

US010345144B2

(12) United States Patent Oskotsky et al.

(54) COMPACT AND ATHERMAL VNIR/SWIR SPECTROMETER

(71) Applicant: BAE Systems Information and Electronic Systems Integration Inc.,

Nashua, NH (US)

(72) Inventors: Mark L Oskotsky, Mamaroneck, NY

(US); Michael J Russo, Jr., Roslyn,

NY (US)

(73) Assignee: BAE Systems Information and

Electronics Systems Integration Inc.,

Nashau, NH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 15/646,624

(22) Filed: Jul. 11, 2017

(65) Prior Publication Data

US 2019/0017868 A1 Jan. 17, 2019

(51) **Int. Cl.**

G01J 3/02 (2006.01) **G01J 3/04** (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

5,420,681 A *	5/1995	Woodruff	G01J3/02
			356/326
5 621 575 A	4/1997	Tovama	

(10) Patent No.: US 10,345,144 B2

(45) **Date of Patent:** Jul. 9, 2019

5,781,290 A *	7/1998	Bittner	$G01J 3/14$			
			356/326			
6,122,051 A *	9/2000	Ansley	G01J 3/02			
			250/339.05			
6,208,459 B1	3/2001	Coon				
(Continued)						

OTHER PUBLICATIONS

R. Hamilton Shepard, The Design of SWIR Imaging Lenses Using Plastic Optics, Downloaded From: http://spiedigitallibrary.org/ on Apr. 17, 2014 Terms of Use: http://spiedl.org/terms, 11 pages, Published 2012, Proc. of SPIE vol. 8489, 84890A.

(Continued)

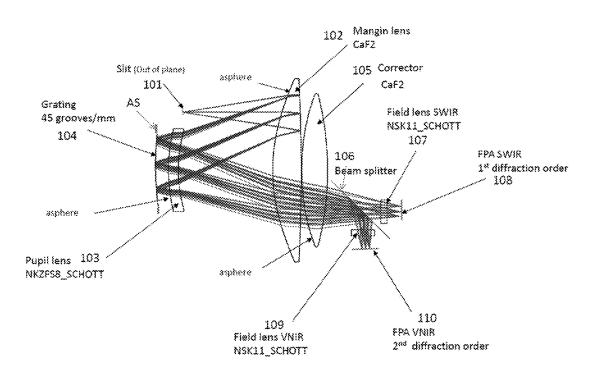
Primary Examiner — David P Porta

Assistant Examiner — Blake C Riddick

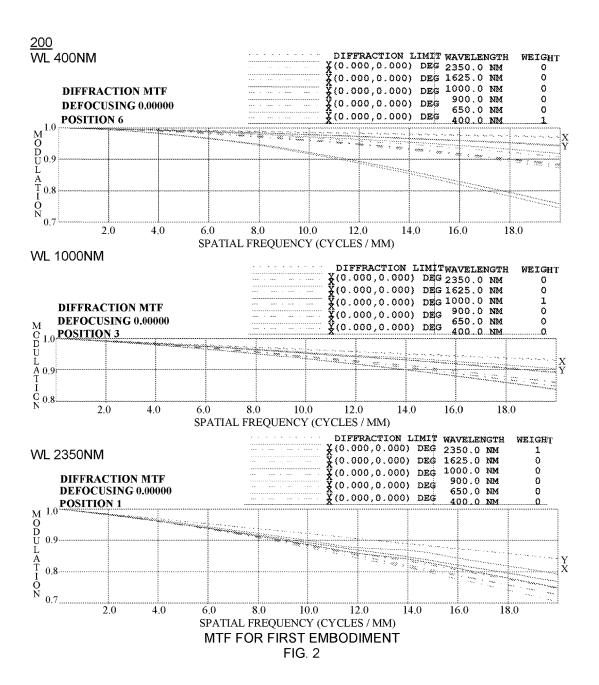
(74) Attorney, Agent, or Firm — Maine Cernota & Rardin

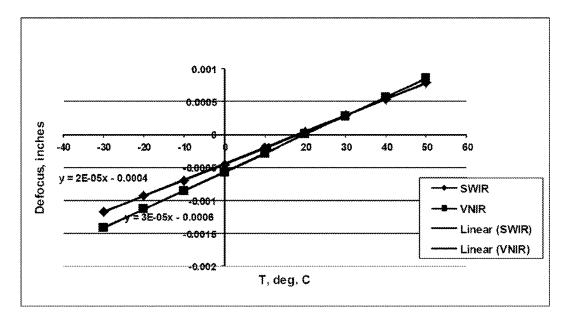
(57) ABSTRACT

A Compact and Athermal VNIR/SWIR Spectrometer utilizes a slit, a Mangin lens, a pupil lens adjacent to the diffraction grating, corrector lenses, a beam splitter, field lenses and SWIR and VNIR FPAs. In examples, two corrector lenses are used. Some examples do not utilize field lenses and beam splitter, some examples utilize only the SWIR radiation spectrum. By balancing the powers of the optical elements and Abbe numbers of glasses as well as usage of aspheric surfaces combinations, a monochromatic and polychromatic aberrational correction is achieved; by balancing optical elements refractive indices change with temperature an athermalization is achieved. The overall length of the spectrometer does not exceed 4 inches, and in some examples it is 2.5 inches. A wide field of view and a low F number are obtained with an operating wavelength range from approximately 400 to 2350 nm. The spectrometer is particularly suited to airborne applications.


20 Claims, 19 Drawing Sheets

302 Manage loss
505 Section 300 Manage loss
603 303 Consider
305 Section 305 Feb Scott
104 Feb Scott
105 Feb Scott
106 Feb Scott
107 Feb Scott
108 Feb Scott
109 Feb Scott
109 Feb Scott
100 Feb Scott


100


US 10,345,144 B2 Page 2

(56)			Referen	ces Cited	2010/0051802	A1*	3/2010	Marchman H01J 37/226 250/306
		U.S.	PATENT	DOCUMENTS	2010/0245650	A1*	9/2010	Kreysar G01J 3/02 348/311
	6,556,297	B1*	4/2003	Cappiello G01J 3/02 356/328	2010/0328659	A1*	12/2010	Bodkin G01J 3/02 356/326
	6,980,295 7,006,217		12/2005 2/2006	Lerner	2011/0188038	A1*	8/2011	Gollier G01N 21/7743 356/328
	7,199,876	B2	4/2007	Mitchell	2011/0222061	A1*	9/2011	Desserouer G01J 3/1838
	7,271,965 7,609,381	B2	10/2009		2011/0285995	A1*	11/2011	356/328 Tkaczyk G01J 3/02
	7,768,642 8,203,710	B1	6/2012	Oskotsky Mitchell	2012/0002202	A1*	1/2012	356/326 Chrisp G01J 3/0208
	8,289,633 8,339,600	B2	12/2012		2012/0062889	A1*	3/2012	356/328 Chrisp G01J 3/0256
	8,520,204 8,817,392	B2	8/2014	Desserouer Oskotsky	2012/0147483	A1*	6/2012	356/328 Oskotsky G02B 7/028
200	9,689,744 2/0126278			Chrisp G01J 3/2823 Olshausen G01J 3/02	2013/0148195	A1*	6/2013	359/753 Achal G01J 3/0208
200	3/0234751	A1*	12/2003	356/328 Hwang G02B 3/0056	2013/0229654	A1*		359/351 Tatsuta G02B 27/0905
	4/0145819		7/2004	345/32 Wang et al.	2014/0071449			356/328 Robinson
200	4/0156048			Mitchell G01J 3/02 356/305	2014/0160474		6/2014	Keller G01N 21/3504 356/246
200	4/0239939	A1*	12/2004	Guerineau G01J 3/0259 356/454	2015/0241667	A1*	8/2015	Staver G02B 13/146 250/349
200	5/0052647	A1*	3/2005	Lerner G01J 3/18 356/328	2015/0369917	A1*	12/2015	Bridges H04N 1/00827
200	5/0179895	A1*	8/2005	Puppels G01J 3/18 356/328	2016/0041033	A1*	2/2016	356/4.01 Oskotsky G01J 3/2823
200	5/0259253	A1*	11/2005	Lerner G01J 3/18 356/328	2018/0067280		3/2018	356/328 Unger G02B 9/34
200	6/0038994	A1*	2/2006	Chrisp G01J 3/18 356/328	2018/0080826 2018/0136039			Silny
200	6/0082772	A1*	4/2006	Kehoe G01J 3/02 356/328		OTI	HER DII	BLICATIONS
200	7/0098324	A1*	5/2007	Kitamura G02B 5/1861 385/37	D. Hamilton Cho			election for Color Correction in the
200	7/0164221	A1*	7/2007	Russell G01J 3/02	Short-Wave Infi	ared,	Download	ded From: http://spiedigitallibrary.
200	7/0171415	A1*	7/2007	250/339.07 Chrisp G01J 3/02	- 1	,		of Use: http://spiedl.org/terms, 10 SPIE vol. 7060, 70600E.
200	8/0273244	A1*	11/2008	356/328 Oskotsky G02B 17/0812	M. Maszkiewicz	z, Opti	cs for the	e Canadian Hyperspectral Mission Conf. on Space Optics', ESTEC,
200	9/0237657	A1*	9/2009	359/558 Warren G01J 3/02 356/328				n. 27-30, 2006 (ESA SP-621, Jun.
200	9/0296201	A1*	12/2009	Caldwell G02B 13/146 359/354	* cited by exa	miner		

