wo 2013/129988 A2 ||]I ¥ 0O 00O O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/129988 A2

6 September 2013 (06.09.2013) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 17/30 (2006.01) kind of national protection available). AE, AG, AL, AM,
. L . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/SE2012/051483 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
21 December 2012 (21.12.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
61/604,797 29 February 2012 (29.02.2012) Us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant: TELEFONAKTIEBOLAGET L M ERIC- kind of regional protection available): ARIPO (BW, GH,
SSON (PUBL) [SE/SE]; S-164 83 Stockholm (SE). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Tnventors: MUELLER, Elisabeth; Biichnerallee 18, DE- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
.) . TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
55127 Mainz (DE). FORSTER, Manfred; Unterm Rain 5,
DE-64823 Gross-Umstadt (DE). SORG, Peter; Talstrasse EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
41. DE-65719 Hofheim am Tauﬁus (DE)’ ’ MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
’ ’ TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
(74) Agent: EGRELIUS, Fredrik; Fricsson AB, Patent Unit ML, MR, NE, SN, TD, TG).

Kista DSM, S-16480 Stockholm (SE).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR STORAGE OF DATA RECORDS

‘ 310

‘ receiving 4 hicrarchical charging record

retrieving 4 hierarchical charging record configuration definition

T 330

‘ Jetrieving a charging databuse configuration definition }

traversing the hicrarchical charging rocord identifying an attribute

determining it he atiribute is a key atributc or a scarch athibute and
if affinmative storing an artribute valuc of the attribute in a ficld

7350

- 360

applying a type specific algoritm fo condense the athibute value of
a specific type

storing the member/attribute key and a data value in a payload body
ficld of the serialized charging data record .

‘ compressing the payload body ficld ‘

storing an indication of the use of compression in 4 byte array
contral header of the serialized charging data record

- 370

. 380

. 390

FIGURE 3

(57) Abstract: Method and data access unit for storage of data records for
creating a serialized charging record formatted for insertion into a charging
database. The method includes traversing the hierarchical charging record
and for each part node of said hierarchical charging record identifying an at-
tribute of the part node and determining if said attribute is a key attribute or
a search attribute and if affirmative storing an attribute value of said attrib -
ute in a field of the serialized charging record based on a charging database
configuration definition. A part segment comprising the attribute value and a
data value token is stored in a payload body field of the serialized charging
record with a part node indicator representing the location of the part node
in the hierarchical charging record based on a hierarchical charging record
configuration definition. A method and data access unit for creating a hier-
archical charging record is also disclosed. An advantage is that a serialized
charging record may be stored in one storage entity such as a table row.

WO 20137129988 A2 |IIIWAT 00TV AV K A AU A

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — without international search report and to be republished
a patent (Rule 4.17(ii)) upon receipt of that report (Rule 48.2(g))

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

METHOD AND APPARATUS FOR STORAGE OF DATA RECORDS

TECHNICAL FIELD
The present invention relates to storage of data records and more particularly to a method and

apparatus for storage of data records.

BACKGROUND

Call or Charging Data Records (CDR) collected from network elements are rated and
charged in appropriate components of a business support system (BSS). While being
processed in rating these records are enriched with subscriber specific information and also
information about the services used, the charges calculated and the discounts applied. After
rating and charging the records need to be stored in operational data storage before they are

invoiced at the end of the billing period, usually a month.

During the invoicing process all CDRs applicable to the billing time frame are retrieved from
persistent storage. If promotions and billing time discounts are applied to CDRs during this
process, the CDR gets enriched with promotion and discount information and stored back

again.

The rated and discounted records are also visible from customer care and self-care

components.

CDRs collect all information related to the usage of one more services during the call and the
associated pricing and discounting. For this reason CDRs are natively structured as trees with

branches for various services used and all pricing components.

CDRs have to be made persistent for several reasons. On one hand they have to be available
for the billing and customer care. On the other hand they have to be forwarded to data

analytics components for reporting issues.

A typical distribution of storage demands is 5-10 % for customer care data, 10-20 % for bill
images and the remaining 75 % for usage data records, which are the rated and charged call

detail records.

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

Current storage implementations foresee to store the CDRs in a relational database system. As
a first step the storage model reflects the tree structure in a normalized relational structure by
designing appropriate tables and relationships. In a second step this normalized model is de-

normalized for performance reasons leading to information duplication.

Today’s telecommunication services have evolved from the plain usage of telephony towards
high complex diverse solutions generating a high volume of call data. In order to assure the
revenue of an operator requires that potentially anonymized call detail information has to be

made persistent over a long period.

BSS systems need to tackle the various issues caused by huge data volume in order to support
the different business processes with sufficient performance and latency. This does not only
impose requirements on the application software but also on the hardware components

participating in this process.

The basic storage concepts for operational call data storage described above lead to various

problems:

- High storage consumption due the large number of CDRs and the large size of a single
CDR due to the high number of CDR information attributes. The storage size per CDR
increases with the complexity of business information stored per call. The de-normalization
increases the storage size due to the fact that redundant information needs to be made

persistent

- Classic de-normalization solutions are not sufficient to solve performance and latency

issues for today’s huge amount of CDRs and the high storage size.

- De-normalization leads to consistency issues if updates are performed e.g. during the

billing process.

Operators need to spend significant resources to fulfill the needs of operational CDR data
storage for their billing systems. An important cost driver is the huge amount of high

performing storage space which has to be provided.

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram showing the data structure of a CR having a tree structure in memory

Figure 2 is a block diagram showing an overview of a billing system in the context of a full

Business Support System wherein the invention may be useful.

Figure 3 is a flow chart showing a method for creating a serialized charging record formatted

for insertion into a charging database.

Figure 4 is a diagram showing the data structure of a serialized charging record.

Figure SA-D shows flowcharts for creating and storing a serialized charging record in a

database.

Figure 6 shows a flowchart for formatting a charging record into a payload body field.

Figure 7A-C is a flowchart showing the logic to retrieve charging records from a database.

Figure 8 is a flowchart showing the logic to de-format a byte array having a data structure

described in figure 4 and create a call detail record in memory having a tree structure.

Figure 9 is a block diagram showing an example charging architecture wherein the invention

is useful.

Figure 10 is a block diagram showing an exemplary embodiment of a data access unit in the

form of computing system environment 800.

SUMMARY
It is an object of the invention to provide a method and apparatus for creating a serialized
charging record and a hierarchical charging record formatted for insertion into a charging

database mitigating the problems of prior art solutions.

One aspect of the invention relates to a method for creating a serialized charging
record formatted for insertion into a charging database. The method comprises receiving a

hierarchical charging record comprising part nodes with charging related data. A hierarchical

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

charging record configuration definition specifying the data structure of the hierarchical

charging record and a charging database configuration definition is retrieved.

The method further includes traversing the hierarchical charging record and for each part node
of said hierarchical charging record identifying an attribute of the part node and determining
if said attribute is a key attribute or a search attribute and if affirmative storing an attribute
value of said attribute in a field of the serialized charging record based on the charging

database configuration definition.

A part segment comprising the attribute value and a data value token is stored in a payload
body field of the serialized charging record with a part node indicator representing the
location of the part node in the hierarchical charging record based on the hierarchical charging

record configuration definition.

It is an advantage of the invention that a serialized charging record may be stored in
one storage entity such as a table row whereas in storage solutions prior to the invention

normally multiple storage entities are needed.

In another aspect the invention relates to a method for creating a hierarchical charging
record. The method comprises receiving a serialized charging record comprising part
segments with charging related data and retrieving a hierarchical charging record

configuration definition specifying the data structure of the hierarchical charging record.

A payload body field is extracted from the serialized charging record and the payload body
field is traversed. The traversing includes detecting a part node indicator identifying a part
node; allocating memory for the part node determined by the hierarchical charging record
configuration definition based on the part node indicator; detecting a data value token
indicating a part segment; extracting properties from the data value token; allocating memory
for an attribute of the part node, based on the properties; reading a data value from the part

segment; and storing the data value to the memory allocated for the attribute of the part node.

