Title: METHOD FOR SUPPLYING INERT GAS TO STB IN SEMICONDUCTOR WAFER MANUFACTURING SYSTEM AND SEMICONDUCTOR WAFTER MANUFACTURING SYSTEM USING SAME

Abstract: The present invention relates to a method for supplying inert gas to an STB in a semiconductor wafer manufacturing system, which includes the steps of generating a first input signal by detecting the loading of a FOUP on an STB; and supplying nitrogen gas to the STB by opening an inert gas valve based on the first input signal, and to a semiconductor wafer manufacturing system using the same.

Abstract: The present invention relates to a method for supplying inert gas to an STB in a semiconductor wafer manufacturing system, which includes the steps of generating a first input signal by detecting the loading of a FOUP on an STB; and supplying nitrogen gas to the STB by opening an inert gas valve based on the first input signal, and to a semiconductor wafer manufacturing system using the same.

요약: 본 발명은, 푸포가 에스터기에 로딩되는 것을 감지하여 제 1 입력 신호를 발생시키는 단계; 및 상기 제 1 입력 신호에 기초하여 플루시온 가스 벨브를 개방하여 상기 에스터기에 중소 가스를 공급하는 단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 에스터에 플루시온 가스를 공급하는 방법 및 이를 이용하는 반도체 웨이퍼 제조 시스템에 관한 것이다.
명세서
발명의 명칭: 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법 및 이를 이용한 반도체 웨이퍼 제조 시스템 기술분야
[1] 본 발명은, 반도체 제작 공정에 있어서, 공정 이동중 산소나 먼지등의 오염원으로부터 웨이퍼가 오염되는 것을 방지하여 반도체 제조 공정 효율을 높일 수 있는, 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법 및 이를 이용한 반도체 웨이퍼 제조 시스템에 관한 것이다.
배경기술
[2] 일반적인 반도체 제작 공정에서 제작된 웨이퍼를 다음 공정을 수행하는 설비로 반송할 때는 웨이퍼 캐리지(Front Opening Unified POD, 이하 'FOUP', 푸프)에 상기 웨이퍼를 저장하고 반송 중에 STB(에스티비;Side Track Buffer)라는 저장 공간을 거쳐 각 공정 장비로 이송이 된다.
발명의 상세한 설명
기술적 과제
과정 해결 수단
[7] 상술한 과제를 해결하기 위하여, 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법은, 푸프가 에스티비에 로딩되는 것을 감지하여 제1입력신호를 발생시키는 단계; 및 상기 제1입력신호에 기초하여 불활성 가스 밸브를 개방하여 상기 푸프에 질소 가스를 공급하는 단계를 포함할 수 있다.
[8] 본 발명의 일실시예의 일태양에 의하면, 상기 불활성 가스는, 질소 가스를
포함할 수 있다.

[9] 본 발명의 일시에의 일태양에 의하면, 상기 반도체 웨이퍼 제조 시스템에서 에스터비에 불활성 가스를 공급하는 방법은, 상기 푸프 내부의 불활성 가스의 양력 및 유량을 측정하여, 측정된 불활성 가스 압력 및 유량 정보를 이용하여 상기 불활성 가스의 공급을 제어하는 단계를 더 포함할 수 있다.

[10] 본 발명의 일시에의 일태양에 의하면, 상기 반도체 웨이퍼 제조 시스템에서 에스터비에 불활성 가스를 공급하는 방법은, 상기 푸프로 인입되는 불활성 가스의 양과 인출되는 불활성가스의 양을 측정하고, 이에 따라 상기 불활성 가스의 공급을 제어하는 단계를 포함할 수 있다.

[11] 본 발명의 일시에의 일태양에 의하면, 상기 반도체 웨이퍼 제조 시스템에서 에스터비에 불활성 가스를 공급하는 방법은, 상기 푸프가 상기 에스터비에 로딩되며, 상기 푸프의 압력 정보를 획득하여 제 2 입력신호를 발생시키는 단계를 더 포함하고, 상기 제 1 입력신호에 기초하여 발생성 가스 벤브를 개방하여 상기 푸프에 질소 가스를 공급하는 단계는, 상기 제 1 입력신호 및 상기 제 2 입력신호에 기초하여 상기 푸프에 질소 가스를 공급하는 단계를 포함할 수 있다.