FIRST EMBODIMENT FIG. 1

SWIR: 43 MICRONS DEFOCUS RANGE FOR -20DEG. C TO + 40 DEG. C

```
RDY THI RMD GLA CCY THC GLC
> OBJ: INFINITY 1.401168 100 0
      2.71015   0.450000   CAF2_SCHOTT   10 100
 1:
  ASP:
  K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
  A :-.164000E-01 B :0.295828E-02 C :-.102841E-02 D :0.122243E-03
  AC: 77 BC: 78 CC: 79 DC: 80
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000
XDC: 100 YDC: 100 ZDC: 100
ADE: -0.247952 BDE: 0.000000 CDE: 0.000000
  ADC: 0 BDC: 100 CDC: 100
 2: -25.75095 -0.450000 REFL CAF2_SCHOTT -1 PIK
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 BEN
  XDC: 100 YDC: 100 ZDC: 100
ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
ADC: 100 BDC: 100 CDC: 100
 3: 2.71015 -1.468711
                                   PIK 22
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.164000E-01 B :0.295828E-02 C :-.102841E-02 D :0.122243E-03
  AC: 77 BC: 78 CC: 79 DC: 80
 4: 2.12104
               -0.150000 NKZFS8_SCHOTT
                                             20 100
      2.60885 -0.200000
                                     30 32
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.666628E-02 B :0.689624E-03 C :-.147752E-01 D :0.233786E-01
  AC: 23
             BC: 24
                        CC: 26 DC: 27
STO:
         4.88170 0.200000 REFL
                                          0 PIK
  GRT:
  GRO: 1.000000 GRS: 0.000880
  ROC: 100 RSC: 0
  GRX: 0.000000 GRY: 1.000000 GRZ: 0.000000
  RXC: 100 RYC: 100 RZC: 100
                    BLT: IDEAL
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 DAR
  XDC: 100 YDC: 100 ZDC: 100
ADE: 0.865734 BDE: 0.000000 CDE: 0.000000
  ADC:
         0 BDC: 100
                          CDC: 100
     ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.666628E-02 B :0.689624E-03 C :-.147752E-01 D :0.233786E-01
  AC: 23 BC: 24 CC: 26 DC: 27
       2.12104
                1.468711
                                    PIK -22
                            CAF2_SCHOTT PIK PIK PIK
 9:
      2.71015
                 0.450000
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.164000E-01 B :0.295828E-02 C :-.102841E-02 D :0.122243E-03
  AC: 77
             BC: 78 CC: 79 DC: 80
```

```
-25.75095 0.005000
 10:
                                     PIK
                            CAF2_SCHOTT
                                            0 100
 11:
       3.82977
                 0.400000
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :0.966888E-02 B :0.442417E-02 C :-.303709E-02 D :0.676723E-03
           BC: 0 CC: 0 DC: 0
       -4.70553
                 0.305174
 12:
 13:
       INFINITY
                 0.521115
                           AIR
                                     100 55
  XDE: 0.000000 YDE: -0.400000 ZDE: 0.000000 BEN
  XDC: 100 YDC: 100
                           ZDC: 100
  ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
  ADC: 100
             BDC: 100
                           CDC: 100
 14: 11.04175
                  0.100000
                            NSK11_SCHOTT
                                             14 100
  XDE: 0.000000 YDE: -0.345433 ZDE: 0.000000
  XDC: 100 YDC: 0 ZDC: 100
  ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
  ADC: 100
             BDC: 100
                          CDC: 100
 15:
      -25.65589
                  0.200000
                                     16 110
                  0.000000
IMG:
       INFINITY
                                      100 100
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 DAR
  XDC: 100
             YDC: 100
                          ZDC: 100
  ADE: -3.446832 BDE: -0.000796 CDE: 0.000000
  ADC: 76
              BDC: 93 CDC: 100
SPECIFICATION DATA
 FNO
        3.30000
 TEL
 DIM
         IN
       2350.00 1625.00 1000.00 900.00 650.00 400.00
 WL
 REF
         1
 WTW
           1
                 0
                     0
                           0
                               0
                                     0
 XOB
        0.00000
                 0.34000
                           0.68000
                                    -0.34000
                                             -0.68000
 YOB
        0.90000
                 0.90000
                           0.90000
                                    0.90000
                                             0.90000
 WTF
        1.00000
                 1.00000
                          1.00000
                                    1.00000
                                             1.00000
 VUX
        0.00000
                 0.00000
                           0.00000
                                    0.00000
                                             0.00000
 VLX
        0.00000
                 0.00000
                          0.00000
                                    0.00000
                                             0.00000
 VUY
        0.00000
                 0.00000
                          0.00000
                                    0.00000
                                             0.00000
 VLY
        0.00000
                 0.00000
                          0.00000
                                    0.00000
                                             0.00000
 POL
          Ν
```

FIRST EMBODIMENT PRESCRIPTION PAGE 2 OF 4 FIG. 4B

Jul. 9, 2019

APERTURE DATA/EDGE DEFINITIONS CA APE

APERTURE data not specified for surface Obj thru 16

REFRACTIVE INDICES

2350.00 1625.00 1000.00 900.00 650.00 400.00 1.421984 1.425685 1.428893 1.429622 1.432570 1.441834 1.674739 1.687806 1.699630 1.702511 1.714842 1.759626 1.535575 1.545780 1.553508 1.555097 1.561235 1.580173 GLASS CODE CAF2_SCHOTT NKZFS8_SCHOTT NSK11_SCHOTT

No solves defined in system

PICKUPS

PIK THI S6 Z1 THI S5 Z1 -1.000000 PIK RDY S10 Z1 RDY S2 Z1 PIK RDY S3 Z1 RDY S1 Z1 PIK RDY S9 Z1 RDY S1 Z1 PIK RDY S8 Z1 RDY S4 Z1 PIK RDY S7 Z1 RDY S5 Z1 PIK GLA S7 Z1 GLA S4 Z1 PIK THI S7 Z1 THI S4 Z1 -1.000000 PIK THI S2 Z1 THI S1 Z1 -1.000000 PIK THI S9 Z1 THI S1 Z1 PIK GLA S9 Z1 GLA S1 Z1

ZOOM DATA

	POS 1 PO	DS 2 F	POS 3	POS 4	POS	5 POS 6
WTW W1	1	0	0	0	0	0
WTW W2	Ö	1	0	Ö		0
WTW W3	0	ò	1	Ö		0
WTW W4	ő	Ö	ò	1		0
WTW W5	Ö	Ö	0	ò	-	0
WTW W6	0	0	0	0	ò	1
REF	1	2 3	-	-	6	•
GRO S6	1.00000		1.000		-	2.00000 2.00000
ROC S6	100	100	100	100		100
RMD S13	REFR	REF			REFL	REFL REFL
THI S13	0.52111	0.52111			2207 -0	
THC S13	55	55	55	56	56	56
ADE S13	0.00000					45.00000 45.00000
ADC S13	100	100	100	100	100	100
THI S14	0.10000	0.10000		00 -0.1		0.10000 -0.10000
THC S14	100	100	100	100	100	100
RDY S14	11.04175	11.3833	38 11.3	8338 -2	25.23347	-25.23347 -25.23347
CCY S14	14	14	14	15	15	15
THI S15	0.20000	0.20000	0.200	00 -0.2	0000 -0	0.20000 -0.20000
THC S15	110	110	110	111	111	
RDY S15	-25.65589	-27.449	47 -27.4	14947	21.29391	21.29391 21.29391
CCY S15	16	16	16	17	17	17
THI S16	0.00000	0.00000	0.000	0.0	0000 0	.00000 0.00000
THC S16	100	100	100	100	100	100
ADE S16	-3.44683	-3.4468	3 -3.44	683 2.	49728	2.49728 2.49728
ADC S16	76	76	76	77	77	77
BDE S16	-0.00080	-0.0008	0.00	080 -0.	.00492	-0.00492 -0.00492
BDC S16	93	93	93	94	94	94
RDY S16	INFINITY	INFINIT	TY INFI	NITY I	NFINITY	INFINITY INFINITY
CCY S16	100	100	100	100	100	100
GL1 S13	AIR	AIR	AIR	AIR	AIR	AIR
GC1 S13	100	100	100	100	100	100
GP1 S13	AIR	AIR	AIR	AIR	AIR	AIR

FIRST EMBODIMENT PRESCRIPTION PAGE 3 OF 4 FIG. 4C

This is a non-symmetric system. If elements with power are decentered or tilted, the first order properties are probably inadequate in describing the system characteristics.

	POS 1	POS 2	POS 3	POS 4	POS 5	POS 6	
INFINIT	TE CONJUC	SATES					
EFL	7.8461	7.9778	8.2461	-7.1147	-7.2902	-7.9017	
BFL	-7.6635	-7.8021	-8.0727	6.9798	7.1581	7.7777	
FFL	6.4450	6.5726	6.8410	5.6713	5.8451	6.4486	
FNO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
AT USE	ED CONJU	GATES					
RED	1.0000	1.0005	1.0005	1.0060	1.0061	1.0066	
FNO	3.3000	3.3000	3.3000	3.3000	3.3000	3.3000	
OBJ I	DIS 1.40 ²	12 1.401	2 1.401	2 1.401	2 1.4012	2 1.4012	
TT	3.3825	3.3825	3.3825	1.7393	1.7393	1.7393	
IMG I	DIS 0.200	0.200	0.2000	0.200	0 -0.200	0 -0.2000	
OAL	1.7813	1.7813	1.7813	0.5381	0.5381	0.5381	
PARA	XIAL IMAG	SE .					
HT	0.9000	0.9005	0.9004	0.9054	0.9055	0.9060	
THI	0.1825	0.1797	0.1774	-0.1774	-0.1762	-0.1762	
ANG	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
ENTF	RANCE PUF	PIL					
DIA							0.3086E+10
THI		11 0.1000E	:+11 0.100	0E+11 0.1	1000E+11	0.1000E+11	0.1000E+11
EXIT	PUPIL						
DIA	2.4054	2.4470	2.5293	2.1945	2.2488	2.4388	
THI	-7.6635	-7.8021	-8.0727	6.9798	7.1581	7.7777	
STO	DIA 1.02	78 1.011	4 0.996	7 0.997	7 0.984	3 0.9427	

FIRST EMBODIMENT PRESCRIPTION PAGE 4 OF 4 FIG. 4D

<u>500</u>

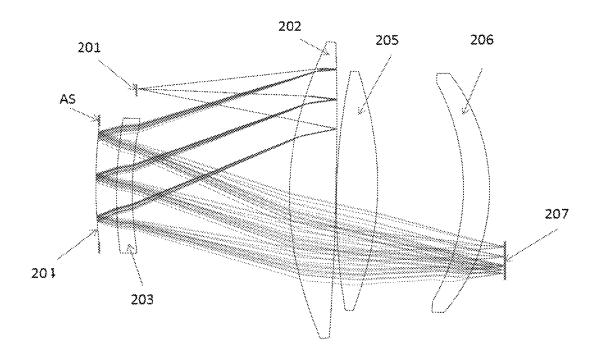
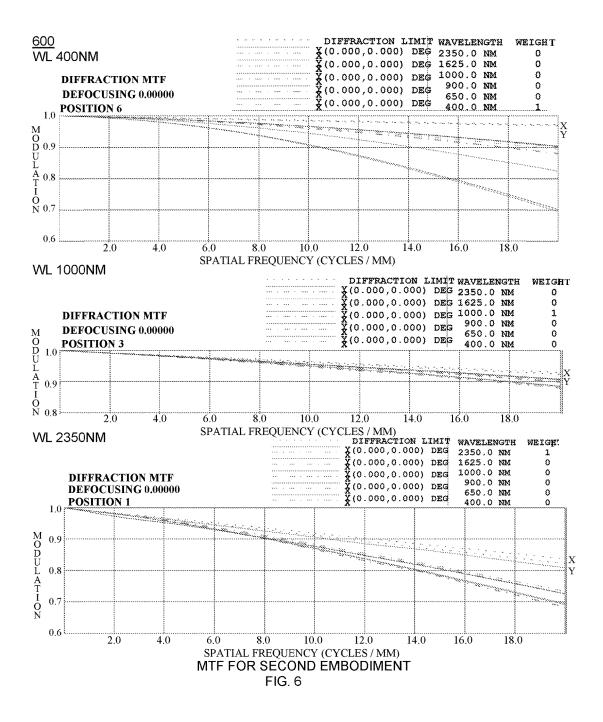



