一种挖掘机能量回收系统

本发明专利公开了一种挖掘机能量回收系统，涉及挖掘机节能技术领域。该系统主要包括：发动机、二次动力元件、二次液压元件、蓄电池、逆变器、电磁换向阀、液控单向阀、蓄能器、双向增压器、或的型油路。该系统可对执行机构的动能进行回收，并以液压能和电能形式存储在蓄能器和蓄电瓶中。双向增压器实现了对低油耗的差动回收，二次液压元件实现了液压能与电能的相互转换，此外利用二次动力元件可在发动机处于怠速状态时吸收冗余能量输入蓄电池中，并在负载较大时吸收电能与发动机一起对主泵做功。本发明采用两种储能元件，提高了能量回收效率，使发动机始终工作在高效率，降低油耗消耗。
1. 一种挖掘机能量回收系统，其特征在于，包括液压油路和控制回路；

其中液压油路包括：发动机、第一二次动力元件、主泵、第一逆变器、蓄电池、第二逆变器、第二二次动力元件、二次液压元件、第一单向阀、主换向阀、第一电磁换向阀、顺序阀、第一切换阀、节流阀、第一插装阀、蓄能器，或连动梭阀、双向增压器、第二单向阀、第二单向阀、第二电磁换向阀、第二插装阀，第二切换阀，第三电磁换向阀、液控单向阀、油箱；

所述控制回路包括：第一电磁继电器，第二电磁继电器，控制器，操作手柄，第一压力计、第二压力计、第三压力计；

发动机的输出轴与第一二次动力元件的输入轴刚性连接，第一二次动力元件的输出轴与主泵的主轴刚性连接，第一二次动力元件与第二二次动力元件之间顺序连接有第一逆变器、蓄电池、第二逆变器，第二二次动力元件的输出轴与二次液压元件的主轴刚性连接；

主泵的进油口与油箱相连，出油口与第一单向阀入口相连；第一单向阀的出口与主换向阀的 P 口、S 口相接；主换向阀的 N 口和 T 口分别连接油箱，主换向阀的 A 口与执行机构的 A 口相接，主换向阀的 B 口与第一电磁阀换向阀的 B 口相连；

第一电磁换向阀的 A 口与执行机构的 B 口相接，第一电磁换向阀的 N 口连接第一切换阀的 A 口，第一切换阀的 B 口出口油路上依次接有第一插装阀和蓄能器，第一切换阀的 B 口还与节流阀相接，节流阀的出口与第二电磁换向阀的 P 口相通；第一电磁换向阀与第一切换阀之间的旁路接有顺序阀，顺序阀的出口与二次液压元件连接后接油箱；第二电磁换向阀的 T 口接油箱，第二电磁换向阀的 A 口、B 口对应连接双向增压器的 b 口、c 口，且第二电磁换向阀的 A 口、B 口分别经过第二单向阀、第三单向阀后对应与双向增压器的 a 口、d 口相连；

双向增压器的 a 口、d 口分别对应连接或门型梭阀的 A 入口、B 入口，或门型梭阀的出口连接蓄能器；

蓄能器依次经过第二切换阀的 A 口、B 口，第三电磁阀换向阀的 A 口、B 口，第二插装阀后接在第一单向阀和主换向阀之间；第三电磁阀换向阀的 N 口接液控单向阀后连接在顺序阀与二次液压元件间；

操作手柄的控制信号由 x 信号端、y 信号端分别输出到主换向阀的 x 信号端、y 信号端；控制器接收来自操作手柄 z 信号端传递的控制信号，第一压力计、第二压力计、第三压力计的压力信号，以及蓄电池输出的电压信号，并由控制器向第一二次动力元件、第二二次动力元件、二次液压元件、节流阀、第一电磁换向阀、第二电磁换向阀、第一切换阀、第二切换阀输出控制信号；

当双向增压器中的油塞进行至极限位置时，通过回收油液的大腔内压力升高，触发第一电磁继电器或第二电磁继电器，使第二电磁换向阀换向，改变回收油液进入双向增压器的入口，使活塞不断地往复运动，向蓄能器连续冲入增压后的回收油液。

2. 根据权利要求 1 所述的一种挖掘机能量回收系统，其特征在于，主换向阀为三位六通阀，第一电磁换向阀和第二电磁换向阀为三位三通阀，第二电磁换向阀为三位四通阀，第一切换阀和第二切换阀为二位二通阀。

3. 根据权利要求 1 所述的一种挖掘机能量回收系统，其特征在于：双向增压器的 a、d 口为小腔出油接口，双向增压器的 b、c 口为大腔出油接口，压力较低的油液由 b 或 c 口进入双向增压器，压力较高的油液从 a 或 d 口流出双向增压器。
4. 根据权利要求3所述的一种挖掘机能量回收系统，其特征在于，或门型梭阀接收来自双向增压器a、d口的压力油，并将两者中压力较高的油液输入到蓄能器中。

5. 根据权利要求1所述的一种挖掘机能量回收系统，其特征在于，顺序阀由油液信号控制，油液信号取自蓄能器的开口处。

6. 根据权利要求1所述的一种挖掘机能量回收系统，其特征在于，第一插装阀、第二插装阀由油液信号控制，油液信号分别取自蓄能器的出口及第一单向阀的出口处。

7. 根据权利要求1所述的一种挖掘机能量回收系统，其特征在于，泵与第一单向阀之间的旁路还连接有第一溢流阀，第一溢流阀出口接入油箱。

8. 根据权利要求1所述的一种挖掘机能量回收系统，其特征在于，第一电磁换向阀与第一切换阀之间的旁路依次接有第二溢流阀，第二溢流阀的出口接入油箱。

9. 根据权利要求1所述的一种挖掘机能量回收系统，其特征在于，液控单向阀的出口端还旁路接有第三溢流阀，第三溢流阀的出口接入油箱。
一种挖掘机能量回收系统

技术领域
[0001] 本发明涉及挖掘机节能技术领域，特别涉及一种挖掘机能量回收系统。

背景技术
[0002] 挖掘机作为土方工程施工的一种重要工程机械，承担着世界 65% ~ 70% 的土方量挖掘，具有功能强、市场占有率大的特点，但其油耗高、排放差的弊端在日常严格的排放法规和居高不下的燃油价格背景下愈加明显，其节能技术的研究成为国际研究热点。挖掘机系统的总效率仅为 20%，能量损失主要包括：发动机损失、节流损失、液压元件损失、机械装置损失。
[0003] 目前，针对以上技术问题，国内已经开展了一些挖掘机节能技术的研究，提出了不少能量回收利用的专利成果。这些节能方案中所采用的储能元件多为蓄电池或是蓄电池，其中蓄电池的比功率高，可以很好的吸收系统中的冲击能，但其能量密度低，不用于能量的大量存储，而蓄电池的特性则正好相反，动态响应慢、充电放电时效率功率低。此外，在使用蓄电池为储能元件时，存储的油液压力往往低于系统压力，导致回收的能量无法释放。有学者提出了将液压马达和泵组合使用，以差动回收的方法提高回收油液的压力，但该方法中使用的元件多、成本高，且当负载变化频繁时，能量存储的效率极低。

发明内容
[0004] 发明目的：本发明所要解决的技术问题是针对现有技术的不足，提供一种挖掘机能量回收系统。
[0005] 为了解决上述技术问题，本发明公开了一种挖掘机能量回收系统，包括液压油路和控制回路。
[0006] 其中液压油路包括：发动机、第一二次动力元件、主泵、第一逆变器、蓄电池、第二逆变器、第二二次动力元件、二次液压元件、第一单向阀、主换向阀、第一电磁换向阀、顺序阀、第一切换阀、节流阀、第一插装阀、蓄能器、或门型梭阀、双向增压器、第二单向阀、第三单向阀、第二电磁换向阀、第二插装阀、第二切换阀、第一电磁换向阀、回油单向阀、油箱；
[0007] 所述控制回路包括：第一电磁继电器、第二电磁继电器、控制器、操作手柄、第一压力计、第二压力计、第三压力计。
[0008] 本发明液压油路中各个部件之间采用管道连接，控制回路中各个部件之间采用电路连接。
[0009] 发动机的输出轴与第一二次动力元件的输出轴刚性连接，第一二次动力元件的输出轴与主泵的主轴刚性连接；第一二次动力元件与第二二次动力元件之间顺序连接有第一逆变器、蓄电池、第二逆变器，第二二次动力元件的输出轴与二次液压元件的主轴刚性连接；主泵的进油口与油箱相连，出油口与第一单向阀入口相连；第一单向阀的出口与主换向阀的 P 口、S 口相连，主换向阀的 N 口和 T 口分别连接油箱；A 口与执行机构的 A 口相接，B 口与第一电磁换向阀的 B 口相连；第一电磁换向阀的 A 口与执行结构的 B口相接，N 口连
接有第一换向阀的 A 口；第一换向阀的 B 口的油路上依次接有第一插装阀和蓄能器，第一换向阀的 B 口还与节流阀相接；节流阀的出口与第二电磁换向阀的 P 口相通；第一电磁换向阀与第一换向阀之间的旁路接有顺序阀，顺序阀的出口与二次液压元件连接后接油箱；第二电磁换向阀的 T 口接油箱，A 口、B 口分别接双向增压器的 b、c 口，且 A、B 口分别经过第二单向阀、第三单向阀后分别于双向增压器的 a、d 口相接，此外 a、d 口还分别连接或门型梭阀的 A、B 口，或门型梭阀的出口连接蓄能器；蓄能器依次经过第二切换阀的 A 口、B 口，第三电磁换向阀的 A 口、B 口，第一插装阀后接在第一单向阀和主换向阀之间；第二电磁换向阀的 N 口接液控单向阀后连接在顺序阀与二次液压元件间。

【0010】操作手柄的控制信号由 x, y 端口分别输出到主换向阀的 x, y 信号端；控制器接收来自操作手柄 z 信号端传递的操作状态信号，第一压力计、第二压力计、第三压力计的压力信号；以及蓄电池输出的充电状态信号；再由控制器向第一二次动力元件、第二二次动力元件、二次液压元件、节流阀、第一电磁换向阀、第一电磁换向阀、第一换向阀、第二切换阀输出控制信号。

【0011】本发明中，主换向阀为三位六通阀，第一电磁换向阀和第二电磁换向阀为二位三通阀，第二电磁换向阀为二位四通阀，第一切换阀和第二切换阀为二位二通阀。

【0012】本发明中，双向增压器的 a、d 口为小腔出油接口，b、c 口为大腔出油接口，压力较低的油液由 b 或 c 口进入双向增压器，压力较高的油液从 a 或 d 口流出双向增压器。

【0013】本发明中，或门型梭阀接收来自双向增压器 a、d 口的压力油，并将两者中压力较高的油液输入到蓄能器中。

【0014】本发明中，顺序阀由油液信号控制，控制信号取自蓄能器的开口处。

【0015】本发明中，第一插装阀、第二插装阀由油液信号控制，控制信号分别取自蓄能器的出口及第一单向阀的出口处。

【0016】本发明中，主泵与第一单向阀之间的旁路还连接有第一溢流阀，第一溢流阀出口接入油箱。第一电磁换向阀与第一换向阀之间的旁路依次接有第二溢流阀，第二溢流阀的出口接入油箱。液控单向阀的出口端还旁路接有第三溢流阀，第三溢流阀的出口接油箱。

【0017】本发明中，液控单向阀由油液信号控制，控制信号取自其与二次液压元件之间的油路中。

【0018】本发明中，第一二次动力元件和第二二次动力元件可以根据控制信号选择工作在发电机或者是电动机模式；二次液压元件自动根据工况做变量泵或变量马达使用，当在主轴驱动下运转时，则工作在变量泵模式，当在出油口液压差驱动下运转时，则工作在变量马达模式。

【0019】本发明中，操作手柄用于控制执行机构的运动，并将操作状态信号传递给控制器。

【0020】本发明现有技术相比，具有以下有益效果：

【0021】（1）使用了双储能元件，利用蓄能器比功率高特点，可以用来吸收启动或制动瞬间的冲击能，弥补了蓄电池动态响应慢的缺点；同时利用蓄电池存储容量大的特点，克服了蓄能器能量密度低的缺陷。两种储能元件的优点相补，大大扩展了挖掘机能量回收的场合。

【0022】（2）在能量回收阶段，使用高低压油液分流的方法回收：当油液压力达到蓄能器进口压力时，高压油直接进入蓄能器，减少了能量回收环节；当油液压力较低时，利用双向增压器增压后再回收。利用高低压分流回收，大大提高了能量回收效率。
[0023] （3）两种储能元件内存储的能量可以相互转换：利用二次液压元件和二次动力元件串联工作，当二次液压元件工作在变量马达模式、二次动力元件工作在发电机模式时，存储在蓄能器中的液压能可以转换成电能存储在蓄电池中；当二次液压元件工作在变量泵模式、二次动力元件工作在电动机模式时，存储在蓄电池中的电能可以转换成液压能存储在蓄能器中。能量存储方式的转换，提高了回收能量存储的效率。

[0024] （4）在能量释放阶段，蓄电池向二次动力元件提供电能，和发动机一起向主泵提供转矩；蓄能器中的油液的释放受到控制器控制，当油液压力大于系统压力时，直接补充到主泵的出口，减少能量转换环节，当油液压力低于系统时，蓄能器中液压能转换成电能存储在蓄电池，从而向主泵提供转矩。两种储能元件采用不同能量输出方式，且蓄能器压力油按高低压分流的方法释放，使回收的能量得到了充分释放，使发动机稳定工作在燃油高效区。

[0025] （5）系统中采用二次动力元件组成，不仅可以和发动机一起向主泵提供转矩，还可以在发动机处于怠速状态时，工作在发电机模式下，吸收发动机冗余的能量，存储在蓄电池中。

[0026] （6）采用插装阀和顺序阀，在能量回收和释放过程中，自动实现高低压油的流通路径的切换，提高了系统的自动化程度。

[0027] （7）系统在回收高低压油的油路中设置有节流阀，控制器根据回收油液的压力调节节流阀的开口度，使具有不同压力的回收油液在经过节流后获得相同的压力值。

附图说明

[0028] 下面结合附图和具体实施方式对本发明做更进一步的具体说明，本发明的上述和/或其他方面的优点将会变得更加清楚。

[0029] 图 1 是本发明能量回收系统的结构示意图。

[0030] 图 2 是本发明在能量回收模式 1 下的工作状态图。

[0031] 图 3 是本发明在能量回收模式 2 下的工作状态图。

[0032] 图 4 是本发明在能量转换模式下的工作状态图。

[0033] 图 5 是本发明在能量释放模式下的工作状态图。

具体实施方式

[0034] 本发明所有附图中的附图标记对应中文名称如下：发动机 1、第一二次动力元件 2、主泵 3、第一逆变器 4、蓄电池 5、第二逆变器 6、第二二次动力元件 7、二次液压元件 8、第一溢流阀 9、第一单向阀 10、主换向阀 11、第一电磁换向阀 12、第二溢流阀 13、顺序阀 14、第一切换阀 15、节流阀 16、第一插装阀 17、蓄能器 18、或门型梭阀 19、双向增压器 20、第一电磁继电器 21、第二单向阀 22、第三单向阀 23、第二电磁换向阀 24、第二电磁继电器 25、第二插装阀 26、第二切换阀 27、第三电磁换向阀 28、液压单向阀 29、第三溢流阀 30、控制器 31、操作手柄 32、第一压力计 33、第二压力计 34、第三压力计 35、油箱 36。

[0035] 所述第一二次动力元件 2 和第二二次动力元件 7 可以根据控制器 31 的控制信号选择工作在发电机模式或者是电动机模式；二次液压元件 8 自动根据工况做变量泵或变量马达使用，当在主轴驱动下运转时，则工作在变量泵模式，当在进出口油液压差驱动下运转时，则工作在变量马达模式。
所述控制器 31 为单片机控制器。

所述操作手柄 32 用于控制执行机构的动作，并将操作状态信号传给控制器 31。

如图 1 所示，本发明的挖掘机能量回收系统包括发动机 1、第一二次动力元件 2、主泵 3、第一逆变器 4、蓄电池 5、第二逆变器 6、第二二次动力元件 7、二次液压元件 8、第一溢流阀 9、第一单向阀 10、主控阀 11、第一电磁换向阀 12、第二溢流阀 13、顺序阀 14、第一切换阀 15、节流阀 16、第一插装阀 17、蓄能器 18，或门型梭阀 19、双向增压器 20、第一电磁继电器 21、第二单向阀 22、第三单向阀 23、第二电磁换向阀 24、第二电磁继电器 25、第二插装阀 26、第二切换阀 27、第三电磁换向阀 28、液控单向阀 29、第三溢流阀 30、控制器 31、操作手柄 32、第一压力计 33、第二压力计 34、第三压力计 35、油箱 36。发动机 1 的输出轴与第一二次动力元件 2 的输出轴刚性连接；第一二次动力元件 2 与第二二次动力元件 7 之间顺序连接；第一逆变器 4、蓄电池 5、第二逆变器 6、第二二次动力元件 7 的输出轴与二氢液压元件 8 的转动轴刚性连接；主泵 3 的进油口与油箱 36 连接，出油口与第一单向阀 10 入口相连，且主泉 3 与第一单向阀 10 之间的旁路还连接有第一溢流阀 9，溢流阀 9 出口接入油箱 36；第一单向阀 10 的出口与主控阀 11 的 P 口、S 口相接，主控阀 11 的 N 口和 T 口分别连接油箱 36，A 口与执行机构的 A 口相接，B 口与第一电磁换向阀 12 的 B 口相连；第一电磁换向阀 12 的 A 口与执行结构的 B 口相接，N 口连接有第一切换阀 15 的 A 口，在第一电磁换向阀 12 于第一切换阀 15 之间的旁路还依次接有第二溢流阀 13 和顺序阀 14，第二溢流阀 13 的出口接入油箱 36，顺序阀 14 的出口与二次液压元件 8 连接后接油箱 36；第一切换阀 15 的 B 口出口油路上依次接有第一插装阀 17、蓄能器 18，此外 B 口还与节流阀 16 相连，节流阀 16 的出口与第二电磁换向阀 24 的 P 口相通；第二电磁换向阀 24 的 T 口接油箱 36，A 口、B 口分别接双向增压器 20 的 b、c 口，且 A、B 口分别经过第二单向阀 22、第三单向阀 23 后分别于双向增压器 20 的 a、d 口相接，此外 a、d 口还分别连接或门型梭阀 19 的 A、B 口，或门型梭阀 19 的出口连接蓄能器 18；蓄能器 18 依次经过第二切换阀 27 的 A 口、B 口，第三电磁换向阀 28 的 A 口、B 口，第二插装阀 26 后接在第一单向阀 10 和主控阀 11 之间；第三电磁换向阀 28 的 N 口接液控单向阀 29 后接在顺序阀 14 与二次液压元件 8 之间，在液控单向阀 29 的出口端还旁路接有第三溢流阀 30。

操作手柄 32 的控制信号由 x、y 端口分别输出到主控阀 11 的 x、y 信号端；控制器 31 接收来自操作手柄 32z 信号端传递的控制状态信号，第一压力计 33、第二压力计 34、第三压力计 35 的压力信号，以及蓄电池 5 输出的充电状态信号，并由控制器 31 向第一二次动力元件 2、第二二次动力元件 7、二次液压元件 8、节流阀 16、第一电磁换向阀 12、第二电磁换向阀 24、第二电磁换向阀 28、第一切换阀 15、第二切换阀 27 输出控制信号。

如图 1 所示，操纵手柄 32 位于中位，x、y 端无控制信号输出；主控阀 11 位于中位，主泵 3 输出油液经第一单向阀 10，进入主控阀 11 的 S 口，后从主控阀 11 的 N 口流出进入油箱 36，此时主泵 3 处于卸荷状态。

如图 2 所示，挖掘机能量回收系统处于能量回收模式，向蓄能器 18 储能；操作手柄 32 位于左位，x 端口向主控阀 11x 端发送控制信号使主控阀 11 换向，同时控制器 31 接收第二压力计 34、第三压力计 35 的压力信号，操作手柄 32 的控制信号，当第二压力计 34 的压力值大于设定的起始回收压力值 Po，且第三压力计 35 的压力值小于蓄能器 18
的公称压力时，控制器 31 分别向第一电磁换向阀 12、第一切换阀 15 发送控制信号，使其换向。从主泵 3 输出的液压油经过第一单向阀 10、主换向阀 11 后从 A 口进入执行机构，从执行结构 B 口流出的油液经过第一电磁换向阀 12、第一切换阀 15 后分别流向第一插装阀 17 和节流阀 16。

[0042] 当第二压力计 34 的压力值大于第三压力计 35 的压力值时，控制器 31 根据检测到的压力值调节节流阀 16 至关闭，第一插装阀 17 在压差作用下打开，油液全部经第一插装阀 17 后冲入蓄能器。

[0043] 当第二压力计 34 的压力值小于第三压力计 35 的压力值时，第一插装阀 17 保持关闭，回收油液流向节流阀 16，控制器 31 根据第二压力计 34 和第三压力计 35 的压差调节节流阀 16 的开口度，使流经节流阀 16 后进入第二电磁换向阀 24 的油液压力保持稳定；油液经第二电磁换向阀 24 后由 B 或 C 口进入双向增压器 20 的大腔，推动活塞向右或向左运行，使小腔内的油液压力增大；增压后的油液经 D 口或 A 口输入到或门型梭阀 19 的 B 口或 A 口，或门型梭阀 19 自动比较 A、B 口油液压力大小，将压力较高的油液冲入蓄能器 18 中；当双向增压器 20 中的活塞运行至极限位置时，通过回收油液的大腔内压力升高，触发第一电磁继电器 21 或第二电磁继电器 25，使第一电磁换向阀 24 换向，改变回收油液进入双向增压器 20 的入口，使活塞往复运动，向蓄能器 18 继续冲入增压后的回收油液。

[0044] 如图 3 所示，当蓄能器 18 压力值达到公称压力时，挖掘机械量回收系统处于能量回收模式 2，向蓄电池 5 储能。控制器 31 接收第二压力计 34、第三压力计 35 的压力信号和蓄电池 5 的充电状态信号，当第二压力计 34 的压力值大于设定的起始回收压力值 P1，且蓄电池 5 的充电状态信号小于饱和值，同时第三压力计 35 的压力值达到蓄能器 18 公称压力时，控制器 31 发出控制信号使第一电磁换向阀 12 保持在右位，同时第一切换阀 15 换向，顺序阀 14 在蓄能器入口油液的控制下打开，从执行结构 B 口流出的油液经第一电磁换向阀 12、顺序阀 14 后向二次液压元件 8 供油，二次液压元件 8 工作在变量马达模式，带动第二次动力元件 7 运转，由控制器 31 控制第二次动力元件 7 工作在发电机模式，并经过第二逆变器 6 向蓄电池 5 储存能量。

[0045] 此外，当系统的外负载较轻时，控制器 31 控制第二次动力元件 2 工作在发电机模式，吸收发动机 1 的冗余转矩，并通过第一逆变器 4 将产生的电能存储在蓄电池 5 中，平衡发动机 1 的功率输出。

[0046] 如图 4 所示，挖掘机械量回收系统处于能量转换模式，蓄能器 18 的液压能转换为蓄电池 5 中的电能。控制器 31 分别接收第三压力计 35 和蓄电池 5 发送的蓄能器压力信号和蓄电池充电状态信号，通过程序判断并启动转换，控制器 31 发出控制信号至第二切换阀 27、第三电磁换向阀 28、第二二次动力元件 7，使第二切换阀 27、第三电磁换向阀 28 换向，第二次二次动力元件 7 工作在发电机模式；蓄能器 18 中的压力油液经第二切换阀 27、第三电磁换向阀 28、液控单向阀 29 后向二次液压元件 8 供油，二次液压元件 8 工作在变量马达模式，带动第二次二次动力元件 7 转动发电，产生的电能经过第二逆变器 6 后存储到蓄电池 5 中。

[0047] 蓄电池 5 中的电能转换为蓄能器 18 的液压能。控制器 31 分别接收第三压力计 35 和蓄电池 5 发送的蓄能器压力信号和蓄电池充电状态信号，通过程序判断并启动转换，控制器 31 发出控制信号使第二次二次动力元件 7 工作在电动机模式，蓄电池 5 通过第二逆变器 6 向第二次二次动力元件 7 提供电能，带动二次液压元件 8 转运输出压力油，此时二次液压元件
件 8 工作在变量泵模式；控制器 31 根据第三压力计 35 的压力信号调节二次液压元件 8 的排量，使出口油液压力高于蓄能器入口压力。液控单向阀 29 在压力油控制下逆向打开，二次液压元件 8 输出的压力油经过液控单向阀 29、第三电磁换向阀 28、第二切换阀 27 后冲入蓄能器 18 中。

【0048】图 5 所示，挖掘机能量回收系统处于能量释放模式：操作手柄 32 位于右位，由 y 端口向主换向阀 11y 端发送控制信号使主换向阀 11 换向；从主泵 3 输出的液压油经过第一单向阀 10、主换向阀 11、第一电磁换向阀 12 后从 B 口进入执行机构；从执行结构 A 口流出的油液流经主换向阀 11 后回油箱 36。

【0049】控制器 31 接收操作手柄 32 的操作状态信号，及第一压力计 34、第三压力计 35 的压力信号，当第一压力计 33 的压力值小于第三压力计时 35，控制器 31 向第二切换阀 27 发送控制信号，使其换向；蓄能器 18 中的压力油经过第二切换阀 27、第三电磁换向阀 28，并在压差作用下使第二插装阀 26 打开，后冲入第一单向阀 10 和主换向阀 11 之间的主油路中，向系统补充压力油。同时蓄电池 5 通过第一逆变器 4 向第一二次动力元件 2 提供电能，控制器 31 控制第一二次动力元件 2 工作在电动机模式，与发动机一起向主泵 3 提供转矩。

【0050】当第一压力计 33 的压力值大于第三压力计 35 时，控制器 31 采用与上述能量转换模式中液压能转换为电能的相同的控制方法，使蓄能器 18 中的液压能先转换为蓄电池 5 的电能，再通过第一逆变器 4 驱动第一二次动力元件 2 向主泵 3 提供转矩。

【0051】本发明提供了一种挖掘机能量回收系统，具体实现该技术方案的方法和途径很多，以上所述仅为本发明的优选实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本发明原理的前提下，还可以做出若干改进和润饰，这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
图 1