
USOO8694966B2

(12) United States Patent (10) Patent No.: US 8,694,966 B2
Gupta (45) Date of Patent: Apr. 8, 2014

(54) IDENTIFYING TEST CASES TO BE RUN 7.203,835 B2 * 4/2007 Multerer et al. T13,168
7,596,778 B2* 9/2009 Kolawa et al. 717,126 AFTER CHANGES TO MODULES OFA 8, 185,874 B2* 5/2012 Ball et al. 717,124

SOFTWARE APPLICATION 8, 185,881 B2* 5/2012 Brand et al. 717 132
8,276,123 B1* 9/2012 Deng et al. . 717/125

(75) Inventor: Ravi Kant Gupta, Ghaziabad (IN) 8,286,149 B2 * 10/2012 Dor et al. 717,141
2006/0143596 A1* 6/2006 Miyashita et al. 717,131

rsr rr 2008/0082968 A1* 4/2008 Chang et al. 717/128
(73) Assignee: Oracle International Corporation, 2008/O126867 A1* 5/2008 Pandarinathan et al. 714/37

Redwood Shores, CA (US) 2008/0178154 A1* 7, 2008 Basler et al. 717,124
2008/0222609 A1* 9/2008 Barry et al. 717/124

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 689 days. "JUnit--Jtest=Automated Test Case Design and Static Analysis', by

Carson Ellsworth, Cynthia Dunlop, May 9, 2003.*
(21) Appl. No.: 12/717,147 David Soul ... “Clover'. http://confluence.atlassian.com/pages/

viewpage.action?pageId=1854.01674, Edited Date: Apr. 27, 2009,
(22) Filed: Mar. 4, 2010 pp. 1-1.

“Brendan Humphreys”, “Clover Test Optimization'. http://blogs.
(65) Prior Publication Data atlassian.com/developer/2008/11/stop testing so much.html,

Publication Date: Nov. 5, 2008. pp. 1-5.
US 2011/0219.359 A1 Sep. 8, 2011

(Continued)
(51) Int. Cl.

G06F 9/44 (2006.01) Primary Examiner — Henry Tsai
(52) U.S. Cl. Assistant Examiner — Jing-Yih Shyu

USPC 717/124; 717/125; 717/126; 717/127; (74) Attorney, Agent, or Firm — Narendra Reddy Thappeta
717/128; 717/129; 717/130; 717/131; 717/132:

717/133; 717/134; 717/135 (57) ABSTRACT
(58) Field of Classification Search An aspect of the present invention facilitates identification of

None test cases to be run after changes to modules of a software
See application file for complete search history. application. In one embodiment, a reference data is generated

by inspecting the instructions (static analysis) forming the
(56) References Cited modules of the software application, with the reference data

specifying a corresponding set of modules in the application
U.S. PATENT DOCUMENTS that are referenced by each of the modules in the application.

4,853,851 A * 8/1989 Horsch 714,38.1 The reference data is then examined to find a referencing set
5,278.979 A * 1/1994 Foster et al. 1f1 of modules which reference any of the changed modules
5,361,357 A * 1 1/1994 Kionka . 717, 151 either as immediate reference or multi-level reference
5,581,696 A : 12/1996 Kolawa et al. ... 714,38.1 through other modules. Test cases invoking any of the mod
S. 3. A ck 38. {S, al." 2. ules in the referencing set are identified as Suitable test cases
5,784,553 A * 7/1998 Kolawa et al. 714,38.1 to be run.
5,978,585 A * 1 1/1999 Crelier ... T17,145
6,536,036 B1* 3/2003 Pavela 717/125 22 Claims, 7 Drawing Sheets

Generate, by inspecting the instructions forming a software
application, a reference data specifying the modules 2OS
referenced by each module of the software application

Receive an indication that a set of modules have changed in
the software application

Find the modules having references to the changed set of
modules by examining the reference data

Add the found modules to the changed set of modules

Find the modules having references to the previously found
modules by examining the reference data

Atleast one module newly found?
270

No

Determine the test cases (final) changed set of ased the
nodules

C End

210

230

250

290

29

US 8,694,966 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“sourceforge.net”, “EMMA-A Free Java Code Coverage Tool”.
http://emma.sourceforge.net, Downloaded Circa: Oct. 15, 2009, pp.
1-1.
“Codework Limited”, “JCOVER Java Code Coverage Testing and
Analysis” http://www.codework.com/JCover/product.html. Down
loaded Circa: Oct. 15, 2009, pp. 1-1.
“Jason Bell”, “JTEST 8.0—Product Review'. http://java.sys-con.
com/node/299985, Reviewed Date: Nov. 17, 2006, pp. 1-3.
“Cynthia', "JTEST BUGS'. http://forums.parasoft.com/index.
php?showtopic=1229, Posted Date: Sep. 13 2006, pp. 1-1.

“Rick Grehan”, “JTEST Code Testing”, Info World. http://www.
infoWorld.com/d/developer-world test-continues-its-trek-toward
code-testing-Supremacy-214?page=0.0, Publication Date: Oct. 6,
2006, pp. 1-2.
“Cynthia', "JTEST Coverage'. http://forums.parasoft.com/index.
php?showtopic=1224. Posted Date: Sep. 13, 2006, pp. 1-1.
“Cynthia”, “JTEST How to Check If Code Meets Specifications”,
http://forums.parasoft.com/index.php?showtopic=1224. Posted
Date: Sep. 13, 2006, pp. 1-1.
“MS.Cherapa Wannasuk”. “Use Cases and Test Cases Relation in
Testing Process'. Downloaded Circa: Oct. 7, 2009, pp. 1-8.

* cited by examiner

?GU aseqeqeq?GT ?seo ?sa LIoo L 6u??sa L

US 8,694,966 B2 U.S. Patent

US 8,694,966 B2 Sheet 2 of 7 Apr. 8, 2014 U.S. Patent

Z ºÐIJI

OZZ GOZ

seInpou ON

012

?punog Á?Mau eInpouu ?uo ?sea??y

US 8,694,966 B2 Sheet 3 of 7 Apr. 8, 2014 U.S. Patent

7-2

029
2-2

US 8,694,966 B2

8.18 °50IJI

U.S. Patent

US 8,694,966 B2
1.

IDENTIFYING TEST CASES TO BE RUN
AFTER CHANGES TO MODULES OF A

SOFTWARE APPLICATION

BACKGROUND OF INVENTION

1. Technical Field
The present disclosure relates to Software testing, and more

specifically to identifying test cases to be run after changes to
modules of a Software application.

2. Related Art
A Software application is generally organized in the form

of modules. Each module contains a corresponding set of
instructions, which are together compiled, linked, etc., as is
well known in the relevantarts. Modules are maintained in the
form of source files, class files, JAR files, etc., as is also well
known in the relevant arts.

There are often changes made to specific modules, with a
view to meeting specific objectives. For example, during the
development phase of the Software application, developers
may modify modules to add/modify functionality, and during
maintenance phase, developers may modify modules to fix
errors (referred to as bugs also) found after deployment of the
Software application.