Yet another aspect of the invention relates to a data access unit for creating a serialized
charging record formatted for insertion into a charging database.
The data access unit comprises an interface unit adapting the data access unit for receiving a

hierarchical charging record comprising part nodes with charging related data, retrieving a

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

hierarchical charging record configuration definition specifying the data structure of the

hierarchical charging record and retrieving a charging database configuration definition;

The data access unit further comprises a formatting unit adapting the data access unit for
traversing the hierarchical charging record and for each part node of said hierarchical
charging record identifying an attribute of the part node and determining if said attribute is a
key attribute or a search attribute and if affirmative storing an attribute value of said attribute
in a field of the serialized charging record based on the charging database configuration

definition.

The interface unit is further adapting the data access unit for storing a part segment
comprising the attribute value and a data value token in a payload body field of the serialized
charging record with a part node indicator representing the location of the part node in the
hierarchical charging record based on the hierarchical charging record configuration

definition.

Yet a further aspect of the invention relates to a data access unit for creating a

hierarchical charging record formatted for insertion into a charging database.

The data access unit comprises an interface unit adapting the data access unit for receiving a
serialized charging record comprising part segments with charging related data and retrieving
a hierarchical charging record configuration definition specifying the data structure of the

hierarchical charging record.

The data access unit further comprises a formatting unit adapting the data access unit for
extracting a payload body field from the serialized charging record and traversing the payload

body field.

The traversing includes detecting a part node indicator identifying a part node; allocating
memory for the part node determined by the hierarchical charging record configuration
definition based on the part node indicator; detecting a data value token indicating a part
segment; extracting properties from the data value token; allocating memory for an attribute
of the part node, based on the properties; reading a data value from the part segment; and

storing the data value to the memory allocated for the attribute of the part node.

Embodiments of the invention will now be described in more detail with reference to
the enclosed drawings.

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

DETAILED DESCRIPTION

The following detailed description of the exemplary embodiments refers to the accompanying
drawings. The same reference numbers in different drawings identify the same or similar
elements. Also, the following detailed description does not limit the invention. Instead, the

scope of the invention is defined by the appended claims.

In particular, whenever the term charging, or call, data/detail record (CDR) is used, this
should be understood to apply equally well to any charging record (CR)— including any data
record carrying charging data such as call data, session data or event data, such as for example

an event data record (EDR).

The solution relates to a new optimized storage model for data records, such as charging
records. This storage model lifts the limitations of the traditional de-normalization approach

by applying a completely different storage model.

The solution consists out of the following parts:

- A byte array representing a serialized charging record having a tree structure in

memory.

- An algorithm which creates the byte array representation for a CR. The algorithm
serializes the CR by converting the data structure, e.g. tree, into a format that can be stored
(for example, in a relational database, a hbase database, a file or memory buffer, or
transmitted across a network connection link) and reconstructed later in the same or another

computer environment.

- A storage model for CRs in a database, such as a relational database, using the byte

array representation.

- Storing the complete CR efficiently in a single row in a database, such as a relational

database.

Thus, a CR structured as a tree in computer memory is serialized and may further be
condensed and compressed into a byte array thus avoiding redundancies. Condensation is

performed by coding the data value of each attribute into a condensed format dependent on

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

the type and data size of the data to be coded. Compressing is performed by applying a
compression algorithm to the byte array without relying of information about the included
data types. The format used to create the byte array is a platform agnostic key/value format
enriched with tokens to reflect the tree nodes. The format is designed to be aware of data type
and size for number, string and date types of the fields contained in the CR. Type specific
algorithms are applied to condense single attribute values. The serialized charging record is
stored in a single row of a database table and contains a column for the byte array represented
as a binary array such as for example a Binary Large OBject (BLOB) and a few key columns

for CR identification, search and retrieval.

For one CR one single row is created on data upload. This CR can easily be updated by

retrieving the table row, reformatting and overwriting the byte array, e.g. BLOB, column.

The access to the data is implemented by a search and query mechanism using a two-step
approach. Each search query is divided into conditions which are applicable to the key
columns and therefore can be evaluated by the initial database retrieval step (worked off by
e.g. a Relation DataBase Management System (RDBMS) Structured Query language (SQL)
engine) and a second set of conditions which filter the result set after de-serializing, i.e. the
opposite operation where the CR is recreated by extracting the data structure, e.g. tree from

the byte array.

The details of the persistence layer including format and access methods may be shielded
from the application using the data by providing appropriate data layer implementations in

C++ and java libraries.

The byte array format foresees the option to include further external real time compression
algorithms and apply them to the data array. If such an external algorithm has been applied,

the byte array is flagged appropriately.

Sample data layer implementations provide offer plug-in functionality, which allows invoking
compress and uncompressing methods on the byte array when creating or retrieving the

serialized charging record (e.g. database row).

Embodiments of the invention will now be described with reference to the appended

drawings.

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

Figure 1 is a diagram showing the data structure of a charging record having a tree

structure in memory.

The naming convention for the different components of a CR structure in memory indicated
below is not intended to limit the invention but merely established for describing the involved

terminology.

A call detail record in memory may be natively structured as a tree, 100, having branches for

various information about service usage, charges calculated, discounts applied and so on.

A tree is a specific type of network topology, where a root node 110 being the single node on
the upmost level of a tree is connected to one or more nodes 120, being one level lower in the
hierarchy. Second level nodes may be connected to one or more nodes being one level lower

in the hierarchy. A connection between an upper level node and a node being one level lower
is denoted a parent-child relationship. There are parent-child relationships with one child

having one unique parent allowed in a tree topology.

A part is refers to a node or nodes on a specific level in a tree structure also associated with a

business meaning.

The Record Part, 130, is the upper most node level of a tree structure (level 1) of a CR,
carrying the information of a call detail record common to all further branches in the tree, e.g.
unique identifier of the CR. On the second level of tree structure of the CR is the Base Part
140 carrying the information about usage of a specific service during the call. The Charge
Part, 150, is the third node level of tree structure of CR carrying the information about
charges related to the service mentioned in the parent node (base part). On the fourth node
level of tree structure of CR is the Discount & Account Part 160, carrying the information
about discounts applied to charges mentioned in the parent node (charge part) and account

changes.

Members, 170, are first level structures used to specify a collection of associated properties of
nodes of a part (e.g. charge amount and currency). A node has a set of named structures
known as members. Each of the named structures/members has a set of attributes. An attribute
is a part of a named structure/member, which in turn is part of a node. An attribute is the name
of a specific property included in a member and having a value. An example is a Charge Part

having a member for the charge having the attribute “Charge amount” with the value 100, and

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

a “Currency” attribute having the value EUR.

Figure 2 is a block diagram showing an overview of a billing system comprising
Rating and Charging 210 and Billing Unit 293, in the context of a full Business Support

System 200 wherein the invention may be useful.

CRs are received by a Call Collection Unit (CCU) 220 and forwarded to a Rating Area Unit
(RAU) 230 via a Messaging Subsystem (MSS) 240. The RAU rates the CR and forwards the
rated CR via the MSS to a Cost Control and Charging Area Unit (CCCAU) 250 which for
example calculates real time discounts, enforces spending control and charges to accounts.
The CCCAU performs charging on the customers account and forwards the charged CRs to
the CR persistence Database Upload Unit (CDUU) 260 which performs serialization of the
CR to prepare it for insertion into a Charge Record Database (CRDB) 270 of the Master
Database (MDB) 280, using a CR Data Access Unit (CDAU) 290.

The MDB may also include a Customer Reference Database 294.

Subscribers may be allowed to access relevant charging data via a Self-care Unit (SCU) 291

wherein a CDAU is arranged to provide read access to data of the CRDB.