FIG. 5


```
RDY THI RMD GLA CCY THC GLC > OBJ: INFINITY 1.502546 CCY THC GLC
       ASP:
  K: 0.000000 KC: 100
   CUF: 0.000000 CCF: 100
  A :-.139793E-01 B :0.252997E-02 C :-.940048E-03 D :0.126025E-03
  AC: 77 BC: 78 CC: 79 DC: 80 XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000
  XDC: 100 YDC: 100 ZDC: 100
ADE: 1.101800 BDE: 0.000000 CDE: 0.000000
  ADC: 0 BDC: 100 CDC: 100
  2: -31.22769 -0.450000 REFL CAF2_SCHOTT -1 PIK
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 BEN
  XDC: 100 YDC: 100 ZDC: 100
ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
              BDC: 100 CDC: 100
  ADC: 100
       2.84850 -1.519515
                                  PIK 22
  3:
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.139793E-01 B :0.252997E-02 C :-.940048E-03 D :0.126025E-03
  AC: 77 BC: 78 CC: 79 DC: 80
       3.31227 -0.150000 NKZFS8_SCHOTT
4.29497 -0.200000 30 32
  4:
                                              20 100
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.651529E-02 B :0.126478E-02 C :-.119493E-01 D :0.132354E-01
  AC: 23 BC: 24 CC: 26 DC: 27
 STO:
         5.01583
                 0.200000 REFL
                                          0 PIK
   GRT:
   GRO: 1.000000 GRS: 0.000810
  ROC: 100 RSC: 0
GRX: 0.000000 GRY: 1.000000 GRZ: 0.000000
  RXC: 100 RYC: 100 RZC: 100
                    BLT: IDEAL
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 DAR
  XDC: 100 YDC: 100 ZDC: 100
ADE: 1.303786 BDE: 0.000000 CDE: 0.000000
             BDC: 100 CDC: 100
   ADC: 0
    4.29497 0.150000 NKZFS8_SCHOTT PIK PIK
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
A :-.651529E-02 B :0.126478E-02 C :-.119493E-01 D :0.132354E-01
  AC: 23 BC: 24 CC: 26 DC: 27
                                     PIK -22
  8:
       3.31227
                 1.519515
               0.450000
                          CAF2_SCHOTT PIK PIK PIK
       2.84850
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :-.139793E-01 B :0.252997E-02 C :-.940048E-03 D :0.126025E-03
  AC: 77 BC: 78 CC: 79 DC: 80
```

```
10:
       -31.22769
                  0.005000
                                      PIK
                            CAF2_SCHOTT
                                             0 100
 11:
       6.00514
                 0.400000
       -2.84553
                  0.825485
                                      0
 12:
  ASP:
  K: 0.000000 KC: 100
  CUF: 0.000000 CCF: 100
  A :0.113907E-01 B :0.117317E-03 C :0.233777E-02 D :-.146342E-03
         0
           BC: 0 CC:
                             0
                                  DC: 0
       -2.12368
                  0.250000
                            NSK11_SCHOTT
                                              0 100
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000
              YDC: 100
                            ZDC: 100
  XDC:
        100
  ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
  ADC: 100
               BDC: 100
                           CDC: 100
       -1.81180
                  0.200000
                                      0 110
 14.
 IMG:
        INFINITY
                  0.000000
                                      100 100
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 DAR
  XDC:
        100
              YDC:
                     100
                           ZDC: 100
  ADE: -3.840739 BDE: 0.002375 CDE: 0.000000
                     93
                           CDC: 100
  ADC:
         76
             BDC:
SPECIFICATION DATA
        3.30000
 FNO
 TEL
 DIM
          IN
        2350.00 1625.00 1000.00 900.00 650.00 400.00
 WL
 REF
           1
 WTW
            1
                 0
                      0
        0.00000
                  0.34000
                                    -0.34000
 XOB
                           0.68000
                                              -0.68000
 YOB
        0.90000
                  0.90000
                           0.90000
                                     0.90000
                                              0.90000
                  1.00000
 WTF
        1.00000
                           1.00000
                                     1.00000
                                               1.00000
 VUX
        0.00000
                  0.00000
                           0.00000
                                     0.00000
                                              0.00000
 VLX
        0.00000
                 0.00000
                           0.00000
                                     0.00000
                                              0.00000
 VUY
        0.00000
                  0.00000
                           0.00000
                                     0.00000
                                              0.00000
        0.00000
                 0.00000
                           0.00000
                                     0.00000
                                              0.00000
 VLY
 POL
          Ν
APERTURE DATA/EDGE DEFINITIONS
 CA APE
   APERTURE data not specified for surface Obj thru 15
REFRACTIVE INDICES
 GLASS CODE
                     2350.00 1625.00
                                      1000.00
                                                 900.00
                                                          650.00
 CAF2_SCHOTT
                      1.421984 1.425685 1.428893
                                                  1.429622 1.432570
                                                                     1.441834
 NKZFS8 SCHOTT
                       1.674739 1.687806
                                         1.699630
                                                  1.702511
                                                            1.714842
                                                                      1.759626
                      NSK11_SCHOTT
                                                            1.561235 1.580173
```

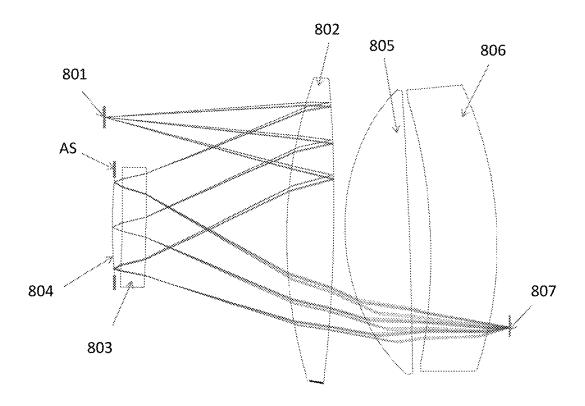
No solves defined in system

Jul. 9, 2019

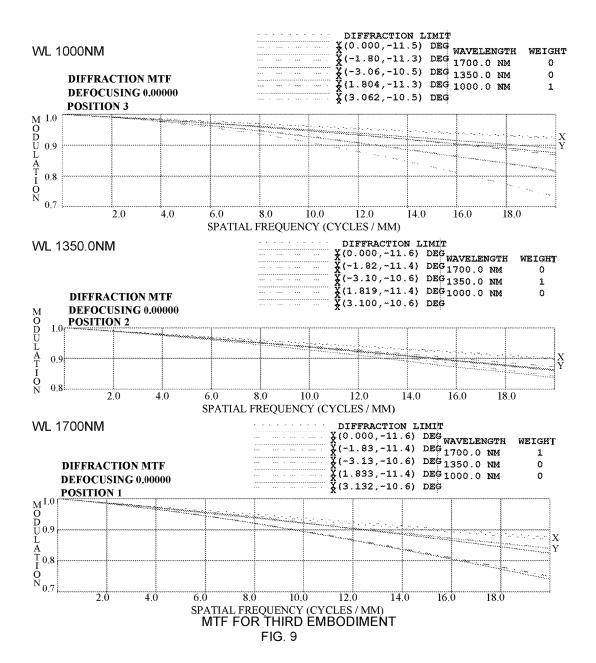
PICKUPS PIK THI S6 Z1 THI S5 Z1 -1.000000 PIK RDY S10 Z1 RDY S2 Z1 PIK RDY S3 Z1 RDY S1 Z1 PIK RDY S9 Z1 RDY S1 Z1 PIK RDY S8 Z1 RDY S4 Z1 PIK RDY S7 Z1 RDY S5 Z1 PIK GLA S7 Z1 GLA S4 Z1 PIK THI S7 Z1 THI S4 Z1 -1.000000

PIK THI S2 Z1 THI S1 Z1 -1.000000

PIK THI S9 Z1 THI S1 Z1 PIK GLA S9 Z1 GLA S1 Z1


PC	DS 1	POS 2	POS 3	POS	4 F	POS 5	POS 6
WTW W1	1	0	0	0	0	0	
WTW W2	0	1	0	0	0	0	
WTW W3	0	0	1	0	0	0	
WTW W3 WTW W4 205 -7	0	0	0	1	0	0	
WTW W5	0	0	0	0	1	0	
WTW W6	0	0	0	0	0	1	
REF	1	2	3	4	5	6	

This is a non-symmetric system. If elements with power are decentered or tilted, the first order properties are probably inadequate in describing the system characteristics.


> SECOND EMBODIMENT PRESCRIPTION PAGE 3 OF 4 FIG. 7C

	POS 1	POS 2	POS 3	POS 4	POS 5	POS 6	
INFINIT	E CONJUG	ATES					
EFL	8.0374	8.3490	8.6303	8.6954	8.9661	9.9356	
BFL	-7.9099	-8.2264	-8.5120	- 8.5779	-8.8519	-9.8299	
FFL	6.5349	6.8442	7.1234	7.1880	7.4565	8.4173	
FNO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
AT USE	D CONJUG	SATES					
RED	1.0000	1.0003	1.0005	1.0006	1.0008	1.0016	
FNO	3.3000	3.3000	3.3000	3.3000	3.3000	3.3000	
OBJ D	IS 1.502	5 1.502	5 1.5025	5 1.5025	5 1.5025	1.5025	
TT	3.6330	3.6330	3.6330	3.6330	3.6330	3.6330	
	IS 0.200						
OAL	1.9305	1.9305	1.9305	1.9305	1.9305	1.9305	
PARA	XIAL IMAG						
HT		0.9002		0.9005	0.9007		
	0.1275						
	0.0000		0.0000	0.0000	0.0000	0.0000	
	ANCE PUP						
							0.3071E+10
THI		1 0.1000E	.+11 0.100	0E+11 0.1	000E+11 (0.1000E+11	0.1000E+11
	PUPIL						
DIA		2.5602					
THI		-8.2264			-8.8519		
STO E	DIA 1.042	24 1.027	0 1.0136	5 1.0106	6 0.9983	3 0.9600	