It is often required to identify test cases to be run after such
changes, typically to check whether the changes meet the
objectives, as well as do not cause unintended consequences
(e.g., create new errors, disrupting pre-existing functionality,
etc.) in the operation of the software application. Each test
case is designed to contain the inputs and logic to make
operative specific desired portions of the corresponding mod
ules, and to potentially check whether the output resulting
from Such operation satisfies a desired condition.

It is generally desirable that an optimum set of test cases be
identified such that the desired checking is performed, as well
as unneeded test cases are not run. Various aspects of the
present invention address one or more of such requirements,
as described below in further detail.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments of the present invention will be
described with reference to the accompanying drawings
briefly described below.

FIG. 1 is a block diagram illustrating an example environ
ment (computing system) in which several aspects of the
present invention can be implemented.

FIG. 2 is a flow chart illustrating the manner in which the
tests to be run (after changes to modules of a Software appli
cation) are identified according to an aspect of the present
invention.

FIGS. 3A-3B together depicts the modules of a software
application in one embodiment.

FIG. 4 depicts the manner in which reference data is gen
erated and maintained in one embodiment.

FIG. 5 illustrates the manner in which the referencing
modules corresponding to different changed sets of modules
are found in one embodiment.

FIG. 6 is a block diagram illustrating the details of a digital
processing system in which various aspects of the present
invention are operative by execution of appropriate execut
able modules.

In the drawings, like reference numbers generally indicate
identical, functionally similar, and/or structurally similar ele

10

15

25

30

35

40

45

50

55

60

65

2
ments. The drawing in which an element first appears is
indicated by the leftmost digit(s) in the corresponding refer
ence number.

DETAILED DESCRIPTION OF THE INVENTION

1. Overview

An aspect of the present invention facilitates identification
of test cases to be run after changes to modules of a Software
application. In one embodiment, a reference data is generated
by inspecting the instructions (static analysis) forming the
modules of the software application, with the reference data
specifying a corresponding set of modules in the application
that are referenced by each of the modules in the application.
The reference data is then examined to find a referencing set
of modules which reference any of the changed modules
either as immediate reference or multi-level reference
through other modules. Test cases invoking any of the mod
ules in the referencing set are identified as Suitable test cases
to be run.

In an embodiment, the test cases are also treated as refer
encing modules of the specific modules invoked and the ref
erence data accordingly reflects such a relationship. Accord
ingly, the referencing set of modules includes the test cases as
well as the modules tested. Modules of test case type in the
referencing set of modules accordingly form the Suitable test
cases to be run.

It may be appreciated that the reference data is generated
by Static analysis, that is inspection of the instructions form
ing the application, in contrast to dynamic analysis
approaches such as execution traces, which require the modi
fied application (formed by the merging of the changes with
the Software application) to be executed. Such static analysis
is generally desirable in new development projects where
code/design/requirements change frequently, and accord
ingly the generation of execution traces for every change adds
Substantial overhead to the development process.

Several aspects of the present invention are described
below with reference to examples for illustration. However,
one skilled in the relevant art will recognize that the invention
can be practiced without one or more of the specific details or
with other methods, components, materials and so forth. In
other instances, well-known structures, materials, or opera
tions are not shown in detail to avoid obscuring the features of
the invention. Furthermore, the features/aspects described
can be practiced in various combinations, though only some
of the combinations are described herein for conciseness.

2. Example Environment

FIG. 1 is a block diagram illustrating an example environ
ment (computing system) in which several aspects of the
present invention can be implemented. The block diagram is
shown containing developer systems 110A-110C, network
120, server system 160 (shown containing testing tool 150
and source control 170), code repository 180, and test case
database 190.

Merely for illustration, only representative number/type of
systems is shown in FIG.1. Many environments often contain
many more systems, both in number and type, depending on
the purpose for which the environment is designed. Each
system/device of FIG. 1 is described below in further detail.
Network 120 provides connectivity between developer

systems 110A-110C and server system 160. Network 120
may be implemented using protocols such as Transmission
Control Protocol (TCP) and/or Internet Protocol (IP), well

US 8,694,966 B2
3

known in the relevant arts. In general, in TCP/IP environ
ments, a TCP/IP packet is used as a basic unit of transport,
with the source address being set to the TCP/IP address
assigned to the source system from which the packet origi
nates and the destination address set to the TCP/IP address of
the target system to which the packet is to be eventually
delivered.

Each of developer systems 110A-110C represents a system
Such as a personal computer, workstation, mobile station,
etc., used by users/developers to modify/change some of the
modules forming a Software application, for example, to add/
modify a functionality of the application, fix errors/bugs
uncovered in the application, etc. Accordingly, the developers
may retrieve/store the desired modules (sought to be
changed) from code repository 180 by sending appropriate
requests (and receiving corresponding responses) to Source
control 170 executing in server system 160. After incorporat
ing the desired changes in the modules, the developers may
send requests for testing the changed modules to testing tool
150 executing in server system 160. The requests may be
generated using appropriate interfaces.

Server system 160 represents a server system such as a
web/application server executing code management/testing
softwares (such as testing tool 150 and source control 170)
capable of performing tasks requested by developers using
one of developer systems 110A-110C. The softwares may
perform the requested tasks on data maintained internally or
on external data (stored in code repository 180 and test case
database 190) and then send the result of performance of the
tasks to the requesting developer system.

Source control 170 represents a code management soft
ware controlling access (to different developers) of the source
code of modules maintained in code repository 180. Source
control 170 also keeps track of the specific changes made to
each of the modules by the different developers by maintain
ing multiple versions of the same module in code repository
180. Such tracking of changes may be required to ensure that
the same module is not modified by different developers at the
same time, to version the Software application, for reverting
back to earlier versions of the modules to undo certain
changes, etc. The process of storing a module in code reposi
tory 180 (along with associated information such as the devel
oper identifier, version number, etc.) is commonly referred to
as “checking in', while the process of retrieving the module
from code repository 180 is referred to as “checking out'.

Typically, source control 170 enables multiple versions of
a software application to be formed from code repository 180.
There are generally several testing versions that can be
formed, with each testing version having specific versions
(e.g., by cutoff date, by functionalities) of the modules, as
specified by a developer. Many of the modules can be
untested in the testing version. Developers may indicate the
specific modules which have been successfully tested and are
ready to be merged into a production version. Accordingly, a
production version (formed by source control 170) of the
Software application contains the latest Successfully tested
versions of the modules and is ready for deployment.

Each of code repository 180 and test case database 190
represents a non-volatile storage facilitating storage and
retrieval of a collection of data by one or more softwares (such
as testing tool 150 and source control 170) executing in server
system 160. In particular, code repository 180 is used to
maintain modules (forming a software application) in a
source format that can be readily edited by developers. Code
repository 180 may maintain multiple versions of the same
module to keep track of the changes/modifications made to
the same module.

5

10

15

25

30

35

40

45

50

55

60

65

4
It is assumed that code repository 180 contains modules of

a software application developed according to test-driven
design/development (TDD) approach of development. As is
well known in the relevant arts, in this approach, test cases
may be created first (according to a functional specification),
and the modules are then developed, while ensuring that the
test cases are satisfied. In such kind of development environ
ment it may be important to make Sure that any change to a
module does not result in failure of test cases before merging
of the modules. Therefore in such kind of development envi
ronment code merging is tightly coupled with execution of
unit test cases, and merge is allowed only after Successful
execution of test cases.