Similarly, the operator’s customer care may access relevant charging data via a Customer care

Unit (CCU) 292 wherein a CDAU is arranged to provide read access to data of the CRDB.

Further, the Billing Unit 293 may access and update relevant charging data wherein a CDAU

is arranged to provide read access to data of the CRDB for read, deletion and update/change.

Figure 3 is a flow chart showing a method for creating a serialized charging record

formatted for insertion into a charging database.

A hierarchical charging record comprising part nodes with charging related data is received in
step 310. In step 320 a hierarchical charging record configuration specification definition
specifying the data structure of the hierarchical charging record is retrieved and a charging

database configuration definition is retrieved in step 330.

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

The hierarchical charging record is traversed in step 340 and for each part node of the
hierarchical charging record an attribute of the part node is identified by processing the

collection of member-attribute tuples present in this part node in a sequence.

In step 350 it is determined if the attribute is a key attribute or a search attribute and if
affirmative an attribute value of the attribute is stored in a field of the serialized charging
record (corresponding to the key or search attribute) based on the charging database

configuration definition.

In step 360 a type specific algorithm is optionally applied, if the attribute is a not a key or
search attribute which will be stored separately, to condense the value of an attribute of a
specific type in order to save storage space. Such type specific algorithms may include for
example that an integer (INTEGER) type attribute value is condensed by representing the
attribute value with an n-byte integer type where n is smallest number of bytes sufficient to
represent the attribute value; and/or a double precision float (DOUBL) type attribute value is
condensed by omitting trailing zero bytes and setting the size of the attribute value in the first
used byte; and or a date (DATE) type attribute value is condensed by masking each byte of
the date attribute value to obtain a half byte constituting a date character and pair wise

concatenating the obtained half bytes.

A part segment comprising of a data value token (i.e. a member/attribute key) and the
attribute value (i.e. the data value) are stored in a payload body field of the serialized charging
record with a part node indicator representing the location of the part node in the hierarchical
charging record in step 370, based on the hierarchical charging record configuration
definition. The payload body field may be a Binary Large OBject (BLOB) i.e. a collection of
binary data to be stored as a single entity in a database management system. Also an ASCII

format is possible where the body could also be a large ASCII string (CLOB).

To save storage space, if the attribute is a key attribute or a search attribute which has already
been stored in a field of the serialized charging record and may thereby be omitted from
storage in the payload body field. In step 370, the storing of the attribute value (i.e. data
value) and the data value token (i.e. member/attribute key) in the payload body field of the
serialized charging record may therefore, as an option, be performed only if the attribute is not

a key attribute or a search attribute.

10

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

Thereby, the byte array will not contain the key attributes and search attributes which are
configured to be stored in separate table columns, such that they are accessible via SQL

statements executed for example from billing or customer care applications.

The payload body field may optionally be compressed in a step 380 by using a compression
algorithm to further reduce storage space. The compression is advantageously a lossless data

compression algorithm.

An indication of the use of a compression algorithm, or an indication of which compression
algorithm if several are possible to use, may be stored in a byte array control header of the
serialized charging record in step 390. The byte array control header is prefixing the BLOB

and maybe stored together with the BLOB in the same database column.

Figure 4 is a diagram showing the data structure of serialized charging record.

The payload body field 410 is a byte array that may be implemented using a BLOB (Binary
Large OBject) which is a type of database column, which can be used to store byte arrays., or
a Character Large Object (CLOB). Such a type of database column is provided by most

popular relational or hbase database systems.

With this column type it is possible to store CRs, optionally condensed binary formatted, and
optionally compressed, in one column, so that it is no longer necessary to associate a CR
attribute to a dedicated table column. Using this concept the number of table columns can be
reduced to this byte array (e.g. BLOB) column plus the number of attributes needed for a
condition clause of a dynamic read statement, e.g. WHERE clauses of a SQL statement of the
selection, i.e. search columns 420, and to define a key 430. The key can also be a combined

key made out of several attributes/parts.

The payload body field will further include a byte array control header field 440. If
compression is used, a Compression header 435 may be affixed, i.e added to the beginning or
end, to the payload body field to indicate a compressed CR and also indicating which
compression method that is used, if several are possible. This has the advantage of producing
a complete CR with all necessary information when uncompressing the byte array/BLOB of a

complete CR.

11

10

15

20

WO 2013/129988 PCT/SE2012/051483

One CR will be stored in one table row whereas in storage solutions prior to the invention

normally multiple rows are needed depending on the number of leaves of the CR tree.

The serialized charging record will thereby contain key columns, search columns, and the

byte array (e.g. BLOB) column containing the formatted CR.

A sample table structure is depicted in the table below. This table structure is the result of a
database configuration definition. The definition of the database structure refers to the

definition of the record structure and identifies which member/attributes will be made

persistent.
Columin Name Data Type Key/Search/Blob:|Comment on Column
CUSTOMER_ID INTEGER Search Internal customer identifier
CONTRACT_ID INTEGER Search Internal contract identifier
INITIAL_START_TIME_TIMESTAMP |DATE Search Call start date and time (UTC)
RECORD_ID_CDR_ID INTEGER Key Call record identifier
CREATE_DATE_TIMESTAMP DATE Search Record creation date and time
CUST_INFO_BILL_CYCLE VARCHAR2(2) [Search Billing cycle
SERVED_PARTY_NUMBER VARCHAR2(100) [Search Served party address
OTHER_PARTY_NUMBER VARCHAR2(100) |Search Other party address
g\IITIAL_START_TIME_TIME_OFFSE INTEGER Search Offset of call start time against UTC
ORIG_ENTRY_DATE_TIMESTAMP |DATE Search Original record entry date and time
(rerating)
CDR_BLOB BLOB Blob Binary object storing a complete CDR
(eventually compressed)

The binary format is an array of bytes, which contains information, optionally condensed

and/or compressed, of all parts of the CR tree.
Control information is structured into tokens, which are special bit sequences.

There are three kinds of tokens:
- special tokens
- start part tokens

- data value tokens.

The control information in the byte array control header 440 consists out of special tokens

only.

Special tokens define additional information, e.g. the byte order for integer values (low

endian, big endian) or an external compression method. The format is fixed and contains a

12

10

15

WO 2013/129988 PCT/SE2012/051483

special token indicator, a special token length, a special token type and the special token

body.

Further control information in the body 410 is either related to the tree structure where it is a

Start Part Token 450, or related to an attribute, in which case it is a Data Value Token 460.

The control information does not exist in the original CR but is added during formatting the

CR onto the byte array and creating the serialized data record.

Each part of the call detail record (node at a certain level with business meaning associated to
it) is identified by a so called part identity (part id). Start Part Tokens are used to flag the tree
structure in the serialized charging record. The Start Part Token contains a token indicator
which is a special bit sequence indicating start of part, and a token value which is the part

identity.

Data value tokens define values for the current part. The format depends on the data type and

size of the transmitted values and contains key, length and value type information.

As an illustrative example, Member/Attribute is 10/9 for the member S_P_NUMBER and
attribute ADDRESS where the Attribute Value is 555706950003 (Ilength 12). The following

table shows a data value token for such member/attribute.

