the formulations, including the capsules.
WO 9528965 discloses multicomponent inclusion complexes basically consisting of a drug bearing an acidic group, a cyclodextrin and a base. Freeze drying is only generically mentioned in the description which does not give any information on the process conditions.

The technical problem underlying the invention is to obtain good performances of the tablets prepared with the complex, in term of dissolution rate, when moving from lab to industrial scale.

According to the invention, on an industrial scale, 1:2.5 PβCD can be obtained by freeze-drying (lyophilization). Lyophilization is the process of removing water from a product by sublimation, i.e. at a product temperature that is lower than its eutectic temperature. This process is performed in lyophilization equipment (freeze-dryer) which consists of a drying chamber with temperature-controlled shelves, a condenser to trap water removed from the product, a cooling system to supply refrigerant to the shelves and condenser and a vacuum system to reduce the pressure in the chamber and condenser to facilitate the drying process.

In the case of 1:2.5 PβCD, the lyophilisation process according to the invention comprises the following steps:

1. dissolving piroxicam and β-cyclodextrin in hot water in the presence of ammonium hydroxide;
2. partitioning the solution on the trays placed on the temperature-controlled shelves;
3. bringing the solution to a temperature of about -10°C in order to achieve its complete freezing;
4. further lowering the temperature of the frozen solution, i.e. to a temperature lower than the eutectic temperature of the product (-18°C), i.e. at least -20°C and preferably at between -30°C and -40°C;
5. drying the frozen solution under vacuum.

It has been found and is a first aspect of the present invention that in order to obtain 1:2.5 PβCD characterized by: i) completeness of the inclusion reaction; ii) complete amorphization; iii) complete conversion of piroxicam into the zwitter-ionic form, it is necessary to cool the solution to a temperature at which the complete freezing occurs as fast as possible and anyway at a rate equal to or higher than about 1°C/min.

A high cooling rate is necessary to 'freeze' and so maintain in the solid state the same structure of the inclusion complex in solution, with piroxicam in the zwitter-ionic form.

The inventors have indeed found that, if the cooling process is carried out at a lower rate, β-cyclodextrin begins to re-crystallize before the complete freezing of the solution followed by de-complexation of piroxicam and partial loss of the zwitter-ionic structure.

In order to cool the solution at a rate equal to or higher than about 1°C/min, the temperature-controlled shelves should be pre-cooled at a temperature of at least -30°C, preferably -40°C.

In another embodiment, in order to further speed-up the cooling process, the solution of the product can be frozen outside the freeze-dryer, for instance by pouring in a dewar filled with liquid nitrogen, then submitting the resulting product, once recovered, to the drying process in the freeze-dryer.

In fact, it has been found and this is a further aspect of the invention, that, as a result of the freezing by liquid nitrogen, a product in the form of solid granules is formed. Solid granules, in turn, have an increased surface of sublimation than the powder in form of layers as obtained by cooling the solution on the temperature-controlled shelves, thus providing a reduction of the time of drying and an increase in the production yield.

None of the documents of the prior art, mention of the criticality of the cooling rate for obtaining freeze-dried PβCD in 1:2.5 molar ratio fulfilling the requirements outlined above, i.e.: i) completeness of the inclusion reaction; ii) complete amorphization; iii) complete conversion of piroxicam in the zwitter-ionic form. Nevertheless, there is mention of the advantages which can be achieved in term of productive yield by submitting the solution containing the complex to a pre-freezing treatment in liquid nitrogen.

Example 4 of EP 153998, referring to the preparation of PβCD by freeze-drying, states that the limpid solution was poured into a freeze-dryer, pre-cooled to -20°C. None is said about the importance of the cooling rate of the solution and the -20°C temperature is not enough for guaranteeing a cooling rate of the hot solution equal to or higher than 1°C/min. In Acerbi et al (Drug Invest 1990, 2, Suppl. 4, 29-36), a flow-chart showing the manufacturing process(es) for PβCD is sketched. As far as freeze-drying is concerned, only the temperature of the frozen solution before drying (-40°C) is indicated.

Also in this case nothing is reported about the criticality of the conditions of the freezing step and in particular of the rate of cooling.

The characteristics of the process of the invention for preparing PβCD inclusion compounds, will be more
apparent from the following detailed description.

[0041] The process of the invention consists of lyophilization. Lyophilizers in a wide variety of sizes and configurations can be used. In a first step, piroxicam and β-cyclodextrin in a suitable molar ratio and ammonium hydroxide are added to a tank provided with a tap containing water brought to a temperature higher than 60°C, preferably higher than 70°C, more preferably between 70 and 75°C, then mixed until dissolution. In a second step the hot solution is poured through the tap on the temperature-controlled shelves pre-cooled at least at -30°C, in such a way as that the temperature of complete freezing (-10°C) is achieved in not more than 90 min (rate = 1°C/min), preferably less than 60 min (rate = 1.5°C/min). More preferably, the shelves are pre-cooled to -40°C in order to achieve the temperature of initial freezing (about -5°C) in about 30 min. In a third step, the temperature is further lowered to at least -20°C and preferably to between -30° and -40°C, i.e. to a temperature lower than the eutectic temperature of the product (-18°C), in about 120 min (overall time of freezing: 210 min). The frozen product is then submitted to the drying phase under vacuum by bringing the temperature of shelves at 50-60°C, preferably at 55°C.

[0042] Alternatively, the hot solution is poured through the tap into a dewar filled with liquid nitrogen in such a way that a temperature lower than the eutectic temperature (-18°C) is achieved almost instantaneously (rate much higher than 1°C/min).

[0043] The frozen product is recovered and submitted to the drying phase on the shelves as described above.

[0044] According to the invention, piroxicam and β-cyclodextrin are used in a 1:1 and 1:4 molar ratio, preferably 1:2.5. In the first step of the process concentrated ammonium hydroxide is advantageously used, preferably in a conc. of 28-30% w/w and in a 1:1 ratio w/w with respect to piroxicam.

[0045] The PβCD complex obtained with the process of the invention can be advantageously used to prepare pharmaceutical compositions having analgesic, anti-inflammatory and anti-rheumatic activity, for the oral, rectal and topical administration, preferably in the form of tablets, effervescent tablets or sachets for oral administration.

[0046] Advantageously the tablets for oral administration contain between 40 mg and 200 mg of the 1:2.5 complex per unit dose, preferably 95.6 mg or 191.2 mg (respectively corresponding to 10 and 20 mg of piroxicam) and lactose, crospovidone, sodium starch glycolate, silica, starch and magnesium stearate as excipients.

[0047] The following examples better illustrate the invention.

Example 1 - Preparation of 1:2.5 PβCD by lyophilisation

[0048] About 50 litres of water was poured into a tank and heated up to a temperature of 70-73°C. 8.6 kg (7.57 moles) of β-cyclodextrin, 1 kg (3.02 moles) of piroxicam and 1 kg of 28% ammonium hydroxide were added in succession, and the mixture stirred for 30 min. The solution was poured through the tap on the temperature-controlled shelves of the freeze-dryer pre-cooled at -40°C. After 210 min, the frozen product reaches the temperature of -30°C, so it is first submitted to a primary drying phase under vacuum by bringing the temperature of shelves at 50-60°C, then to a secondary drying phase at the same temperature for reducing the content of residual water.

[0049] The 1:2.5 PβCD product in the form of layers is collected from the trays.

[0050] The resulting product shows the Raman spectrum and the thermal curve reported respectively in Figures 1 and 2. Powder X-ray analysis shows the diffused diffraction pattern typical of amorphous products.

Example 2 - Dissolution rate of the tablets

[0051] Tablets, containing 1:2.5 PβCD as active ingredient prepared according to the method of Example 1, were prepared by direct compression according to the following unit of composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity (mg/tablet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2.5PβCD</td>
<td>191.2</td>
</tr>
<tr>
<td>Lactose monohydrate</td>
<td>102.8</td>
</tr>
<tr>
<td>Crospovidone</td>
<td>50</td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>20</td>
</tr>
<tr>
<td>Colloidal hydrated silica</td>
<td>20</td>
</tr>
<tr>
<td>Pregelatinized starch</td>
<td>10</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
</tr>
</tbody>
</table>

[0052] It is well known that the parameters used for performing the dissolution test are very critical and can strongly affect the dissolution performances. For discriminating among the various inclusion complexes, the dissolution test was
performed according to the USP paddle method with the following modifications: six tablets were dissolved in 300 ml
water at 37 °C and at 125 r.p.m; an aliquot was withdrawn after 10 min and the content of piroxicam was determined by
spectrophotometric analysis.

In order to obtain the desired absorption profile, the dissolution specification requires an amount of dissolved
piroxicam ≥ 90% in ten minutes.

The tablets containing the 1:2.5 PβCD complex obtained according to the process of the present invention
(Example 1) fulfil such a specification, while those containing the same complex prepared according to the processes
of the prior art do not.

Claims

1. A process of lyophilization for the preparation of a piroxicam:β-cyclodextrin inclusion compound in a 1:2.5 molar
 ratio comprising the steps of:
 a) dissolving piroxicam and β-cyclodextrin in the molar ratio of 1 to 2.5 and ammonium hydroxide in water
 brought to a temperature of at least 60 °C;
 b) bringing the hot solution to the temperature of -10 °C of complete freezing; and
 c) drying the frozen solution under vacuum.

 characterized in that the temperature of -10 °C of complete freezing of the hot solution of step a) is achieved at a
 cooling rate equal to or higher than 1°C/min.

2. A process as claimed in claim 1 characterized in that the temperature of complete freezing of the hot solution is
 achieved in not more than 90 min.

3. A process as claimed in claim 2, characterized in that the temperature of complete freezing of the hot solution is
 achieved in less than 60 min.

4. A process as claimed in claim 3 characterized in that the cooling rate is 1.5 °C/min.

5. A process as claimed in any one of claims 1 to 4 characterized in that the hot solution of step a) is poured on the
 temperature-controlled shelves of a freeze-dryer and said shelves of said freeze-dryer are pre-cooled to a temper-
 ature of at least -30 °C in order to achieve a cooling rate equal to or higher than 1 °C/min.

6. A process as claimed in claim 5, characterized in that the shelves of the freeze-dryer are pre-cooled to the
 temperature of -40 °C.

7. A process as claimed in any one of claims 1 to 6, which further comprises the step of lowering the temperature of
 the frozen solution of step b) to a temperature of at least -20 °C.

8. A process as claimed in claim 7 characterized in that the temperature is lowered to between -30° and -40 °C.

9. A process as claimed in claim 1, characterized in that the hot solution of step a) is poured in a dewar filled with
 liquid nitrogen.

10. A process as claimed in claim 9 characterized in that the product obtained is in the form of solid granules.

11. A process as claimed in any one of claims 1 to 9, characterized in that the step c) of drying is carried out at a
 temperature comprised between 50 and 60 °C.

12. A process as claimed in any one of claims 1 to 9 characterized in that the water in step a) is brought to a temper-
 ature of at least 70 °C.

13. A process as claimed in claim 11 characterized in that the water is brought to a temperature comprised between
 70 and 75 °C.

14. A process as claimed in any one of claims 1 to 9 characterized in that the ammonium hydroxide is used in a
concentration ranging from 28 to 30 % and in a 1:1 ratio (w/w) with respect to piroxicam.

Patentansprüche

1. Lyophilisierungsverfahren für die Herstellung einer Piroxicam-β-Cyclodextrin-Einschlussverbindung in einem 1:2,5-Molverhältnis, umfassend die Schritte:

 a) Lösen von Piroxicam und β-Cyclodextrin im Molverhältnis von 1 zu 2,5 und Ammoniumhydroxid in Wasser, das auf eine Temperatur von wenigstens 60°C gebracht wurde;
 b) Bringen der heißen Lösung auf die Temperatur des vollständigen Gefrierens von -10°C; und
 c) Trocknung der gefrorenen Lösung unter Vakuum,

dadurch gekennzeichnet, dass die Temperatur von -10°C des vollständigen Gefrierens der heißen Lösung von Schritt a) mit einer Kühlungsrate von gleich 1°C/Min. oder höher erreicht wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur des vollständigen Gefrierens der heißen Lösung in nicht mehr als 90 Min. erreicht wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Temperatur des vollständigen Gefrierens der heißen Lösung in weniger als 60 Min. erreicht wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Kühlungsrate 1,5°C/Min. ist.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die heiße Lösung von Schritt a) auf die Temperatur-kontrollierten Böden eines Gefriertrockners gegossen wird und die genannten Böden des Gefriertrockners auf eine Temperatur von wenigstens -30°C vorgekühlt werden, um eine Kühlungsrate gleich 1°C/Min. oder höher zu erreichen.

7. Verfahren nach einem der Ansprüche 1 bis 6, das außerdem den Schritt einer Senkung der Temperatur der gefrorenen Lösung von Schritt b) auf eine Temperatur von wenigstens -20°C umfasst.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Temperatur auf zwischen -30° und -40°C gesenkt wird.

9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die heiße Lösung von Schritt a) in ein Dewar-Gefäß, das mit flüssigem Stickstoff gefüllt ist, gegossen wird.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das erhaltene Produkt in Form von festen Körnern vorliegt.

11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Schritt c) der Trocknung bei einer Temperatur zwischen 50 und 60°C durchgeführt wird.

12. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Wasser in Schritt a) auf eine Temperatur von wenigstens 70°C gebracht wird.

13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Wasser auf eine Temperatur zwischen 70 und 75°C gebracht wird.

14. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Ammoniumhydroxid in einer Konzentration, die von 28 bis 30% reicht und bezüglich Piroxicam in einem Verhältnis (G/G) von 1:1 verwendet wird.
Revendications

1. Procédé de lyophilisation pour la préparation d’un composé d’inclusion de piroxicam-β-cyclodextrine en un rapport molaire de 1:2,5, comprenant les étapes consistant :

 a) à dissoudre du piroxicam et de la β-cyclodextrine dans rapport molaire de 1 à 2,5 et de l’hydroxyde d’ammonium dans de l’eau portée à une température d’au moins 60 °C ;
 b) à porter la solution chaude à la température de -10 °C de congélation complète ; et
 c) à sécher la solution congelée sous vide.

caractérisé en ce que la température de -10 °C de congélation complète de la solution chaude de l’étape a) est atteinte à une vitesse de refroidissement égale ou supérieure à 1 °C/min.

2. Procédé selon la revendication 1, caractérisé en ce que la température de congélation complète de la solution chaude est atteinte en pas plus de 90 min.

3. Procédé selon la revendication 2, caractérisé en ce que la température de congélation complète de la solution chaude est atteinte en moins de 60 min.

4. Procédé selon la revendication 3, caractérisé en ce que la vitesse de refroidissement est de 1,5 °C/min.

5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la solution chaude de l’étape a) est versée sur les étagères à température régulée d’un lyophilisateur et lesdites étagères dudit lyophilisateur sont pré-refroidies à une température d’au moins -30 °C afin d’atteindre une vitesse de refroidissement égale ou supérieure à 1 °C/min.

6. Procédé selon la revendication 5, caractérisé en ce que les étagères du lyophilisateur sont pré-refroidies à la température de -40 °C.

7. Procédé selon l’une quelconque des revendications 1 à 6, qui comprend en outre l’étape consistant à abaisser la température de la solution congelée de l’étape b) à une température d’au moins -20 °C.

8. Procédé selon la revendication 7, caractérisé en ce que la température est abaissée à entre -30 ° et -40 °C.

9. Procédé selon la revendication 1, caractérisé en ce que la solution chaude de l’étape a) est versée dans un dewar rempli d’azote liquide.

10. Procédé selon la revendication 9, caractérisé en ce que le produit obtenu est sous la forme de granules solides.

11. Procédé selon l’une quelconque des revendications 1 à 9, caractérisé en ce que l’étape c) de séchage est effectuée à une température comprise entre 50 et 60 °C.

12. Procédé selon l’une quelconque des revendications 1 à 9, caractérisé en ce que l’eau dans l’étape a) est portée à une température d’au moins 70 °C.

13. Procédé selon la revendication 11, caractérisé en ce que l’eau est portée à une température comprise entre 70 et 75 °C.

14. Procédé selon l’une quelconque des revendications 1 à 9, caractérisé en ce que l’hydroxyde d’ammonium est utilisé en une concentration allant de 28 à 30 % et en un rapport 1:1 (p/p) par rapport au piroxicam.
FIGURE 1