Test case database 190 maintains the test cases used to test
the functionalities of modules forming a Software applica
tion. Each test case may specify a set of conditions to be
checked during the execution of a corresponding module(s),
with module determined to be working correctly (“pass”)
against a test case if all of the corresponding set of conditions
are determined to be satisfied (true), and to be not working
properly (“failed”) otherwise. In general, a large number of
tests cases are required to be created and run to determine that
a software application is functioning correctly. Furthermore,
test cases may be created to cover (test the functionality of)
specific errors/bugs uncovered during (previous) testing.

Testing tool 150 represents a testing software/framework
designed to run test cases maintained intest case database 190
(while executing the Software application), and to determine
the status (pass or fail) of each of the run test cases based on
whether the corresponding set of conditions are satisfied or
not. Accordingly, at least for the TDD approach, it may be
necessary that testing tool 150 successfully run the test cases
in test case database 190, before merging of the modules into
the production version. It may be appreciated that the running
of a large number of test cases before each merge may result
in longer merge time. It may be accordingly desirable that an
optimal set of test cases be identified and run.

In one approach, the specific/optimal set of test cases to be
run is typically specified by a developer using one of devel
oper systems 110A-110C. The developer may manually iden
tify the optimal set by including the minimal number of test
cases that covers testing of the changed software modules. As
noted in the Background section, the running of the optimal
set of test cases ensures that all the changes meet the desired
objectives, as well as do not cause unintended consequences
(e.g., create new errors, disrupting pre-existing functionality,
etc.) in the operation of the Software application.

Testing tool 150, provided according to several aspects of
the present invention, identifies the test cases to be run after
changes to modules of a Software application by static analy
sis of the application. The term “static analysis’ implies that
the identification of the test cases is performed by inspecting
the instructions contained in the modules forming the Soft
ware application. Such static analysis of the modules in the
application is in contrast to using dynamic approaches. Such
as execution traces, where the modified application, formed
as the result of merging the changed modules with the other
modules of the application maintained in code repository 180,
is required to be executed.
The manner in which the optimal set of test cases to be run

is identified using static analysis is described below with
examples.

3. Identifying Tests to be Run by Static Analysis

FIG. 2 is a flow chart illustrating the manner in which the
tests to be run (after changes to modules of a Software appli

US 8,694,966 B2
5

cation) are identified according to an aspect of the present
invention. The flowchart is described with respect to FIG. 1
merely for illustration. However, many of the features can be
implemented in other environments also without departing
from the scope and spirit of several aspects of the present
invention, as will be apparent to one skilled in the relevantarts
by reading the disclosure provided herein.

In addition, Some of the steps may be performed in a
different sequence than that depicted below, as suited to the
specific environment, as will be apparent to one skilled in the
relevant arts. Many of Such implementations are contem
plated to be covered by several aspects of the present inven
tion. The flow chart begins in step 201, in which control
immediately passes to step 205.

In step 205, testing tool 150 generates, by inspecting the
instructions forming the Software application, a reference?
dependency data specifying the modules referenced by each
module of the software application. A module (hereafter “ref
erencing module) is said to have a reference to another
module (hereafter “referenced module), if the referencing
module uses at least one of the functionalities provided by the
referenced module. Such functionalities include, for
example, if the referencing module invokes a procedure in the
referenced module, if the referencing module contains
instructions that use data specified in the referenced module,
etc. It may be appreciated that the referenced modules may be
determined by parsing and inspecting the instructions form
ing the referencing module in the application.

However, in some scenarios, such determination may not
be possible, for example, when a referencing module loads
and uses a set of modules dynamically during run-time and
the specific module that is referenced is determined based on
external data (e.g., user input, configuration files, etc.). In
Such scenarios, additional data may be received from a devel
oper indicating the specific modules that are “indirectly'
referenced by each module of the application, and the refer
ence data may be generated based on the additional data
provided by the developer. In one embodiment described
below, the additional data is provided in the form of properties
files.

It may be appreciated that the reference data may be
required to be generated only once for corresponding version
in code repository 180 and that the reference data may not be
dependent on the immediately changed modules (received
below) if the reference data is made persistent. Accordingly,
in one embodiment, testing tool 150 generates and stores
reference data in a secondary storage in server system 160 in
step 205.

However, in alternative embodiments, testing tool 150 may
generate reference data based on inspection of the instruc
tions forming the modules in code repository 180 as well as
the changed set of modules before check-in/merge, and
accordingly step 205 may be performed only after receiving
the changed set of modules in step 210.

In step 210, testing tool 150 receives an indication that a set
of modules in a software application is changed/modified.
The indication (including identifiers of the changed modules)
may be received from a developer using one of developer
systems 110A-110C for testing the changes made to a soft
ware application. Alternatively, testing tool 150 may be
designed to operate with source control 170 to identify the set
of modules changed in the application, for example, by
requesting a testing version, in response to receiving a request
to test the software application from the developer.

In step 220, testing tool 150 finds the (first level of) mod
ules having references to the changed set of modules (re
ceived in step 210) by examining the reference data (in one

10

15

25

30

35

40

45

50

55

60

65

6
embodiment, after retrieving from a secondary storage). In
other words, testing tool 150 checks the reference data for the
modules that have been indicated to have at least one of the
changed set of modules as a referenced module. Thus, testing
tool 150 determines the modules that have immediate refer
ence to any one of the changed set of modules.

In step 230, testing tool 150 adds the found (referencing)
modules to the changed set of modules. The finding and
addition of referencing modules follows from an understand
ing that any changes made to a referenced module may cause
unintended consequences (e.g., create new errors, disrupting
pre-existing functionality, etc.) in the immediately referenc
ing modules, and accordingly an optimal set of test cases
should not only test the changed modules but also any of the
modules having a reference to the changed modules. Accord
ingly, in one embodiment, testing tool 150 determines the
optimal/specific set of test cases based on the changed set of
modules and the modules immediately referencing any one of
the changed set of modules.

However, it may be appreciated that as per the above under
standing, a second level of modules that have a reference to at
least one of the newly found first level of modules (immedi
ately referencing the changed modules) should also be tested
to ensure no unintended consequences have been caused in
second level of modules as well. Similar logic may be
extended for a third level of modules referencing at least one
of the second level of modules, a fourth level referencing at
least one of third level, etc. Accordingly, steps 250, 270 (de
scribed below) and 230 are performed iteratively (as a loop)
until all levels of modules referencing the changed set of
modules are identified and included in the changed set based
on the reference data.

Thus, in step 250, testing tool 150 finds the (next level of)
modules having references to the previous (level of) found
modules by examining the reference data and in step 270,
testing tool 150 checks whether there at least one module is
newly found in step 250. In other words, the finding of at least
a single module indicates that the reference data needs to be
searched for modules referencing the single module (and
according requires the steps of 230 and 250 to be repeated),
while the finding of no modules in step 250 indicates that all
the levels of modules referencing the changed set of modules
have been found.