Bit 7 1= marks this byte as data value token Example: 1
Member/Attribute:
10/9:
S_P_NUMBER/ADD
RESS

Value will be:
555706950003
(length 12)

Bit6 1: Member id is the same as in the last Bit6:0 — new Member | O

data value token id 10 (< 255)
0: new Member id is given in format as
defined by bit 5
Bit 5 Bit5:0 —new attribid | O

1: Member id is greater than 255 : the

. 9 (<255)
next two bytes contain it

0: Member id is given in the next byte

Bit 4 Bit4:0 0

1: attribute id is greater than 255 : the
next two bytes contain it

13

10

WO 2013/129988

PCT/SE2012/051483

0: attribute id is given in the next byte

Bit 3-0

For bit 3-0, if data type is:

- STRG and the string length is <16 :
length

- DATE : 8 or 14 or 4 or 7 (length of
date string)

- STRG and the string length is > 16:
Value 0 and the two byte after member
and attribute id contain the length

- Numeric: length of the numeric type
(1,2,4,8)

- CHAR: (ASCII character length) 1

Bit3:1
12=1100

lenght

Bit 2

1

Bit 1

0

Bit 0

0

Byte 2

Member id is 10 (dec) = 1010
No other byte is needed for the id

00001010

Byte 3

Attribute Id is 9 (dec) = 1001
No other byte is needed for the id

00001001

The resulting data value token is therefore 10001100 00001010 00001001.

The data bytes are stored in a length as defined below when using condensed mode:

For INTS (1-byte integer), INT16 (2-byte integer), INT32 (4-byte integer) and INT64 (8-byte

integer) the integer values are coded in the smallest possible size (e.g. a value of 13 is always

coded as INTS8 — a value of 0 is coded with size 0 in the first byte).

For DOUBL (double precision float, 0-8 bytes), in condensed mode trailing zero bytes of

double values are omitted and the size in the ‘first byte’ is set accordingly.

Characters are stored as one (or more) bytes depending on the character set. Strings are stored

as sequence of characters, each character a one (or more) bytes.

For DATE (date in 8 or 14 or 4 or 7 bytes), the date values are formatted in two formats i.e.

e Short (8 Bytes): YYYYMMDD, e.g. 20091213

e Long (14 Bytes): YYYYMMDDHHMMSS, e.g. 20091213113000

14

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

For condensed mode date values are formatted in the formats:

e Short (4 Bytes) : CYMD e.g. 0x20091213

e Long (7 Bytes): CYMDHMS e.g. 0x20091213113000

The format compresses two printable characters into a single byte each, by masking with

0xOF and putting the two half-bytes together:

Char 2 0 0 9 1 2 1 3
Hex 32 | 30 | 30 | 39 | 3t 32 | 31 33
Hex 20 09 12 13

Figure SA-D shows flowcharts for creating and storing a serialized charging record in a

database.

The call detail record structure in memory needs to be converted into a byte array in order to

be persisted in a database row.

The content of the byte array depends on the configuration of the target database table used
for storing the call detail records. Key and search attributes like a unique call record id or
customer or contract identifiers can be omitted from the byte array representation in order to

save storage space.

After having formatted the call detail record onto the serialized and optionally condensed byte
format further external compression algorithms applicable to byte streams can be applied,
preferably using an algorithm feasible for real time execution. The resulting byte array will be
prefixed by a one byte control information header about the compression algorithm applied.

This information is stored in the database together with key and search columns and the byte

array containing the payload of the call detail record.

When retrieving the call detail record later during billing, the control information about
potential external compression is evaluated and the method for uncompressing the byte array

is applied.

Thus CRs with or without external compression can exist simultaneously in the same storage.

15

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

The methods for storing and retrieving call detail records can advantageously be implemented

in a dedicated data access layer which shields the application from the persistent storage.

According to the method shown in figure SA, two generic preparation actions are executed
once and are initiated for example by an external configuration in step 505. The first generic
preparation action is retrieving the configuration definition of the hierarchical charging record
which is specifying the data structure of the CR in memory (preliminary setup step) in step
510. The configuration definition contains the (list of) nodes for each configured tree
structure, the hierarchy between the nodes, the members with their attributes the attribute
specification consisting out of data type and maximal length (if applicable) and the
association of members to nodes. The second generic preparation action is retrieving the
configuration definition of the charging database in step 515 in order to determine which
attributes from the root part of the CR are used as key columns and search columns in the

target table of the relational database.

Figure 5B shows the following steps to describe the workflow for storing a CR.

In step 520 the retrieved configuration definitions are used to format CR tree into a byte array,

e.g. a BLOB.

The configuration of the charging database definition is checked in step 525 to determine

whether to apply any external compression algorithm.

If external real-time capable external compression algorithm is to be applied, plug-in function
is invoked in step 530 to compress the byte array and the control information in the byte array
control header is updated accordingly in step 535 with information about external
compression algorithm and optionally which compression algorithm that is used (if several

are possible).

For the purpose of dynamic Structured Query Language (SQL), i.e. a SQL statement that is
constructed and executed at program execution time, a prepare insert statement action for a

database row is executed in step 540, further detailed in figure 5C.

16

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

According to figure 5C the prepare insert statement action comprises the sub-step
540a and 540b to append all key columns as indicated by the charging database configuration

definition.

In step 540 all search columns as indicated by the charging database configuration definition
are appended by the sub-step 540c checking if search columns exists, if affirmative appending
the search column in step 540d and checking in step 540e if the appended search column was
the last or if further shall be appended. Further, step 540 comprises sub-step 540f to append

the byte array, e.g. blob column.

In step 545 append value clauses are executed, which is further detailed described in figure
SD. Step 545 comprises sub-steps 545a and 545b to append all key columns values as

indicated by the charging database configuration definition.

Step 545 comprises sub-steps 545¢, 545d and 545¢e to append all search column values as

indicated by the charging database configuration definition.
In sub-step 545f the byte array, e.g. blob, column value is appended.

The insert statement is executed in step 550 inserting the serialized charging record into the

database.

Figure 6 shows a flowchart for formatting a charging record into a payload body field.

Figure 6 depicts the logic to format a call detail record having a tree structure in memory into
a byte array optimized by serialization. The step of formatting the CR tree into a payload body
field, e.g. byte array, BLOB, will now be described in more detail.

An explanation of the different workflow steps is given below.
The following steps describe the workflow for formatting a CR into a byte array.

In step 605 a byte array is allocated and byte array control header containing one special

token is written which specifies the byte order.

The root node of the tree is navigated to in step 610.

17

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

A start-part token containing the part identity number is written in step 615. This number has
been retrieved from configuration in the first preparation action retrieving the hierarchical

charging record configuration definition (preliminary setup step) in step 610.
The next attribute of the part is navigated to in step 620.

In step 625 it is checked whether the attribute is key or search attribute (according to

hierarchical charging record configuration definition.

If it 1s determined in step 625 that the attribute is a key attribute or search attribute, then the
attribute is skipped from the byte array as shown by step 630 and the method continue with
next attribute of the part in step 645.

If the attribute is not a key or search attribute then a data value token is written to the byte

array in step 635, and the attribute value is written in step 640, optionally condensed.

In step 645 it is navigated to the next attribute of the part and if an attribute exists, the method

continues with step 620.

If no attribute of the current part exists, it is checked in step 650 whether a further lower level
part exists and if lower level part exists, navigate to lower part in step 655 and continue with

step 615.

If no lower level part exists, it is checked in step 660 whether sibling part exists. A sibling
part is a part on same level having the same parent. If a sibling part exists, navigate to this part

in step 665 and continue with step 615.
If no sibling part exists, navigate to parent part (back one level) in step 670.

It is checked in step 675 if parent is the root node and if so the CR formatting is ended in step
680. If the parent is not the root node, it is further check in step 660 whether any sibling part

exists.

If no sibling part exists, step 670 is executed to navigate to the parent part.

Figure 7A-C is a flowchart showing the logic to retrieve charging records from a

database.

18

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

The tree-like memory structure of the CR is rebuild when reading back a CR from the
database table. Initially this tree structure is build from the byte array read from the blob
column. If key and search attributes have been omitted from the payload body field, a second
phase is performed where the attributes, which are stored in separate table columns (key and
search columns), need to be re-injected into the CR after it has been de-formatted from the

BLOB.

As has already been described in relation to figure SA two generic preparation actions are
executed once and are initiated for example by an external configuration in step 505. The first
generic preparation action is retrieving the hierarchical charging record configuration
definition (preliminary setup step) in step 510. The second generic preparation action is
retrieving charging database configuration definition in step 515 in order to determine which
attributes from the record part of the CR are used as key columns and search columns in the

target table of the relational database.
The following steps then describe the workflow for retrieving CRs.