[12] 본 발명의 일시에의 일태양에 의하면, 상기 반도체 웨이퍼 제조 시스템에서 에스터비에 발생성 가스를 공급하는 방법은, 상기 반도체 웨이퍼 제조 시스템에 물리적으로 장착되며, 사용자 입력부에 포트 추가 화면이 표시되는 단계; 상기 포트 추가 화면을 이용하여 포트를 소프트웨어적으로 추가한 후, 이 포트의 입출력 장치를 활성화하는 단계; 및 상기 사용자 입력부를 이용하여 상기 추가된 포트를 상기 반도체 웨이퍼 제조 시스템의 포트에 배치시키며, 상기 추가된 포트가 활성화되는 단계를 더 포함할 수 있다.

[13] 본 발명의 일시에의 일태양에 의하면, 상기 에스터비가 복수 개이고, 상기 반도체 웨이퍼 제조 시스템에서 에스터비에 발생성 가스를 공급하는 방법은, 상기 에스터비 중 적어도 하나에 푸프가 존재하지 않으나, 해당 포트를 디스에이블하고 이의 입출력 장치를 비활성화하는 단계; 및 포트 삭제 화면을 통해 상기 비활성화된 포트를 삭제하며, 포트의 입출력 신호가 차단되어 포트 신호 캐이블을 제거할 수 있는 단계를 더 포함할 수 있다.

[14] 본 발명의 다른 실시예인, 반도체 웨이퍼 제조 시스템은, 푸프가 푸프 포트에 장착되는 에스터비; 및 상기 푸프가 상기 에스터비에 장착되면 발생되는 제 1 입력신호를 수신하면, 상기 제 1 입력신호에 기초하여 발생성 가스 벤브를 개방하여 상기 에스터비에 발생성 가스를 공급하는 발생성가스 공급 장치를 포함할 수 있다.

[16] 본 발명의 다른 실시예의 일태양에 의하면, 상기 에스터비는, 그 푸프 내부의
불화성가스의 압력 및 유량을 측정하는 가스 압력 및 유량 센서를 포함하고, 상기 불화성가스 공급 장치는, 상기 제 1 입력 신호에 의해 개방되는 불화성 가스 벨브; 상기 불화성 가스에 대한 압력을 부여하는 펌프; 및 상기 가스 압력 센서에서 생성된 불화성 가스 압력 정보를 이용하여 상기 불화성 가스의 공급을 제어하도록 상기 펌프를 제어하는 제어부를 포함할 수 있다.

본 발명의 다른 실시예의 일체에 의하면, 상기 에스터비는, 상기 푸프로 인입되는 불화성 가스의 압력을 측정하는 가스 인입 센서; 및 상기 푸프에서 인출되는 불화성가스의 압력을 측정하는 가스 인출 센서를 포함하고, 상기 불화성 가스 공급 장치는, 상기 가스 인입 센서 및 상기 가스 인출 센서에서 획득되는 정보에 기초하여 상기 불화성 가스의 공급을 제어할 수 있다.

본 발명의 다른 실시예의 일체에 의하면, 상기 에스터비는, 상기 푸프가 로딩되면, 상기 푸프의 아이디 정보를 획득하여 제 2 입력신호를 발생시키고, 상기 불화성가스 공급 장치는, 상기 제 1 입력신호 및 상기 제 2 입력 신호에 기초하여 상기 푸프에 조소 가스를 공급할 수 있다.

발명의 효과

상술한 구성을 가지는 본 발명의 실시예에 따르면, 반도체 웨이퍼 제조 시스템에 있어서, 공정간 이동시에 이용되는 에스터비에 장착되는 푸프내에 불화성가스를 적정량 공급할 수 있기 때문에 공정 이동 후 오염으로부터 반도체 웨이퍼가 접촉되는 것을 방지할 수 있어 수율을 높일 수 있다.

또한, 반도체 제조 시스템에 있어서, 에스터비를 추가하거나 탈착할 때, 전체 시스템을 다운시키지 않고, 소프트웨어적으로 에스터비를 추가하거나 삭제하는 것이 가능하게 되어서 반도체 웨이퍼 생산성을 높일 수 있다.

도면의 간단한 설명

도 1은 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템의 전체적인 구성을 설명하기 위한 블록 구성도.

도 2는 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템에 사용되는 에스터비의 전자적인 구성도 설명하기 위한 블록 구성도.

도 3은 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템에 사용되는 에스터비의 전자적인 구성도 설명하기 위한 블록 구성도.

도 4는 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템에서 에스터비에 불화성 가스를 공급하는 방법을 설명하기 위한 흐름도.

도 5는 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템에서 에스터비에 불화성 가스를 공급하는 방법에서 에스터비를 추가하는 방법을 설명하기 위한 흐름도.