Thus, in step 270, control passes to step 230 (for determin
ing the next level of modules) if at least one module if found,
and to step 290 (for determination of test cases) otherwise. It
should be appreciated that the loop of steps 230, 250 and 270
operates to find the referencing modules that has a multi-level
reference through other modules to any of the changed set of
modules (of step 210).

In step 290, testing tool 150 determines the optimal/spe
cific set of test cases based on the (final) changed set of
modules containing the original set of modules changed by
the developers (received in step 210) as well as all the mod
ules (at different levels) referencing at least one of the original
set of changed modules. The determination of the test cases
based on the final changed set of modules may be performed
in a known way.

In one approach, the test cases are determined based on a
mapping data maintained by the developers of the modules/
test cases. The mapping data specifies for each test case
(specified for the application in test case database 190) the
corresponding set of modules in the application tested/ac
cessed by the test case. Testing tool 150 then determines the
specific set of test cases to be run by checking whether each of
the modules in the final changed set is specified in the map
ping data, and including those test cases that are indicated to

US 8,694,966 B2
7

access/test at least of the modules in the optimal set. Such an
approach may be used when the modules in the Software
application correspond to code files containing instructions
according to a programming language, while each of the test
cases is in the form of a test Script containing instructions
according to a scripting language different from the program
ming language.

In another approach, the test cases used to test a Software
application are also included as modules of the application
prior to generation of the reference data. As such, it may be
appreciated that the performance of step 210 ensures that the
mapping data described above is also generated as part of the
reference data, with the test cases indicated as referencing
modules and the corresponding set of modules accessed/
tested indicated as referenced modules. Furthermore, the per
formance of the steps of 220 through 270 ensures that the
optimal set of test cases is also included in the final changed
set of modules.

Accordingly, testing tool 150 determines the specific set of
test cases to be run by checking the type of each of the
modules in the final changed set, and including the modules
of type test case in the optimal set. Such an approach may be
used when the modules as well as the test scripts are specified
according to the same programming language. The flow chart
ends in step 299.

Thus, the set of test cases to be run after changes to modules
of a Software application are identified using static analysis of
the application. The identified optimal set of test cases may
then be run by testing tool 150 to determine whether the
changes can be merged (if all test cases pass) or not. The
failing of a test case may indicate that the changes originally
done by the developer has not met the desired objectives or
has caused unintended consequences (e.g., create new errors,
disrupting pre-existing functionality, etc.) in at least some of
the referencing modules. Thus, the developer may be required
to make more changes (either to the original changed set of
modules or the referencing modules) to the Software applica
tion before checking in the modules to the code repository.

The description is continued illustrating the manner in
which the steps of FIG. 2 are implemented in one embodi
ment.

4. Example Implementation

FIGS. 3A-3B, 4, and 5 together illustrate the manner in
which the optimal set of test cases is identified by static
analysis of a software application in one embodiment. The
description is continued assuming that the Software applica
tion contains one or more code files containing instructions
according to JavaTM programming language, and that each
code file corresponds to a module of the application. Further
more, it is assumed that test cases are specified as test Scripts
containing instructions according to the same Java program
ming language, and accordingly the Software application is
shown to contain both modules and test cases.

FIGS. 3A-3B together depicts the modules of a software
application in one embodiment. Only a representative num
ber of modules/test cases are shown as being part of the
Software application for conciseness. Furthermore, the con
tent of each of the modules/test cases is shown to contain only
a representative set of instructions for better understanding
the features of the invention. However, the features of the
present invention can be implemented for more number and/
or type of modules/test cases and for more complex sets of
instructions as will be apparent to one skilled in the relevant
arts by reading the disclosure herein.

5

10

15

25

30

35

40

45

50

55

60

65

8
Application 300 is shown containing modules/code files

“Ajava 310, “AI.java 305, “B.java 320, “C.java 330,
“Djava' 340, “E.java' 350 and “RX.java'360 as well as test
cases “ATest.java 315, “CTest.java' 335, “RxTest.java 365
and “FuncTest.java' 370. Other files/modules such as “JRE
System Library”, “bcel-5.2.jar”, etc. are also shown as being
part of or being used by application 300.
The modules and test cases (hereafter referred to by their

name without the "...java extension) are shown to be orga
nized in the form of a hierarchy as specified by a developer of
application 300. Modules AI, A, B and C (305,310,320 and
330) are shown as belonging to one package “com.intex.
sample' while modules D and E (340 and 350) are shown as
belonging to another package "com.intex.sample.lib'. The
content of the modules and some of the test cases is also
shown in corresponding numbered boxes in FIGS. 3A and
3B.

Thus, it may be observed that the content of module AI
(305) is shown as defining an interface named AI and the
content of module A (310) is shown as defining a class 'A' as
an implementation of the interface AI. Accordingly, during
the generation of the reference data, testing tool 150 identifies
module A as a referencing module and module AI as a corre
sponding referred module. Similarly, based on the content of
module B (320), in particular the instruction that class B
extends class A, testing tool 150 identifies that module B has
a reference to module A. With respect to module C (330),
based on the instruction for creation of an instance of class B
and its assignment to a variable of class A, testing tool 150
identifies module C as a referencing module and both mod
ules A and B as the corresponding referenced modules. It may
be observed that module D (from one package) has a refer
ence to module A (belonging to another package).
Module Rx (360) is a referencing module which dynami

cally loads and uses modules (using reflection, well known in
the relevantarts) specified in a configuration file named "App
Config.xml (362). Accordingly, testing tool 150 may require
a developer to provide additional date indicating the specific
modules that are “indirectly referenced by the module Rx.
Module 380 “reflectionclass-properties' specifies the addi
tional data for the modules that use reflection to indirectly
invoke other modules of the application in the format “refer
encing module comma separated list of referred modules'.
Thus, the content of module 380 indicates that module RX
invokes module A. It may be observed that the content of
module Rx (360) does not have any reference to module A
indicating that the referencing is indirect, in contrast to direct
referencing shown in the content of modules A, B, C, D and E.
Module ATest (315) depicts the content of a test case used

for testing application 300. It may be observed that the test
case contains instructions according to Java programming
language. Such test cases may be provided by testing frame
works such as JUnit, well known in the relevant arts. It is
noted that the ATest module is shown containing an assert
True instruction that checks whether the class name of mod
ule A is equal to "com.intex. Sample. A with respect to mod
ule A. Thus, on running test case ATest (315), the condition is
checked and the status of the test case is determined to be pass
(if the condition is satisfied/true) and to be fail otherwise.
Though only a simple?single condition is shown in the test
case, typical test cases have more number of (as well as more
complex type of) assertions/conditions that need to be
checked during the execution of the application.

It is noted that module ATest (315) represents a unit test
case which is designed to test the functionality of a single
module in application 300. Similarly, the other unit test cases
(such as CTest (335) and RxText (365)) may contain instruc

US 8,694,966 B2

tions to test other modules (such as C and RX) in application
300 by invoking the modules, and thereby have a direct ref
erence to the modules.