The method continues in step 705 with preparing select statements for retrieving database
rows. This is shown in further detail in figure 7B wherein in step 705a-705b all key columns
as indicated by the retrieved charging database configuration definition are appended. In step
705¢c-705¢ all search columns as indicated by the retrieved charging database configuration

definition are appended. Then, in step 705f the byte array/BLOB/CLOB column is appended.
In step 710 the conditions clause (where clause) is appended.

This is shown in further detail in figure 7C wherein in step 710a it is for each condition
checked whether the condition applies to a key or search column stored separately in the
table. If yes, a condition is constructed in step 710b-d from column name, conditional
operator and search value and appended to search statement. If no, remember condition for
2nd level filter in step 710e and check if the condition was the last condition in step 710f. If
not, process next condition, step 710g. If the condition was the last condition then execute
search statement in database in step 720 for receiving a serialized charging record comprising

part segments with charging related data.

Start processing result set is performed in step 725 in order to convert the rows retrieved from

the database into tree-like CRs in computer memory.

19

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

In step 730 the next available row is selected from result set and the payload body field (e.g.
binary or ASCII) is extracted.

It is check whether external compression algorithm has been applied in step 740; if so the
plug-in function to decompress payload body field from the serialized charging record is
invoked in step 750. I.e. a compression token affixed to the payload body field indicating a
compression of the payload body field is detected and subsequently uncompressing the

payload body field based on the compression token.

De-formatting of payload body field and creation of the CR tree-structure in memory is

performed in step 755.

Step 760 is performed to process all search and key columns stored separately and inject

values into CR tree structure according to the configuration.

In step 765 it is checked if any further rows in the result set exist, and if so it is continued with

step 730.

In step 770 a second level filter is applied to set of CRs de-formatted from the result set of the
search statement by that for each CR in the CR set check all conditions remembered from step

710e and by keeping the CR if all conditions match, and discard otherwise.

The result set is finally returned in step 775.

Figure 8 is a flowchart showing the logic to de-format a byte array having a data structure

described in figure 4 and create a call detail record in memory having a tree structure.

The following steps describe the workflow for de-formatting a byte array and creating a CR in

memory.

The byte array control header containing special tokens is read in step 805. In step 810 a part
node indicator identifying a part node is detected in that it is navigated to the start-part-token

for the root part in the byte array.

Allocating memory for the part node determined by the hierarchical charging record
configuration definition based on the part node indicator is done in step 815. Allocation of a

tree node according to specified part identity number is performed (the number-node type

20

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

relation has been retrieved from the hierarchical charging record configuration definition, and

linking of this new tree node to parent node in memory if it is not the root node.

It is navigated to the next data value token in the byte array in step 820 detecting a

data value token indicating a part segment.

In step 825 properties such as member and attribute and data length are extracted, e.g. read.

Memory for node attribute is allocated and associated to current node in step 830 based on the
properties. Data value from the part segment of the byte array are read according to specified
data length in step 835 and population of node attribute value by storing in memory is done in
step 840. In step 845 it is checked for the next data value token in the byte array. If a data
value token exists, go to step 820, otherwise continue with step 850 and check whether further
start-part tokens exist. If no further start-part tokens exist, end CR creation in step 855.
Otherwise, if further start-part-token exists then check in step 860 whether part-identifier
indicates a lower level node in the tree structure. If part corresponds to lower level node for
current node as indicated by the hierarchical charging record configuration definition then
allocate tree node of specific part type and link as child to current node of tree in step 870 and
go back to step 820. If part does not correspond to lower level part, navigate back to parent

node in tree structure in step 865 and then perform step 860.

Figure 9 is a block diagram showing an example charging architecture wherein the

invention is useful.

The architecture is described for an online scenario but the invention is equally applicable for

an offline scenario.

A Communication network 900 provides functions that implement online charging
mechanisms as charging clients in charging trigger functions (CTF) of Network Elements
(NE) on the core network 905 - e.g. Evolved Packet Core (EPC), subsystem 910 - e.g. IP
Multimedia Subsystem (IMS) and service 915 - e.g. Multimedia Messaging System (MMS)
levels. In order to support these charging mechanisms, the network performs real-time
monitoring of required network resource usage on the above three levels in order to detect

relevant chargeable events.

21

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

In online charging, a subscriber account holding subscriber related data as balance level of
monetary funds, services subscribed to etc, located in an Online Charging System (OCS) 920,

is queried prior to granting permission to use the requested network resource(s).

Typical examples of network resource usage are a voice call of certain duration, the transport
of a certain volume of data, or the submission of a multimedia message of a certain size. The
network resource usage requests may be initiated by a User Equipment UE (not shown) or by

the network 900.

Online charging is a process where charging information for network resource usage is
collected concurrently with that resource usage. However, authorization for the network
resource usage is obtained by the network prior to the actual resource usage occurs. This

authorization is granted by the OCS upon request from the network.

When receiving a network resource usage request the Charging Trigger Function (CTF) 925
of the network assembles the relevant charging information and generates a charging event
towards an Online Charging Function (OCF) 930 of the OCS in real-time. The OCS then
returns an appropriate resource usage authorization. The resource usage authorization may be
limited in scope (e.g. service unit quota of volume of data or duration), therefore the
authorization may have to be renewed from time to time as long as the network resource

usage persists.

The charging event is forwarded to the OCF in order to obtain authorization including a
service usage quota for the chargeable event / network resource usage requested by the UE or
network. The CTF is also able to track the availability of resource usage permission (“quota

supervision”) during the network resource usage.

Online charging in the Circuit Switched (CS) and Packet Switched (PS) domains may also be
performed using the Customized Applications for Mobile networks Enhanced Logic
(CAMEL) Application Part (CAP) protocol and the CAP reference point from the Mobile
Switching Centre (MSC) and Serving GPRS Support Node (SGSN), respectively, to the OCF.
Other network elements may employ an Ro reference point 235 for online charging using
Diameter Credit Control application. Similarly, Wo reference point may be employed for
Wireless Local Area Network (WLAN), Gx and Gy reference points may be employed for
Policy and Charging Control (PCC) according to the 3rd Generation Partnership Project 3GPP
as described in TS 23.203 V10.2.1 (2011-01).

22

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

The Ro reference point from the CTF 925 to the OCF 930 is intended for the transport of
charging events for online charging. A Ga 940 reference point is the interface between the
OCF and a Charging Gateway Function (CGF) 945 which connects a Billing Domain (BD)
950 over a Bo 955 reference point. Similarly, for an offline charging architecture, the CGF
connects to the Billing Domain over a Bx interface (not shown). The billing domain will
contain appropriate components of a business support system (BSS) for receiving data records

over the Bx or Bo reference points for, for example, rating and charging and storing.

The Ro reference point supports interaction between a Charging Trigger Function and an

Online Charging Function. The following information may flow across this reference point:

. Charging events for online charging from the CTF to the OCF.

. Receive acknowledgements for these charging events from the OCF to the CTF. The
acknowledgement grants or rejects the network resource usage requested in the charging

event, according to the decision taken by the OCS.

The CAP reference point provides similar functionality for online charging as Ro, however, it

is based on CAMEL techniques.

Different mappings of the online charging functions, CTF, OCF and CGF, onto physical

implementations are possible.

Each CTF may have an OCF address list to which it can send its charging events and/or

charging requests.

A data access unit according to embodiments disclosed herein can advantageously be within
an OCS, CGF or billing domain as previously described. Charging records may also be
created by a data access unit located within the core network domain, service nodes or

subsystem as appropriate.

Figure 10 is a block diagram showing an exemplary embodiment of a data access unit

in the form of computing system environment 1000.