도 6은 본 발명의 일실시예인 반도체 웨이퍼 제조 시스템에서 에스터비에 불화성 가스를 공급하는 방법에서 에스터비를 삭제하는 방법을 설명하기 위한 흐름도.
발명의 실시를 위한 최선의 형태

[27] 이하, 본 발명과 관련된 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법 및 이를 이용한 반도체 웨이퍼 제조 시스템에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 설명되는 구성요소에 대한 점시에 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.

[28] 도 1은 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템의 전체적인 구성을 설명하기 위한 블록 구성도이다. 도시된 바와 같이, 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템은, 에스티비(100), 불활성 가스 공급 장치(200) 및 메인 제어 장치(300)를 포함할 수 있다.

[29] 에스티비(100)는 반도체 웨이퍼를 수용하는 다수개의 푸프(101)를 반도체 제조 공정간에 이동시키기 위한 구성요소이다. 이 때, 에스티비(100)에는 불활성 가스 공급관이 설치되어서, 푸프(101)내에 불활성 가스를 공급하게 된다. 이에 대한 설명은 도 2에서 보다 상세하게 설명하도록 한다.

[30] 불활성 가스 공급 장치(200)는, 에스티비(100)에 설치되는 푸프 포트(110)에 설치된 푸프(101)내로 불활성 가스를 공급하기 위한 구성요소이다. 여기에 사용되는 불활성가스로서 질소 가스나 아르곤 가스등이 이용될 수 있다. 이에 대해서는 도 3에서 보다 상세하게 설명하도록 한다.

[31] 메인 제어 장치(300)는 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템의 전체 공정을 제어하는 구성요소로서, 에스티비(100)에 푸프(101)를 안착시키고, 불활성 공급 장치(200) 및 에스티비(100)로부터 현재의 상태 정보를 확인하고, 이들을 각각 제어하는 메인 콘트롤러이다.

[32] 도 2는 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템에 사용되는 에스티비의 전자적인 구성을 설명하기 위한 블록 구성도이다. 도 2에 도시된 바와 같이, 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템에 사용되는 에스티비(100)는, 푸프 포트(110), 인입 가스 센서(120), 인축 가스 센서(130), 가스 압력센서(또는 가스 유량 센서, 또는 이들의 조합)(140), 통신 모듈(150) 및 에스티비 제어부(160)를 포함한다.

[33] 푸프 포트(110)는 푸프(101)가 에스티비(100)에 안착하기 위한 구성요소이다. 푸프(101)가 에스티비(100)에 안착이 되면, 제 1 입력 신호가 발생하게 되고, 이에 따라, 에스티비 제어부(160)는 통신 모듈(150)을 통해 이를 불활성 가스 공급 장치(200)에 알리게 되며, 이에 따라 불활성 가스 공급 장치(200)는 벨브(210)를 운전하여 푸프(101)내에 불활성 가스를 공급하게 된다. 한편, 상기 푸프 포트(110)에 푸프(101)가 안착되면, 메인 제어 장치(300) 또는 푸프(101)에 있는 아이디 정보를 획득하게 되고, 적절한 불활성 가스가 푸프(101)내로 공급되게 된다.
인입 가스 센서(120)와 인출 가스 센서(130)는 푸프(101) 내로 인입되는 불활성 가스 및 외부로 유출되는 불활성 가스의 양을 측정하기 위한 구성요소이다. 상기 가스 인입 센서 및 상기 가스 인출 센서에서 획득되는 정보에 기초하여 상기 불활성 가스의 공급을 제어함으로써, 최적의 불활성 가스를 푸프(101) 내에 제공하게 된다.

가스 압력 센서 또는 유량 센서(140)는 푸프(101) 내의 불활성 가스가 인입됨에 따라 발생되는 내부 압력을 측정하기 위한 구성요소이다. 이 가스 압력 센서(140)에 의해 획득된 정보는 통신 모듈(150)을 통해 불활성 가스 공급 장치(200)에 제공되고, 이에 따라 푸프(220)가 동작하게 되어서 푸프(101) 내의 최적의 불활성 가스가 존재하도록 한다.

이하에서는, 본 발명의 일정시어린 반도체 웨이퍼 제조 시스템에 사용되는 불활성 가스 공급 장치에 대하여 설명하도록 한다.

도 3은 본 발명의 일정시어린 반도체 웨이퍼 제조 시스템에 사용되는 불활성 가스 공급 장치의 전자적인 구성을 설명하기 위한 블록구성도이다. 도 3에 도시된 바와 같이, 불활성 가스 공급 장치(200)는, 벨브(210), 필프(220), 표시부(230), 입력부(240), 통신부(250), 데이터 저장부(260), 에스티비 입력 제어 모듈(270), 불활성 가스 공급 제어부(280)를 포함할 수 있다.