<u>800</u>

THIRD EMBODIMENT FIG. 8


```
RDY THI RMD GLA CCY THC GLC > OBJ: INFINITY 1.090096 100 0 1: 2.71608 0.300000 CAF2_SCHOTT 10 100
    ASP.
    K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
    A :-.372926E-01 B :0.279464E-01 C :-.186547E-01 D :0.547909E-02 AC : 77 BC : 78 CC : 79 DC : 80 XDE: 0.000000 YDE: 0.184540 ZDE: 0.000000 XDC: 100 YDC: 0 ZDC: 100 ADE: -6.191564 BDE: 0.000000 CDE: 0.000000 ADE: -6.191564 BDE: 0.000000 CDE: 0.000000
                                          CDC: 100
     ADC: 0 BDC: 100
       -9.96694 -0.300000 REFL CAF2_SCHOTT -1 PIK
    Z: -9.96694 -0.300000 REFL CAF2_SCHOTT -1
XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 BEN
XDC: 100 YDC: 100 ZDC: 100
ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
ADC: 100 BDC: 100 CDC: 100
    3: 2.71608 -0.897105
ASP:
                                                          PIK 22
    K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
    A :-.372926E-01 B :0.279464E-01 C :-.186547E-01 D :0.547909E-02 AC : 77 BC : 78 CC : 79 DC : 80
   4: -15.15470 -0.150000 NKZFS8_SCHOTT 20 100 5: -10.41453 -0.061868 30 32
    ASP:
    K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
     A :-.603062E-02 B :-.474751E+00 C :0.706474E+01 D :-.354609E+02
     AC: 23 BC: 24 CC: 26 DC: 27
 STO: 3.56659 0.061868 REFL GRT:
                                                             0 PIK
    GRT:
GRO: 1.000000 GRS: 0.005621
ROC: 100 RSC: 0
GRX: 0.000000 GRY: 1.000000 GRZ: 0.000000
RXC: 100 RYC: 100 RZC: 100
BLT: IDEAL
    XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000 DAR
XDC: 100 YDC: 100 ZDC: 100
ADE: 1.016245 BDE: 0.000000 CDE: 0.000000
     ADC: 0 BDC: 100 CDC: 100
         ASP:
    K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
A:-.603062E-02 B:-.474751E+00 C:0.706474E+01 D:-.354609E+02
    AC: 23 BC: 24 CC: 26 DC: 27
       -15.15470 0.897105 PIK -22
2.71608 0.300000 CAF2_SCHOTT PIK PIK PIK
    ASP:
    ASF.
K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
A:-372926E-01 B:0.279464E-01 C:-186547E-01 D:0.547909E-02
AC: 77 BC: 78 CC: 79 DC: 80
         -9.96694 0.071766 PIK (
1.36912 0.409979 SFPL53_OHARA
                                                            PIK 0
  10.
  11:
    ASP:
    K: 0.000000 KC: 100
CUF: 0.000000 CCF: 100
     A :0.125953E-01 B :0.255522E-01 C :0.115246E-02 D :0.190225E-01
    AC: 0 BC: 0 CC: 0 DC: 0 XDE: 0.000000 YDE: -0.020352 ZDE: 0.000000
    XDC: 100 YDC: 0 ZDC: 100
ADE: 3.135848 BDE: 0.000000 CDE: 0.000000
     ADC: 0 BDC: 100 CDC: 100
```

```
-33.04502
                   0.135466
 12:
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000
                            ZDC: 100
               YDC: 100
  XDC:
         100
  ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
                BDC: 100
                              CDC: 100
  ADC: 100
       -3.35739
                   0.420000
                              STIH53 OHARA
                                                    0
 13:
  XDE: 0.000000 YDE: 0.008628 ZDE: 0.000000
  XDC: 100 YDC: 0 ZDC: 100
ADE: 0.731002 BDE: 0.000000 CDE:
                                        0.000000
             BDC: 100
  ADC:
          0
                            CDC: 100
       -2.43679
                   0.053816
 14:
                                         0 0
  XDE: 0.000000 YDE: 0.000000 ZDE: 0.000000
  XDC:
        100 YDC: 100 ZDC: 100
  ADE: 0.000000 BDE: 0.000000 CDE: 0.000000
               BDC: 100
  ADC:
         100
                             CDC: 100
 IMG:
        INFINITY
                    0.000000
                                         100 100
  XDE: -0.000000 YDE: -0.638837 ZDE: 0.000000 DAR
  XDC: 0 YDC: 0 ZDC: 100
ADE: -3.076922 BDE: 0.000000 CDE:
                                        0.000000
             BDC: 100 CDC: 100
  ADC:
SPECIFICATION DATA
 FNO
         3.00000
 DIM
           IN
 WL
        1700.00 1350.00 1000.00
 REF
           1
 WTW
             1
         0.00000
                   0.24000
                                                  -0.48000
                             0.48000
                                       -0.24000
 XOB
 YOB
         1.00000
                   1.00000
                             1.00000
                                        1.00000
                                                  1.00000
 WTF
         1.00000
                   1.00000
                             1.00000
                                        1.00000
                                                  1.00000
 VUX
        -0.03234
                   -0.01943
                             -0.01104
                                       -0.02538
                                                  0.00000
 VLX
        -0.03234
                  -0.02538
                             0.00000
                                       -0.01943
                                                 -0.01104
 VUY
         0.00000
                  -0.00072
                             0.00000
                                       -0.00072
                                                  0.00000
 VLY
        -0.03031
                  -0.02595
                             -0.01320
                                       -0.02595
                                                  -0.01320
 POL
APERTURE DATA/EDGE DEFINITIONS
 CA APE
 CIR S0
                 1.109234
                 0.909943
 CIR S1
 CIR S2
                 0.904187
 CIR S3
                 0.874098
 CIR S4
                 0.342176
 CIR S5
                 0.303994
 CIR S6
                 0.283368
 CIR S7
                 0.281381
 CIR S8
                 0.303909
 CIR S9
                 0.693199
 CIR S10
                 0.730739
 CIR S11
                 0.844289
 CIR S12
                 0.835544
 CIR S13
                 0.833988
 CIR S14
                 0.848410
 CIR S15
                 0.465706
```

THIRD EMBODIMENT PRESCRIPTION PAGE 2 OF 4 FIG. 10B

REFRACTIVE INDICES

 GLASS CODE
 1700.00
 1350.00
 1000.00

 CAF2_SCHOTT
 1.425332
 1.426979
 1.428893

 NKZFS8_SCHOTT
 1.686559
 1.692437
 1.699630

 SFPL53_OHARA
 1.429311
 1.431354
 1.433565

 STIH53_OHARA
 1.796934
 1.803780
 1.813453

No solves defined in system

PICKUPS

PIK THI S6 Z1 THI S5 Z1 -1.000000
PIK RDY S10 Z1 RDY S2 Z1
PIK RDY S3 Z1 RDY S1 Z1
PIK RDY S9 Z1 RDY S1 Z1
PIK RDY S9 Z1 RDY S1 Z1
PIK RDY S8 Z1 RDY S4 Z1
PIK RDY S7 Z1 RDY S5 Z1
PIK RDY S7 Z1 RDY S5 Z1
PIK GLA S7 Z1 GLA S4 Z1
PIK THI S7 Z1 THI S4 Z1 -1.000000
PIK THI S2 Z1 THI S1 Z1 -1.000000
PIK THI S9 Z1 THI S1 Z1
PIK GLA S9 Z1 GLA S1 Z1

ZOOM DATA

	POS 1	POS	S 2	POS 3	
WTW W1		1	0	0	
WTW W2		Ö	1	Ö	
WTW W3		Ô	Ò	1	
REF	1	2		3	
VUY F1	-0.1490	E-08 -	0.1490I	E-08 -0	.1490E-08
VLY F1	-0.030	31 -	0.03093	3 -0.0	3182
VUY F2	-0.000	072 -	0.0021	6 -0.0	00225
VLY F2	-0.025	95 -	0.02656	3 - 0.0	2747
VUY F3	-0.2980	E-08	-0.002	61 -0.5	960E-08
VLY F3	-0.013	20 -	0.0138	5 -0.11	92E-07
VUY F4	-0.000	072 -	0.0021	6 -0.0	00225
VLY F4	-0.025	95 -	0.02656	3 - 0.0	2747
VUY F5	-0.2980	E-08	-0.002	61 -0.5	960E-08
VLY F5	-0.013	20 -	0.0138	5 -0.11	92E-07
VUX F1	-0.032	234 -	0.0319	7 -0.0	03152
VLX F1	-0.032	34 -	0.0319	7 -0.0	3152
VUX F2	-0.019	943 -	0.0191	6 -0.0	01884
VLX F2	-0.025	38 -	0.02746	3 -0.0	2978
VUX F3	-0.011	104 -	0.0111	2 -0.0	01123
VLX F3	-0.1490	E-08	-0.001	84 -0	.00395
VUX F4	-0.025	538 -	0.0274	6 -0.0	02978
VLX F4	-0.019	43 -	0.01916	3 - 0.0	1884
VUX F5	-0.1490			• .	0.00395
VLX F5	-0.011		0.01112		1123
CIR S6	0.283	37 C).28269	0.2	8194

This is a non-symmetric system. If elements with power are decentered or tilted, the first order properties are probably inadequate in describing the system characteristics.

	POS 1	POS 2	POS 3
INFINITE	E CONJUG	ATES	
EFL	3.5538	3.5879	3.6306
BFL	-3.4155	-3.4492	-3.4915
FFL	2.4637	2.4994	2.5437
FNO	1.7918	1.8030	1.8173
AT USE	D CONJUG	ATES	
RED	1.0000	0.9996	0.9991
FNO	3.0000	3.0000	3.0000
OBJ D	IS 1.0901	1 1.0901	1 1.0901
TT	2.4811	2.4811	2.4811
IMG D	IS 0.0538	3 0.0538	3 0.0538
OAL	1.3372	1.3372	1.3372
PARA	XIAL IMAGE	=	
HT	1.0000	0.9996	0.9991
THI	0.1383	0.1371	0.1360
ANG	10.1432	10.0973	3 10.0440
ENTR/	ANCE PUPI	L	
DIA	1.9834	1.9900	1.9978
THI	4.7769	4.7990	4.8248
EXIT F	PUPIL		
DIA	3.0471	3.1048	3.1798
THI	-8.8753	-9.0472	-9.2701
STO D	IA 0.566	7 0.565	4 0.5639

COMPACT AND ATHERMAL VNIR/SWIR SPECTROMETER

FIELD OF THE DISCLOSURE

Embodiments relate to a spectrometer, and more particularly, to a compact athermal imaging spectrometer for VNIR/SWIR spectral range, and, even more particularly, to a compact and athermal Dyson type VNIR/SWIR Spectrometer working in the spectrum of VNIR/SWIR radiation.

BACKGROUND

Imaging spectroscopy in the visible and near infrared (VNIR) 400 nm-1000 nm and short wave infrared (SWIR) 15 1000 nm-2350 nm spectral ranges allows identifying potential targets as well as studying water and soil properties over large areas. NASA satellites carrying airborne hyperspectral imaging systems are used for of identifying a wide variety of surface materials by providing simultaneously many 20 narrow, contiguous spectral bands and higher resolution reflectance spectra for every pixel in a spatial image.

Dyson type spectrometers are described in a paper "OPTICS FOR THE CANADIAN HYPERSPECTRAL MISSION (HERO)". Journal: Sixth International Conference on Space Optics, Proceedings of ESA/CNES ICSO 2006, held 27-30 Jun. 2006 at ESTEC, Noordwijk, The Netherlands. Edited by A. Wilson. ESA SP-621. European Space Agency, 2006. Published on CDROM, p. 8.1. This paper describes a pushbroom Dyson type spectrometer. The spectrometer consists of two spectral channels VNIR and SWIR. The covered band width (spectrum) is 450 nm-2500 nm. The spectrometer incorporates two different gratings spaced from each other by approximately 0.5 meter and two slits. Large volume is needed for spectrometer packaging. 35 Dyson prism blocks make the system heavy. The FPA (focal plane array) is made for 30 μm pixel size. The spectrometer E# is 2.2

Spectrometer thermal properties are extremely important for the remote sensing platform configuration and packaging. For temperature sensitive spectrometers, special motor adjusting focal plane array position according to the temperature change is required. That leads to the increase of the packaging envelope and weight of carrying on the airborne platform.

A VNIR/SWIR spectrometer is disclosed in Patent Application US 2014/0071449, Mar. 13, 2014 High Efficiency Multi-channel Spectrometer. The VNIR/SWIR Offner type spectrometer optical system requires substantial envelope and includes multiple mirror, beam splitter, and pair of 50 diffraction gratings.

U.S. Pat. No. 8,520,204, Aug. 27, 2013, discloses a Dyson Type Imaging Spectrometer having Improved Image Quality and Low Distortion. The entry or exit port is located inside the prism (or hemispherical lens)—there is no access for 55 maintenance. No spectral correction over the wide spectrum is performed.

Another spectrometer is disclosed in U.S. Pat. No. 7,609, 381, Oct. 27, 2009 Compact High-Throughput Spectrometer apparatus for Hyperspectral Remote Sensing. Only LWIR or 60 VNIR spectral bands may be used, the spectrometer does not feature a combined VNIR/SWIR channel. A single refractive material is used for the VNIR channel, and chromatic aberration is not corrected.

Yet another spectrometer is disclosed in U.S. Pat. No. 65 7,768,642, Wide Field Compact Imaging Catadioptric Spectrometer, Aug. 3, 2010. This patent describes a wide field

2

LWIR spectrometer with a pupil lens for the wide field aberration correction in the LWIR spectral band.

Another spectrometer is disclosed in U.S. Pat. No. 6,980, 295 issuing to Lerner on Dec. 27, 2005 and entitled Compact Catadioptric Imaging Spectrometer Utilizing Reflective Grating. Therein disclosed is an imaging spectrometer having an entrance slit, an aspheric lens, grating, and detector. The spectrometer is designed to accommodate LWIR band width 8-13.5 µm.

Yet another spectrometer is disclosed in U.S. Pat. No. 7,006,217 issuing to Lerner on Feb. 28, 2006 and entitled Compact Catadioptric Imaging Spectrometer Utilizing Immersed Gratings. Therein disclosed is a spectrometer having an entrance slit, a catadioptric lens, a grating that diffracts the light back to the catadioptric lens and a detector. The spectrometer is designed for LWIR band width.

Yet another spectrometer is disclosed in U.S. Pat. No. 8,339,600, Dec. 25, 2012; Dual Waveband Compact Catadioptric Imaging Spectrometer. The spectrometer incorporates ZnSe grating, a curved sapphire prism, and BaF2 catadioptric lens or dioptric lens with a mirror, the F# is 4.

Even though there has been substantial development in the field of spectrometers for hyperspectral imaging, there is a need for a compact athermal VNIR/SWIR hyperspectral imaging spectrometer. Specifically, there is a need to provide a compact and efficient VNIR/SWIR imaging spectrometer with low F# and wide field of view.

SUMMARY

An embodiment provides a compact and athermal VNIR/ SWIR spectrometer comprising a slit; a diffraction grating; an optical system forming spectral components of radiation received by the slit; a plurality of focal plane arrays (FPAs). In embodiments, the spectrometer comprises the slit; a Mangin lens comprising partially reflective and partially refractive surface; a pupil lens; the diffraction grating; an aperture stop; a corrector lens; a beam splitter; a first field lens; a second field lens; a SWIR FPA; and a VNIR FPA; wherein the slit, Mangin lens, pupil lens, diffraction grating, corrector lens, beam splitter, field lenses and FPAs are positioned wherein the slit transmits radiation to a reflective part of the Mangin lens surface and the reflective part directs radiation onto the pupil lens, the pupil lens directs radiation onto the diffraction grating, the diffraction grating diffracts radiation in the SWIR spectrum in a first diffraction order and diffracts radiation in the VNIR spectrum in a second diffraction order and directs radiation onto the pupil lens, the pupil lens directs the SWIR and the VNIR radiation onto the refractive part of the Mangin lens, the Mangin lens directs radiation onto the corrector lens, the corrector lens directs radiation onto the beam splitter, the beam splitter having a coating and transmits the SWIR radiation onto the first field lens and the beam splitter reflects the VNIR radiation onto the second field lens, the first field lens forming an image of the slit at the SWIR FPA and the second field lens forming an image of the slit at the VNIR FPA. In other embodiments, the grating comprises an immersion grating. In subsequent embodiments the grating comprises a reflective grating. For additional embodiments the diffraction grating diffracts SWIR radiation in a first order and VNIR radiation in a second order. In another embodiment, the density of the diffraction grating is 45 grooves/mm. For a following embodiment the aperture stop is located at the grating. In subsequent embodiments the beam splitter transmits SWIR radiation and reflects VNIR radiation. In additional embodiments thermal defocus does not exceed depth of focus in a

temperature range from -10° C. to 40° C. for both SWIR and VNIR spectrums. In included embodiments the pupil lens is a double path lens. In yet further embodiments the length of the slit is 1.36 inches. In related embodiments the Mangin lens has a positive optical power. For further embodiments the pupil lens has a negative optical power. In ensuing embodiments the diffraction grating has a positive optical power.

Another embodiment provides a compact VNIR/SWIR Spectrometer comprising a slit; a Mangin lens comprising partially reflective and partially refractive surface; a pupil lens; a diffraction grating; an aperture stop; a first corrector lens; a second corrector lens; a single SWIR/VNIR FPA; the slit, Mangin lens, pupil lens, diffraction grating, corrector 15 lenses and FPA are positioned wherein the slit transmits radiation to the reflective part of the Mangin lens surface and the reflective part directs radiation onto the pupil lens, the pupil lens directs radiation onto the diffraction grating, the diffraction grating diffracts radiation in both the SWIR and the VNIR spectrums in a first diffraction order and directs radiation onto the pupil lens, the pupil lens directs radiation onto the refractive part of the Mangin lens, the Mangin lens directs radiation onto the first corrector lens, the first corrector lens directs radiation onto the second corrector lens, 25 the second corrector lens forms image of the slit at the SWIR/VNIR FPA. For yet further embodiments, the grating comprises an immersion grating. For more embodiments, the grating comprises a reflective grating. In continued embodiments, the diffraction grating diffracts both SWIR and VNIR radiation in a first order. For additional embodiments, the aperture stop is located at the grating.

A yet further embodiment provides a compact SWIR spectrometer comprising a slit; a Mangin lens comprising 35 partially reflective and partially refractive surface; a pupil lens; a diffraction grating; an aperture stop; a first corrector lens; a second corrector lens; a single SWIR FPA; the slit, Mangin lens, pupil lens, diffraction grating, corrector lenses and FPA are positioned wherein the slit transmits radiation 40 to the reflective part of the Mangin lens surface and the reflective part directs radiation onto the pupil lens, the pupil lens directs radiation onto the diffraction grating, the diffraction grating diffracts radiation in the SWIR spectrum in a first diffraction order and directs radiation onto the pupil 45 lens, the pupil lens directs radiation onto the refractive part of the Mangin lens, the Mangin lens directs radiation onto the first corrector lens, the first corrector lens directs radiation onto the second corrector lens, the second corrector lens forming an image of the slit at the SWIR FPA.

The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been selected principally for readability and instructional purposes and not to limit the scope of the inventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates ray tracing for a first embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer.

FIG. 2 shows MTF curves for the first embodiment of a 65 Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment.

4

FIG. 3 illustrates thermal analysis data for the first embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment.

FIGS. 4A-D represent the prescription of the first embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment

 $FIG.\ 5\ illustrates\ ray\ tracing\ for\ a\ second\ embodiment\ of\ a\ Compact\ and\ Athermal\ VNIR/SWIR\ Dyson\ Spectrometer.$

FIG. **6** shows MTF curves for the second embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment.

FIGS. 7A-D represent the prescription of the second embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment.

FIG. 8 illustrates ray tracing for a third embodiment of a 20 Compact and Athermal VNIR/SWIR Dyson Spectrometer.

FIG. 9 shows MTF curves for the third embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment.

FIGS. 10A-D represent the prescription of the third embodiment of a Compact and Athermal VNIR/SWIR Dyson Spectrometer configured in accordance with an embodiment.

These and other features of the present embodiments will be understood better by reading the following detailed description, taken together with the figures herein described. The accompanying drawings are not intended to be drawn to scale. For purposes of clarity, not every component may be labeled in every drawing.

DETAILED DESCRIPTION

The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been selected principally for readability and instructional purposes, and not to limit in any way the scope of the inventive subject matter. The invention is susceptible of many embodiments. What follows is illustrative, but not exhaustive, of the scope of the invention.

A compact and athermal Dyson type VNIR/SWIR spectrometer may be used for military and commercial applications. It is very compact and low-weight, and provides excellent spectral resolution in both SWIR and VNIR spectrums. Embodiments can be used for reconnaissance and surveillance purposes. The spectrometer fits existing airborne platforms. Spectrometer embodiments allow implementation of spectral-spatial models for a more accurate segmentation and classification of the images of targets/objects of interest.

In a first embodiment of the invention, a compact and athermal VNIR/SWIR Dyson spectrometer includes a spherical diffraction grating, a pupil lens, a Mangin lens, a corrector lens, a beam splitter, two field lenses and two focal plane arrays (FPA) for VNIR and SWIR spectral channels. Accordingly it is an object of this embodiment to incorporate both VNIR and SWIR hyperspectral components. It is an advantage of this embodiment that it is very compact. It is another advantage of this embodiment that the optical system is corrected for chromatism. It is another advantage of this embodiments that field of view is large. It is another

advantage of this embodiment that F# is low. It is another advantage of this embodiment that spectrometer is athermal.

In a second embodiment, a spectrometer includes a diffraction grating, a pupil lens, a Mangin lens, two corrector lenses and FPA. Both SWIR and VNIR hyperspectral components are incorporated. It is an advantage of a second embodiment that F# is low. It is a feature of this embodiment that one FPA is used for both VNIR and SWIR spectral components. It is a feature of second embodiment that both VNIR and SWIR spectral components are imaged onto one FPA

In a third embodiment only the SWIR spectral component is used. The spectrometer includes a diffraction grating, a pupil lens, a Mangin lens, two corrector lenses and FPA. It is an advantage of third embodiment that spectrometer is very compact. It is an advantage of this embodiment that F# is low.

It is a feature of embodiments that a field lens is placed adjacent the FPA for image curvature correction. It is another feature of embodiments that the balancing of powers of the lens elements and glass dispersions makes possible the chromatic correction in both SWIR and VNIR spectral regions.

These and other objects, advantages, and features will become readily apparent in view of the following more ²⁵ detailed description.

FIG. 1 illustrates the configuration and ray trace of a first embodiment of the present invention. Dyson type spectrometer 100 includes in direction of ray trace from the slit to the FPA: slit 101, Mangin lens 102, pupil lens 103, diffraction grating 104, corrector lens 105, beam splitter 106, field lens 107, and FPA 108 for SWIR spectral channel and field lens 109 and FPA 110 for the VNIR spectral channel.

Specifications for the performance are as follows:

Total WL range 2.35-0.4 μm WL SWIR: 2.35 μm -1 μm

WL VNIR: 0.9 μm-0.5 μm (0.4 μm considered)

Detector 27 µm pixel

FOV +/-1°

Temperature range -10° C. to 40° C.