Although as made clear above, the computing system environment 1000 is only one example

of a suitable computing environment for an apparatus for storage of data records and is not

23

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

intended to suggest any limitation as to the scope of use or functionality of the claimed
subject matter. Further, the computing environment 1000 is not intended to suggest any
dependency or requirement relating to the claimed subject matter and any one or combination

of components illustrated in the example operating environment 1000.

An example of a device for implementing the previously described innovation includes a
general purpose computing device in the form of a computer 1010. Components of computer
1010 can include, but are not limited to, a processing unit 1020, a system memory 1030, and a
system bus 1021 that couples various system components including the system memory to the
processing unit 1020. The system bus 1021 can be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any of a

variety of bus architectures.

Computer 1010 can include a variety of computer readable media. Computer readable media
can be any available media that can be accessed by computer 1010. By way of example, and
not limitation, computer readable media can comprise computer storage media and
communication media. Computer storage media includes volatile and nonvolatile as well as
removable and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or other
data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information and
which can be accessed by computer 1010. Communication media can embody computer
readable instructions, data structures, program modules or other data in a modulated data
signal such as a carrier wave or other transport mechanism and can include any suitable

information delivery media.

The system memory 1030 can include computer storage media in the form of volatile and/or
nonvolatile memory such as read only memory (ROM) and/or random access memory
(RAM). A basic input/output system (BIOS), containing the basic routines that help to
transfer information between elements within computer 1010, such as during start-up, can be
stored in memory 1030. Memory 1030 can also contain data and/or program modules that are

immediately accessible to and/or presently being operated on by processing unit 1020. By

24

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

way of non-limiting example, memory 1030 can also include an operating system, application

programs, other program modules, and program data.

In some embodiments the steps of the algorithm or method performed by the invention
is implemented as software modules loaded in the memory and processable by the processing
unit, adapting the computing system environment for executing the steps of the algorithm or

method described.

In one embodiment the data access unit comprises an interface unit 1008 adapting the
data access unit 1000 for receiving a hierarchical charging record comprising part nodes with
charging related data, retrieving a hierarchical charging record configuration definition
specifying the data structure of the hierarchical charging record and retrieving a charging

database configuration definition;

The data access unit further comprises a formatting unit 1007 adapting the data access unit for
traversing the hierarchical charging record and for each part node of said hierarchical
charging record identifying an attribute of the part node and determining if said attribute is a
key attribute or a search attribute and if affirmative storing an attribute value of said attribute
in a field of the serialized charging record based on the charging database configuration

definition.

The interface unit is further adapting the data access unit for storing a part segment
comprising the attribute value and a data value token in a payload body field of the serialized
charging record with a part node indicator representing the location of the part node in the
hierarchical charging record based on the hierarchical charging record configuration

definition.

In another embodiment the data access unit 1000 comprises the interface unit 1008
adapting the data access unit for receiving a serialized charging record comprising part
segments with charging related data and retrieving a hierarchical charging record

configuration definition specifying the data structure of the hierarchical charging record.

The data access unit further comprises the formatting unit 1007 adapting the data access unit
for extracting a payload body field from the serialized charging record and traversing the

payload body field.

25

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

The traversing includes detecting a part node indicator identifying a part node; allocating
memory for the part node determined by the hierarchical charging record configuration
definition based on the part node indicator; detecting a data value token indicating a part
segment; extracting properties from the data value token; allocating memory for an attribute
of the part node, based on the properties; reading a data value from the part segment; and

storing the data value to the memory allocated for the attribute of the part node.

The computer 1010 can also include other removable/non-removable and volatile/nonvolatile
computer storage media. For example, computer 1010 can include a hard disk drive that reads
from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive that
reads from or writes to a removable, nonvolatile magnetic disk, and/or an optical disk drive
that reads from or writes to a removable, nonvolatile optical disk, such as a CD-ROM or other
optical media. Other removable/non-removable, volatile/nonvolatile computer storage media
that can be used in the exemplary operating environment include, but are not limited to,
magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid
state RAM, solid state ROM and the like. A hard disk drive can be connected to the system
bus 1021 through a non-removable memory interface such as an interface, and a magnetic
disk drive or optical disk drive can be connected to the system bus 1021 by a removable

memory interface, such as an interface.

A user can enter commands and information into the computer 1010 through input devices
such as a keyboard or a pointing device such as a mouse, trackball, touch pad, and/or other
pointing device. Other input devices can include a microphone, joystick, game pad, satellite
dish, scanner, or similar devices. These and/or other input devices can be connected to the
processing unit 1020 through user input 1040 and associated interface(s) that are coupled to
the system bus 1021, but can be connected by other interface and bus structures, such as a

parallel port, game port or a universal serial bus (USB).

A graphics subsystem can also be connected to the system bus 1021. In addition, a monitor or
other type of display device can be connected to the system bus 1021 through an interface,
such as output interface 1050, which can in turn communicate with video memory. In addition
to a monitor, computers can also include other peripheral output devices, such as speakers

and/or printing devices, which can also be connected through output interface 1050.

26

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

The computer 1010 can operate in a networked or distributed environment using logical
connections to one or more other remote computers, such as remote server 1070, which can in
turn have media capabilities different from device 1010. The remote server 1070 can be a
personal computer, a server, a router, a network PC, a peer device or other common network
node, and/or any other remote media consumption or transmission device, and can include
any or all of the elements described above relative to the computer 1010. The logical
connections depicted in FIG. 10 include a network 1071, such as a local area network (LAN)

or a wide area network (WAN), but can also include other networks/buses.

When used in a LAN networking environment, the computer 1010 is connected to the
LAN1071 through a network interface or adapter. When used in a WAN networking
environment, the computer 1010 can include a communications component, such as a modem,
or other means for establishing communications over a WAN, such as the Internet. A
communications component, such as a modem, which can be internal or external, can be
connected to the system bus 1021 through the user input interface at input 1040 and/or other

appropriate mechanism.

In a networked environment, program modules depicted relative to the computer 1010, or
portions thereof, can be stored in a remote memory storage device. It should be noted that the
network connections shown and described are exemplary and other means of establishing a

communications link between the computers can be used.

Additionally, it should be noted that as used in this application, terms such as “component,”
“display,” “interface,” and other similar terms are intended to refer to a computing device,
either hardware, a combination of hardware and software, software, or software in execution
as applied to a computing device. For example, a component may be, but is not limited to
being, a process running on a processor, a processor, an object, an executable, a thread of
execution, a program and a computing device. As an example, both an application running on
a computing device and the computing device can be components. One or more components
can reside within a process and/or thread of execution and a component can be localized on
one computing device and/or distributed between two or more computing devices, and/or
communicatively connected modules. Further, it should be noted that as used in this

EEINT3

application, terms such as “system user,” “user,” and similar terms are intended to refer to the

person operating the computing device referenced above.

27

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

When an element is referred to as being "connected", "coupled”, "responsive", or
variants thereof to another element, it can be directly connected, coupled, or responsive to the
other element or intervening elements may be present. In contrast, when an element is
referred to as being "directly connected”, "directly coupled"”, "directly responsive”, or variants
thereof to another element, there are no intervening elements present. Like numbers refer to
like elements throughout. Furthermore, "coupled"”, "connected”, "responsive"”, or variants
thereof as used herein may include wirelessly coupled, connected, or responsive. As used
herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well,
unless the context clearly indicates otherwise. Well-known functions or constructions may

not be described in detail for brevity and/or clarity. The term "and/or" includes any and all

combinations of one or more of the associated listed items.

non non

As used herein, the terms "comprise", "comprising", "comprises", "include",
"including", "includes", "have", "has", "having", or variants thereof are open-ended, and
include one or more stated features, integers, elements, steps, components or functions but
does not preclude the presence or addition of one or more other features, integers, elements,
steps, components, functions or groups thereof. Furthermore, as used herein, the common
abbreviation "e.g.", which derives from the Latin phrase "exempli gratia," may be used to
introduce or specify a general example or examples of a previously mentioned item, and is not

intended to be limiting of such item. The common abbreviation "i.e.", which derives from the

Latin phrase "id est," may be used to specify a particular item from a more general recitation.