벨브(210)는 에스티비(100)에 설치된 불활성 가스 공급관에 설치되어서, 푸프(101)가 에스티비(100)에 로딩됨에 따라 발생되는 제 1 입력 신호에 기초하여 제어되어서 푸프(101) 내로 불활성 가스를 공급하게 하는 기능을 한다.

필프(220)는 불활성가스가 푸프(101) 내로 공급되는 데 압력을 제공하는 구성요소로서, 상술하는 푸프(101)가 로딩됨에 따라 획득되는 푸프(101)의 아이디 신호, 인입 가스 센서(120), 인출 가스 센서(130), 가스 압력 센서(140)로부터 획득되는 정보등에 의하여 푸프(101)로 공급되는 불활성 가스의 양을 제어하는 기능하게 된다.

표시부(230)는, 불활성 가스 공급 장치(200)의 동작상태를 시각적으로 표시하기 위한 구성요소이다. 또한 후술하는 에스티비(100)의 추가 또는 삭제를 할 때 이용되는 UI(User Interface)를 나타내기 위한 구성요소이다. 이러한 표시부로서 티치스크린이 이용될 수 있으며, 이 경우 표시부는 입력부로서 이용될 수 있다.

 사용자 입력부(240)는, 불활성 가스 공급 장치(200)의 동작 및 제어명령을 입력하기 위한 구성요소이며, 후술하는 에스티비(100)의 추가 또는 삭제를 위한 명령어를 입력하기 위한 구성요소이다.

통신부(250)는, 상술한 에스티비(100)에서 감지되는 각종 신호를 수신하기 위한 구성요소이다.

데이터 저장부(260)는, 에러 정보, 푸프 아이디 정보 등을 저장하기 위한 구성요소이다.

에스티비 입력 제어모듈(270)은 에스티비 입력 장치를 환상화 또는
비활성화하기 위한 구성요소로서, 이는 에스티비(100)를 기존의 웨이퍼 제조 시스템에 추가하거나 삭제할 때 이용되며, 이에 대해서는 도 5 및 도 6에서 설명하도록 한다.

[45] 불활성 가스 공급 장치(280)는, 통신부(250)를 통해 횡단되는 푸프(101)의 압력 정보, 가스 인입 및 인출 정보를 수신하고 이에 기초하여 밸브(210) 및 푸프(220)를 동작시키 적절한 불활성 가스를 푸프(101)에 공급하게 하는 기능을 한다.

[47] 도 4는 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법을 설명하기 위한 흐름도이다. 도시된 바와 같이, 우선, 에스티비(100)의 푸프 포트(110)에 푸프(101)가 로딩되면 푸프(101)를 인식하여 푸프 아이디 정보를 획득하게 된다(S11, S12). 그 다음, 푸프 로딩에 따른 제 1 입력 신호 및 푸프 아이디 정보에 따른 제 2 입력신호가 불활성 가스 공급 장치(200)에 전송하게 되면, 활성화 가스 공급 장치(200)는, 밸브(210)를 개방하게 된다(S13, S21). 이에 따라 절소가스(불활성 가스)가 푸프(101)내로 공급되게 된다(S22). 이와 같이 절소 가스가 공급되며, 에스티비(100)는 푸프(101)내의 가스 압력 정보를 획득하고(S14), 이 가스 압력 정보를 수신한 불활성 가스 공급 장치(200)는 푸프(220)를 제어하여 푸프(101)내로 인입되는 불활성 가스의 양을 제어하게 된다(S15, S24). 그리고, 이러한 푸프(101)내의 상태나 불활성 가스 공급량등의 정보는 메인 제어 장치(300)로 제공되게 된다(S23). 또한, 푸프(101)내로의 가스 인입 정보 및 가스 인출 정보가 획득되어서 이것이 불활성 가스 공급 장치(200)로 전송되며, 불활성 가스 공급 장치(200)는 이들을 이용하여 푸프(220)를 제어하여 푸프(101)내로 인입되는 불활성 가스의 양을 제어하게 된다(S16, S17, S26). 그리고, 이러한 푸프(101)내의 인입 가스 정보 및 인출 가스 정보는 메인 제어 장치(300)로 제공되게 된다(S25).

[48] 한편, 발명의 일시시에인 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법에서 에스티비를 추가하는 방법에 대하여도 5를 참조하여 설명하도록 한다.