However, module Functest (370) represents a functional
test case which tests the functionality of application 300,
generally, via a user interface provided by application 300.
The specific functional tests to be run for an application are
specified in the configuration file “functest.xml 375. Since
functional tests do not directly invoke any of the modules of
the application, it may be necessary that a developer provide
a mapping data specifying for each functional test case, the
corresponding set of modules tests/accessed in application
3OO.
Module 385 “Functest-properties’ specifies the mapping

data for the functional test case module Functest (370) in the
format “test case name=comma separated list of referred
modules”. Thus, the content of module 385 indicates that
module Functest (370) tests/indirectly invokes module A. In
one embodiment, the mapping data for each functional test
case is specified in a correspondingly named “properties' file
(similar to module 385). However, in alternative embodi
ments, the mapping data for multiple functional tests may be
specified in a single file. Furthermore, the mapping data may
also specify (similar to the format noted above) the referenced
modules for unit test cases such as modules ATest, CTest,
RXTest, etc. as well. Such a mapping data may be desirable
when the test cases contain instructions according to a script
ing language different from the Java programming language.

Thus, application 300 is shown containing different mod
ules such as code files and test cases. Testing tool 150 may
then inspect the instructions forming application 300 to gen
erate the corresponding reference data as described below
with examples.

5. Generating Reference Data

Broadly, testing tool 150 generates the reference data by
parsing the instructions in each of the modules forming the
Software application and searching for specific keywords/
patterns corresponding to references between the modules.
For example, testing tool 150 may parse and search for the
keywords/patterns such as "class X implements Y”, “class X
extends Y”, “new Y”, “Y variablename=new Z”, “Y.method
name()”, “variablename.methodname()', etc., where X, Y
and Z are module/class names and "class”, “implements'.
“extends' and “new” are keywords in the Java programming
language. On finding a match for one of the patterns, testing
tool 150 adds data specifying the referencing module (for
example, X) and the referenced modules (for example, Y and
Z) in the reference data.

Thus, in module A, testing tool 150 may find a match for
the pattern “class X implements Y” with X as A and Y as AI,
and accordingly add data to the reference data indicating that
the module A has a reference to module AI. Similarly in
module C, testing tool 150 may find a match for the pattern “Y
variable name=new Z with Y as A and X as B, and add data
indicating module C as a referencing module having a refer
ence to the referenced modules A and B.

In one embodiment, the matching of the patterns is per
formed using a Byte Code Engineering Library (BCEL)
which provides an application programming interface (API)
for analyzing binary) Java class files (compiled format).
Accordingly, the “..java code files/modules are converted
into the corresponding compiled class files and theninspected
using the BCEL API to determine the reference among the
modules. The BCEL API provides convenient methods for
determining the interfaces/classes implemented/extended by

10

15

25

30

35

40

45

50

55

60

65

10
a class, etc., and also for tracing fields, methods, classes,
exceptions, etc. Furthermore, BCEL facilitates the inspec
tions of the byte codes contained in the compiled class files
for the generation of the reference data.

Thus, testing tool 150 generates the reference data speci
fying the modules referenced by each module of the applica
tion. As noted above, testing tool 150 may also inspect any
additional data (such as “reflectionclass-properties' file 380)
provided by the developers when generating the reference
data. One specific format in which reference data may be
generated and maintained in is described below with
examples.

FIG. 4 depicts the manner in which reference data is gen
erated and maintained in one embodiment. The reference data
is shown as being maintained in a tabular format merely for
convenience. However, in alternative embodiments, the ref
erence data may be maintained using any convenient data
format such as extensible markup language (XML) as will be
apparent to one skilled in the relevant arts by reading the
disclosure herein.

Table 400 specifies the reference data generated by testing
tool 150 for application 300 based on the static analysis of the
content of the modules (as shown in FIGS. 3A and 3B).
Column 421 “Module Name” specifies a unique name of a
referencing module in the application, column 422 “Module
Type specifies the type of each module, such as an interface,
class, unit test case, etc. and column 423 “Reference List”
specifies a list of referred modules for the corresponding
referencing module.

Each of rows 451-460 specifies the reference data for a
corresponding (referencing) module in application 300. For
example, row 451 specifies that the module AI is of type
interface and does not have references to any other module in
the application (as indicated by the value"-), while row 454
specifies that the module C is of type class and has references
to modules A and B. Similarly, other rows specify the refer
enced modules for the corresponding referencing modules.

It may be appreciated that testing tool 150 may insert row
452 in table 400 in response to identifying the pattern "class
X implements Y” with X as A and Y as AI in the content of
module A (310) and row 454 in response to identifying the
pattern “Y variable name=new Z” with Y as A and X as B in
the content of module C (330). Furthermore, testing tool 150
may insert row 457 based on the inspection of the additional
data shown in file 380 provided by a developer of application
3OO.
On receiving an indication that a set of modules in appli

cation 300 is changed/modified, testing tool 150 iteratively
find all the levels of modules referencing at least one of the
changed set of modules as described below with examples.

6. Finding Referencing Modules

FIG. 5 illustrates the manner in which the referencing
modules corresponding to different changed sets of modules
are found in one embodiment. Broadly, testing tool 150 on
receiving a changed set of modules first identifies a search set
containing the modules that are to be checked for references
to the changed set of modules. For simplicity, the search set is
started with all the modules of the application except the
changed set of modules.

Testing tool 150 then finds the first level of modules having
immediate references to at least one of the changed set of
modules (based on the reference data) and adds the newly
found modules to the changed set (steps 220 and 230 of FIG.
2). The modules added to the changed set are also removed
from the search set for the convenience of finding the next

US 8,694,966 B2
11

level of modules. Testing tool 150 also performs iteratively
the steps of 250,270 and 230 of FIG. 2 to identify the subse
quent levels of modules (again based on the same reference
data) and adding the modules to the changed set (while
removing the same modules from the search set), until no
more modules are newly found.

In the below disclosure, the operation of the steps of FIG.
2 is shown in a tabular format for convenience, with column
510 specifying the level of modules, columns 520, 530 and
540 respectively specifying the contents of the search set, the
changed set and the newly found modules (after performing
step 250) at a corresponding level.

Table 550 illustrates the manner in which the set of refer
encing modules in application 300 is found for the changed
set {A}. Testing tool 150 may find the referencing modules
based on the reference data shown in FIG. 4 generated for
application 300, prior to receiving the changed set of mod
ules.
Row 551 indicates the contents of the sets at the start of

iteration (before performing step 220 of FIG. 2). It may be
observed that the search set is initialized to the set of all
modules except module A (contained in the changed set),
while the changed set contents is {A} and that are no newly
found modules is indicated as blank. Row 552 specifies the
contents of the sets after the performance of step 220 and 230,
with the modules in the newly found column identified based
on rows 453, 454, 455, 457 and 458 having the module A as
a referenced module incolumn 423. The search set in row 552
is shown updated with the newly found modules removed,
while the change set in row 552 is shown updated with the
newly found modules added to the previous state (in row 551).
Row 553 specifies the contents of the sets after the perfor

mance of a first iteration of steps 250, 270, and 230, with the
second level (as indicated in column 510) modules of newly
found column identified based on rows 456, 459, and 460
having respectively the modules D. C and Rx as a referenced
module in column 423. The search set and changed set in row
553 are shown appropriately updated with the newly found
modules respectively removed and added to the sets.
Row 554 specifies the contents of the sets after a second

iteration (in general, the iteration number is determined as
one less than the level in column 510), and indicates that no
modules were newly found in step 250 (as indicated by the
“-” in column 540). Accordingly, the iteration is stopped and
the contents of the changed set (in column 530) of row 554
represents the final changed set of modules {A, B, C, D, E,
RX, ATest, CTest, RxTest containing the original changed set
of modules {A} and all the modules referencing (at different
levels) at least one of the original changed set.