It should also be noted that in some alternate implementations, the functions/acts
noted in the blocks may occur out of the order noted in the flowcharts. For example, two
blocks shown in succession may in fact be executed substantially concurrently or the blocks
may sometimes be executed in the reverse order, depending upon the functionality/acts
involved. Moreover, the functionality of a given block of the flowcharts and/or block
diagrams may be separated into multiple blocks and/or the functionality of two or more

blocks of the flowcharts and/or block diagrams may be at least partially integrated.

Finally, other blocks may be added or inserted between the blocks that are illustrated.
Moreover, although some of the diagrams include arrows on communication paths to show a
primary direction of communication, it is to be understood that communication may occur in

the opposite direction to the depicted arrows.

28

10

15

20

WO 2013/129988 PCT/SE2012/051483

Many different embodiments have been disclosed herein, in connection with the above
description and the drawings. It will be understood that it would be unduly repetitious and
obfuscating to literally describe and illustrate every combination and subcombination of these
embodiments. Accordingly, the present specification, including the drawings, shall be
construed to constitute a complete written description of various exemplary combinations and
subcombinations of embodiments and of the manner and process of making and using them,

and shall support claims to any such combination or subcombination.

Many variations and modifications can be made to the embodiments without
substantially departing from the principles of the present invention. All such variations and

modifications are intended to be included herein within the scope of the present invention.

Embodiments of the invention may provide the following benefits and improvements:

- Major improvements on throughput and latency when persisting or retrieving call

transactions in billing or customer care

- Massive reduction of required storage capacity

- Update of already stored CRs is facilitated

As denoted above, the storage demands of a billing system are driven by the storage needs for
usage data records. The storage devices for usage data records have to be optimized for
throughput and latency. For this reason they are very expensive and have a large influence on

total cost of ownership.

The invention may give savings of 10-75 % on storage consumption for usage data records

compared to the legacy storage method used example existing systems.

29

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

CLAIMS:

1. Method for creating a serialized charging record formatted for insertion into a
charging database comprising the steps of:

- receiving (310) a hierarchical charging record comprising part nodes with charging
related data;

- retrieving (320) a hierarchical charging record configuration definition specifying the
data structure of the hierarchical charging record;

- retrieving (330) a charging database configuration definition;

- traversing (340) the hierarchical charging record and for each part node of said
hierarchical charging record identifying an attribute of the part node;

- determining (350) if said attribute is a key attribute or a search attribute and if
affirmative storing an attribute value of said attribute in a field of the serialized charging
record based on the charging database configuration definition; and

- storing (370) a part segment comprising the attribute value and a data value token in a
payload body field of the serialized charging record with a part node indicator representing
the location of the part node in the hierarchical charging record based on the hierarchical

charging record configuration definition.

2. Method according to claim 1 wherein the step of storing the attribute value and the
data value token in the payload body field of the serialized charging record is performed only

if the attribute is not a key attribute or a search attribute.

3. Method according to any one of claim 1 or 2 wherein storing an attribute value

includes applying a type specific algorithm to condense (360) an attribute value of a specific

type.

4. Method according to claim 3 wherein:

- an integer (INTEGER) attribute value is condensed by representing the attribute value
with an n-byte integer type where n is smallest number of bytes sufficient to represent the
attribute value; and/or

- a double precision float (DOUBL) attribute value is condensed by omitting trailing

zero bytes and setting the size of the attribute value in the first used byte; and or

30

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

- a date (DATE) attribute value is condensed by masking each byte of the date attribute
value to obtain a half byte constituting a date character and pair wise concatenating the

obtained half bytes.

5. A method according to any one of the preceding claims wherein the payload body

field is compressed (380) by using a compression algorithm.

6. A method according to claim 5 wherein a compression token indicating the

compression is affixed to the payload body field.

7. A method according to claim 5 where a compression token indicating the use of

compression is stored (390) in a byte array control header of the serialized charging record.

8. Method for creating a hierarchical charging record comprising the steps of:

- receiving (720) a serialized charging record comprising part segments with charging

related data;

- retrieving (510) a hierarchical charging record configuration definition specifying the

data structure of the hierarchical charging record;
- extracting a payload body field (730) from the serialized charging record;
- traversing (755) the payload body field and:

(1) detecting (810) a part node indicator identifying a part node;

(i1) allocating memory for the part node determined by the hierarchical charging

record configuration definition based on the part node indicator (815);

(ii1) detecting (820) a data value token indicating a part segment;

(iv) extracting properties from the data value token (825);

(v) allocating (830) memory for an attribute of the part node, based on the properties;

(vi) reading (835) a data value from the part segment; and

31

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

(vii) storing (840) the data value to the memory allocated for the attribute of the part

node.

9. A method according to claim 8 wherein after the step of traversing the payload body
field (755) performing the further step of processing (760) a key and/or search column of the
serialized charging record for injecting values of said key and/or search column into the
hierarchical charging record based on the hierarchical charging record configuration

definition.

10. A method according to claim 8 or claim 9 wherein after the step of extracting a
payload body field performing the further steps of detecting (740) a compression token
affixed to the payload body field indicating a compression of the payload body field and
subsequently uncompressing (750) the payload body field based on the compression token.

11. A method according to any one of claim 1-10 wherein the payload body field is a
Binary Large Object (BLOB) or a Character Large Object (CLOB).

12. A data access unit (290) for creating a serialized charging record formatted for
insertion into a charging database comprising:

- and interface unit (1008) adapting the data access unit for receiving (310) a
hierarchical charging record comprising part nodes with charging related data, retrieving
(320) a hierarchical charging record configuration definition specifying the data structure of
the hierarchical charging record and retrieving (330) a charging database configuration
definition;

- a formatting unit (1007) adapting the data access unit for traversing (340) the
hierarchical charging record and for each part node of said hierarchical charging record
identifying an attribute of the part node and determining (350) if said attribute is a key
attribute or a search attribute and if affirmative storing an attribute value of said attribute in a
field of the serialized charging record based on the charging database configuration definition;
and

- the interface unit (1008) further adapting the data access unit for storing (370) a part
segment comprising the attribute value and a data value token in a payload body field of the
serialized charging record with a part node indicator representing the location of the part node
in the hierarchical charging record based on the hierarchical charging record configuration

definition.

32

10

15

20

25

30

WO 2013/129988 PCT/SE2012/051483

13. Data access unit according to claim 12 wherein the interface unit is further adapting
the data access unit for storing the attribute value and the data value token in the payload body
field of the serialized charging record only if the attribute is not a key attribute or a search

attribute.

14. Data access unit according to any one of claim 12 or 13 wherein the formatting unit is
further adapting the data access unit for storing the attribute value by applying a type specific

algorithm to condense (360) an attribute value of a specific type.

15. Data access unit according to claim 14 wherein:

- an integer (INTEGER) attribute value is condensed by representing the attribute value
with an n-byte integer type where n is smallest number of bytes sufficient to represent the
attribute value; and/or

- a double precision float (DOUBL) attribute value is condensed by omitting trailing
zero bytes and setting the size of the attribute value in the first used byte; and or

- a date (DATE) attribute value is condensed by masking each byte of the date attribute
value to obtain a half byte constituting a date character and pair wise concatenating the

obtained half bytes.

16. Data access unit according to any one claims 11-15 wherein the payload body field is

compressed (380) by using a compression algorithm.

17. Data access unit according to claim 16 wherein a compression token indicating the

compression is affixed to the payload body field.

18. Data access unit according to claim 16 where a compression token indicating the use

of compression is stored (390) in a byte array control header of the serialized charging record.