[49] 도 5는 본 발명의 일시시에인 반도체 웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법에서 에스티비를 추가하는 방법을 설명하기 위한 흐름도이다. 도시된 바와 같이, 에스티비(100)를 추가하는 경우 반도체 웨이퍼 장치에 에스티비 포트를 설치한다(S41). 에스티비 포트에 설치된 에스티비(100)에 푸프(101)가 안착되면(S43), 표시부에 포트 추가확인이 표시된다(S45). 이 포트 추가확인을 통해 포트가 추가되면서 포트 입력 장치가 활성화되며, 그 다음, 상기 사용자 입력부를 이용하여 상기 추가된 포트를 상기 반도체 웨이퍼 제조 시스템의 포트에 배치시키면, 상기 추가된 포트가 활성화된다(S47, S49, S51).
이하에서는, 발명의 일시시에 반도체 웨이퍼 제조 시스템에서 에스테비에 불활성 가스를 공급하는 방법에서 에스테비를 제거 또는 삭제하는 방법에 대하여 도 6을 참조하여 설명하도록 한다.

도 6은 본 발명의 일시시에 반도체 웨이퍼 제조 시스템에서 에스테비에 불활성 가스를 공급하는 방법에서 에스테비를 삭제하는 방법을 설명하기 위한 도로이다. 도 6에 도시된 바와 같이, 우선 반도체 웨이퍼 제조 시스템에서 이와 설치된 에스테비(100) 중 하나를 제거하는 경우, 제거하고자 하는 에스테비(100)의 에스테비 포트를 디스플레이시킨다(S61). 이에 따라 에스테비의 임력력 장치가 비활성화되고, 표시부에는 포트 삭제 화면이 표시된다(S63, S65). 이 포트 삭제 화면을 통해 상기 비활성화된 포트를 삭제하면, 포트 신호가 차단되어 포트 신호 케이블을 제거할 수 있게 된다(S67, S69, S71).

상술한 구성을 가지는 본 발명의 일시시에 따르면, 반도체 웨이퍼 제조 시스템에 있어서, 공정간 이동시에 이용되는 에스테비에 장착되는 포트내에 불활성가스를 적정량 공급할 수 있기 때문에 공정 이동 중 오염원으로부터 반도체 웨이퍼가 접촉될 것을 방지할 수 있어 수율을 높일 수 있다.

또한, 반도체 제조 시스템에 있어서, 에스테비를 추가하거나 탈착할 때, 전체 시스템을 다운시키지 않고, 소프트웨어적으로 에스테비를 추가하거나 삭제하는 것이 가능하게 되어서 반도체 웨이퍼 생산성을 높일 수 있다.

상기와 같이 설명된 반도체 웨이퍼 제조 시스템에서 에스테비에 불활성 가스를 공급하는 방법 및 이를 이용한 반도체 웨이퍼 제조 시스템은 상기 설명된 실시예들의 구성과 방법이 합리게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

[부호의 설명]
100: STB(에스테비)
200: 불활성 가스 공급 장치
300: 메인 제어 장치
101: Foup (FOUP)
110: Foup 포트
120: 인입 가스 센서
130: 인출 가스 센서
140: 가스 압력 센서
150: 통신 모듈
160: 에스테비 제어부
210: 벨브
220: 펌프
230: 표시부(터치스크린)
240: 입력부
250: 통신부
260: 데이터 저장부
270: 에스티비 입력 제어 모듈
280: 불활성가스 공급 제어부
청구범위

[청구항 1] 푸프가 애스터비에 로딩되는 것을 감지하여 제 1 입력 신호를 발생시키는 단계; 및
상기 제 1 입력신호에 기초하여 불활성 가스 벨브를 개방하여 상기 푸프에 절소 가스를 공급하는 단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 애스터비에 불활성 가스를 공급하는 방법.

[청구항 2] 제 1 항에 있어서,
상기 불활성 가스는, 절소가스를 포함하는, 반도체 웨이퍼 제조 시스템에서 애스터비에 불활성 가스를 공급하는 방법.

[청구항 3] 제 1항에 있어서,
상기 푸프 내부의 불활성가스의 압력 및 유량을 측정하여, 측정된 불활성가스 압력 및 유량 정보를 이용하여 상기 불활성가스의 공급을 제어하는 단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 애스터비에 불활성가스를 공급하는 방법.

[청구항 4] 제 1항에 있어서,
상기 푸프로 인입되는 불활성가스의 양과 인출되는 불활성가스의 양을 측정하고, 이에 따라 상기 불활성가스의 공급을 제어하는 단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 애스터비에 불활성가스를 공급하는 방법.

[청구항 5] 제 1항에 있어서,
상기 푸프가 상기 애스터비에 로딩되면, 상기 푸프의 아이디 정보를 획득하여 제 2 입력신호를 발생시키는 단계를 더 포함하고, 상기 제 1 입력신호에 기초하여 불활성가스 벨브를 개방하여 상기 푸프에 절소 가스를 공급하는 단계는,
상기 제 1 입력신호 및 상기 제 2 입력 신호에 기초하여 상기 푸프에 절소 가스를 제어하여 공급하는 단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 애스터비에 불활성가스를 공급하는 방법.

[청구항 6] 제 1항에 있어서,
상기 별도의 애스터비가 상기 반도체 웨이퍼 제조 시스템에 물리적으로 장착되면, 사용자 입력부에 포트 추가 화면이 표시되는 단계;
상기 포트 추가 화면을 이용하여 포트를 소프트웨어적으로 추가한 후, 이 포트의 입력출 장치를 활성화하는 단계;
상기 사용자 입력부를 이용하여 상기 추가된 포트를 상기 반도체 웨이퍼 제조 시스템의 포트에 배치시키면, 상기 추가된 포트가 활성화되는 단계를 더 포함하는, 반도체 웨이퍼 제조 시스템에서
제 7 항에 있어서,
상기 에스테비가 복수개이고, 상기 에스테비 중 하나에 푸프가 존재하지 않으면, 해당 푸프를
디스테비할고, 이의 입력력 장치를 비활성화하는 단계;
포트 석재 화면을 통해 상기 비활성화된 포트를 석재하므로 포트
입력력 신호가 차단되어 포트 신호 케이블을 제거할 수 있는
단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 에스테비에
활성성 가스를 공급하는 방법.

제 8 항에 있어서,
푸프가 푸프 포트에 장착되는 에스테비; 및
상기 푸프가 상기 에스테비에 장착되면서 발생되는 제 1 입력 신호를
수신하면, 상기 제 1 입력신호에 기초하여 상기 에스테비에 활성성
가스를 공급하는 활성성가스 공급 장치를 포함하는, 반도체
웨이퍼 제조 시스템.

제 8 항에 있어서,
상기 활성성 가스는, 절소가스를 포함하는, 반도체 웨이퍼 제조
시스템.

제 8 항에 있어서,
상기 에스테비는, 그 푸프 내부의 활성성가스의 압력을 측정하는
가스 압력센서를 포함하고,
상기 활성성가스 공급 장치는,
상기 제 1 입력신호에 의해 개방되는 활성성 가스 밸브;
상기 활성성 가스에는 측정을 부여하는 헴프 및
상기 가스 압력 센서에서 생성된 활성성 가스 압력 정보를
이용하여 상기
활성성 가스의 공급을 제어하도록 상기 푸프를 제어하는 제어부를
포함하는, 반도체 웨이퍼 제조 시스템.

제 7 항에 있어서,
상기 에스테비는,
상기 푸프로 인입되는 활성성 가스의 양을 측정하는 가스 인입
센서; 및
상기 푸프에서 인출되는 활성성가스의 양을 측정하는 가스 인출
센서를 포함하고,
상기 활성성가스 공급 장치는,
상기 가스 인입 센서 및 상기 가스 인출 센서에서 획득되는 정보에
기초하여 상기 활성성 가스의 공급을 제어하는, 반도체 웨이퍼
제조 시스템에서 에스테비에 활성성 가스를 공급하는 방법.

제 8 항에 있어서,
상기 에스티비는,
상기 푸프가 로딩되면, 상기 푸프의 아이디 정보를 획득하여 제2
입력신호를 발생시키고,
상기 불활성가스 공급 장치는,
상기 제1 입력신호 및 상기 제2 입력 신호에 기초하여 상기
푸프에 절소 가스를 제어하여 공급하는, 반도체 웨이퍼 제조
시스템.
청구범위 보장서
국제사무국 접수일: 2014년 1월 6일 (06.01.2014)

[청구항 1]
(보정) 반도체 웨이퍼 제조 시스템에서 에스테비에 불활성 가스를 공급하는 방법으로서,
푸프가 에스테비에 로딩되는 것을 감지하여 제 1 입력 신호를 발생시키는 단계;
상기 제 1 입력신호에 기초하여 불활성 가스 뷰브를 개방하여 상기
푸프에 질소 가스를 공급하는 단계;
별도의 에스테비가 상기 반도체 웨이퍼 제조 시스템에 물리적으로
장착되며, 사용자 입력부에 포트 추가 화면이 표시되는 단계;
상기 포트 추가 화면을 이용하여 포트를 소프트웨어적으로 추가한
후, 이 포트의 입출력 장치를 활성화하는 단계; 및
상기 사용자 입력부를 이용하여 상기 추가된 포트를 상기 반도체
웨이퍼 제조 시스템의 포트에 배치시키면, 상기 추가된 포트가
활성화되어, 상기 반도체 웨이퍼 제조 시스템을 다운시키지
않고도, 상기 별도의 에스테비를 장착 사용하는 단계를 포함하는,
반도체 웨이퍼 제조 시스템에서 에스테비에 불활성 가스를
공급하는 방법.

[청구항 2]
제 1항에 있어서,
상기 불활성 가스는, 질소가스를 포함하는, 반도체 웨이퍼 제조
시스템에서 에스테비에 불활성 가스를 공급하는 방법.

[청구항 3]
제 1항에 있어서,
상기 푸프 내부의 불활성가스의 압력 및 유량을 측정하여, 측정된
불활성 가스 압력 및 유량 정보를 이용하여 상기 불활성 가스의
공급을 제어하는 단계를 포함하는, 반도체 웨이퍼 제조
시스템에서 에스테비에 불활성 가스를 공급하는 방법.

[청구항 4]
제 1항에 있어서,
상기 푸프로 인입되는 불활성 가스의 양과 인출되는 불활성가스의
양을 측정하고, 이에 따라 상기 불활성 가스의 공급을 제어하는
단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 에스테비에
불활성 가스를 공급하는 방법.

[청구항 5]
제 1항에 있어서,
상기 푸프가 상기 에스테비에 로딩되면, 상기 푸프의 아이디
정보를 획득하여 제 2입력 신호를 발생시키는 단계를 더 포함하고,
상기 제 1입력 신호에 기초하여 활성화 가스 뷰브를 개방하여 상기
푸프에 질소 가스를 공급하는 단계는,
상기 제 1입력신호 및 상기 제 2 입력 신호에 기초하여 상기
푸프에 질소 가스를 제어하여 공급하는 단계를 포함하는, 반도체

보정용지 (조약 제19조)
웨이퍼 제조 시스템에서 에스티비에 불활성 가스를 공급하는 방법.

[청구항 6] (식제)
[청구항 7] 제 1항에 있어서,
상기 에스티비가 복수개이고,
상기 에스티비 중 하나에 퓨프가 존재하지 않으면, 해당 퓨프를
디스에이블하고, 이의 임축력 장치를 비활성화하는 단계;
포트 샷제 화면을 통해 상기 비활성화된 퓨프를 삭제하면, 퓨프
임축력 신호가 차단되어 포트 신호 캐이블을 제거할 수 있는
단계를 포함하는, 반도체 웨이퍼 제조 시스템에서 에스티비에
불활성 가스를 공급하는 방법.

[청구항 8] (보정) 퓨프가 퓨프 퓨프에 장착되는 에스티비; 및
상기 퓨프가 상기 에스티비에 장착됨에 따라 발생되는 제 1 임축
신호를 수신하면, 상기 제 1 임축신호에 기초하여 상기 에스티비에
불활성 가스를 공급하는 불활성가스 공급 장치를 포함하고,
상기 에스티비는,
상기 퓨프로 인입되는 불활성 가스의 양을 측정하는 가스 인입
센서; 및
상기 퓨프에서 인출되는 불활성가스의 양을 측정하는 가스 인출
센서를 포함하고,
상기 불활성가스 공급 장치는,
상기 가스 인입 센서 및 상기 가스 인출 센서에서 획득되는 정보에
기초하여 상기 불활성 가스의 공급을 제어하는, 반도체 웨이퍼
제조 시스템.

[청구항 9] 제 8항에 있어서,
상기 불활성가스는, 질소가스를 포함하는, 반도체 웨이퍼 제조
시스템.

[청구항 10] 제 8항에 있어서,
상기 에스티비는, 그 퓨프 내부의 불활성가스의 압력을 측정하는
가스 압력센서를 포함하고,
상기 불활성가스 공급 장치는,
상기 제 1 임축신호에 의해 개방되는 불활성 가스 밸브;
상기 불활성 가스에 대한 압력을 부여하는 퓨프 및
상기 가스 압력 센서에서 생성된 불활성 가스 압력 정보를
이용하여 상기
불활성 가스의 공급을 제어하도록 상기 퓨프를 제어하는 제어부를
포함하는, 반도체 웨이퍼 제조 시스템.

[청구항 11] (식제)

보정용지 (조약 제19조)
제 8 항에 있어서.
상기 에스터비는,
상기 푸프가 로딩되면, 상기 푸프의 아이디 정보를 획득하여 상기
입력신호를 발생시키고,
상기 불활성가스 공급 장치는,
상기 제 1 입력신호 및 상기 제 2 입력 신호에 기초하여 상기
푸프에 젤소 가스를 제어하여 공급하는, 반도체 웨이퍼 제조
시스템.
조약 제19조(1) 규정의 설명서

본원의 청구항 제 1 항에 청구항 제 6 항의 기술적 특징을 부가하고, 청구항 제 6 항을 삭제하였습니다. 또한, 청구항 제 8 항에 청구항 제 11 항의 기술적 특징을 부가하고, 청구항 제 11 항을 삭제하였습니다. 그 외 청구항은 최초 출원시의 청구항과 동일합니다.
시작

포트 디스플레이

S61

입출력장치 비활성화

S63

포트삭제 화면표시

S65

포트 삭제

S67

포트 전원차단

S69

포트 케이블 제거

S71

종료
A. CLASSIFICATION OF SUBJECT MATTER

H01L 21/67/2006.01), H01L 21/02(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01L 21/67; H01L 21/68; B65G 49/07; G05B 19/418; G05B 23/00; H01L 21/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above

Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: purge, FOUP, FOUP, FOUP, inactivity, nitrogen

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2012-019046 A (SINFONIA TECHNOLOGY CO LTD) 26 January 2012 See abstract; figure 1; paragraphs [0028]-[0046]</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>KR 20-0376772 Y1 (INTERNOVa CO., LTD.) 11 March 2005 See abstract; figure 5; page 4</td>
<td>3-4, 10-11</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2012-0105269 A (SAMSUNG ELECTRONICS CO., LTD.) 25 September 2012 See the entire document.</td>
<td>5, 12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 19 NOVEMBER 2013 (19.11.2013)

Date of mailing of the international search report: 19 NOVEMBER 2013 (19.11.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office

Government Complex-Daejeon, 159 Seomsa-ro, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2012-019046 A</td>
<td>26/01/2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2008-0240892 A1</td>
<td>02/10/2008</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 20-0376772 Y1</td>
<td>11/03/2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0235793 A1</td>
<td>20/09/2012</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

H01L 21/677(2006.01)i, H01L 21/02(2006.01)i

B. 조사된 분야

조사된 최소문헌(국제특허분류를 기재)
H01L 21/677; H01L 21/68; B65G 49/07; G05B 19/418; G05B 23/00; H01L 21/02

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허출원공보 및 한국공개출원공보: 조사된 최소문헌이외에 기재된 IPC
일본특허출원공보 및 일본공개출원공보: 조사된 최소문헌이외에 기재된 IPC
국가조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 카워드: 펌지, 푸프, 줄, FAX, 압출, 젼소

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2012-019046 A (SINFONIA TECHNOLOGY CO LTD) 2012.01.26</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>요약: 도면 1: 문단 [0028]-[0046] 참조</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2008-0240892 A1 (COURTOIS LOUISE C. 외 4명) 2008.10.02</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>요약: 도면 3: 문단 [0002], [0007] 참조</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 20-0376772 Y1 (주)인터넷바 2005.03.11</td>
<td>3-4,10-11</td>
</tr>
<tr>
<td></td>
<td>요약: 도면 5: 페이지 4 참조</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2012-0105269 A (삼성전자주식회사) 2012.09.25</td>
<td>5,12</td>
</tr>
<tr>
<td></td>
<td>문헌 전체 참조</td>
<td></td>
</tr>
</tbody>
</table>

추가 문헌이 C(계속)에 기재되어 있습니다.

* 인용문헌의 특별 카테고리:

"A" 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌

"E" 국제특허출원보다 빠른 출원일 또는 우선일을 가지거나 국제출원일 이후에 공개된 출원일 또는 특허 문헌

"L" 우선권 주장에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이유를 명시)를 밝혀지고 위하여 인용된 문헌

"G" 구두 게시, 사용, 전시 또는 기타 수단을 얻고로서 있는 문헌

"P" 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

국제조사의 실제 완료일
2013년 11월 19일 (19.11.2013)

국제조사보고서 발송일
2013년 11월 19일 (19.11.2013)

ISA/KR의 명칭 및 주민주소
대한민국 특허청 (302-701) 대전광역시 서구 정자로 189, 4층 (동산동, 정부대전청사)

패스 번호 +82-42-472-7140

ISA/KR의 명칭 및 주민주소
대한민국 특허청 (302-701) 대전광역시 서구 정자로 189, 4층 (동산동, 정부대전청사)

패스 번호 +82-42-472-7140

시작 PCT/ISA/210 (두 번째 섹션) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>언용된 특허문헌</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2012-019046 A</td>
<td>2012/01/26</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>US 2008-0240892 A1</td>
<td>2008/10/02</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 20-0376772 Y1</td>
<td>2005/03/11</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>