Number of spatial and spectral channels:

SWIR: 1280 spatial×144 spectral, 1.36" spatial×0.153" spectral

VNIR: 1280 spatial×96 spectral, 1.36" spatial×0.102" spectral

Spectral resolution: SWIR 9.4 nm/pixel VNIR 5.2 nm/pixel MTF requirements

SWIR	9.25 cy/mm	0.85	0.85	0.85	
SWIR	18.5 cy/mm	0.70	0.70	0.70	
VNIR	9.25 cy/mm	0.80	0.80	0.80	
VNIR	18.5 cy/mm	0.60	0.60	0.60	

Smile, k-stone<0.2 pixel TIR

VNIR/SWIR radiation coming from the object/target is collected by the fore optics onto the spectrometer slit 101. Slit 101 long side is out of plane of the drawing and is perpendicular to the scan plane. The length of the slit is 1.36 inches. Radiation transmitted by the slit 101 is directed onto 60 the Mangin lens 102 which has a positive optical power. Radiation is refracted by the first surface of the Mangin lens 102, then is reflected from the reflective part of the second surface of the Mangin lens and then the second time is refracted by the first surface of the Mangin lens and then is 65 directed through the pupil lens 103, which has a negative optical power, onto the diffraction grating 104. Aperture stop

6

AS is located at the grating 104. Reflective grating 104 has a positive optical power and diffracts the radiation in VNIR/ SWIR spectral range into plurality of very narrow spectral bands. Grating 104 is made in a way that VNIR radiation is diffracted in the second diffraction order and SWIR radiation is diffracted in the first diffraction order. Spectral resolution is 5.2 nm in VNIR spectrum and 9.5 nm in SWIR spectrum. Diffracted radiation converged by the diffraction grating 104 goes along a second path through the pupil lens and then goes third time through the first refractive surface of the Mangin lens and refractive part of the Mangin lens' second surface. Still converged radiation is directed by the corrector lens 105, which has a positive optical power, onto beam splitter 106 which has a special coating providing reflection of VNIR spectral radiation and transmission of SWIR spectral radiation. Transmitted through the beam splitter 106, SWIR radiation is collected by the field lens 107 onto the SWIR FPA 108. Field lenses 107 and 109 have positive optical powers. Reflected from the beam splitter, VNIR radiation is focused by the field lens 109 onto VNIR FPA

Monochromatic and chromatic aberrations depend on the heights and angles of rays at the optical element surface and the refraction index of the material. These aberrations also depend on the shape of the optical element, and on its location with respect to the aperture stop.

For the wide field across the numerical aperture aberrational correction, a special balance of the optical powers of the components and a certain relative orientation the components with respect to each other is required. The Mangin lens 102 is shaped as a double convex lens, the pupil lens 103 is shaped as a negative meniscus lens whose convex surface faces toward the diffraction grating 104, the diffraction grating 104 is shaped as a concave reflective surface 35 facing the incoming beam, the corrector lens 105 is shaped as a double convex lens and the field lenses 107 and 109 are shaped as double convex lenses. The Mangin lens 102 aberrational contribution to wide beam low order spherical aberration is compensated by the corrector lens 105, the cross field aberration are corrected by the pupil lens 103; that allows the increase of the slit 101 length and leads to the more efficient system. The field lenses 107 and 109 correct for the field curvature along the slit.

For the residual high order spherical aberration and coma correction, first surface of the Mangin lens, second surface of the pupil lens, diffraction grating surface and second surface of the corrector lens are made aspherical, according to the ray tracing from the slit to the FPA.

In order for chromatic correction in VNIR-SWIR spec-50 trum, a special combination of all components materials is required. The contribution of the optical element to the total axial color is proportional to the square of axial marginal ray height at the lens, its optical power, and the reciprocal of the Abbe number of the lens material. The Abbe number is a 55 measure of the material's light dispersion in relation to the refractive index. The Abbe number V_d is given by:

 $V_d = (n_d - 1)/(n_F - n_{C'})$

where \mathbf{n}_d is the index of refraction of the glass at the wavelength of the helium line d (587.6 nm), $\mathbf{n}_{F'}$ is the index of refraction at the blue cadmium line F' (479.99 nm), and $\mathbf{n}_{C'}$ is the index of refraction at the red cadmium line C' (643.85 nm). Accordingly, the smaller the value of \mathbf{V}_d , the greater the chromatic dispersion of the glass.

In order for chromatic correction in VNIR-SWIR spectrum, a special combination of all components' material properties is required. Mangin lens 102 is made out of CaF2,

pupil lens 103 is made of NKZFS8 Schott glass, Corrector lens 105 is made of CaF2 and field lenses 107 and 109 are made of NSK11 Schott glass.

The mutual combination of optical elements' materials refractive indices and Abbe numbers provides monochro- 5 matic and achromatic correction of the spectrometer 100.

When ambient temperature changes, the shapes and positions of optical elements will change, and the focal length and position of an image formed by the lens will change as well. This is caused by glass expansion and changes in the glass refractive index with temperature. This dependence on temperature can have a significant impact on lens performance. So as to compensate for these changes, either the focal plane array has to be adjusted along the optical axis, or some elements inside the lens have to be moved. However, 15 this approach is highly undesirable, because additional electronics and software are needed to perform and monitor the necessary adjustments.

On the other hand, a lens does not need thermal adjustrequired temperature range stays inside the depth of focus of the lens. The diffraction depth of focus (DOF) is defined by:

$$DOF = \lambda / NA^{2}$$

where λ is the wavelength and NA is numerical aperture $_{25}$ at the image space

For λ=1000 nm and F#3.3 (NA=0.1515): DOF≈0.0435

Therefore, in this example, if the lens design meets a requirement that all changes of the focus position over a 30 specified range of temperature changes are inside 0.0435 mm, no refocusing is required.

Temperature change also causes the expansion of the optical elements. The Opto-thermal expansion coefficient β of an optical element is a property of the glass material, and 35 the corrector lens 105 it does not depend on the focal length or shape factor of the individual optics. For a single optical element:

$$\beta{=}\alpha(dn/dT)/(n{-}1)$$

Where:

α=the thermal expansion coefficient of the glass

n=the refractive index of the glass at the current wavelength

T=ambient temperature

Contribution of thermal expansion of the optical elements 45 glass compare to the refractive index change with temperature is rather small and usually does not have a noticeable effect DOF change.

The mutual combination of changes of refractive index with temperature of the optical elements provides athermalization of the spectrometer 100.

In the embodiment of FIG. 1, the optical elements satisfy the following relations:

$$1 < F'/F'_{ML} < 1.45$$

$$1.3 < F'/F'_{C} < 1.75$$

$$-0.55 < F'/F'_{PL} < -0.35$$

$$2.5 < F'/F'_{DG} < 3.8$$

$$0.35 < F'/F'_{FL} < 0.75$$

$$2.5 < F'/OAL < 3.5$$

$$7.5 < F'/DEC < 8.5$$

$$2.5 < V_{ML}/V_{PL} < 3$$

 $0.8\!<\!V_{M\!L}/V_{C}\!\!<\!\!1.2$

 $1.3 < V_{ML}/V_{FL} < 1.75$

 $-4.8\!<\!dn/dT_{ML}/dn/dT_{PL}\!\!<\!\!-3.4$

 $0.8 < dn/dT_{ML}/dn/dT_{C} < 1.2$

 $-4.8 < dn/dT_{ML}/dn/dT_{FL} < 3.3$

Wherein:

F' is the focal length of the spectrometer 100 F'_{ML} is the focal length of the Mangin lens 102 F'_C is the focal length of the corrector lens 105 F'_{PL} is the focal length of the pupil lens 103

 F'_{DG} is the focal length of the diffraction grating 104 F'_{FL} is the focal length of the field lenses 107 and 109

OAL is the overall length of the spectrometer 100 along the optical axis from the slit 101 to the FPA 108

DEC is the decentration of the slit 101 with respect to the ment when the change of the focus position within the 20 optical axis in the direction perpendicular to the length of the

> V_{ML} is the Abbe number for the current wave length of the glass of the Mangin lens 102

> V_{PL} is the Abbe number for the current wave length of the glass of the pupil lens 103

> V_C is the Abbe number for the current wave length of the corrector lens 105

> \mathbf{V}_{FL} is the Abbe number for the current wave length of the glass of the field lenses 107 and 109

> dn/dT_{ML} is the refractive index change with temperature for the Mangin lens 102

> dn/dT_{PL} is the refractive index change with temperature for the pupil lens 103

> dn/d_{TC} is the refractive index change with temperature for

 dn/dT_{FL} is the refractive index change with temperature for the field lenses 107 and 109

The selection of the optical powers of the optical elements, the selection of the refractive indices and the Abbe 40 numbers as well as do/dT values of the used glasses, provides a compact wide field, low NA and athermal spectrometer. The defocusing caused by changes in temperature is less than the depth of focus of the lens.

FIG. 2 presents MTF data for the embodiment of FIG. 1. The field is flat and polychromatic MTF shows good contrast over the entire field for F#3.3.

FIG. 3 presents defocus of the first embodiment with respect to the temperature change. For both VNIR and SWIR channels, defocus is within the depth of focus for a specified range of -10° C. to +40° C.

Spectral and smile distortion are less than 0.2 pixel.

FIG. 4A-D present the prescription of the first embodiment for both VNIR and SWIR channels.

FIG. 5 is an illustration 500 of the second embodiment of 55 the VNIR/SWIR spectrometer. Spectrometer 200 consists of (by the ray trace from the slit to the FPA): slit 201, Mangin lens 202, pupil lens 203, diffraction grating 204, first corrector lens 205, second corrector lens 206 and FPA 207. Only one diffraction order is used for both VNIR and SWIR channels and hyperspectral images of the slit are analyzed only at one FPA plane.

VNIR/SWIR radiation coming from the object/target is collected by the fore optics onto the spectrometer slit 201. Slit 201 long side is out of plane of the drawing and is perpendicular to a scan plane. Length of the slit is 1.36 inches. Radiation transmitted by the slit 201 is directed onto the Mangin lens 202 which has a positive optical power.

Radiation is refracted by the first surface of the Mangin lens 202, then is reflected from the reflective part of the second surface of the Mangin lens and then a second time is refracted by the first surface of the Mangin lens and then is directed through the pupil lens 203, which has a negative 5 optical power, onto the spherical diffraction grating 204. Aperture stop AS is located at the grating 204. Reflective grating 204 has a positive optical power and diffracts the radiation in the VNIR/SWIR spectral range into a plurality of very narrow spectral bands, at that, only first order of diffraction is used. Diffracted radiation converged by the diffraction grating 204 goes by a second path through the pupil lens and then goes a third time through the first refractive surface of the Mangin lens 202 and refractive part of the Mangin lens' second surface. Still converged radiation 15 is directed by the first corrector lens 205, which has a positive optical power, onto the second corrector lens 206 which has a positive optical power. Second corrector lens 206 focuses all spectral components of the slit 201 onto FPA 207. The spectral range for the VNIR channel is 400 nm-900 20 nm and the spectral range for the SWIR channel is 1000 nm-2400 nm.

The Mangin lens 202 is shaped as a double convex lens and the first surface of the Mangin lens is formed aspherical, the pupil lens 203 is shaped as a negative meniscus lens 25 ments, the selection of the refractive indices and the Abbe whose convex surface faces toward the diffraction grating 204, the diffraction grating 204 is shaped as a concave reflective surface facing the incoming beam, the first corrector lens 205 is shaped as a double convex lens and the second corrector lens 206 is shaped as a positive meniscus 30 lens, whose convex surface faces the FPA. First surface of the Mangin lens 202, second surface of the pupil lens 203, first surface of the first corrector lens 205 and second surface of the second corrector lens 206 are formed as aspherical. Corrector lenses 205 and 206 compensate for the spherical 35 aberration, coma, and astigmatism introduced by the Mangin lens 202 and grating 203. Residual high order spherical aberration and coma are corrected by the aspherical surfaces of the Mangin lens 202 and pupil lens 203, and residual high order astigmatism and field curvature are corrected by the 40 first aspherical surface of the corrector lens 205 and second aspherical surface of the corrector lens 206. For chromatic aberration correction, the Mangin lens 202 is made of CaF2, pupil lens 203 is made of glass NKZFS8 Schott, first corrector lens 205 is made of NKZFS8 Schott and second 45 corrector lens 206 is made of NSK11 Schott glass.

The mutual combination of optical components optical powers, glasses' refractive indices and Abbe numbers of the optical elements provide monochromatic and chromatic correction of the spectrometer 200.

In the embodiment of FIG. 5, the optical elements parameters satisfy the following relations:

$$0.95 < F'_{200} / F'_{ML202} < 1.55$$

 $-0.45 < F'_{200} / F'_{PL203} < -0.2$
 $1.5 < F'_{200} / F'_{C205} < 1.85$
 $0.35 < F'_{200} / F'_{C206} < 0.6$
 $2.15 < F'_{200} / F'_{DG204} < 2.65$
 $2.25 < F'/OAL_{200} < 2.8$
 $7.75 < F'_{200} / DEC_{200} < 8.6$
 $2.6 < V_{ML202} / V_{PL203} < 3.5$

 $2.6\!<\!V_{ML202}\!/V_{C205}\!<\!3.5$

 $1.2\!<\!V_{ML202}\!/V_{C206}\!<\!2$

Wherein:

F'₂₀₀ is the focal length of the spectrometer 200 F'_{ML202} is the focal length of the Mangin lens 202 F'_{C205} is the focal length of the first corrector lens 205 F'_{C206} is the focal length of the second corrector lens 206 F'_{PL203} is the focal length of the pupil lens 203

 F'_{DG204} is the focal length of the diffraction grating 204 OAL_{200} is the overall length of the spectrometer 200 along the optical axis from the slit 201 to the FPA 207

DEC₂₀₀ is the decentration of the slit **201** with respect to the optical axis in the direction perpendicular to the length of the slit

 V_{ML202} is the Abbe number for the current wave length of the glass of the Mangin lens 202

 V_{PL203} is the Abbe number for the current wave length of the glass of the pupil lens 203

 ${
m V}_{C205}$ is the Abbe number for the current wave length of the first corrector lens 205

 V_{C206} is the Abbe number for the current wave length of the second corrector lens 206

The selection of the optical powers of the optical elenumbers of the used glasses provides a wide field, low NA spectrometer utilizing only one FPA for spectral components of both VNIR and SWIR channels.

FIG. 6 presents MTF data 600 for the embodiment of FIG. 5. Polychromatic MTF shows good contrast over the entire field for F#3.3.

Spectral and smile distortion are less than 0.2 pixel. FIG. 7A-D present the prescription of the second embodi-

FIG. 8 is an illustration of a third embodiment 800 of the present invention. Spectrometer 800 consists of, in the order of the ray trace from the slit to the FPA: slit 801, Mangin lens 802, pupil lens 803, diffraction grating 804, first corrector lens 805, second corrector lens 806 and FPA 807. Only SWIR radiation is accepted by spectrometer 800 and only SWIR hyperspectral images of the slit 801 are analyzed only at the FPA 807.

SWIR radiation coming from the object/target is collected by the fore optics onto the spectrometer slit 801. Slit 801 long side is out of plane of the drawing and is perpendicular to a scan plane. Length of the slit is 0.96 inches. Radiation transmitted by the slit 801 is directed onto the Mangin lens 802 which has a positive optical power. Radiation is refracted by the first surface of the Mangin lens 802, then is reflected from the reflective part of the second surface of the Mangin lens and then second time is refracted by the first surface of the Mangin lens and then is directed through the pupil lens 803, which has a negative optical power, onto the spherical diffraction grating 804. Aperture stop AS is located 55 at the grating 804. Reflective grating 804 has a positive optical power and diffracts the radiation in the SWIR spectral range into a plurality of very narrow spectral bands, at that, only first order of diffraction is used. Diffracted radiation converged by the diffraction grating 804 goes by a second path through the pupil lens 803 and then goes a third time through the first refractive surface of the Mangin lens **802** and refractive part of the Mangin lens' second surface. Still converged radiation is directed by the first corrector lens 805, which has a positive optical power, onto the second 65 corrector lens 806 which has a positive optical power. Second corrector lens 806 focuses all spectral components of the slit 801 onto FPA 807. Spectral range for the SWIR

channel is 1000 nm-1700 nm. The Mangin lens 802 is shaped as a double convex lens, the pupil lens 803 is shaped as a negative meniscus lens whose convex surface faces toward the Mangin lens 802, the diffraction grating 804 is shaped as a concave reflective surface facing the incoming beam, the first corrector lens 805 is shaped as a double convex lens and the second corrector lens 806 is shaped as a positive meniscus lens, whose convex surface faces FPA. First surface of the Mangin lens 802, second surface of the pupil lens 803, first surface of the first corrector lens 805 and 10 second surface of the second corrector lens 806 are formed as aspherical. The diffraction grating 803 is tilted contra clock direction with respect to the optical axis of the Mangin lens by about 1 degree, around the axis perpendicular to the optical axis (tilt is in the plane of the drawing of FIG. 8), in order to compensate for smile distortion and astigmatism. Corrector lenses 805 and 806 compensate for the wide beam aberrations of spherical and coma introduced by the Mangin lens 802 and grating 803. Residual high order aberration is corrected by the aspherical surfaces of the Mangin lens 802 20 and pupil lens 804, and residual high order astigmatism and field curvature are corrected by the first aspherical surface of the corrector lens 805 and second aspherical surface of the corrector lens 806. For chromatic aberration correction, the Mangin lens **802** is made of CaF2, pupil lens **803** is made of 25 glass NKZFS8 Schott, first corrector lens 805 is made of SFPL53 Ohara and second corrector lens 806 is made of STIH53 Ohara glasses.

The configuration of the spectrometer components, mutual combination of optical powers, glasses refractive 30 indices and Abbe numbers provide the monochromatic and polychromatic aberrational correction of the spectrometer 800.

In the embodiment of FIG. **8**, the optical elements parameters satisfy the following relations:

 $0.55 < F'_{800} / F'_{ML802} < 0.85$ $-0.1 < F'_{800} / F'_{PL803} < -0.055$ $0.9 < F'_{800} / F'_{C806} < 1.4$ $0.3 < F'_{800} / F'_{C806} < 0.6$ $1.5 < F'_{800} / F'_{D6804} < 2.5$ $1.2 < F'_{800} / OAL_{800} < 1.6$ $2.5 < F'_{800} / DEC_{800} < 4.5$ $0.25^{\circ} \beta_{804} < 4^{\circ}$ $2.4 < V_{ML802} / V_{PL803} < 3.5$ $0.8 < V_{ML802} / V_{C806} < 4.5$ $3.5 < V_{ML802} / V_{C806} < 4.5$

Wherein:

 F'_{800} is the focal length of the spectrometer **800** F'_{ML802} is the focal length of the Mangin lens **802** F'_{C805} is the focal length of the first corrector lens **805** F'_{C806} is the focal length of the second corrector lens **806** 60 F'_{PL803} is the focal length of the pupil lens **803** F'_{DG804} is the focal length of the diffraction grating **804** F'_{DL803} is the overall length of the spectrometer along the

optical axis from the slit 801 to the FPA 807 DEC $_{800}$ is the decentration of the slit 801 with respect to 65 the optical axis in the direction perpendicular to the length of the slit

12

 β_{804} is diffraction grating **804** counter-clockwise rotation angle, around the axis perpendicular to the optical axis of Mangin lens **802**

 ${
m V}_{ML802}$ is the Abbe number for the current wave length of the glass of the Mangin lens 802

 V_{PL803} is the Abbe number for the current wave length of the glass of the pupil lens 803

 ${
m V}_{C805}$ is the Abbe number for the current wave length of the glass of the first corrector lens 805

 \overline{V}_{C806} is the Abbe number for the current wave length of the glass of the second corrector lens 806

The selection of the optical powers of the optical elements, the selection of the refractive indices and the Abbe numbers of the used glasses, provides a very compact, low NA spectrometer with F#3, working in SWIR spectrum.

MTF data for the embodiment of FIG. 8 is presented in FIG. 9. Polychromatic MTF shows good contrast over the entire field for F#3.3.

Spectral and smile distortion are less than 0.2 pixel. FIGS. **10**A-D present the prescription of the third emboding.

FIGS. 10A-D present the prescription of the third embodiment.

Example elements for the first embodiment follow. A compact and Athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said corrector lens has a positive optical power. A compact and Athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said first field lens positioned at SWIR FPA has a positive optical power. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said second field lens positioned at SWIR FPA has a positive optical power. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said Mangin lens is shaped as a double convex lens. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said pupil lens is shaped as a negative meniscus lens whose convex surface faces toward said diffraction grating. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said diffraction grating is shaped as a concave reflective surface facing the incoming beam. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said corrector lens is shaped as a double convex lens. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said first field lens positioned at SWIR FPA is shaped as a double convex 45 lens. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: said second field lens positioned at VNIR FPA is shaped as a double convex lens. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: first surface of said Mangin lens 50 is formed aspherical. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: second surface of said pupil lens is formed aspherical. A compact and athermal VNIR/SWIR Spectrometer as in the first embodiment wherein: first surface of said corrector lens is 55 formed aspherical.

Example elements for the second embodiment follow. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said pupil lens is a double path lens. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: length of said slit is 1.36 inches. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said Mangin lens has a positive optical power. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said pupil lens has a negative optical power. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said diffraction grating has a positive optical power. A Compact VNIR/SWIR Spectrometer as in

trometer as in the second embodiment wherein: said first corrector lens has a positive optical power. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said second corrector lens has a positive optical power. A Compact VNIR/SWIR Spectrometer as in the 5 second embodiment wherein: said Mangin lens is shaped as a double convex lens. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said pupil lens is shaped as a negative meniscus lens whose convex surface faces toward said diffraction grating. A Compact VNIR/ SWIR Spectrometer as in the second embodiment wherein: said diffraction grating is shaped as a concave reflective surface facing the incoming beam. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said first corrector lens is shaped as a double convex lens. A 15 Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: said second corrector lens is shaped as a double convex lens whose convex surface faces toward said FPA. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: first surface of said Mangin 20 lens is formed aspherical. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: second surface of said pupil lens is formed aspherical. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: first surface of said first corrector lens is formed 25 aspherical. A Compact VNIR/SWIR Spectrometer as in the second embodiment wherein: second surface of said second corrector lens is formed aspherical.

Example elements for the third embodiment follow. A Compact SWIR Spectrometer as in the third embodiment 30 wherein said grating comprises an immersion grating. A Compact SWIR Spectrometer as in the third embodiment wherein: said grating comprises a reflective grating. A Compact SWIR Spectrometer as in the third embodiment herein: said diffraction grating diffracts SWIR radiation in a 35 comprising: first order. A Compact SWIR Spectrometer as in the third embodiment wherein: said aperture stop is located at the grating. A Compact SWIR Spectrometer as in the third embodiment wherein: said pupil lens is a double path lens. A Compact and Athermal VNIR/SWIR Spectrometer as in 40 the third embodiment wherein: length of said slit is 0.96 inches. A Compact SWIR Spectrometer as in the third embodiment wherein: said Mangin lens has a positive optical power. A Compact SWIR Spectrometer as in the third embodiment wherein: said pupil lens has a negative optical 45 power. A Compact SWIR Spectrometer as in the third embodiment wherein: said diffraction grating has a positive optical power. A Compact SWIR Spectrometer as in the third embodiment wherein: said first corrector lens has a positive optical power. A Compact SWIR Spectrometer as in the third 50 embodiment wherein: said second corrector lens has a positive optical power. A Compact SWIR Spectrometer as in the third embodiment wherein: said Mangin lens is shaped as a double convex lens. A Compact SWIR Spectrometer as in the third embodiment wherein: said pupil lens is shaped 55 as a negative meniscus lens whose concave surface faces toward said diffraction grating. A Compact SWIR Spectrometer as in the third embodiment wherein: said diffraction grating is shaped as a concave reflective surface facing the incoming beam. A Compact SWIR Spectrometer as in the 60 third embodiment wherein: said first corrector lens is shaped as a double convex lens. A Compact SWIR Spectrometer as in the third embodiment wherein: said second corrector lens is shaped as a double convex lens whose convex surface faces toward said FPA. A Compact SWIR Spectrometer as in 65 the third embodiment wherein: first surface of said Mangin lens is formed aspherical. A Compact SWIR Spectrometer as

in the third embodiment wherein: second surface of said pupil lens is formed aspherical. A Compact SWIR Spectrometer as in the third embodiment wherein: first surface of said first corrector lens is formed aspherical.

14

The foregoing description of the embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims appended hereto.

A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the scope of the disclosure. Although operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.

Each and every page of this submission, and all contents thereon, however characterized, identified, or numbered, is considered a substantive part of this application for all purposes, irrespective of form or placement within the application. This specification is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. Other and various embodiments will be readily apparent to those skilled in the art, from this description, figures, and the claims that follow. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.

What is claimed is:

- 1. An athermal VNIR/SWIR Dyson type spectrometer
 - a slit:
 - a diffraction grating;
 - an optical system forming spectral components of radiation received by said slit;
- a plurality of focal plane arrays (FPAs);
- wherein 2.5<F'/OAL<3.5;
- where
 - F' is the focal length of the spectrometer; and
 - OAL is the overall length of the spectrometer along the optical axis from the slit to the FPAs;
 - wherein said overall length of said Dyson type spectrometer is from 2.5 inches to 4 inches:
 - a wavelength range of said VNIR/SWIR is 400 nm to 2350 nm;
 - a slit length of 0.48 inch to 0.68 inch; and an F# is 3 to 3.3.
- 2. The spectrometer of claim 1 comprising:
- a Mangin lens comprising a partially reflective and partially refractive surface;
- a pupil lens;
- said diffraction grating;
- an aperture stop;
- a corrector lens;
- a beam splitter;
- a first field lens;
- a second field lens;
- a SWIR FPA; and
- a VNIR FPA;
- wherein said slit, Mangin lens, pupil lens, diffraction grating, corrector lens, beam splitter, field lenses and FPAs are positioned wherein said slit transmits radia-

40

15

tion to a reflective part of said Mangin lens surface and said reflective part directs radiation onto said pupil lens, said pupil lens directs radiation onto said diffraction grating, said diffraction grating diffracts radiation in said SWIR spectrum in a first diffraction order and 5 diffracts radiation in said VNIR spectrum in a second diffraction order and directs radiation onto said pupil lens, said pupil lens directs said SWIR and said VNIR radiation onto said refractive part of said Mangin lens, said Mangin lens directs radiation onto said corrector lens, said corrector lens directs radiation onto said beam splitter, said beam splitter having a coating and transmits said SWIR radiation onto said first field lens and said beam splitter reflects said VNIR radiation onto said second field lens, said first field lens forming an 15 image of said slit at said SWIR FPA and said second field lens forming an image of said slit at said VNIR FPA.

- 3. The spectrometer of claim 2, wherein said beam splitter transmits SWIR radiation and reflects VNIR radiation.
- **4**. The spectrometer of claim **2**, wherein thermal defocus does not exceed depth of focus in a temperature range from -10°C to 40 °C for both SWIR and VNIR spectrums.
- 5. The spectrometer of claim 2, wherein said pupil lens is a double path lens.
- **6**. The spectrometer of claim **2**, wherein a length of said slit is 1.36 inches.
- 7. The spectrometer of claim 2, wherein said Mangin lens has a positive optical power.
- **8**. The spectrometer of claim **2**, wherein said pupil lens 30 has a negative optical power.
- 9. The spectrometer of claim 2, wherein said diffraction grating has a positive optical power.
- 10. The spectrometer of claim 1, wherein said grating comprises an immersion grating.
- 11. The spectrometer of claim 1, wherein said grating comprises a reflective grating.
- 12. The spectrometer of claim 1, wherein said diffraction grating diffracts SWIR radiation in a first order and VNIR radiation in a second order.
- 13. The spectrometer of claim 1, wherein a density of said diffraction grating is 45 grooves/mm.
- 14. The spectrometer of claim 1, wherein an aperture stop is located at said grating.
 - 15. A VNIR/SWIR Dyson type spectrometer comprising: 45
 - a Mangin lens comprising a partially reflective and partially refractive surface;
 - a pupil lens;
 - a diffraction grating;
 - an aperture stop;
 - a first corrector lens;
 - a second corrector lens;
 - a single SWIR/VNIR FPA;
 - wherein said overall length of said Dyson type spectrom- 55 eter is from 2.5 inches to 4 inches;
 - a wavelength range of said VNIR/SWIR is 400 nm to 2350 nm;
 - a slit length of 0.48 inch to 0.68 inch; and
 - an F# is 3 to 3.3;

said slit, Mangin lens, pupil lens, diffraction grating, corrector lenses and FPA are positioned wherein said slit transmits radiation to said reflective part of said Mangin lens surface and said reflective part directs radiation onto said pupil lens, said pupil lens directs radiation onto said diffraction grating, said diffraction grating diffracts radiation in at least one of said SWIR

16

and said VNIR spectrums in a first diffraction order and directs radiation onto said pupil lens, said pupil lens directs radiation onto said refractive part of said Mangin lens, said Mangin lens directs radiation onto said first corrector lens, said first corrector lens directs radiation onto said second corrector lens, said second corrector lens forms image of said slit at said SWIR/VNIR FPA;

wherein focal lengths of lens and optical groups satisfy the relationships

 $0.95 < F'_{200} / F'_{ML202} < 1.55$

 $-0.45 {<\!\!F'_{200}\!/\!F'_{PL203}} {<\!\!-0.2}$

1.5<*F*′₂₀₀/*F*′_{*C*205}<1.85

0.35<F'_200/F'_C206<0.6

2.15<F'_200/F'_DG204<2.65

2.25<F'/OAL200<2.8

7.75<F'₂₀₀/DEC₂₀₀<8.6

 $2.6 < V_{ML202} / V_{PL203} < 3.5$

 $2.6 < V_{ML202} / V_{C205} < 3.5$

1.2 < V_{ML202}/V_{C206} < 2

where

F'₂₀₀ is the focal length of the spectrometer;

F'_{ML202} is the focal length of the Mangin lens;

 F'_{C205} is the focal length of the first corrector lens;

 F'_{C206} is the focal length of the second corrector lens;

 F'_{PL203} is the focal length of the pupil lens;

 F'_{DG204} is the focal length of the diffraction grating;

OAL₂₀₀ is the overall length of the spectrometer along the optical axis from the slit to the FPA;

DEC₂₀₀ is the decentration of the slit with respect to the optical axis in the direction perpendicular to the length of the slit;

 V_{ML202} is the Abbe number for the current wave length of the glass of the Mangin lens;

 V_{PL203} is the Abbe number for the current wave length of the glass of the pupil lens;

 $V_{\mbox{\scriptsize C205}}$ is the Abbe number for the current wave length of the first corrector lens; and

 ${
m V}_{{
m C206}}$ is the Abbe number for the current wave length of the second corrector lens.

- 16. The spectrometer of claim 15, wherein said grating 50 comprises an immersion grating.
 - 17. The spectrometer of claim 15, wherein said grating comprises a reflective grating.
 - 18. The spectrometer of claim 15, wherein said diffraction grating diffracts both SWIR and VNIR radiation in a first order
 - 19. The spectrometer of claim 15, wherein said aperture stop is located at the grating.
 - 20. A SWIR Dyson type spectrometer comprising:
 - a slit:
 - a Mangin lens comprising a partially reflective and partially refractive surface;
 - a pupil lens;
 - a diffraction grating;
 - an aperture stop;
 - a first corrector lens;
 - a second corrector lens;
 - a single SWIR FPA;

25

17

wherein an overall length of said Dyson type spectrometer is from 2.5 inches to 4 inches;

a wavelength range of said VNIR/SWIR is 400 nm to 2350 nm:

a slit length of 0.48 inch to 0.68 inch; and an F# is 3 to 3.3;

said slit, Mangin lens, pupil lens, diffraction grating, corrector lenses and FPA are positioned wherein said slit transmits radiation to said reflective part of said Mangin lens surface and said reflective part directs radiation onto said pupil lens, said pupil lens directs radiation onto said diffraction grating, said diffraction grating diffracts radiation in said SWIR spectrum in a first diffraction order and directs radiation onto said pupil lens, said pupil lens directs radiation onto said pupil lens, said pupil lens directs radiation onto said 15 refractive part of said Mangin lens, said Mangin lens directs radiation onto said first corrector lens, said first corrector lens, said second corrector lens, said second corrector lens forming an image of said slit at said SWIR FPA;

wherein focal lengths of lens and optical groups satisfy the relationships

$$0.55 < F'_{800} / F'_{ML802} < 0.85$$

0.9<F'₈₀₀/F'_{C805}<1.4

 $0.3 < F'_{800} / F'_{C806} < 0.6$

 $1.5 \!\!<\!\! F'_{800} \!/\! F'_{DG804} \!\!<\!\! 2.5$

1.2<F'₈₀₀/OAL₈₀₀<1.6

18

 $2.5 < F'_{800} / DEC_{800} < 4.5;$

 $0.25^{\circ}\beta_{804}\!\!<\!\!4^{\circ}$

 $2.4 < V_{ML802} / V_{PL803} < 3.5$

 $0.8{\le}V_{ML802}/V_{C805}{\le}1.2$

 $3.5 < V_{ML802} / V_{C806} < 4.5$

wherein:

F'₈₀₀ is the focal length of the spectrometer;

 F'_{ML802} is the focal length of the Mangin lens;

 F'_{C805} is the focal length of the first corrector lens;

 F'_{C806} is the focal length of the second corrector lens;

 F'_{PL803} is the focal length of the pupil lens;

 F'_{DG804} is the focal length of the diffraction grating;

OAL₈₀₀ is the overall length of the spectrometer along the optical axis from the slit to the FPA;

 DEC_{800} is the decentration of the slit with respect to the optical axis in the direction perpendicular to the length of the slit;

 β_{804} is diffraction grating counter-clockwise rotation angle, around the axis perpendicular to the optical axis of Mangin lens

 V_{ML802} is the Abbe number for the current wave length of the glass of the Mangin lens;

 V_{PL803} is the Abbe number for the current wave length of the glass of the pupil lens;

 ${
m V}_{{
m C805}}$ is the Abbe number for the current wave length of the glass of the first corrector lens; and

 ${
m V}_{{
m C806}}$ is the Abbe number for the current wave length of the glass of the second corrector lens.

* * * * *