Thus, the referencing modules in application 300 for a
changed set of modules {A} is found based on the reference
data of FIG. 4. Tables 560 and 570 respectively illustrate the
manner in which the set of referencing modules in application
300 is found for the corresponding changed sets {B, Rx and
{D} with the corresponding final changed sets shown in rows
564 and 573.

Testing tool 150, after finding all the referencing modules
and adding the referencing modules to the original changed
set of modules to generate the final changed set of modules,
determines the impact of the original changes in the Software
application based on the final changed set of modules as
described below with examples.

7. Determining the Impact of the Changes

Testing tool 150 may determine the optimal/minimal set of
test cases to be run covering the testing of the changed mod

10

15

25

30

35

40

45

50

55

60

65

12
ules based on the final changed set of modules (step 290 of
FIG. 2). As described above, testing tool 150 may determine
the test cases based on a mapping data (such as file 385)
provided by a developer specifying which of the modules of
the application are accessed/tested by each of the test cases.
Testing tool 150 may also determine the test cases based on
the type of the modules, as described below.

Thus, for the changed set {A} of table 550, the final
changed set shown in row 554 is inspected to identify the test
cases ATest, CTest, and RxTest based on the type “Unit Test'
of the modules (as indicated by column 422). The identifica
tion of the modules of the test case type may be performed in
any convenient manner. For example, modules of test case
type may be required to have the text “Test appended to their
names according to a coding convention, and as Such, the test
cases may be identified as the modules whose names end with
the text “Test'. Thus, for the final changes set shown in row
554, assuming that the above coding convention is followed,
the test cases ATest, CTestand RxTest may be identified as the
test cases.

Furthermore, testing tool 150 also identifies the test case
Functest based on the mapping data of file 385, since the
module A contained in the final changes set shown in row 554
is indicated to be invoked by the content of 385. For the
format described above, testing tool 150 checks whether a
module (Such as A) contained in the final changed set of
modules appears on the right hand side of the "=" sign, and
then includes only those test cases (Functest) specified in the
left hand side of the "=" sign if the module appears on the
right hand side.

Thus, the minimal set of test cases for the changed set {A}
is identified to be {ATest, CTest, RxTest, Functest. Simi
larly, for the changed set {B, Rx} of table 560, the set of
minimal test cases is identified to be {CTest, RxTest based
on the final changed set of modules shown in row 564.

It may be appreciated that in some scenarios, testing tool
150 may not be able to identify any test cases based on the
final changed set of modules (in other words, the set of test
cases is empty). According to an aspect of the present inven
tion, testing tool 150 notifies a developer of the lack of test
cases to cover testing of the original changed set of modules
if the set of test cases is identified to be empty. Thus, for the
changed set {D, E of table 570, it may be observed that the
final changed set of modules in row 573 does not have any
modules of test types as well as the mapping data of 385 does
not indicate any test cases. Accordingly, testing tool 150 may
notify a developer of the lack of test cases to cover the
changed set {D,E).

In one embodiment, the Software application is a multi
layered application with the modules belonging to a set of
layers where the modules belonging to each layer maintained
in a corresponding code repository. In Such an embodiment, if
the changed set of modules belongs to a first layer, testing tool
150 checks whether the referencing set of modules includes a
second module belonging to a second layer contained in the
set of layers where the second layer is different from the first
layer. Testing tool 150 then notifies a developer of an interface
mismatch between the first layer and the second layer if there
a second module is present, with the interface mismatch cor
responding to changes made to a module contained in the final
changed set of modules referenced by the second module.
Such a notification enables the developer to fix the interface
mismatch before integration of modules in the different layers
from different code repositories.

It may be appreciated that testing tool 150 may store the
reference data in a secondary/non-volatile storage after gen
eration and then retrieve the stored reference data for finding

US 8,694,966 B2
13

the referencing modules. Such storage and retrieval facilitates
the checking for interface mismatch to be performed without
requiring inspecting of the instructions forming the modules
in multiple layers (and maintained in different code reposito
ries).

In another embodiment, the modules forming the software
application are divided into a set of packages (such as "com.
intex. sample” and “com.intex.sample.lib' noted above), with
each package related to a corresponding functionality pro
vided by the software application. In such an embodiment, if
the changed set of modules is contained in a first package
related to a first functionality provided by the application,
testing tool 150 checks whether the referencing set of mod
ules includes a third module belonging to a third package
contained in the set of packages, where the third package is
different from the first package and is related to a third func
tionality different from the first functionality. Testing tool 150
then notifies a code reviewer to review the impact of the first
functionality on the third functionality if such a third module
is present.

It should be appreciated that the features described above
can be implemented in various embodiments as a desired
combination of one or more of hardware, executable mod
ules, and firmware. The description is continued with respect
to an embodiment in which various features are operative
when executable modules are executed.

8. Digital Processing System

FIG. 6 is a block diagram illustrating the details of digital
processing system 600 in which various aspects of the present
invention are operative by execution of appropriate execut
able modules. Digital processing system 600 may correspond
to server system 160.

Digital processing system 600 may contain one or more
processors such as a central processing unit (CPU) 610, ran
dom access memory (RAM) 620, secondary memory 630,
graphics controller 660, display unit 670, network interface
680, and input interface 690. All the components except dis
play unit 670 may communicate with each other over com
munication path 650, which may contain several buses as is
well known in the relevant arts. The components of FIG. 6 are
described below in further detail.
CPU 610 may execute instructions stored in RAM 620 to

provide several features of the present invention. CPU 610
may contain multiple processing units, with each processing
unit potentially being designed for a specific task. Alterna
tively, CPU 610 may contain only a single general-purpose
processing unit.
RAM 620 may receive instructions from secondary

memory 630 using communication path 650. RAM 620 is
shown currently containing software instructions constituting
operating environment 625 and/or other user programs 626
(such as testing/production versions of the Software applica
tions, code management/testing Softwares, etc.). In addition
to operating environment 625, RAM 620 may contain other
Software programs such as device drivers, virtual machines,
etc., which provide a (common) run time environment for
execution of other/user programs.

Graphics controller 660 generates display signals (e.g., in
RGB format) to display unit 670 based on data/instructions
received from CPU 610. Display unit 670 contains a display
screen to display the images defined by the display signals.
Input interface 690 may correspond to a keyboard and a
pointing device (e.g., touch-pad, mouse) and may be used to
provide inputs. Network interface 680 provides connectivity

10

15

25

30

35

40

45

50

55

60

65

14
to a network (e.g., using Internet Protocol), and may be used
to communicate with other systems connected to the network.

Secondary memory 630 may contain hard drive 635, flash
memory 636, and removable storage drive 637. Secondary
memory 630 may store the data (for example, portions of the
reference data of FIG. 5, portions of the additional data/
mapping data provided by developers, etc.) and Software
instructions (which when operative perform the steps of FIG.
2 and cause the states shown in FIG. 5), which enable digital
processing system 600 to provide several features in accor
dance with the present invention.
Some orall of the data and instructions may be provided on

removable storage unit 640, and the data and instructions may
be read and provided by removable storage drive 637 to CPU
610. Floppy drive, magnetic tape drive, CD-ROM drive, DVD
Drive, Flash memory, removable memory chip (PCMCIA
Card, EPROM) are examples of such removable storage drive
637.
Removable storage unit 640 may be implemented using

medium and storage format compatible with removable Stor
age drive 637 such that removable storage drive 637 can read
the data and instructions. Thus, removable storage unit 640
includes a computer readable (storage) medium having stored
therein computer software and/or data. However, the com
puter (or machine, in general) readable medium can be in
other forms (e.g., non-removable, random access, etc.).

In this document, the term "computer program product' is
used to generally refer to removable storage unit 640 or hard
disk installed in hard drive 635. These computer program
products are means for providing software to digital process
ing system 600. CPU 610 may retrieve the software instruc
tions, and execute the instructions to provide various features
of the present invention described above.

Reference throughout this specification to “one embodi
ment”, “an embodiment, or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment”, “in an embodiment and
similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.

Furthermore, the described features, structures, or charac
teristics of the invention may be combined in any suitable
manner in one or more embodiments. In the above descrip
tion, numerous specific details are provided Such as examples
of programming, software modules, user selections, network
transactions, database queries, database structures, hardware
modules, hardware circuits, hardware chips, etc., to provide a
thorough understanding of embodiments of the invention.

9. Conclusion

While various embodiments of the present invention have
been described above, it should be understood that they have
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present invention should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

It should be understood that the figures and/or screen shots
illustrated in the attachments highlighting the functionality
and advantages of the present invention are presented for
example purposes only. The present invention is Sufficiently
flexible and configurable, such that it may be utilized in ways
other than that shown in the accompanying figures.

Further, the purpose of the following Abstract is to enable
the U.S. Patent and Trademark Office and the public gener

US 8,694,966 B2
15

ally, and especially the Scientists, engineers and practitioners
in the art who are not familiar with patent or legal terms or
phraseology, to determine quickly from a cursory inspection
the nature and essence of the technical disclosure of the
application. The Abstract is not intended to be limiting as to
the scope of the present invention in any way.

What is claimed is:
1. A method of testing an application after changes to any

of a plurality of modules forming said application, said
method comprising:

receiving an indication that a set of modules have changed,
wherein said set of modules is contained in said plurality
of modules;

determining a final set of modules by static analysis of said
plurality of modules, said final set of modules including
said changed set of modules and a referencing set of
modules of said plurality of modules, wherein each
module of said referencing set of modules references at
least one of said changed set of modules eitheras imme
diate reference or multi-level reference through other
modules,

said final set of modules not including any module by
virtue of being referenced by any of said changed set of
modules,

wherein said application contains a first module which is
immediately referenced by one of said changed set of
modules,

wherein said determining does not include said first mod
ule in said referencing set of modules;

identifying a set oftest cases to cover testing of all of said final
set of modules, wherein said identifying includes a test case in
said set of test cases only if the test case operates to testat least
one of said final set of modules such that said set of test cases
is a minimal set that covers testing of all of said final set of
modules; and

running said set of test cases with said changed set of
modules merged into said plurality of modules,

wherein said determining by said static analysis comprises:
generating a reference data by inspecting the instruc

tions forming said plurality of modules, wherein said
reference data specifies for each module a corre
sponding set of modules contained in said plurality of
modules that are referenced by said module:

finding, in response to said receiving, said referencing
set of modules by examining said reference data; and

adding said referencing set of modules to said changed
set of modules to create said final set of modules.

2. The method of claim 1, wherein said plurality of mod
ules are maintained in a code repository, and wherein said
determining is performed before merging said changed set of
modules with said application in said code repository.

3. The method of claim 1, further comprising:
checking whether said set of test cases is empty; and
notifying a developer of the lack of test cases to cover

testing of said changed set of modules upon said check
ing determining said set of test cases to be empty.

4. The method of claim 1, wherein said generating further
comprises:

receiving, from a developer, additional data indicating that
a first module is indirectly referenced by a second mod
ule, said first module and said second module being
contained in said plurality of modules,

wherein said generating generates said reference data to
specify that said first module is referenced by said sec
ond module based on said additional data.

10

15

25

30

35

40

45

50

55

60

65

16
5. The method of claim 1, wherein said finding comprises:
examining said reference data to identify a second set of

modules, wherein each of said second set of modules has
an immediate reference to at least one of said changed
set of modules;

performing iteratively said examining to identify a plural
ity of levels of modules based on said second set of
modules, wherein said second set of modules is consid
ered as a first level of modules and each of a next level of
modules has reference to at least one of a previous level
of modules, said next level of modules and said previous
level of modules being contained in said plurality of
modules; and

including said second set of modules and said plurality of
levels of modules in said referencing set of modules.

6. The method of claim 1, wherein a plurality of test cases
are used to test said application, said method further compris
ing:

maintaining a mapping data specifying a corresponding
one of a plurality of subsets of modules tested by each of
said plurality of test cases, said plurality of Subsets of
modules being contained in said plurality of modules,

wherein said identifying said set of test cases for a first
module contained in said final set of modules comprises:

checking whether said first module is contained in said
plurality of Subsets of modules; and including a first test
case in said set of test cases only when said checking
determines that said first module is contained in the
corresponding Subset of modules, said first test case
being contained in said plurality of test cases.

7. The method of claim 6, wherein each of said plurality of
modules corresponds to a code file containing instructions
according to a programming language and each of said plu
rality of test cases corresponds to a test Script containing
instructions according to a scripting language, wherein said
Scripting language is different from said programming lan
gllage.

8. The method of claim 1, wherein a plurality of test cases
are used to test said application, wherein said plurality of test
cases are also included in said plurality of modules forming
said application, wherein said identifying comprises:

checking whether each of said final set of modules is of a
test case type; and

including the modules that are of said test case type in said
set of test cases.

9. The method of claim 8, wherein each of said plurality of
modules including said plurality of test cases corresponds to
a code file containing instructions according to a program
ming language.

10. The method of claim 1, wherein said application is a
multi-layered application with said plurality of modules
belonging to a set of layers, wherein the modules for each of
said set of layers is maintained in different code repositories,
wherein said changed set of modules belong to a first layer
contained in said set of layers, said method comprising:

checking, after said finding, whether said referencing set of
modules includes a second module belonging to a sec
ond layer contained in said set of layers, said second
layer being different from said first layer; and

notifying a developer of an interface mismatch between
said first layer and said second layer upon said checking
determining the existence of said second module,
wherein said interface mismatch corresponds to changes
made to a first module contained in said final set of
modules referenced by said second module,

US 8,694,966 B2
17

whereby said developer is enabled to fix said interface
mismatch before integration of said set of layers from
different code repositories.

11. The method of claim 10, further comprising storing
said reference data in a secondary storage after said generat
1ng,

wherein said finding finds said referencing set of modules
after retrieving said reference data from said secondary
storage without requiring said inspecting of the instruc
tions forming the modules in layers other than said first
layer.

12. The method of claim 1, wherein said plurality of mod
ules forming said application is divided into a set of packages,
with each package related a corresponding functionality pro
vided by said application, wherein said changed set of mod
ules is contained in a first package contained in said set of
packages, said first package being related to a first function
ality provided by said application, said method comprising:

checking whether said referencing set of modules includes
a third module belonging to a third package contained in
said set of packages, said third package being different
from said first package and being related to a third func
tionality different from said first functionality;

notifying a code reviewer to review the impact of said first
functionality on said third functionality upon said
checking determining the existence of said third module.

13. A system facilitating testing of an application in rela
tion to changes to a set of modules contained in a plurality of
modules forming said application, said system comprising:

a processor;
a random access memory (RAM); and
a non-transitory machine readable medium to store a first

set of instructions and a second set of instructions,
wherein said first set of instructions when retrieved into
said RAM and executed by said processor form said
application, said second set of instructions when
retrieved into said RAM and executed by said processor
form a testing tool designed to perform the actions of:
determining a final set of modules by static analysis of

said plurality of modules, said final set of modules
including said changed set of modules and a referenc
ing set of modules of said plurality of modules,
wherein each module of said referencing set of mod
ules references at least one of said changed set of
modules either as immediate reference or multi-level
reference through other modules,

said final set of modules not including any module by
virtue of being referenced by any of said changed set
of modules,

wherein said application contains a first module which is
immediately referenced by one of said changed set of
modules, wherein said determining does not include
said first module in said referencing set of modules;

identifying a set of test cases to covertesting of said final
set of modules, wherein said identifying includes a
test case in said set of test cases only if the test case
operates to test at least one of said final set of modules
Such that said set of test cases is a minimal set that
covers testing of all of said final set of modules; and

10

15

25

30

35

40

45

50

55

running said set of test cases with said changed set of 60
modules merged into said plurality of modules,

wherein said determining by said static analysis comprises:
generating a reference data by inspecting the instruc

tions forming said plurality of modules, wherein said
reference data specifies for each module a corre
sponding set of modules contained in said plurality of
modules that are referenced by said module:

65

18
finding, in response to said receiving, said referencing

set of modules by examining said reference data; and
adding said referencing set of modules to said

changed set of modules to create said final set of
modules.

14. The system of claim 13, wherein said plurality of mod
ules are maintained in a code repository, and wherein said
testing tool performs said determining before merging said
changed set of modules with said application in said code
repository.

15. The system of claim 13, wherein for said generating,
said testing tool further performs the actions of:

receiving, from a developer, additional data indicating that
a first module is indirectly referenced by a second mod
ule, said first module and said second module being
contained in said plurality of modules,

wherein said generating generates said reference data to
specify that said first module is referenced by said sec
ond module based on said additional data.

16. The system of claim 13, wherein for said finding, said
testing tool performs the actions of

examining said reference data to identify a second set of
modules, wherein each of said second set of modules has
an immediate reference to at least one of said changed
set of modules;

performing iteratively said examining to identify a plural
ity of levels of modules based on said second set of
modules, wherein said second set of modules is consid
ered as a first level of modules and each of a next level of
modules has reference to at least one of a previous level
of modules, said next level of modules and said previous
level of modules being contained in said plurality of
modules; and

including said second set of modules and said plurality of
levels of modules in said referencing set of modules.

17. The system of claim 13, wherein a plurality oftest cases
are used to test said application, said testing tool further
performing the actions of:

maintaining a mapping data specifying a corresponding
one of a plurality of subsets of modules tested by each of
said plurality of test cases, said plurality of Subsets of
modules being contained in said plurality of modules,

wherein for said identifying said set of test cases for a first
module contained in said final changed set of modules,
said testing tool performs the actions of

checking whether said first module is contained in said
plurality of subsets of modules; and

including a first test case in said set of test cases only when
said checking determines that said first module is con
tained in the corresponding Subset of modules, said first
test case being contained in said plurality of test cases.

18. The system of claim 13, wherein a plurality oftest cases
are used to test said application, wherein said plurality of test
cases are also included in said plurality of modules forming
said application, wherein for said identifying, said testing tool
performs the actions of:

checking whether each of said final set of modules is of a
test case type; and

including the modules that are of said test case type in said
set of test cases.

19. A non-transitory machine readable medium storing one
or more sequences of instructions for causing a system to
facilitate identifying of test cases to be run after changes to an
application, wherein execution of said one or more sequences
of instructions by one or more processors contained in said
system causes said system to perform the actions of:

US 8,694,966 B2
19

receiving a plurality of modules for said application, said
plurality of modules including a first set of modules
implementing a corresponding functionality of said
application, and a second set of modules representing
test cases to test to said first set of modules,

wherein each of said set of modules is designed to test
corresponding one or more modules of the first set of
modules by referencing said corresponding one or more
modules;

generating a reference data by inspecting the instructions
forming said plurality of modules, wherein said refer
ence data specifies for each module, including said sec
ond set of modules, a corresponding set of modules
contained in said plurality of modules that are refer
enced by said module:

receiving an indication that a set of modules have changed,
wherein said set of modules is contained in said plurality
of modules;

finding, based on said reference data and upon said receiv
ing of said indication, a referencing set of modules
which reference any of said changed set of modules
either as immediate reference or multi-level reference
through other modules, wherein said referencing set of
modules contains at least one module by said immediate
reference and at least one module by said multi-level
reference, said referencing set of modules being con
tained in said plurality of modules,

wherein said changed set of modules and said referencing
set of modules together form a final set of modules; and

determining those modules of said final set of modules that
are contained in said second set of modules as a set of
test cases to cover testing of said final set of modules,

wherein said final set of modules does not include any
module by virtue of being referenced by any of said
changed set of modules, wherein said application con
tains a first module which is immediately referenced by
one of said changed set of modules, wherein said finding
does not include said first module in said referencing set
of modules,

5

10

15

25

30

35

20
wherein said set of test cases is a minimal set that covers

testing of all of said final set of modules.
20. The non-transitory machine readable medium of claim

19, wherein said generating comprises one or more instruc
tions for:

receiving, from a developer, additional data indicating that
a first module is indirectly referenced by a second mod
ule, said first module and said second module being
contained in said plurality of modules,

wherein said generating generates said reference data to
specify that said first module is referenced by said sec
ond module based on said additional data.

21. The non-transitory machine readable medium of claim
19, wherein said finding comprises one or more instructions
for:

examining said reference data to identify a first level of
modules, wherein each of said first level of modules has
an immediate reference to at least one of said changed
set of modules;

performing iteratively said examining to identify a plural
ity of levels of modules based on said first level of
modules, wherein a next level of modules has reference
to at least one of a previous level of modules; and

including said first level of modules and said plurality of
levels of modules in said referencing set of modules,

wherein said first level of modules, said next level of mod
ules and said previous level of modules are contained in
said plurality of modules.

22. The non-transitory machine readable medium of claim
19, wherein said second set of modules is of a test case type,
wherein said determining comprises one or more instructions
for:

checking whether each of said final set of modules is of said
test case type; and including only those modules of said
final set of modules that are of said test case type in said
set of test cases.

ck c: ck ci: c