19. A data access unit (290) for creating a hierarchical charging record formatted for

insertion into a charging database comprising:

33

10

15

20

25

WO 2013/129988 PCT/SE2012/051483

- and interface unit (1008) adapting data access unit for receiving (720) a serialized
charging record comprising part segments with charging related data and retrieving (510) a
hierarchical charging record configuration definition specifying the data structure of the

hierarchical charging record;

a formatting unit (1007) adapting the data access unit for extracting a payload body field
(730) from the serialized charging record and traversing (755) the payload body field by:

(1) detecting (810) a part node indicator identifying a part node;

(i1) allocating memory for the part node determined by the hierarchical charging

record configuration definition based on the part node indicator (815);

(ii1) detecting (820) a data value token indicating a part segment;

(iv) extracting properties from the data value token (825);

(v) allocating (830) memory for an attribute of the part node, based on the properties;
(vi) reading (835) a data value from the part segment; and

(vii) storing (840) the data value to the memory allocated for the attribute of the part

node.

20 A data access unit according to claim 19 wherein the formatting unit is further
adapting the data access unit to processing (760) a key and/or search column of the serialized
charging record for injecting values of said key and/or search column into the hierarchical

charging record based on the hierarchical charging record configuration definition.

21. A data access unit according to claim 19 or claim 20 wherein the formatting unit is
further adapting the data access unit to detecting (740) a compression token affixed to the
payload body field indicating a compression of the payload body field and subsequently

uncompressing (750) the payload body field based on the compression token.

22. A data access unit according to any one of claim 12-21 wherein the payload body field

is a Binary Large Object (BLOB) or a Character Large Object (CLOB).

34

WO 2013/129988

PCT/SE2012/051483

1/13

130- Record Part

140 - Base Part

150 - Charge Part

160 - Discount &
Account Part

Charge amount = 100

}Currency = I%UR

 Member

figure 1

J |

Aftribute Value

PCT/SE2012/051483

2/13

WO 2013/129988

¢ 34NOl4d

04¢ ove
06¢

o
0
(9]
e

AR
e e K

nin SHCR epdn

s it

) y A ry
| HOD pebg SO B

N

$S900Y Bl YO

%

o TN
D , Yo ¥ ok Y

M NUN SS900Y |
P e elegq 4D |

g FRRGEERT | sary Huliey
e MY | R DR fusen

E 06¢ OO P

€6¢

R
sangasl
B Ty

o~ &
\/M, R&.
e

v62 - N
ommfx\ omm\\ ommx\\\\ omma¥

o)
L

nun
SS900Vy Eleg HOD
06¢ SO IR

06¢

o
o
Al

262 | 182

WO 2013/129988 PCT/SE2012/051483

3/13

receiving a hierarchical charging record 310

retrieving a hierarchical charging record configuration definition [320

retrieving a charging database configuration definition L 330

340
traversing the hierarchical charging record identifying an attribute

determining if the attribute is a key attribute or a search attribute and 350
if affirmative storing an attribute value of the attribute in a field

applying a type specific algorithm to condense the attribute value of 360
a specific type

storing the member/attribute key and a data value in a payload body
field of the serialized charging data record 370

compressing the payload body field | 380

storing an indication of the use of compression in a byte array 390
control header of the serialized charging data record -

FIGURE 3

PCT/SE2012/051483

WO 2013/129988

4/13

 ainbi4

-

p.Jooa. erep Buibieyo pazijeLas

Oy
o /

90719 e ‘60 ‘Aewne 91Aq O

0SY

ovv
....... an[eA anguny uSY01 an[eA eleq uexol lopeoH Jjoseag | i(s
. Hed LEIS N
J J J
0Lp 09 cey ~ 0cv

o
(=
<t

WO 2013/129988 5/13 PCT/SE2012/051483
FIGURE 5A

: : : 510

Retrieve configuration of CDR tree
structure in Memory
505
external configuation -
515
Retrieve configuration of CDR %
persistence

FIGURE 5B

520 format CDR tree into byte array

525

530

535 N update control information in byte array header

] Prepare insert statement for database row -

540

apply external

ompression algorithm ?

invoke plugin-function to compress byte array

append values clause

545

execute insert statement
550 |

WO 2013/129988 PCT/SE2012/051483

6/13

/ append key column

last key column ?
search column
exists ?

. append search column

540a

540b

540c

append blob column -

540f

FIGURE 5C

WO 2013/129988 713 PCT/SE2012/051483

545a

\ append key column value

last key column ?
search column exists ?

append search column value J

last search column ?

545e

545b

545¢

545d

545f

\ append blob column value

FIGURE 5D

WO 2013/129988 8/13 PCT/SE2012/051483
605
FIGURE 6 write CDR header for packed format —
610
navigate to tree root I
615
write start part token
620
e navigate to next attribute of part /
630
625 . .
s key or search ves | Skip attribute
attribute ? in byte array
NO
| 635
write data value token /
640
write packed attribute value /
645
next attribute exists ?
655
navigate to further lower 650
lower part level part exists ?
665

navigate to part on
same level same

further part on
level exists?

navigate back one level

670
675

Root node?

end CDR
formatting

680

WO 2013/129988

9/13

PCT/SE2012/051483

Prepare read/search statement for
database rows

— 705

FIGURE 7A

append conditions clause (WHERE)

710

execute search statement

720

795 |

work on next row of result set

extract byte array

740

has external
compression algorithm been
applied ?

YES
\

\ 730

invoke plugin-function to
uncompress byte array

YES
750

deformat byte array and create CDR
memory structure

755

process all search and key columns
and inject values into CDR tree
according to configuration

&760

765

next row from
result set exists ?

NO

apply 2nd-level-filter to CDRs
deformatted from result-set

P?O

return result set
| reumresitset

WO 2013/129988 10/13 PCT/SE2012/051483

FIGURE 7B

705a/ append key column

last key
column ?

YES

705¢c
search column
exists ?

705d\ YI‘ES

705b

append search column

705e
last search
column ?

[

705f append blob column

FIGURE 7C

710a

condition on single
key or search column?

710b Y?S

append search column

710c

append conditional operator

append search value

710
J \

process next

for 2nd level filter condition

710f
remember condition last condition ?

WO 2013/129988

FIGURE 8

PCT/SE2012/051483

11/13

805

read header with special tokens

.

navigate to start part token for root part

/810

allocate tree node of root part type and associate link to
parent node

815

YES

navigate to next data value token in byte array

read member-id, attribute-id, data-length

allocate memory for node attribute and associate to
current node

read data value from byte array

populate node attribute value in memory

next data value token exists ?

allocate tree node of

specific part type and

link as child to current
node in tree

870

NO 850

845

next start-part-token exists ?

YES
860

part-id indicates a lower-level

node in tree structure ?

NO
v

navigate back to parent node in tree structure

865

855 /\@nd CDR de-formattin%

WO 2013/129988 PCT/SE2012/051483
12/13
900
920
2
905 925 //—
/ ocs 945
' 0
Core Network CTE 935
Domain \\\\\Jizi\\
~
ROl Ga
— Service Nodes CTF - OCF | CGF
915 o5 | 935 | [
|1 940
//Ro(
Sub-system CTF 935
_ /
910 925 - | Bo
965 930 N_ 955
[
PCEF
960
G
a
|
Gateway | 970
950
N

Billing domain

Figure 9

PCT/SE2012/051483

WO 2013/129988

13/13

0l @inbi4
43IAH3S
J10N3y 940}
A OL01L
... (.
—
L0}
8001
ovoL—1 1NdNI
Hun sorpBlU|
Y LSOl
3OV443ILINI N\ ‘
MHOMLAN H
090 K 1un Bunrewo
1INN ye
1Nd1No ONISSIO0Hd 001
omov\\, omov\\\

AHOW3INW WILSAS

ININNOHIANT ONILNdINOD

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings

