WO 2004/046971 A1 ||| 080 0000 0l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
3 June 2004 (03.06.2004)

(10) International Publication Number

WO 2004/046971 A1l

(51) International Patent Classification’: GO6F 17/30,
7/00, 12/00, 12/08
(21) International Application Number:
PCT/US2003/036699

(22) International Filing Date:
14 November 2003 (14.11.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/426,464 14 November 2002 (14.11.2002) US

(71) Applicant (for all designated States except US): ISILON
SYSTEMS, INC. [US/US]; 220 West Mercer Street #501,
Seattle, WA 98119 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MIKESELL, Paul,
A. [US/US]; 2400 4th Avenue #171, Seattle, WA 98121
(US). ANDERSON, Rob [US/US]; 6330 14th Avenue NE,

Seattle, WA 98106 (US). PASSEY, Aaron, J. [US/US];
5402 17th Avenue NE, Seattle, WA 98107 (US). GOD-
MAN, Peter, John [GB/US]; 4221 Aikins Avenue SW,
Seattle, WA 98116 (US). KHAN, Hasssan, F. [PK/US];
2514 Fourth Avenue, Apt. 801, Seattle, WA 98121 (US).
SCHACK, Darren, P. [US/US]; 415 West Republic Street
#440, Seattle, WA 98119 (US).

(74) Agent: DELANEY, Karoline, A.; KNOBBE,
MARTENS, OLSON AND BEAR, LLP, 2040 Main

Street, Fourteenth Floor, Irvine, CA 92614 (US).

(81) Designated States (national): AE, AG, AL, AM, AT (util-
ity model), AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE
(utility model), DE, DK, DM, DZ, EC, EE (utility model),
EE, EG, ES, HI (utility model), FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK (utility model), SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR RESTRIPING FILES IN A DISTRIBUTED FILE SYSTEM

-
| INTELLIGENT DISTRIBUTED FILE SYSTEM a3
o7t 174 174 174 !
| A A i
|
| SMART SMART SMART SMART 1
: STORAGE STORAGE STORAGE STORAGE !
| UNIT unIT UNIT UNIT \
| 0 1 2 3]
[i
o ? ! P
! 1
! 1
S KU I
125
SWITCH
| — 120
SERVER
140
COMMUNICATION
MEDIUM 145
INTERNET
130 130
USER USER USER
l/Ja

(57) Abstract: Systems and methods for restriping files
distributed among a set of smart storage units 114, wherein
data blocks for a particular stripe do not typically need to be
located at any particular location on the storage units, wherein
data can be typically restriped among the smart storage units
with minimal data movement, and wherein data is typically
protected and recoverable even if a system failure occurs during
the restriping process.One embodiment relates to a method of
selecting a storage unit 114 for a block of data. The method
comprises identifying storage units 114 on which the block of
data is currently stored; identifying an optimal location on first
storage unit; determining a set of optimal storage units; if the
first storage unit is one of the storage units on which the block
of data is currently stored, selecting the first storage unit; and
if the first storage unit is not in the list of storage units on which
the block of data is currently stored, selecting one of the set
of optimal storage units.Another aspect of the present invention
relates to a method of restriping data stored in a plurality of
smart storage devices 114 in an intelligent distributed file
system 110. The method comprises identifying at least one
smart storage device on which clusters of data from an existing
file may be stored; storing the clusters on the identified smart
storage device; determining that the clusters were successfully
stored; and updating metadata related to the clusters of data to
reflect new assignments.

WO 2004/046971 A1 1IN N0 A0VOH0 T 00000 00O

(84) Designated States (regional): ARIPO patent (BW, GH, Published:

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), — with international search report

Eurasian patent (AM, AZ, BY, KG, KZ,MD,RU, TJ, TM), — before the expiration of the time limit for amending the
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, claims and to be republished in the event of receipt of
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, amendments

SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
Declaration under Rule 4.17: ance Notes on Codes and Abbreviations" appearing at the begin-
— of inventorship (Rule 4.17(iv)) for US only ning of each regular issue of the PCT Gagzette.

WO 2004/046971 PCT/US2003/036699

SYSTEMS AND METHODS FOR RESTRIPING FILES IN A
DISTRIBUTED FILE SYSTEM

[0001] This application claims the benefit of U.S. Provisional Application No.
60/426,464 filed November 14, 2002, which is hereby incorporated by reference in its
entirety.

FIELD OF THE INVENTION

[0002] The systems and methods of the present invention relate generally to the
field of distributed file storage, and in particular to restriping files stored in an intelligent
distributed file management system.

BACKGROUND

[0003] The explosive growth of the Internet has ushered in a new area in which
information is exchanged and accessed on a constant basis. In response to this growth, there
has been an increase in the size of data that is being shared. Users are demanding more than
standard HTML documents, wanting access to a variety of data, such as, audio data, video
data, image data, and programming data. Thus, there is a need for data storage that can
accommodate large sets of data, while at the same time provide fast and reliable access to the
data.

[0004] One response has been to utilize single storage devices which may store
large quantities of data but have difficulties providing high throughput rates. As data
capacity increases, the amount of time it takes to access the data increases as well.
Processing speed and power has improved, but disk I/O (Input/Output) operation
performance has not improved at the same rate making I/O operations inefficient, especially
for large data files.

[0005] Another response has been to allow miultiple servers access to shared disks
using architectures, such as, Storage Area Network solutions (SANS), but such systems are
expensive and require complex technology to set up and to conirol data integrity. Further,

high speed adapters are required to handle large volumes of data requests. \

WO 2004/046971 PCT/US2003/036699

[0006] One problem with éonventional approaches is that they are limited in their
scalability. Thus, as the volume of data increases, the systems need to grow, but expansion is
expensive and highly disruptive.

[0007] Another common problem with conventional approaches is that they are
limited in their flexibility. The systems are often configured to use predefined error
correction conirol. For example, a RAID system may be used to provide redundancy and
mirroring of data files at the physical disk level giving administrators little or no flexibility in
determining where the data should be stored or the type of redundancy parameters that should
be used. | .

SUMMARY

[0008] The intelligent distributed file system advantageously enables the storing
of file data among a set of smart storage units that are accessed as a single file system. The
intelligent distributed file system advantageously utilizes a metadata data structure to track
and manage detailed information about each file, including, for example, the device and
block locations of the file’s data blocks, to permit different levels of replication and/or
redundancy within a single file system, to facilitate the change of redundancy parameters, to
provide high-level protection for metadata, to replicate and move data in real-time, and so
forth.

[0009] The intelligent distributed file system may also advantageously include
systems and methods for restriping files distributed among a set of smart storage units,
wherein data blocks for a particular stripe do not typically need to be located at any particular
location on the storage units, wherein data may be restriped among the smart storage units
with minimal data movement, and wherein data is typically protected and recoverable even if
a system failure occurs during the restriping process.

[0010] One aspect of the present invention relates to a distributed file system
communicating with a plurality of intelligent storage devices, wherein the distributed file
system comprises a messaging system and is configured to store and manage metadata about
files and directories stored on the distributed file system such that the metadata includes
locations of metadata data blocks, contéi}t data blocks, and parity data blocks, and the

distributed file system is further configured to restripe data files.

WO 2004/046971 PCT/US2003/036699

[0011] Another aspect of the present invention relates to a method of restriping
data stored in a plurality of smart storage devices in an intelligent distributed file system.
The method comprises identifying at least one smart storage device on which clusters of data
from an existing file may be stored; storing the clusters on the identified smart storage
device; determining that the clusters were successfully stored; and updating metadata related
to the clusters of data to reflect new assignments.

[0012] An additional aspect of the present invention relates to a system for
restriping data. The system comprises a plurality of smart devices, the smart devices
configured to store data blocks in stripes distributed among the smart devices; an assignment
module configured to assign data blocks to smart devices; a request module configured to
send instructions to the smart devices to store the data blocks after the data blocks are
assigned; and an update module configured to update metadata related to the data blocks after
the data blocks are stored.

[0013] Another aspect of the present invention relates to a method of restriping a
data comprised of data blocks. The method comprises assigning a data block to storage unit;
determining if the data block is already stored on the storage unit; storing the data block on
the storage unit if it is not already residing on the storage unit; and updating metadata related
to the data block if the data block has been stored.

[0014] An additional aspect of the present invention relates to a method of
assigning data blocks to storage units. The method comprises identifying available storage
units; selecting an available storage unit for each data block; and determining related address
locations for each selected storage unit.

[0015] Another aspect of the present invention relates to a method of selecting a
storage unit from a set of storage units for storing a block of data in a protection group. The
method comprises identifying which storage unit from the set of storage units is the optimal
storage unit in relation to the protection group; and selecting the optimal storage unit.

[0016] An additional aspect of the present invention relates to a method of
selecting a storage unit for a block of data. The method comprises identifying storage units
on which the block of data is currently stored; identifying an optimal location on a first

storage unit; determining a set of optimal storage units; if the first storage unit is one of the

WO 2004/046971 PCT/US2003/036699

storage units on which the block of data is currently stored, selecting the first.storage unit;
and if the first storage unit is not one of the storage units on which the block of data is
currently stored, selecting one of the set of optimal storage units.

[0017] Another aspect of the present invention relates to a system having a
storage device containing instructions that, when executed, cause the system to perform the
method of identifying storage devices on which clusters of data from existing files will be
stored; storing the clusters on the identified storage devices; determining that the clusters
were successfully stored; and updating metadata related to the clusters of data.

[0018] For purposes of this summary, certain aspects, advantages, and novel
features of the invention are described herein. It is to be understood that not necessarily all
such advantages may be achieved in accordance with any particular embodiment of the
invention. Thus, for example, those skilled in the art will recognize that the invention may be
embodied or carried out in a manner that achieves one advantage or group of advantages as
taught herein without necessarily achieving other advantages as may be taught or suggested
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Figure 1 illustrates a high-level block diagram of one embodiment of the
present invention.

[0020] Figure 2 illustrates a sample flow of data among the components
illustrated in Figure 1.

[0021] Figure 3 illustrates a high-level block diagram of a sample smart storage

unit.

[0022] Figure 4 illustrates a sample file directory.

[0023] Figure 5 illustrates one embodiment of a metadata data structure.

[0024] Figure 6A illustrates one embodiment of a data location table structure.

[0025] Figure 6B illustrates an additional embodiment of a data location table
structure. .

[0026] Figure 6C illustrates an additional embodiment of a data location table
structure.

WO 2004/046971 PCT/US2003/036699

[0027] Figure 6D illustrates an additional embodiment of a data location table
structure.

[0028] Figure 7A illustrates one embodiment of a metadata data structure for a
directory. '

[0029] Figure 7B illustrates one embodiment of a metadata data structure for a
file. |

[0030] Figure 8A illustrates one embodiment of a data location table.

[0031] Figure 8B illustrates an additional embodiment of a data location table.

[0032] Figure 8C illustrates an additional embodiment of a data location table.

[0033] . Figure 9 illustrates a sample metadata data structure of a file with
corresponding sample data.

[0034] Figure 10 illustrates one embodiment of a flow chart for retrieving data.

[0035] Figure 11 illustrates one embodiment of a flow chart for performing name
resolution.

[0036] Figure 12 illustrates one embodiment of a flow chart for retrieving a file.

[0037] Figure 13 illustrates one embodiment of a flow chart for creating parity
information.

[0038] Figure 14 illustrates one embodiment of a flow chart for performing error
correction.

[0039] Figure 15 illustrates one embodiment of flow chart for restriping data in
the intelligent distributed file system.

[0040] Figure 16 illustrates one embodiment of a flow chart for assigning data to
smart storage units.

[0041] Figure 17 illustrates one embodiment of a flow chart for selecting among a
set of available smart storage units.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0042] Systems and methods which represent various embodiments and example
applications of the invention will now be described with reference to the drawings.
Variations to the systems and methods which represent other embodiments ‘will also be

described.

WO 2004/046971 PCT/US2003/036699

[0043] For purposes of illustration, some embodiments will be described in the
context of Internet content-delivery and web hosting. The inventors contemplate that the
present invention is not limited by the type of environment in which the systems and methods
are used, and that the systems and methods may be used in other environments, such as, for
example, the Internet, the World Wide Web, a private network for a hospital, a broadcast
network for a government agency, an internal network of a corporate enterprise, an intranet, a
local area network, a wide area network, and so forth. The figures and descriptions, however,
relate to an embodiment of the invention wherein the environment is that of Internet content-
delivery and web hosting. It is also recognized that in other embodiments, the systems and
methods may be implemented as a single module and/or implemented in conjunction with a
variety of other modules and the like. Moreover, the specific implementations described
herein are set forth in order to illustrate, and not to limit, the invention. The scope of the
invention is defined by the appended claims.

[0044] These and other features will now be described with reference to the
drawings summarized above. The drawings and the associated descriptions are provided to
illustrate embodiments of the invention and not to limit the scope of the invention.
Throughout the drawings, reference numbers may be re-used to indicate correspondence
between referenced elements. In addition, the first digit of each reference number generally
indicates the figure in which the element first appears.

I. OVERVIEW

[0045] The systems and methods of the present invention provide an intelligent
distributed file system, which enables the storing of data among a set of smart storage units
that are accessed as a single file system. The intelligent distributed file system tracks and
manages detailed metadata about each file. Metadata may include any data that relates to
and/or describes the file, such as, for example, the location of the file’s data blocks, including
both device and block location information, the location of redundant copies of the metadata
and/or the data blocks (if any), error correction information, access information, the file’s
name, the file’s size, the file’s type, the smart storage units on which the file’s data and
protection information is stored, and so forth. In addition, the intelligent distributed file

system permits different levels of replication and/or redundancy for different files and/or data

WO 2004/046971 PCT/US2003/036699

blocks which are managed by the file system, facilitates the changing of redundancy
parameters while the system is active, facilitates the recovery of missing data while the
system is active, and enables the real-time replication and movement of metadata and data.
Further, each smart storage unit may respond to a file request by locating and collecting the
file’s data from the set of smart storage units.

[0046] The intelligent distributed file system advantageously provides access to
data in situations where there are a large number of READ requests especially in proportion
to the number of WRITE requests. This is due to the added complexities of locking a group
of smart storage units, or journaling on the smart storage units to ensure coﬁsistency for
WRITE requests. Furthermore, the intelligent distributed file system advantageously handles
block transactions wherein requests for large blocks of data are common.

[0047] One benefit of some embodiments is that the metadata for files and
directories is managed and accessed by the intelligent distributed file system. The metadata
may indicate where the metadata for a directory or file is located, where content data is
stored, where mirrored copies of the metadata and/or content data are stored, as well as where
parity or other error correction information related to the system is stored. Data location
information may be stored using, for example, device and block location information. Thus,
the intelligent distributed file system may locate and retrieve requested content data using
metadata both of which may be distributed and stored among a set of smart storage units. In
addition, because the intelligent distributed file system has access to the metadata, the
. intelligent distributed file system may be used to select where data should be stored and to
move, replicate, recover, and/or change data without disrupting the set of smart storage units.

[0048] Another benefit of some embodiments is that data for each file may be
stored across several smart storage units and accessed in a timely manner. Data blocks for
each file may be distributed among a subset of the smart storage units such that data access
time is reduced. Further, different files may be distributed across a different mumber of smart
storage units as well as across different sets of smart storage units. This architecture enables
the intelligent distributed file system to store data blocks intelligently based on factors, such
as, the file’s size, importance, anticipated access rate, as well as the available storage

capacity, CPU utilization, and network utilization of each smart storage unit.

WO 2004/046971 PCT/US2003/036699

[0049] An additional benefit of some embodiments is that the systems and
methods may be used to provide various protection schemes, such as, error correction,
redundancy, and mirroring, on a block or file basis such that different blocks or files stored
among the smart Storage -units may have different types of protection. For example, some
directories or files may be mirrored, others may be protected with error and/or loss correction
data using a variety of error or loss correction schemes, and others of lower importance may
not use any protection schemes.

[0050] A further benefit of some embodiments is that the systems and methods
may enable the real-time addition, deletion, and/or modification of smart storage units
without disrupting or interrupting ongoing data requests. Thus, as more storage is required,
additional smart storage units may be added to the set of smart storage units and'incorporated
into the intelligent distributed file system in real-time without interrupting the file requests or
having to take the existing smart storage units offline. The existing smart storage units may
process requests for files as the data blocks of existing files or new files are beinlg distributed
by the intelligent distributed file system across the set of smart storage units which now
includes the new smart storage units.

[0051] Another benefit of some embodiments is that the systems and methods
may perform real-time modifications to the storage of the data blocks by replicating those
blocks on one or more of the smart storage units, and thus creating multiple points of access
for any individual data block. This replication helps to reduce the utilization of CPU and
network resource requirements for individual smart storage units for a file or group of files
for whi(\:h frequent access patterns have been observed. These access patterns are monitored
by the smart storage units, and the intelligent distributed file system affords the smart storage
units the flexibility to make such data replications while the intelligent distributed file system
is still operating.

[0052] A further benefit of some embodiments is that the systems and methods
permit real-time relocation of data files through the restriping of the files over one or more
smart storage units. This restriping may, in some embodiments, be advantageously
performed with a minimal amount of data block movement preserving the integrity of data

and ensuring recoverability even if a system failure occurs during the restriping process. This

WO 2004/046971 PCT/US2003/036699

restriping system advantageously does not require particular data blocks to be located at any
particular location on the smart storage units, continues to provide protection for the stored
data blocks, and allows for data recoverability even if one or more of the smart storage units
- fails.

II. SAMPLE OPERATION

[0053] For purposes of illustration, a sample scenario will now be discussed in
which the intelligent distributed file system is used in operation. In this sample scenario, the
intelligent distributed file system is used by a company that offers movie downloads via an
Internet web site. The company may use the intelligent distributed file system to store and
manage copies of downloadable movies as well as movie trailers, advertisements, and
customer information that are accessed by customers via the web site. The data may be
stored with various levels of protection and stored across multiple smart storage units for fast
access.

[0054] For example, the company may want to store customer sﬁrvey emails
across several smart storage units in the intelligent distributed file system to provide fast
access to the emails. The company may, however, keep backup tapes of all emails and may
feel that it is not vital to enable immediate recovery of customer surveys. The company may
instruct the intelligent distributed file system not to use error correction or mirroring
protection on the customer survey emails. Thus, if one or more of the smart storage units
become inaccessible, the company may feel it is acceptable that access to the customer survey
emails on those smart storage units is delayed until the emails can be restored from the
backup tapes.

[0055] For advertisements, the company may instruct the intelligent distributed
file system to use high error correction parameters such that if one or more smart storage
units fail, the intelligent distributed file system can recover the data without interrupting the
display of the advertisement. For example, the company may rely upon various fault
tolerance measurements to assist in determining how much protection should be given to a
particular file. For important information, the company may want to ensure a fault tolerance
level of X, and for less important information, the company want to ensure a fault tolerance

level of Y where X > Y. Thus, the company may ensure its advertisers that the

WO 2004/046971 PCT/US2003/036699

advertisements will be available on a reliable basis even if one or more of the smart storage
units fail. It is recognized that other measurements, in addition to or instead of fault tolerance
may be used, and that fault tolerance is used to illustrate one measurement of reliability.

[0056] For the top movie downloads, the company may advantageously set up the
intelligent distributed file system to automatically store multiple copies of the movie data to
enable more customers access to the data and to ensure that if one or more of the smart
storage units fail, then the missing data may be regenerated or retrieved from other locations.
Moreover, aciditional copies of the top movie downloads may be created and stored among
the smart storage units if the number of requests increases and/or if one or more of the smart
storage units begins to become flooded with requests for the data that resides on the smart
storage unit.

[0057] The company may choose to offer other movies that are not as popular and
may instruct the intelligent distributed file system to store fewer copies due to the lower
demand. Further, as the “top download movies” become less popular, the company may
advantageously set up the intelligent distributed file system to delete extra copies‘of the
movies from the smart storage units on which the movies are stored and meve the “less
popular” movies to smart storage units with slower performance (e.g., those smart storage
units with less available disk space). The intelligent distributed file system may be set to
automatically take care of these tasks using the smart storage units.

[0058] In addition, as the company acquires.more movies, the company may add
additional smart storage units to the intelligent distributed file system. The company may
then use the new smart storage units to store more movies, to store more copies of existing
movies, to redistribute exisﬁng movie data to improve response time, and/or change the
protection scheme of one or more files. The additional smart storage units are incorporated
into the intelligent distributed file system such that the intelligent distributed file system
appears as a single file system even though the intelligent distributed file system manages and
stores data among a set of multiple smart storage units.

[0059] If one of the smart storage units falls, the intelligent distributed file system
may reconstruct any file data that was stored on the failed unit, store the information on

working units, and update the appropriate metadata data structures. Thus, if the user requests

-10-

WO 2004/046971 PCT/US2003/036699

a file that is partially stored on the failed unit, the user may still receive the file’s data without
knowing that one of the units is down.

[0060] In this example, the intelligent distributed file system provides the
company the ability to offer reliable and fast access to top movie downloads, fast access to
less popular movies, and access to customer survey emails. For each file, the company may
set error and/or loss correction parameters and may select how inany additional copies of the
file should be stored. In some situations, the company may manually choose how many
copies of data should be stored and determine where to store the data. In other situations, the
company may rely on the features of the intelligent distributed file system to select how many
copies of data should be stored, the error and/or loss correction scheme that should be used
(if any), and/or where the data should be stored. Thus, the company is able to efficiently use
its storage space to better respond to user requests. Storage space is not wasted on sparsely
requested files, and error correction information is not generated and stored for unimportant
files.

[0061] While the example above involves a company that offers movies for
downloading, it is recognized that this example is used only to illustrate features of one
embodiment of an intelligent distributed file system. Further, the intelligent distributed file
system may be used in other environments and may be used with other types of and/or
combinations of data, including, for example, sound files, audio files, graphic files,
mljlltimedia files, digital photographs, executable files, and so forth.

/ III. INTELLIGENT DISTRIBUTED FILE SYSTEM
[0062] Figure 1 illustrates one embodiment of an intelligent distributed file

system 110 which communicates with a network server 120 to provide remote file access.
The intelligent distributed file system 110 may communicate with the network server 120
using a variety of protocols, such as, for example, NFS or CIFS. Users 130 interact with the
network server 120 via a communication medium 140, such as the Internet 145, to request
‘ﬁles managed by the intelligent distributed file system 110. The exemplary intelligent
distributed file System 110 makes use of a switch component 125 that communicates with a
set of smart storage units 114 and the network server 120. The intelligent distributed file

system 110 enables blocks of an individual file to be spread across multiple smart storage

-11-

WO 2004/046971 PCT/US2003/036699

units 114. This data is stored such that access to the data provides a higher throughput rate
than if the data was stored on a single device. In addition, the intelligent distributed file
system 110 may be used to store a variety of data files which are stored using a variety of
protection schemes.

[0063] The exemplary intelligent distributed file system 110 stores data among a
set of smart storage units 114. For a more detailed description about the smart storage units
114, please refer to the section below entitled “Smart Storage Units.”

[0064] The exemplary intelligent distributed file system makes use of a switch
component 125, such as a load balancing switch, that directs requests to an application server
that can handle the type of data that has been requested. The incoming requests are
forwarded to the appropriate application servers using high-speed technology to minimize
delays and to ensure data integrity.

[0065] Tt is recognized that a variety of load balancing switches 125 may be used,
such as, for example, the 1000 Base-T (copper) Gigabit Load Balancing Ethernet Switch, the
Extreme Networks Summit 71, the Foundry Fast Iron II, the Nortel Networks Alteon
ACEswitch 180, F5 Big-Ip), as well as standard Ethernet switches or other load balancing
switches. The intelligent distributed file system makes use of a switch that supports large
frame sizes, such as, for example, “jumbo” Ethernet frames. In addition, the load balancing
switch 125 may be implemented using Foundry Networks’ Serverlron switches, Asante’s
InstraSwitch 6200 switches, Asante’s HotStack, Cisco’s Catalyst switches, as well as other
commercial products and/or proprietary products. One of ordinary skill in the art, however,
will recognize that a wide range of switch components 125 may be used or that other
technology may be used. Furthermore, it is recognized that the switch component 125 may be
configured to transmit a variety of network frame sizes.

[0066] Files of high importance may be stored with high error correction
parameters that provide the data with a high recovery rate in case of disk, motherboard, CPU,
operating system, or other hardware or software failure that prevents access to one or more of
the smart storage units. If any data is lost or missing, a smart storage unit 114 may use the

redundancy information or mirroring information in the metadata to obtain the data from

-12-

WO 2004/046971 PCT/US2003/036699

another location or to recreate the data. Files in high demand may be mirrored in real-time
across the additional smart storage units 114 to provide even higher throughput rates.

[0067] In one embodiment of the intelligent distributed file system 110, the
metadata data structure has at least the same protection as the data that it references including
any descendants of the directory that corresponds to the metadata data structure. Loss of data
in a metadata data structure harms the intelligent distributed file system 110 as it is difficult
to retrieve the data without its metadata data structure. In the intelligent. distributed file
system 110, alternate copies of the metadata data structure may be mirrored in as many
locations as necessary to provide the required protection. Thus, a file with parity protection
may have its metadata data structure stored with at least the same or greater parity protection
and a file mirrored twice may have its metadata data structure at least mirrored in two
locations.

[0068] While Figure 1 illustrates one embodiment of an intelligent distributed file
system 110, it is recognized that other embodiments may be used. For example, additional -
servers, such as, application severs may communicate with the switch component 125. These
application severs may include, for example, audio streaming servers, video streaming
servers, image processing servers, database servers, and so forth. Furthermore, there may be
additional devices, such as workstations, that communicate with the switch component 125.
In addition, while Figure 1 illustrates an intelligent distributed file system 110 working with
four smart storage units 114, it is recognized that the intelligent distributed file system 110
may work with different numbers of smart storage units 114.

[0069] It is also recognized that the term “remote” may include devices,
components, and/or modules not stored locally, that is not accessible via the local bus. Thus,
a remote device may include a device which is physically located in the same room and
connected via a device such as a switch or a local area network. In other situations, a remote
device may also be located in a separate geographic area, such as, for example, in a different
location, country, and so forth.

[0070] It is also recognized that a variety of types of data may be stored using the
intelligent distributed file system 110. For example, the intelligent distributed file system

110 may be used with large file applications, such as, for example, video-on-demand, online

13-

WO 2004/046971 PCT/US2003/036699

music systems, web-site mirroring, large databases, large graphic files, CAD/CAM design,
software updates, corporate presentations, insurance claim files, medical imaging files,
corporate document storage, and so forth.

[0071] Figure 2 illustrates a sample environment in which a web site user 130 has
submitted a request to watch an on-demand digital video. In event A, the user 130 sends a
request via the Internet 145 to a web site requesting to view a copy of the movie,
mymovie.movie. The request is received by the web site’s server 120, and the server 120
determines that the file is located at \movies\comedy\mymovie.movie. In event B, the
switch component 125 of the intelligent distributed file system 110 sees the request to
connect to the intelligent distributed file system 110 and forwards the request to an available
smart storage unit 114, such as smart storage unit 0, using standard load balancing
techniques. In event C, smart storage unit O receives the request for the file
/DFSR/movies/comedy/mymovie.movie and determines from its root metadata data
structure (for the root directory /DFSR) that the metadata data structure for the subdirectory
movies is stored with smart storage unit 2. In event D, smart storage unit 0 sends a request
to smart storage unit 2 requesting the location of the metadata data structure for the
subdirectory comedy. In event E, smart storage unit O receives information that the metadata
data structure for the subdirectory comedy is stored with smart storage unit 3. In event F,
smart storage unit 0 sends a request to smart storage unit 3 requesting the location of the
metadata data structure for the file mymovie.movie. In event G, smart storage unit 0
receives information that the metadata data structure for the file mymovie.movie is stored
with smart storage unit 0. Smart storage unit O then retrieves the metadata data structure for
the file mymovie.movie from local storage in event H. From the metadata data structure,
smart storage unif 0 retrieves the data location table for mymovie.movie which stores the
location of each block of data in the file. Smart storage unit O then uses the data location
table information to begin retrieving locally stored blocks and sending requests for data
stored with other smart storage units.

[0072] After the file’s data or a portion of the data has been retrieved, the file data
is sent to the requesting server 120 to be forwarded to the requesting user 130. In one

example, the file data may be routed to a video streaming server which regulates how and

-14-

WO 2004/046971 PCT/US2003/036699

when the data is sent to the user 130. It is recognized that in some embodiments, it may be
advantageous to utilize read ahead techniques to retrieve more data then requested so as to
reduce the latency of the requests.

IV. INTELLIGENT FILE SYSTEM STRUCTURE

[0073] Table 1 illustrates one embodiment of a sample set of file system layers
through which a file request is processed in order to access the physical storage device. The
exemplary file system layers include a User layer, a Virtual File System layer, a Local File

System layer, a Local File Store layer, and a Storage Device layer.

User Layer
User Space
Kernel Space
Virtual File System Layer
Local File System Layer
Local File Store Layer
Storage Device Layer

Table 1

[0074] In one type of file request, the request is received via a user-level protocol
application for file sharing, such as, for example, HT'TPD (the Apache web server), FTPD, or
SMBD used on Unix which implements a version of the Microsoft Windows file sharing
server protocol. The user-level protocol application performs a kernel level open, read, seek,
write, or close system call, such as, for example, by making a function call to 1ibc, the C
runtime library.

[0075] The system call is passed onto the Virtual File System layer (“VFS”),

which maintains a buffer cache. The buffer cache may be, for example, a least recently used

-15-

WO 2004/046971 PCT/US2003/036699

(“LRU”) cache of buffers used to store data or metadata data structures which are received
from the lower file system layers.

[0076] The next layer is the Local File | System layer which maintains the
hierarchical naming system of the file system and sends directory and filename requests to the
layer below, the Local File Store layer. The Local File System layer handles metadata data
structure lookup and management. For example, in some systems, such as Unix-based file
systems, the metadata data structure is a file abstraction which includes information about file
access permissions, data block locations, and reference counts. Once a file has been opened
via its name, other file operations reference the file via a unique identifier which identifies
the metadata structure for the specific file. The benefits of this approach are that a single file
may have many different names, a single file may be accessed via different paths, and new
files may be copied over old files in the VFS namespace without overwriting the actual file
data via the standard UNIX user level utilities, such as, for example, the ‘mv’ command.
These benefits may be even more advantageous in environments such as content-delivery and
web hosting because content may be updated in place without disrupting current content
serving. The reference count within the metadata data structure enables the system to only
invalidate the data blocks once all open file handles have been closed.

[0077] The fourth layer is the Local File Store layer which handles “buffer request
to block request” translation and data buffer request management. For example, the Local
File Store layer uses block allocation schemes to improve and maximize throughput for
WRITES and READS, as well as block retrieval schemes for reading.

[0078] The last layer is the Storage Device layer which hosts the device driver for
the particular piece of disk hardware used by the file system. For example, if the physical
storage device is an ATA disk, then the Storage Device layer hosts the ATA disk driver.

[0079] While Table 1 illustrates one sample set of file system layers, H is
recognized that the systems and methods may work with a variety of different layers as well
as in different environments in which the file system layers may be defined differently or may

not exist at all.

-16-

WO 2004/046971 PCT/US2003/036699

V. SMART STORAGE UNITS

[0080] In one embodiment, the smart storage unit 114 is a plug-and-play, high-
density, rack-mountable appliance device that is optimized for high-throughput data delivery.
The smart storage unit may be configured to communicate with a variety of other smart
storage units so as to provide a single virtual file system. As more storage space is needed or
if one or more of the smart storage units fail, additional smart storage units may be installed
without having to take the entire system down or cause interruption of service. .

[0081] As used herein, the word module refers to logic embodied in hardware or
firmware, or to a collection of software instructions, possibly having entry and exit points,
written in a programming language, such as, for example, C or C++. A software module may
be compiled and linked into an executable program, installed in a dynamic link library, or
may be written in an interpreted programming language such as BASIC, Perl, or Python. It
will be appreciated that software modules may be callable from other modules or from
themselves, and/or may be invoked in response to detected events or interrupts. Software
instructions may also be embedded in firmware, such as an EPROM. It will be further |
appreciated that hardware modules may be comprised of connected logic units, such as gates
and flip-flops, and/or may be comprised of programmable units, such as programmable gate
arrays or processors. The modules described herein are preferably implemented as software
modules, but may be represented in hardware or firmware.

[0082] Figure 3 illustrates one embodiment of a smart storage unit 114 which
includes a management module 320, a processing module 330, a cache 340, a stack 350, and
a storage device 360. The exemplary smart storage unit 114 may be configured to
communicate with the switch component 125 to send and receive requests as illustrated in
Figure 1.

A. Management Module

[0083] In one embodiment, the smart storage unit includes a management module
320 for performing management tasks, such as, for example, installation, parameter setting,
monitoring of the intelligent distributed file system, logging of events that occur on the

intelligent distributed file system 110, upgrading, and so forth.

-17-

WO 2004/046971 PCT/US2003/036699

B. Processing Module

[0084] The exemplary processing module 330 may be configured to receive
requests for data files, retrieve locally and/or remotely stored metadata about the requested
data files, and retrieve the locally and/or remotely stored data blocks of the requested data
files. In addition, the processing module 330 may also perform data recovery gnd error
correction in the event that one or more of the requested data blocks is corrupt or lost.

[0085] In one embodiment, the processing module 330 includes five modules to
respond to the file requests, a block allocation manager module 331, a block cache module
333, a local block manager module 335, a remote block manager module 337. and a block
device module 339.

1. Block Allocation Manager Module

[0086] The block allocation manager 331 module determines where to allocate
blocks, locates the blocks in response to a READ request, and c;)nducts device failure
recovery. Information about where to allocate the blocks may be determined by policies set
as default parameters, policies set by the system administrator via tools, such as a graphical
user interface or a shell interface, or a combination thereof. In one embodiment, the block
allocation manager 331 resides at the Local File System layer and works in conjunction with
standard networking software layers, such as TCP/IP and Ethernet, and/or instead of Berkeley
Software Design Universal File System (“BSD UFS”).

[0087] The exemplary block allocation manager 331 includes three submodules, a
block request translator module, a forward allocator module, and a failure recovery module.

a. Block Request Translator Module

[0088] The block request translator module receives incoming READ requests,
performs name lookups, locates the appropriate devices, and pulls the data from the device to
fulfill the request. If the data is directly available, the block request translator module sends a
data request to the local block manager module or to the remote block manager module
depending on whether the block of data is stored on the local storage device or on the storage

device of another smart storage unit.

-18-

WO 2004/046971 PCT/US2003/036699

[0089] In one embodiment, the block request translator module includes a name
lookup process which is discussed below in the section entitled “Intelligent Distributed File
System Processes — Processing Name Lookups.”

[0090] The block request translator module may also respond to device failure.
For example, if a device is down, the block request translator module may request local and
remote data blocks that may be used to reconstruct the data using, for example, parity
information. Thus, the data may be generated even though the READ may not be performed.
In addition, the block request translator module may communicate with the failure recovery
module such that the failure recovery module may re-create the data using parity or other
error or loss correction data and re-stripe the loss correction data across free space in the
intelligent distributed file system. In other embodiments, the block request translator module
may request clean copies of corrupt or missing data.

b. Forward Allocator Module

[0091] The forward allocator module determines which device’s blocks should be
used for a WRITE request based upon factors, such as, for example, redundancy, space, and
perfoﬁnance. These parameters may be set by the system administrator, derived from
information embedded in the intelligent distributed file system 110, incorporated as logic in
the intelligent distributed file system 110, or a combination thereof. The forward allocator
module 110 receives statistics from the other smart storage units that use the intelligent
distributed file system, and uses those statistics to decide where the best location is to put
new incoming data. The statistics that are gathered include, for example, measurements of
. CPU utilization, network utilization, and disk utilization.

[0092] The forward allocator module may also receive latency information from
the remote block manager module based upon the response times of the remote smart storage
units. If the inter-device latency reaches a high level relative to other smart storége units, the
allocation schemes may be adjusted to favor other smart storage units underutilizing the slow
smart storage unit, if possible, based on the redundancy settings. In one advantageous
example, the intelligent distributed file system may have moved blocks of data from one
smart storage unit to another smart storage unit, updating the corresponding metadata

structures accordingly. The latency conditions may be logged through a logging system and

-19-

WO 2004/046971 PCT/US2003/036699

reported to the system administrator. Reasons for slow link conditions may be, for example,
bad network cards, incorrect duplex negotiation, or a device’s data being relatively frequently
read or written to.

[0093] A variety of strategies may be used to determine where to store the data.
These strategies may be adjusted depending on the goals of the system, such as, compliance
with parameters or preferences set by the system’s administrator, meeting of selected
redundancy levels, and/or performance improvement. The following provides a few sample
strategies that may be employed by the forward allocator module to store data. It is
recognized that a wide variety of strategies may be used in addition to or in conjunction with
those discussed below.

[0094] The forward allocator module may include an allocation scheme for
striping data across multiple smart storage units. Striping data is a common technology
typically used in high-end RAID storage devices, but may be employed in single user
workstation machines with multiple disks. Striping data simply means that diffgrent portions
of a file’s data live and/or are stored on different storage devices or disks. The advantage to
striping data is that when READ requests span the blocks located on multiple disks, each disk
participates in the aggregate throughput of data retrieval. With typical systems, striping of
data is done at the software device layer. That is, the file system has no information about the
striping of the data. Only the software layer underneath the file system understands this
structure. In some specialized pieces of hardware, this stripiﬁg is done even below the
software device layer at the actual hardware layer. In the intelligent distributed file system
110, the file system itself handles the striping of data. This implementation provides greater
flexibility with striping configurations. As an example, typical RAID technologies are
limited in that all disks must be of the same size and have the same performance
characteristics. These constraints are necessary to ensure that data is spread evenly across the
different devices. For a more detailed discussion about RAID, please refer to “The RAID
Book,” by Paul Massiglia, Sixth Edition (1997), which is herein incorporated by reference.

[0095] In addition, the forward allocation module may perform the restriping of
data in response to a user request (e.g., a change in protection scheme addition of new smart

storage units, etc.) and/or in response to the system (e.g., detection of a failed smart storage

20-

WO 2004/046971 PCT/US2003/036699

unit). It is recognized, however, that the restriping may be performed by or in conjunction
with other modules in the block allocation manager module, or by or in conjunction with
other parts of the smart storage unit.

[0096] With the intelligent distributed file system 110, differing disks and disk
sizes may be used in various smart storage units 114 and participate in the file étriping. The
forward allocator module looks up in the root metadata data structure for disk device
information and calculates the number of smart storage units across which the file data
should be spread using performance metrics or preset rules. The forward allocator module
may then allocate the blocks of the file to a set of smart storage units.

[0097] The forward allocator module may also include an allocation scheme for
parity or other error or loss correction protection. In most RAID systems, when file striping
is used, parity protection is also used such that all of the disks, except one, are used for data
storage. The last disk is purely used for parity information. This parity information is
typically calculated by taking a bitwise exclusive or (“XOR”) of each block of data across all
of the data disks. This parity information is used to perform data recovery when a disk
failure occurs. The lost data is recalculated from taking the bitwise XOR of the remaining
disks’ data blocks and the parity information. In typical RAID systems, the data is
unrecoverable until a replacement disk is inserted into the array to rebuild the lost data.

[0098] With the intelligent distributed file system 110, the lost data may be re-
computed and re-written in free space on other portions of the remaining smart storage units
because the parity protection takes place at the file system layer instead of the software
device layer. If there is not enough free space left to re-write the data, the parity data may be
overwritten with re-calculated data, and the fact that the redundancy has dropped below the
original levels may be logged and/or reported to the system administrator.

[0099] The forward allocator module may also include an allocation scheme for
mirroring of data, that is making multiple copies of the data available on different smart
storage units. The forward allocator module may use an allocation scheme to load balance
the locations of the blocks of the data across the smart storage units using those smart storage
units that are least used in terms of storage space, network utilization, and/or CPU utilization.

Mirroring may provide increased performance and increased fault tolerance. If mirroring is

21-

WO 2004/046971 PCT/US2003/036699

requested for certain pieces of content, the forward allocator module allocates space for the
original data as well as the mirrored data. If a fault tolerance level of greater than one is
requested, the forward allocator may logically divide the smart storage units, or a subset of
the smart storage units, by the fault tolerance couht and create mirrors of striped data. For
example, if there are ten smart storage units 114 in an intelligent distributed file system 110,
and a fault tolerance of two is requested, then the forward allocator may logically break the
intelligent distributed file system into two sections of five smart storage units each, stripe the
data across four smart storage units in each section, and use the fifth smart storage units from
each section as a parity disk. This division of smart storage units may be referred to as an
array mirror split. Various implementations of an array mirror split may be used including
implementations in which the data is overlapped or skewed when stored.

c. Failure Recovery Module

[0100] The failure recovery module reconfigures the intelligent distributed file
system 110, in real-time, to recover data which is no longer available due to a device failure.
The failure recovery module may perform the reconfiguration without service interruptions
while maintaining performance and may return the data to desired redundancy levels in a
short period of time.

[0101] As discussed above, the remote block manager module 337 detects failures
and passes notification of such failures to the failure recovery module. For an initial failure,
the failure recovery module locates any data blocks that do not meet the redundancy
parameters as requested by the system administrator or as set by the intelligent distributed file
system 110.

[0102] First, data that can be recreated from parity information is recreated and a
request is sent to the forward allocator module to allocate space for the new data. The
forward allocator monitors CPU and network utilization and begins operation aggressively
until CPU and network utilization reaches a predetermined mark. This predetermined mark
may be set by the system administrator or pre-set according to factors such as, for example,
the computer processor. Once the mark is reached, the failure recovery module may
advantageously re-calculate data at the rate achieved at the time of the mark to reduce impact

on the smart storage unit’s performance.

22

WO 2004/046971 PCT/US2003/036699

[0103] If a recently failed device comes back online, the failure recovery module
communicates with the remote block manager module 337 of the recovered device to verify
data integrity and to fix any inconsistencies.

[0104] The intelligent distributed file system 110 may also support the inclusion
of a hot standby device. The hot standby device is an idle storage device that is not currently
handling any data storage, but will be put into use at the time of a device failure. In such a
situation, the failure recovery module may rebuild the lost data using the hot standby device
by communicating with the hot standby device’s remote block manager module 337.

2. Block Cache Module

[0105] The block cache module 333 manages the caching of data 1t.)locks, name
looks ups, and metadata data structures. In one vembodiment, the block cache module 333
works in conjunction with or instead of BSD Virtual File System’s buffer cache.

[0106] The block cache module 333 may cache data blocks and metadata data
blocks using the Least Recently Used caching algorithm, though it is recognized that a variety
of caching algorithms that may be used, such as, for example, frequency caching. The block
cache module 333 may determine which block caching algorithm to use depending on which
performs the best, or in other embodiments, an algorithm may be set as the default.

[0107] Least Recently Used caching (“LRU”) is the typical caching scheme used
in most systems. LRU is based on the principle that once data is accessed it will most likely
be accessed again. Thus, data is stored in order of its last usage such that data that has not
been accessed for the longest amount of time is discarded.

[0108] Frequency caching stores data that has been most frequently accessed.
Because disk writes are relatively time intensive operations, additional performance may be
gained by tracking access frequencies in the metadata data structures and caching based on
access frequencies. !

[0109] In addition, the block cache module 333 may utilize an “on demand”
protocol or a “read ahead” protocol wherein more data is requested than required. The block
cache module 333 may send a request for a set of data and also request some amount of data
ahead of the set of data. For example, the block cache module 333 may perform read aheads,

such as one packet read aheads, two packet read aheads, ten packet read aheads, twenty

23

WO 2004/046971 PCT/US2003/036699

packet read aheads, and so forth. In other embodiments, the block cache module 333 may
utilize read ahead techniques based upon the latency of the request. For example, the block
cache module 333 may perform V packet read aheads where V is calculated using the read
rate and the latency of the link. The block cache module 333 may also use other algorithms
based on CPU and network utilization to determine the size of the read ahead data.
Furthermore, the block cache module 333 may utilize a set caching protocol, or may vary the |
caching protocol to respond to the system’s performance levels.

[0110] The cache 340 may be implemented using the default sizes prdvided with
general multi-user operating systems or modified to increase the cache block size to a
different amount but without severely impacting system performance. Such modifications
may be' determined by various performance tests that depend upon factors, such as, for
example, the type of data being stored, the processing speed, the number of smart storage
units in the intelligent distributed file system, and the protection schemes being used.

3. Local Block Manager Module

[0111] The local block manager module 335 manages the allocation, storage, and
retrieval of data blocks stored locally on the storage device 360. The local block manager
335 may perform zero copy file reads to move data from the disk to another portion of the
storage device 360, such as, for example, the network card, thereby improving performance.
The local block manager 335 may also perform modifications based upon the storage device
360 being used so as to increase performance. In one embodiment, the local block manager
module 335 resides at the Local File Store layer and may work in conjunction with or instead
of FreeBSD Fast File System.

[0112] In one embodiment, the local block manager module 335 processes
requests to store the data on the storage device 360. In one embodiment, the local block
manager module 335 determines where the data is stored on the storage device 360. For
example, the local block manager module 335 may attempt store related data contiguously
such that when it receives data that relates to already stored data, the new data is stored as
close to the related data as possible. It is recognized, however, that a variety of storage

preferences may be used and that each smart storage unit may use one or more different

24-

WO 2004/046971 PCT/US2003/036699

storage preferences. In other embodiments, all of the smart storage units in the intelligent
distributed files system may use the same storage preferences.

4, Remote Block Manager Module

[0113] The remote block manager module 337 manages inter-device
communication, including, for example, block requests, block responses, and the detection of
remote device failures. In one embodiment, the remote block manager module 337 resides at
the Local File System layer.

[0114] In one embodiment, the smart storage units 114 may be connected to
and/or communicate with the other smart storage devices 114 in the intelligent distributed file
system 110 via the remote block managers 337.

[0115] The remote block manager modules 337 may enable the smart storage
units 114 to talk to each other via a connection such as TCP. In one embodiment, there are at
least two TCP connections for each smart storage unit, one for file data transportation and
one for control message transportation. The advantage of this dual channel TCP
communication architecture is that as long as data blocks are sent in multiples of page sizes,
the data may be sent via DMA transfer directly from the network interface card to system
memory, and via DMA transfer from system memory to another portion of the system
(possibly the network interface card again) without the need for the data to be copied from
one portion of system memory to another. This is because there is no need for the CPU to be
involved in parsing the data packets as they do not contain non-data headers or identifying
information since this information is transferred on the control channel. In high performance
server and operating systems, these memory copies from one portion of system memory to
another become a severe limitation on system performance.

[0116] /In one embodiment, the remote block manager modules 337 communicate
using messaging communication utilizing messages, such as, for example, data block access
messages (e.g. READ, READ RESPONSE, WRITE, and WRITE_RESPONSE), metadata
access messages (e.g, GET INODE, GET _INODE_RESPONSE, SET_ADDRESS,
GET ADDRESS, and INVALIDATE_INODE), directory messages (e.g., A]jD_DIR and
REMOVE_DIR), status messages, as well as a variety of other types of messages.

225-

WO 2004/046971 PCT/US2003/036699

[0117] While a dual channel protocol is discussed above, it is recognized that
other communication protocols may be used to enable communication among the smart
storage units 114.

5. Block Device Module

[0118] The block device module 339 hosts the device driver for the particular
piece of disk hardware used by the file system. For example, if the physical storage device is
an ATA disk, then the block device module 339 hosts the ATA disk driver.

C. Cache |

[0119] The cache memory or cache 340 may be implemented using a variety of
products that are well known in the art, such as, for example, a 1G RAM cache. The cache
340 illustrated in Figure 3 may store blocks of data that have recently been accessed or are to
be accessed within a set amount of time. The cache 340 may be implemented using a high-
speed storage mechanism, such as a static RAM device, a dynamic RAM device, an internal
cache, a disk cache, as well as a variety of other types of devices. Typically, data is accessed
from a cache 340 faster than the time it takes to access the non-volatile storage device. The
cache 340 stores data such that if the smart storage unit 114 needs to access data from the
storage device 360, the cache 340 may be checked first to see if the data has already been
retrieved. Thus, use of the cache 340 may improve the smart storage unit’s performance in
retrieving data blocks.

D. Network Stack

[0120] In one embodiment, the smart storage unit 310 also includes a network
stack 350 that handles incoming and outgoing message traffic using a protocol, such as, for
example, TCP/IP. It is recognized, however, that other protocols or data structures may be
used to implement the stack 350.

E. Storage Device

[0121] The storage device 360 is a set of one or more non-volatile memory
devices, that may be used to store data blocks. The storage device 360 may be implemented
using a variety of products that are well known in the art, such as, for example, a 4 1.25 GB

ATA100 device, SCSI devices, and so forth. In addition, the size of the storage device 360

226-

WO 2004/046971 PCT/US2003/036699

may be the same for all smart storage units 114 in an intelligent distributed file system 110 or
it may be of varying sizes for different smart storage units 114.

F. System Information

[0122] In one embodiment, the smart storage unit 114 runs on a computer that
enables the smart storage unit 114 to communicate with other smart storage units 114. The
computer may be a general purpose computer using one or more Microprocessors, such as,
for example, a Pentium processor, a Pentium II processor, a Pentium Pfo .processor, a
Pentium IV processor, an xx86 processor, an 8051 processor, a MIPS processor, a Power PC
processor, a SPARC processor, an Alpha processor, and so forth.

[0123] In one embodiment, the processor unit runs the open-source FreeBSD
operating system and performs standard operating system functions such opening, reading,
writing, and closing a file. It is recognized that other operating systems may be used, such as,
for exmﬁple, Microsoft® Windows® 3.X, Microsofit® Windows 98, Microsoft® Windows®
2000, Microsoft® Windows® NT, Microsoft® Windows® CE, Microsofi® Windows® ME,
Palm Pilot OS, Apple® MacOS®, Disk Operating System (DOS), UNIX, IRIX, Solaris,
SunOS, FreeBSD, Linux®, or IBM® OS/2® operating systems.

[0124] In one embodiment, the computer is equipped with conventional network
conneétivity, such as, for example, Ethernet (IEEE 802.3), Token Ring (IEEE 802.5), Fiber
Distributed Datalink Interface (FDDI), or Asynchronous Transfer Mode (ATM). Further, the
computer may be configured to support a variety of network protocols such as,” for example
NFS v2/v3 over UDP/TCP, Microsoft® CIFS, HTTP 1.0, HTTP. 1.1, DAFS, FTP, and so
forth.

[0125] In one embodiment, the smart storage device 114 includes a single or dual
CPU 2U rack mountable configuration, multiple ATA100 interfaces, as well as a 1000/100
Network Interface Card that supports jumbo 9K Ethernet frames. It is recognized, however,
that a variety of cohﬁgurations may be used.

[0126] As noted above, while different modules‘have been discussed with respect
to the smart storage unit, it is recognized that the tasks may be performed by different

modules. In addition, one or more of the modules could be combined and/or one or more

27-

WO 2004/046971 PCT/US2003/036699

new modules may be added such that one particular module is not required to perform a
specific task.
VI. INTELLIGENT DISTRIBUTED FILE SYSTEM DATA STRUCTURES
[0127]

Figure 4 illustrates a sample directory structure that may be used with the
intelligent distributed file system. In this example, the ROOT directory is named “DEFSR”
and includes subdirectories IMPORTANT, TEMP, and USER. The IMPORTANT subdirectory
includes the subdirectories PASSWORDS and CREDITCARD. The files USER.TXT and
ADMIN.TXT are stored in the PASSWORDS subdirectory. Thus, the address for the
USER. TXT file is:
/DFSR/IMPORTANT/PASSWORDS/USER.TXT

Information or metadata about the directories and the files is stored and maintained by the
intelligent distributed file system 110.
A. Metadata Data Structures

[0128]

Figure 5 illustrates a sample data structure 510 for storing metadata. The

exemplary data structure 510 stores the following information:

Field Description

Mode The mode of the file (e.g., regular file, block special,
character special, directory, symbolic link, fifo,
socket, whiteout, unknown)

Owner Account on the smart storage unit which has
ownership of the file

Timestamp Time stamp of the last modification of the file

Size Size of the metadata file

Parity Count Number of parity devices used

Mirror Count Number of mirrored devices used

Version Version of metadata structure

Type Type of data location table (e.g., Type 0, Type 1,
Type 2, or Type 3)

Data Location Table Address of the data location table or actual data

location table information

Reference Count

Number of metadata structures referencing this one

Flags

File permissions (e.g., standard UNIX permissions)

Parity Map Pointer

Pointer to parity block information

It is recognized that the sample data structure 510 illustrates one embodiment of a data

structure 510 for storing metadata and that a variety of implementations may be used in

28-

WO 2004/046971 PCT/US2003/036699

accordance with the invention. For example, the data structure 510 may include different
fields, the fields may be of different types, the fields may be grouped and stored separately,
and so forth.

[0129] Figures 6A, 6B, 6C, and 6D provide sample data location table structures
for the types of data location tables, that is Type 0, Type 1, Type 2, and Type 3 respectively.
In Figure 6A, the Type 0 data location table includes 24 direct block entries meaning that the
entries in the data location table include device/block number pairs which indicate the
location in which the data is stored. In Figure 6B, the Type 1 data location table includes 15
direct block entries, three single-indirect entries, three double-indirect entries, and three
triple-indirect entries. The entries for the single-indirect entries indicate the locations in
which an additional data location table of direct entries is stored. The entries for the double-
indirect entries indicate the locations in which data location tables are stored wherein the data
location tables include single-indirect entries. The entries for the triple-indirect entries
indicate the locations in which data location tables are stored wherein the data location tables
include double-indirect entries.

[0130] Because any block may be mirrored across any number of devices, the
metadata data structure 510 is flexible enough to represent blocks with multiple locations and
still provide the fast access that comes from direct indexing within a fixed space. Thus, a
type may advantageously be associated with the metadata data structure 510 to indicate the
type of data location table to be used. In one embodiment of the metadata data structure 510,
there may be room for 24 data entries, such as, for example, 24 pointers.

[0131] Type 0 may be used when a data file is small; the data location addresses
are stored as direct entries. Thus, a Type 0 metadata data structure includes 24 direct entries.
Type 1 may be used to support larger files and mirror of up to two times (three copies of the
file). Type 1 uses 15 direct entries, three single-indirect entries, three double-indirect entries,
and three triple-indirect entries. Type 2 may be used to support mirroring of up 'to 7 times (8
copies of the file), and includes eight single-indirect entries, eight double-indirect entries, and
eight triple-indirect entries. Type 3 data location tables enable even further mirroring as all of
the disk addresses are stored as triple-indirect entries. As a result, up to 24 complete file

copies may be stored.

-20-

WO 2004/046971 PCT/US2003/036699

[0132] It is recognized that a variety of data location tables may be used and that
Figures 6A, 6B, 6C, and 6D illustrate sample embodiments. In other embodiments, for
example, the data location tables may include a different mixture of direct and indirect
entries. Further, in other embodiments, the data location tables may include an entry field
that designates the type of entry for each entry in the table. The types may include, for
example, those discussed above (e.g., direct, single-indirect, double-indirect, triple-indirect)
as well as others (e.g., quadruple-indirect, etc.). In addition, the data location table may
include deeper nesting of data location tables up to X levels wherein X is an integer.

[0133] The metadata data structure may also include information about which
smart storage units contain the file’s content data and protection data. In addition, the
metadata data structures may store information for each smart storage unit tracking the last
block address used for the file’s content data and the last block address used for the file’s
protection data. For example, the metadata data structure may record that MYFILE.TXT has
its data stored on Device 0, Device 2, Device 3, and Device 5. The metadata data structure

may also record the following:

Last Block Address Last Block Address
for Content for Parity
Device 0 300 001
Device 2 307 203
Device 3 200 303
Device 5 : 103 501

1. Directory Metadata

[0134] Figure 7A illustrates a sample set of metadata for the directory
PASSWORDS. In Figure 7A, the data structure stores information about the PASSWORDS
directory. The directory is mirrored twice (three copies total). Because a directory structure
is relatively small (e.g., it fits within a block), there are only three direct pointers used, one
for each copy. The sample set of metadata includes a data location table 710 which includes
direct entries 720 indicating the location of the data block using a device/block number pair

as well as a set of unused block entries 730.

-30-

WO 2004/046971 PCT/US2003/036699

2. File Metadata

[0135] Figure 7B illustrates a sample set of metadata for the file USER. TXT. In
Figure 7B, the data structure stores information about the USER . TXT file. There is one copy
of each of the data blocks for the USER. TXT file data and the data is protected using a 3+1
parity scheme. The content data for USER. TXT is of size 45K and the block size is 8K, thus,
there are 6 blocks of data with the 6th block of data not fully used. ‘The data location table
710 shows the location in which each of the 6 blocks of data are storqd 720, wherein the
blocks of data are referenced by device number and block number and where the first entry
corresponds to the first block of data. Further, the location of the parity information for the
content data is stored in a parity map 740 whose location is designated by the last location of
the data structure as “parity map pointer.” The USER.TXT file is stored using a 3 + 1 parity
scheme thus, for every three blocks of data, a block of parity data is stored. Because there are
six blocks in this 3 + 1 parity scheme, there are two blocks of parity data (6 divided by 3 and
rounding up to the nearest integer). The parity map shows the location in which both of the
blocks of parity data are stored, wherein the blocks of parity data are referenced by device
number and block number and where the first entry corresponds to the first block of parity
data.
B. Data Location Table Data Structures

[0136] The intelligent distributed file system 110 may provide storage for a wide
variety of data files as well as ﬂexibilify as to how the data files are stored. Redundancy and
mirroring of data files is performed at the file system level enabling the intelligent distributed
file system 110 to support varying redundancy parameters for different files. For example,
some directories may be mirrored, parity protected, or not protected at all.

[0137] Figures 8A, 8B, and 8C illustrate example data location tables that may be
used to store data location information for data files of varying protection types and levels.
Figures 8A, 8B, and 8C are meant to illustrate various data location tables, and it is
recognized that a variety of different formats and/or structures may be used.

[0138] Figure 8A illustrates a sample data location table 810 that indicates where
each block of data of the corresponding file is stored. Note that the corresponding metadata

for the file, such as that in Figure 7B, is not shown, though it is recognized that the data

31-

WO 2004/046971 PCT/US2003/036699

location table 810 may correspond to a set of metadata. The exemplary data location table
810 includes both direct entries and indirect entries.

[0139] The direct entry includes a device ID/block pair. The device ID indicates
the smart storage unit on which the data is stored, and the offset or block address indicates
the location on the storage device where the data is stored. One sample eniry in the data
location table may be:

Entry Device Block
1 7 127

indicating that Block 1 of the data is stored on device number 7 at block 127.

[0140] The sample data location table 810 may also include indirect entries which
point to additional data location tables enabling a data location table to track data locations
for a larger set of data. While the level of indirect entries is theoretically unlimited, the levels
may be advantageously limited so as to improve throughput rates. For example, the data
location table may be limited to only allow at most double-indirect entries or-at most triple-
indirect entries. The exemplary data location table 810 illustrates two levels of indirect
entries.

[0141] Further, the last entry of the data location table may be reserved to store
the address of the parity map (if any). In other examples, the address of the parity map may
be stored in other locations, such as, for example, as an entry in the metadata data structure.
If a set of data does not include parity protection, the address value may be set to a standard
value, such as NULL.

[0142] Figure 8B illustrates a data location table for data that has been mirrored in
two additional locations. The data location table includes a device ID and a block or offset
address for each copy of the data. In the exemplary data location table, the mirrored locations
have been selected on a block-by-block basis. It is recognized that other schemes may be
used such as, for example, selecting one or more smart storage units to mirror specific smart
storage units. While the data location table in Figure 8B includes only direct entries, it is

recognized that indirect entries may also be used.

-32-

WO 2004/046971 PCT/US2003/036699

[0143] In one embodiment, the mirroring information for a file may be stored in
the file’s corresponding metadata structure. This information may include, for example,
number of copies of the data, as well as the locations of the data location table for each copy.
It is recognized that the data location tables may be stored as a single data structure, and/or
separate copiés of the data location tables may be stored in different locations.

[0144] The sample data location table of Figure 8B With mirrored data does not
include parity protection though it is recognized that the data location table may include
parity information.

[0145] Figure 8C illustrates a data location table with a parity map. In the
exemplary data location table, the data is being protected using a 3 + 1 parity scheme, that is
a set of parity data is being created from every three blocks of data. Techniques well known ’
in the art for creating data may be used, such as, for example, by XORing the blocks of data
together on a bit-by-bit, byte-by-byte, or block-by-block basis to create a parity block.

[0146]

that consists of 21 data blocks (block 0 to block 20). Because the parity scheme is 3 + 1, a

The exemplary data location table provides information about a data file
parity block is created for each set of three data blocks. Table 2 illustrates the
correspondence between some of the data blocks and some of the parity blocks shown in

Figure 8C.

Data Blocks Parity Blocks
0 1 2 0
Device 5 Device 9 Device 7 Device 0
Block 100 Block ZOb Block 306 Block 001
3 4 5 1
Device 5 Device 9 Device 7 Device 8
Block 103 Block 203 Block 303 Block 001
Table 2

33-

WO 2004/046971 PCT/US2003/036699

[0147] The sample data location table includes a parity map or parity location
table. In the exemplary parity map, there is a one to dne mapping between the set of block
entries used to create data and the parity map. In other embodiments, the parity map also
includes variable size entries which specify which blocks, by device and block number, may
be parity XORed together to regenerate the data, in the event that it is not available in any of
its direct locations, due to device failure. In other embodiments, the parity generation scheme
is pre-set such that the location and correspondence of parity data may be determined by the
intelligent distributed file system 110 without specifying the blocks which should be XORed
together to regenerate data.

[0148] In one embodiment, the parity map is pointed to by the metadata data
structure, such as, for example, in the last entry of the metadata data structure, rather than
included in the metadata data structure. This map may be pointed to, instead of included
directly in the metadata structure because its usage may only be required in the uncommon
case of a failed smart storage unit 114. The parity map may also use variable sized entries to
express the parity recombine blocks enabling the smart storage unit 114 to traverse the parity
map a single time while rebuilding the data and to parse the parity map as it is traversed. In
some situations, the compute and IO time to retrieve and parse an entry is negligible
compared to the parity compute time.

[0149] The sample data location table 810 of Figure 8C with parity location
information does not include mirroring information or indirect entries, though it is recognized
that one or both may be used in conjunction with the parity location information. Further, it
is recognized that other data structures may be used and that the data location table data
structure is meant to only illustrate one embodiment of the invention.

C. Sample Data

[0150] Figure 9 illustrates a sample data location table 910 and pa:_rity map 920
and the corresponding devices on which the data is stored. The example of Figure 9 shows
hon data may be stored in varying locations on the devices, that the “stripes” of data are
stored across different offset addresses on each device, and that the parity data may be stored
in various devices, even for data from the same file. In other embodiments, the data may be

stored at the same offset address on each device.

-34-

WO 2004/046971 PCT/US2003/036699

[0151] For example, the parity data for the first stripe is stored on device 3 at
location 400 and relates to data bléck 0 stored on device 0 at location 100, data block 1 stored
on device 1 at location 200, and data block 2 stored on device 2 at location 306. The parity
data for the second stripe is stored on device 2 at location 600 and relates to data block 3
stored on device 0 at location 300, data block 4 stored on device 4 at location 800, and data
block 5 stored on device 1 at location 700.

[0152] In some embodiments, the individual smart storage unit decides where
and/or how to map the locations to the actual locations on disk. For example, if device 0 has
4 physical hard disks, and each hard disk has the storage capacity for 100 blocks, then device
0 would allow for storage to location 0 to location 399. One sample set of guidelines that
may be used to determine how the location maps to the block on disk is as follows:

Disk number = floor of (location / number of blocks per disk)

Block on disk = location MOD number of blocks per disk.

[0153] Note that MOD is a modulus operator that takes the remainder of a
division. It is understood that the guidelines above represent only a sample of the guidelines
that may be used for mapping locations to disk and disk block, and that many other
guidelines or schemes could be used. For example, one embodiment may utilize a linked list
of block ranges representing each disk and conduct a list traversal. A linked list has the
advantage of allowing for multiple sized disks.

[0154] Due to the flexibility of the storage of data and parity information, as new
smart storage units are added, new data may be stored on the new smart storage units and/or
existing data may be moved to the new smart storage units (e.g., by making a copy before
deleting the data on the existing unit) without disrupting the system. In addition, data blocks
or entire files may be moved or copied in real-time in response to high request volume, disk
failure, changes in redundancy or parity parameters, and so forth.

VII. INTELLIGENT DISTRIBUTED FILE SYSTEM PROCESSES

A. Retrieving Data

[0155] Figure 10 illustrates one embodiment of a flow chart for refrieving data
(“retrieve data process™). A variety of data types may be retrieved, such as, for example,

directory metadata, file metadata, content data, and so forth.

-35-

WO 2004/046971 PCT/US2003/036699

[0156] Beginning at a start state, the retrieve data process receives the location at
which the data is stored (state 1010). In one embodiment, the location may be designated
using a smart storage unit ID and an offset or block address. In other embodiments, the
storage device’s ID may be used, whereas iP other embodiments, a table may be used to map
the IDs onto other IDs, and so forth.

[0157] Next, the retrieve data process determines whether the data is stored
locally (state 1020). If the data is stored locally, then the retrieve data process retrieves the
data from local storage (state 1030). In one embodiment, the retrieve data process may first
check the cache and if the data is not there, then check the storage device. In other
embodiments, the retrieve data process may check only the storage device.

[0158] If the data is not stored locally, then the retrieve data process sends a
request for the data to the smart storage unit on which the data is stored (state 1040). In one
embodiment, the request is sent via the switch component 125 shown in Figure 1. The
receive data process then receives the requested data (state 1050).

[0159] The retrieve data process collects the data that has been requested and
returns the data (state 1060). In some embodiments, the data is returned after the entire set of
data has been collected. In other embodiments, portions or sets of the data are returned as the
data is retrieved form local storage or received from other smart étorage units. The portions
may be return in sequential order according to the file location table or they may be returned
as they are retrieved or received. After the data has been returned, the retrieve data process
proceeds to an end state.

[0160] It is recognized that Figure 10 illustrates one embodiment of a retrieve
data process and thét other embodiments may be used. In another example, more than one
retrieve data process may be used at the same time such that data is being retrieved by
multiple retrieve data processes in parallel using techniques or combination of techniques,
such as, for example, parallel processing, pipelining, or asynchronous I/O.

B. Processing Name Lookups

[0161] Figure 11 illustrates one embodiment of a process for name lookups
(“name lookup process™). Beginning at'a start state, the name lookup process receives a file

name (state 1110), retrieves the root directory’s metadata, and sets the location of the root

-36-

WO 2004/046971 PCT/US2003/036699

metadata as CURRENT (state 1120). In one embodiment, the root directory’s data may be
stored in a data structure, such as the data structure of Figure 5, though it is recognized that a
variety of data structures may be used to store the root directory’s metadata. Furthermore, in
some embodiments, the root directory’s metadata may be stored with each smart storage unit
114 such that each smart storage unit 114 has the same or a similar copy of the root
directory’s metadata. In other embodiments, the root directory’s metadata may be stored in
other locations in the intelligent distributed file system 110 or sent to the smart storage units
114 with a file request. It is recognized that well known techniques for ensuring the integrity
of multiple copies of the data may be used, such as, for example, locking via mutexes and/or
semaphores, and so forth.

[0162] The name lookup process may then retrieve the next token that is part of
the file’s name (state 1130). The name lookup process then requests the address of the
location of the token’s metadata from the smart storage unit 114 which stores the data for
CURRENT (state 1140). This request may be local or remote. The name lookup process
may then set the returned address as CURRENT (state 1150) and determine whether there is
another token (state 1160), where a token represents a single level in a directory hierarchy. If
there is another token, the name lookup process returns to block 1130. If there are no more
tokens, the name lookup process returns the value of or a reference to CURRENT (state
1170) and proceeds to an end state.

[0163] It is recognized that other implementations of a name lookup‘process may
be used. For example, the name lookup process may retrieve the file’s metadata data. In
addition, once the location of the requested data is found, the name lookup process may
determine whether the data is stored locally or with other smart storage units. If the data is
stored locally, the name lookup process may send a READ request to the local block manager
module 335 of the smart storage unit 114; if the data is stored on another smart storage unit,
the name lookup process may send the READ request to the remote block manager module
337 of the remote smart storage unit 114.

C. Processing a File Request

[0164] Figure 12 illustrates one embodiment of a flow chart for processing a file

request (“file request process”). Beginning at a start state, the file request process receives a

-37-

WO 2004/046971 PCT/US2003/036699

request to retrieve a file (state 1210). In one embodiment, the file is designated using the
file’s full path name, including location and file name. In other embodiments, the path may
be a relative path and/or other data structures, such as tables, may be used to store
information about the file’s address. Next, the file request process performs a name lookup
process, such as that illustrated in Figure 11 (state 1220), to determine the location of the
file’s metadata data structure.

[0165] The file request process may then retrieve the file’s metadata (state 1230)
using a retrieve file process such as that shown in Figure 10 and discussed above, though
other retrieve file processes may be used. In one embodiment, the file’s metadata may
include a data location table that provides access to the locations in which each block of data
in the file is stored throughout the intelligent distributed file system.

[0166] Then, for each block of data in the file (states 1240, 1270), the file request
process obtains the location of the data block (state 1250) by looking it up in the file’s
metadata and retrieves the data block (state 1260) using a retrieve file process such as that
shown in Figure 10 and discussed above, though other retrieve file processes may be used.

[0167] The file request process then returns the file’s data (state 1280) and
proceeds to an end state. In some embodiments, the file is returned after the entire set of data
has been collected. In other embodiments, one or more blocks of data may be returned as the
data is retrieved. The portions may be return in sequential order according to the file location
table or they may be returned as they are retrieved or received. In one embodiment, the file
request process may put the data blocks in order and/or other modules, such as a streaming
server may order the data blocks. After the data has been returned, the refrieve data process
proceeds to an end state.

[0168] It is recognized that Figure 12 illustrates one embodiment of a file request
process and that other embodiments may be used. For example, the file request process may
determine the file’s location using a different name lookup process than that shown in Figure
11. In another example, more than one retrieve data process may be used at the same time to
retrieve the data blocks enabling the data to be retrieved by multiple retrieve data processes in
parallel using techniques or a combination of techniques, such as, for example, parallel

processing, pipelining, or asynchronous I/O.

-38-

WO 2004/046971 PCT/US2003/036699

D. Parity Generation Process

[0169] Figure 13 illustrates one embodiment of a flow chart for generating parity
information (“parity generation process”). Beginning at a start state, the parity generation
process receives parity scheme information related to a set of data (state 1310). The set of
data may represent file data, file metadata, directory metadata, a subset of file data, and so
forth. The parity generation process receives data location information related to the set of
data (state 1320). Next, for each set of parity data (state 1330, 1370), the parity generation
process retrieves a set of data (state 1340). For example, if the parity is 3+1, the parity
generation process retrieves the first three blocks of data using a data retrieve process such as
that shown in Figure 10. Next, the parity generation process generates the parity data for the
set of data (state 1350), such as, performing an XOR operation of the data on a bit-by-bit,
byte-by-byte, or block-by-block basis. The parity generation process may then store the data
in a buffer and return to block 1330 until the parity information for the set of data has been
generated. After the parity information has been generated, the parity generation process
determines where to store the parity data (state 1380). The parity generation process may use
a rotating parity scheme, wherein each parity block for each successive strip of file data is
stored on the next device in the rotation. The parity generation process allocates the parity
block on a different device than any of the devices which are holding data for the current
stripe to ensure in the event of a device failure that parity information is not lost at the same
time as data information. The parity generation process may also take into account other
factors, such as storage capacity, CPU utilization, and network utilization to eliminate some
devices from being considered for parity storage. The parity generation process then stores
the buffered data in the allocated space (state 1390), records the location of the parity data in
a parity map (state 1395), and returns to an end state.

[0170] It is recognized that Figure 13 illustrates one embodiment of a parity
generation process and that other embodiments may be used. For examplé, the parity
generation may retrieve blocks of data in parallel and generate parity information in parallel
or using well known pipelining or asynchronous I/O techniques. Further, the parity

generation process may store the parity information and the location of the parity information

-39-

WO 2004/046971 PCT/US2003/036699

without writing to a temporary buffer or the parity generation process may return the parity
data or a pointer to the parity data.

E. Data Recovery Process

[0171] Figure 14 illustrates one embodiment of a flow chart for recovering lost or
_corrupt data (“data recovery process”). Beginning at a start state, the data recovery process
receives information regarding the parity scheme used (state 1410). The data recovery
process then receives information about the failed or corrupt disk or data (state 1420). Next,
the data recovery process receives address information for the parity block group in which the
missing or corrupt data is assigned (state 1430). The data recovery process then retrieves the
data blocks from the available smart storage units (state 1440). The data may be retrieved
using a retrieve data process such as that of Figure 10. The data recovery process performs
error correction (state 1450), such as XORing the blocks according to the parity scheme and -
stores the result in a buffer (state 1460). The data in the buffer represents the missing data.
The data recovery process may then return the data in the buffer (state 1470) and proceed to
an end state.

[0172] It is recognized that Figure 14 illustrates one embodime1.1t of a data
recovery process and that other embodiments may be used. For example, the data recovery
process may return the restored data without storing it.

VIII. RESTRIPING OF FILES IN A DISTRIBUTED FILE SYSTEM
[0173] In some embodiments, the intelligent distributed file system includes

systems and methods for restriping files distributed among a set of smart storage units. Files
that have already been distributed and stored on the intelligent distributed file system may be
redistributed and restored on the system without interrupting user access to the files and
without taking the system off-line. In addition, data may be restriped among the smart
storage units with minimal data movement and is typically protected and recoverable even if
a system failure occurs during the restriping process.

[0174] The restriping process may be used, for example, when one of the smart
storage units experiences some type of failure such that the missing data may be regenerated
and then restored on the system. The restriping process may also be used when one or more

smart storage units are added to or removed from the intelligent distributed file system such

-40-

WO 2004/046971 PCT/US2003/036699

that data may be added to the new smart storage units or redistributed to other smart storage
units. In addition, the restriping process may be used when the protection scheme of a file is
changed. For example, if a file goes from 3+1 parity protection to 4+1 parity protection, the
restriping process may move the data to smart storage units in a layout that meets the new
parity protection, and until the new layout is complete, continues to allow users access to the
file under the old layout such that the data is protected by the old parity scheme. '

[0175] In one embodiment, the restriping process is performed by the block
allocation manager, however, it is recognized that in other embodiments, the restriping
process may be performed by other parts of the intelligent distributed file system.

[0176] The smart storage units, using the methodologies described above, provide
the advantage of not requiring that any specific block of any particular stripe reside at any
specific location within the smart storage unit. Thus, the abstraction of a “data stripe” need
not relate to any particular set of blocks across multiple smart storage units, but may
advantageously contain any available blocks from different units.

A. Restriping Process

[0177] Figure 15 illustrates one embodiment of a method for restriping data
within the intelligent distributed file system (“restriping process”). The file is logically
represented as a set of protection groups that are determined based on the file’s desired
protection scheme. For example, if the file’s desired protection scheme is 3+1 parity, the file
will be divided into protection groups with four clusters or blocks, namely three content
blocks and one parity block. If the file’s desired protection scheme is a 3x mirrored
protection scheme, the file will be divided into protection groups with three clusters, namely
three identical content data blocks.

[0178] The restriping process described herein represents an advantageous
methodology for moving file data within the system, while not requiring data to reside at any
particular location on a smart storage unit. The restriping process also permits data recovery
during the restriping process, and permits substantial variation in the striping of data. In
addition, particular constraints from the protection scheme are met. For example, parity data
and its related content data are each stored on different smart storage units. For mirrored

data, each copy of the data is stored on a different smart storage unit.

41-

WO 2004/046971 PCT/US2003/036699

[0179] In one embodiment, the restriping process may advantageously restripe
using preferences to allow other objectives when deciding how to store data among the smart
storage units.

[0180] In one example, the preference is that minimal movement is a priority such
that if a block is already located on a smart storage unit, that same smart storage unit is
assigned to the block such that the block does not have to be restored on a different smart
storage unit. This preference may likely be used when repairing files after a smart storage
unit has failed.

[0181] Another preference may be that optimal smart storage units are used for
the layout. If a block is already located on a smart storage unit and that smart storage unit is
one of the “optimal” units, the same smart storage unit is assigned to the block. Thus, some
movement of blocks is avoided, but blocks can be moved when necessary to balance the file
across a set of smart storage units. Such a preference could be used for example, when
protection settings are changed or new smart storage units are added to the intelligent
distributed file system.

[0182] A further preference may be for optimal layout regardless of where data is
already located. Thus, the restriping is done without any regard to the existing location of
blocks. Instead, the existing blocks may be moved in order to lay out the file optimally. It is
recognized, however, tha/t some data blocks may not need to be moved as they will already be
stored on the appropﬂéte smart storage units. In some embodiments, the intelligent
distributed file system may want to relocate blocks even if they happen to be present on the
optimal smart storage unit in order to repair fragmentation on the storage device. This
preference may be used for tuning operations such as, for example, defragmentation or
optimization for READ performance, and is likely used on an “as-needed” basis or in the
background during normal file system operation.

[0183] The goals for an “optimum” layout may be based on one or more factors.
For example, the factors may include file size, READ performance, WRITE performance,
anticipated access frequency, system throughput, network speed, the available storage device

space, and so forth.

4D

WO 2004/046971 PCT/US2003/036699

[0184] In one embodiment, the restriping process attempts to leave a file in a state
that permits the file to be recreated using protection data if one or more smart storage units
fail during the restriping process. While the preferences may be used if possible, it is
recognized that there may be situations in which the preferences may not be met. For
example, if Blocks A, B, and C are part of a 3x mirror protection scheme and Blocks A and B
are on Device 0 and Block C is on Device 1, either Block A or B will have to be restored on
another available smart storage unit to meet the constraints of the protection scheme, even
though leaving Block B on Device 0 would satisfy the preference of minimal data movement.
When, during the execution of the algorithm, there are periodic instances where the
protection scheme constraints and the preference(s) are in conflict with each other, in some
embodiments, the system opts to maintain protection with the added expense of extra data
movement. It is recognized that in other embodiments, one or more preferences may take
priority over the protection scheme depending on the specific implementation.

[0185] One embodiment of a restriping process will now be discussed in
reference to Figure 15. Beginning at a start state, the restriping process proceeds to the next
state wherein for each protection group, (states 1520, 1540), the restriping process assigns
smart storage units to the blocks in the protection group (state 1530). One embodiment of an
assignment process is discussed below in reference to Figure 16, though other assignment
processes may be used.

[0186] After the blocks are assigned to smart storage units, if the block is
assigned to a new smart storage unit (i.e., it is not already stored on the assigned smart
storage unit), the restriping process sends a request to the assigned smart storage unit to store
the block (state 1550). It is recognized that other embodiments may be used such that the
restriping process sends a request to the assigned smart storage units after a set of protection
groups have been assigned and that it is not necessary that all of the protection groups are
assigned before proceeding to the next state. For example, if the restriping process is used
when one or more smart storage units are added to the system, or if one of the smart storage
units has failed, the restriping process may send a request to the assigned smart storage units

after each protection group is allocated.

43

WO 2004/046971 PCT/US2003/036699

[0187] Next, the restriping process verifies that the data has been. successfully
stored (state 1560). In the exenipla.ry embodiment, data that was already stored on the
assigned smart storage unit would satisfy this query. If the data was stored successfully, the
restriping process updates the metadata data structure related to the file and proceeds to an
end state (state 1590). Once the update is complete, the file’s new information is used by the
system. Any previously used memory is now freed and the metadata reflects the new state of
the file.

[0188] The metadata update may include, for example, the new address locations
of the content blocks, the new address locations of the protection blocks, the new protection
scheme, the new list of smart storage units used to store the file’s data, and the new list of
smart storage units used to store the file’s protection information. The restriping process may
also update metadata data structures with the new “last block address™ for file data and parity
data for each smart storage unit. It is recognized that other embodiments may be used such
that the restriping process verifies that the data has been successfully stored (stafe 1560) after
a set of protection groups have been stored and that it is not necessary that all of the blocks
are stored before proceeding to the next step. In such embodiments, the restriping process
may determine the number of protection groups that must be successfully stored before
updating the metadata data structure based on the least common multiple of the protection
value of the old data and the protection value of the new data. In such instances, the
protection value for data that is mirrored is 1 (e.g., for data under a 3x mirrored protection
scheme, the protection value would be 1). The protection value for parity protected data is
the number of content blocks in each parity group (e.g., for data under a 4+1 parity scheme,
the protection value would be 4).

[0189] If the data has not been successfully stored (e.g., one or more of the smart
storage units were unable to store the data), the restriping process returns an error (state 1580)
‘and proceeds to an end state. Thus, if one or more of the smart storage units are unable to
store the data, then the original data is maintained and the file is still protected By its original
protection scheme. Any newly stored data is freed.

[0190] It is recognized that other embodiments of a restriping process may be

used. For example, the allocation process may allocate on a block by block basis such that

44-

WO 2004/046971 PCT/US2003/036699

each metadata data structure is examined and an optimal smart storage unit is recommended
based on address and protection settings.

B. Storing Process

[0191] In one embodiment, when the assigned smart storage units receive requests
to store the data, each assigned smart storage unit determines where the data is to be stored
on the storage device. In one example, the assigned smart storage unit attempts to store
related data contiguously such that when it receives the new data, the smart storage unit
stores the new data in the first available location using the last block address of the file’s
related data. It is recognized, however, that a variety of storage preferences may be used and
that each smart storage unit may use a different set of storage preferences. In other
embodiments, all of the smart storage units in the intelligent distributed files system may use
the same storage preferences. Once the new data is stored, the smart storage unit returns the
address location of the new data. In other embodiments, however, the assigned smart storage
unit may directly update the metadata data structure with the data’s new address.

C. Assignment Process

[0192] Figure 16 illustrates one embodiment of a method for assigning data
blocks and protection blocks to available smart storage units (“assignment pr(;cess”). The
assignment process determines where blocks should be allocated during the restriping
process. In the exemplary embodiment, allocation is performed on a single protection group.
Thus, allocation is performed for a stripe of data wherein the stripe includes data blocks and
any related protection data (e.g., parity data, mirrored copies of the data). The allocation
process may attempt to construct a layout that involves the fewest possible block relocations
while also determining optimal locations for the blocks and attempting to satisfy any
designated layout goals.

[0193] Beginning at a start state, the assignment process proceeds to the next state
to identify which smart storage units are available (state 1620). In one embodiment, the
available units include the smart storage units that are currently used by the file as well as the
remaining smért storage units sorted by available free space. It is recognized, however, that in
other embodiments, the smart storage units may be ordered differently, or that other data

structures may be used to order the available smart storage units (e.g., a rank number may be

-45-

WO 2004/046971 PCT/US2003/036699

given to each available smart storage unit). Whether a smart storage unit is “available” may
depend on one or more factors such as, for example, whether the smart storage unit is
functioning, the throughput rate of the smart storage unit, the amount of free space on the
smart storage unit’s storage device(s), and so forth.

[0194] Next, the assignment process determines whether there are enough
available smart storage units to perform the assignment (state 1630). The preferred number of
smart storage units may depend upon a variety of factors, such as, for example, the number of
data blocks in the protection group, the prbtection scheme being used, the maximum number
of smart storage units in the system, the desired throughput rate of the file, and so forth. For
example, a file with 3+1 parity protection requires at least four smart storage units. If there
are not enough available smart storage units, then the assignment process returns an error
(state 1640) and proceeds td an end state (state 1670).

[0195] If there are enough available units, then the assignment process selects a
smart storage unit for each block in the protection group (state 1650). A more detailed
description of a process for selecting smart storage units is described below in relation to
Figure 17, though other processes may be used.

[0196] In some embodiments, after the smart storage units have been selected,
then for each selected smart storage unit, the assignment process determines the last location
of data blocks related to the current file and/or the last location of protection bloeks related to
the current data (state 1660) and proceeds to the end state. This allows the new data blocks
and/or the new protection blocks to be stored near other data blocks and protection blocks
from the file. It is recognized that in other embodiments, other storage preferences may be
used. For example, the data may be stored contiguously or non-contiguously, the data may be
stored at the end of the storage device rather than at the beginning, and so forth.

D. Selection Process

[0197] Figure 17 illustrates one embodiment of a method for selecting smart
storage units on which to store the clusters of a single protection group (“selection
processed”). In the exemplary embodiment, the selection process is used to assign devices to
a protection group of a file. As noted above, the protection scheme constraints require that

the blocks in the protection group are each stored on a different smart storage unit. Thus, for

46-

WO 2004/046971 PCT/US2003/036699

mirrored files, each copy of the block should be stored on a different smart storage unit, and
for parity protected files, each block of content data and its related .parity data should be
stored on a different smart storage unit. Though the exemplary selection process is used to
assign smart storage units to a single protection group, it is recognized that in other
embodiments, the selection process may be used to assign smart storage units to smaller
and/or larger sets of data. For example, the selection process may work with a single block,
on a set of blocks, on a set of protection groups, and so forth.

1. Sample Implementation

[0198] The entire set of smart storage units, herein referred to as devices, devices
available in the intelligent distributed file system may be represented as T. The set of
working devices is a set of all of the running devices in the intelligent distributed file system
and may be represented as G. G would exclude any devices in the intelligent distributed file
system that were “down” due to some type of failure (e.g., system failure, network failure,
storage device failure, etc.). In addition, W represents the set of devices on which the file’s
content data and protection data is currently stored (i.e., devices that are occupied by the file).
It is noted that if the file has never been stored on the intelligent distributed file system, W
would be empty.

[0199] Beginning in a start state, the selection process proceeds to the next state
and identifies a set of the preferred devices (state 1715).

[0200] In the exemplary embodiment, the number of devices over which the file
may be distributed should be large enough to meet the selected protection scheme constraints.
For example, to achieve parity protection of m+n, at least m+n devices are needed. To
achieve mirroring of k-times, k devices are needed. -

[0201] In addition, the number of devices over which the file may be distributed

' should be small enough such that the file is not made too vulnerable. A file may become
vulnerable as it is spread over more and more devices because the likelihood that the file will
be affected if a particular device fails is increased. Thus, the system may select an upper
limit as the maximum nurhber of devices, max, on which a file’s data may be occupied.

[0202] Accordingly the constraints on the width of the file may be represented as:

Parity protected using m+n: {m-+n } <= width of the file <= max

47-

WO 2004/046971 PCT/US2003/036699

Mirroring of k-times: {k} <= width of the file <= max

[0203] To select the set of preferred devices, P, the system uses the max to set the
size of P. The devices from the intersection of G and W are added to P and if P is still not the
size of max, then devices from the intersection of G and W! are added to P until P reaches
size max. The remaining devices from the intersection of G and W! not added to P are added
to S (state 1720).

[0204] Thus, if |“max™] = = [W & G, then P will only contain UP devices on
which the data already resides and S will only contain UP devices on which data does not
already reside. If |“max”| < |W & G, then P will contain some of the UP devices on which
the data already resides, and S will also contain some of the UP devices on which the data
already resides as well as some of the UP devices on which data does not already reside. If
[“max”| > [W & G, then P will contain UP devices on which the data alread}'/ resides and
some of the UP devices on which data does not already reside. S will contain some of the UP
devices on which data does not already reside. ‘

[0205] It is recognized that other methods of selecting preferred devices may also
be used.

[0206] Next, the selection process identifies an ordered set of optimal devices,
that is an “optimal protection group,” for the current protection group (state 1725). The
optimal protection group may be represented as O. In the exemplary embodiment, the
optimal file layout is defined as the layout that would be used if writing the file onto the
entire set of preferred devices for the first time. When the final device in P is used, then the
next device used is the first device in P allowing the blotks to be “wrapped around” the
devices in P. Accordingly, the first block of the first protection group would be stored on the
first device in P, the second block of the first protection group would be stored on the second
device in P, the third block of the first protection group would be stored on the third device in
P, and so forth for the remaining blocks in the first protection group. Then, the first block of
the second protection group would be stored on the device on which the last block of the
previous protection group was stored, the second block of the second protection group would
be stored on the next device, and so forth. While this embodiment allows an overlap of one

block in the protection groups among the devices in P, it is recognized that other overlap

-48-

WO 2004/046971 PCT/US2003/036699

sizes, including zero, may be used. In this embodiment, the “optimal protectiop group” can
be defined as the ordered set of devices on which a specific protection group would be stored
if writing the file onto the preferred devices for the first time. Other definitions for choosing
the “optimal file layout” and the “optimal protection group” may be used.

[0207] Next, the selection process identifies a set of non-optimal devices, which
can be represented as N (state 1730). In this embodiment, N is set the devices within the
preferred devices in which the protection group would not be stored if the file was written for
the first time.

[0208] Next, the selection process creates an array or matrix of the devices on
which each of the blocks in the protection group are stored currently (state 1735), which may
be referenced as C. C has the same number of columns as there are blocks in the new
protection group, and the number of rows in each column corresponds to the number of
mirrors used by the file as it is currently stored, with the minimum number of rows being one.
The entries in each column in C represent the various devices on which the block is already
stored. For example, if a file is currently stored as a 3x file and is being changed to a 5x file,
the new protection group is of size five, and the number of mirrors used by the file as it is
currently stored is three. Thus, C would have five columns, and each column would have
three rows. If a file is currently 3+1 parity protected and is changing to 5+1 parity
protection, then C would have six columns, and each column would have one row. If a file
has not yet been stored on the system, then C would have a column for each block in the new
protection group and would have one row, such that each entry in C would be zero —
signifying that none of the blocks are currently stored on the system. A zero entry represents
that the block is not currently stored on the system and may also be used, for example, when
parity protection is being added to the file, as if parity was not used before, then the parity
blocks would not have yet been stored on the system.

[0209] The selection process then determines which preference has been selected
for this file (state 1740). In the exemplary embodiment, there are three preferences, the first
preference (“repair”) favors minimizing movement of data by assigning blocks to the smart
storage units on which they already reside. The second preference (“rebalance™) favors

assigning blocks such that blocks that are already reside on a device in the “optimal list”

-49-

WO 2004/046971 PCT/US2003/036699

remain on that device, and the other blocks are moved to the remaining devices in the
“optimal list.” The third preference (“retune”) favors assigning all blocks to the ordered
values in the “optimal list.” It is recognized that the preferences may not always be met if
they are in conflict with the selected protection scheme.

[0210] It is recognized that the preferences discussed above are exemplary and
that a variety of preferences may be used. Furthermore, one or more preferences may be
combined to best meet the system’s goals. In addition, some embodiments may not use
preferences but may only use the constraints of the protection scheme to select the devices.
In other embodiments, the preferences may take priority over the protection scheme
constraints.

[0211] If REPAIR is the preference, then the selection process traverses through
each column in C and checks to see if one of the devices in the column matches one of the
devices in O (state 1745). If there is a match, then the selection process assigns the matching
device to that block such as, by recording the device’s ID in the final assignment listing,
removes the device from O, and moves to the next column in C. If there is not a match, then
the selection process moves to the next column in C. Once each column in C has been
traversed, then the selection process proceeds to the next state.

[0212] In this state, for every block that has not been assigned, the selection
process traverses through the con‘eéponding column in C and checks to see if one of the
devices in the column matches one of the devices from N (state 1750). If there is a match,
then the selection process assigns the métching device to that block such as, by recording the
device’s ID in the final assignment, listing removes the device from N, and moves to next
block that has not been assigned. If there is not a match, then the selection process moves to
the next block that has not been assigned. Once a block that has not been assigned has been
traversed, then the selection process proceeds to the next state.

[0213] In this state, for every block that has not been assigned, the selection
process traverses through the corresponding column in C and checks to see if one of the
devices in the column matches one of the devices from S (state 1755). If there is a match,
then the selection process assigns the matching device to that block such as, by ;ecording the

device’s ID in the final assignment listing, removes the device from S, and moves to next

-50-

WO 2004/046971 PCT/US2003/036699

block that has not been assigned. If there is not a match, then the selection process moves to
the next block that has not been assigned. Once every block that has not been assigned has
been traversed, the selection process proceeds to the next state.

[0214] In this state, for every block that has still not been assigned, the selection
process assigns a device from O (state 1760). Once each block has been assigned, then the
selection process proceeds to an end state. A

[0215] If REBALANCE is the preference, then the selection proc.ess traverses
through each column in C and checks to see if one of the devices in the column matches one
of the devices in O (state 17650). If there is a match, then the selection process assigns the
matching device to that block such as, by recording the device’s ID in the final assignment
listing, removes the device from O, and moves to the next column in C. If there is not a
match, then the selection process moves to the next column in C. Once each column in C has
been traversed, the selection process proceeds to the next state.

[0216] In this state, for every block that has still not been assigned, the selection
process assigns a device from O (state 1770) and records the assignment in the final
assignment lisﬁng. Once each block has been assigned, then the selection process proceeds
to the end state.

[0217] If RETUNE is the preference, the selection process starts with the first
block and assigns the first device in O, the second block is assigned to the second device in
0, and so forth such that the devices are assigned using the ordered O list (state 1775). Once
each block has been assigned, then the selection process proceeds to the end state.

[0218] Thus, the selection process chooses a device for each block in the
protection group.

[0219] It is recognized that Figure 17 illustrates one embodiment of a selection
process and that other embodiments may be used. For example, the method used to first
write out the file may be different. As discussed above, the exemplary embodiment uses a
skew to distribute the blocks among the preferred devices and such that the protection groups
overlap by one block. In other embodiments, a different skew may be used. In addition, the
system could eliminate the use of a skew value. In such case, each protection group could

begin its assignment of its data using the same unit each time or after assignment of units to a

-51-

WO 2004/046971 PCT/US2003/036699

protection group, the list of preferred units may be reordered based on the various parameters.
Furthermore, in other embodiments, the selection process may traverse through each of the
sets O, N and S before moving onto the next column in C.

[0220] In addition, the set of preferred devices and optimal devices may be
selected using additional and/or other criteria. Such criteria may include, for example, which
smart storage units are running, the amount of available space on the smart storage unit’s
storage device, the throughput rate of the smart storage units, the smart storage units in which
data from the protection group is already stored, and so forth. It is recognized that different
systems may have different goals.

2. Overview of Foundations

[0221] The following provides an overview of some of the mathematical
constructs discussed above.
| a. Operators
[0222] The following are the operators used to provide the foundations for the
exemplary embodiment discussed with respect to Figure 17.
& = Intersection
| = Union
! = Inverse
- = Subtraction
b. Sets/Lists:
[0223] The following are the sets and ordered lists used to provide the

foundations for the exemplary embodiment discussed with respect to Figure 17.

T = set of devices available in the intelligent distributed file system

G = get of all of the runming devices in the intelligent distributed file
system

W = set of devices that are occupied by the file

S = set of spare devices

P = ordered set of preferred devices

O [size] = optimal assignment of devices to each block in the protection

group, where “size” is the size of the protection group

-52-

WO 2004/046971 PCT/US2003/036699

N = non-optimal set=P—-O
F [size]
C[size, k]

final assignment of devices for each block in the protection group

current devices assigned to each block, where “k” is the number of
mirrors used by the file as it is currently stored

3. Examples

[(_)224] An example selection of devices will now be discussed. It is recognized,
however, that the examples are not meant to limit the scope of the invention, but only to
provide details about various embodiments.

a. Repair
[0225] Suppose that we are trying to repair a 3x file on a four-node array that has

just experienced a single device failure on node 3.

(1, 2, 3)
== (1, 2, 4)
dev (X) == 3; widthpolicy(X) ==
== Repailr
group_index = 0

[0226] Here |G| >= dev(X), so we may begin. We have:

v}
I

[0227] Now we append to P, taking from S, such that:

(1, 2, 4)
()

0o
Il

[0228] The cycle offset is group_index % [P], or 0 % 3 == 0. This makes for:

0 (1, 2, 4)
N = ()

([

[0229] Now we iterate over all values in F.

[0230] For F[0], C[0] & O is (1, 2), since these two mirrors are possible
selections. Both devices 1 and 2 contain mirrors of F[0]. Choose F[0] == 1. Delete 1 from O,
so that O now is (2, 4). ‘

[0231] Now for F[1], C[1] & O is (2). Choose F[1] == 2. Delete 2 from O. O is
now (4).

-53-

WO 2004/046971 PCT/US2003/036699

[0232] For F[2], C[2] & O is the empty set. We now proceed to the final step,
assigning the remaining value of O to F[2]. So F[2] == 4. Our final F is: '

[0233] The goal of Repair is accomplished; only one cluster has to be
reconstructed. The other two clusters are left in place.

b. Rebalance

[0234] Given a 2+1 file on a 3-node array, the Rebalance goal may be used to
restripe the file to 3+1 when a fourth node is added to the array.

W==(11213)
== (1, 2, 3, 4)

dev (X) == 4; widthpolicy(X) ==
R == Rebalance ’

group_index = 30

[0235] Here |G| >= dev(X), so we may proceed. We have:

il

P (1, 2, 3)

(4)

]

[0236] We append to P, taking from S, such that:
P= (1, 2, 3, 4)
S = ()

[0237] The group_index is 30, so the cycle_offset is 30 % 4 = 2. Then:

¢}
N

I

(3, 4,1, 2)
()

I

[0238] Note that all C[i] have at most a single element, since the file was not
mirrored, and therefore there exists only one data copy of each source cluster. For the sake of

this example, suppose that:

Thus C[0] = (3), C[1l] = (4), etc.

-54.-

WO 2004/046971 PCT/US2003/036699

[0239] We begin with F[0]. In this case C[i] & O provides 3, so F[0] = 3.
Similarly, F[1] = 4 and F[2] = 2. At each step we delete from O, so that O is left containing
only (1).

[0240] For F[3], C[3] & O is empty. We proceed to the final step of assigning the
last member of O to F[3], and thus F[3] == 1. Our final F is:

[0241] Here two blocks were moved, and all members of F are in O.
c. Retune
[0242] The exemplary intelligent distributed file system has 8 devices, A, B, C, D,
E, F, G, and H, and the file is comprised of 12 content blocks, bl, b2, b3, b4, b3, b6, b7, b8,
b9, b10, bl11, and b12. Currently, the file is stored on devices A, B, C, and D and is mirrored
2 times, but with no parity protection. The following illustrates the devices on which each

block of the file is currently stored.

bl | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | bl0 | bll | bi2
A | B C|DJ| A | B C| D | A B C [-D
B C|DI|A|B C|D]|]A|B C D A

[0243] If the new data layout includes 3+1 parity protection, but no mirrored data,
the file would have four protection groups, each with four blocks — three content blocks, and
one parity block. The maximum number of devices on which the file would be distributed,
max, is set to four.
[0244] Thus:
T={A, B,C,D,E,F, G, H}
W = {A, B, C, D}

[0245] Next, assume that devices F, G and H are down. This means that:
G={A, B,C,D,E}

[0246] To construct P, the devices from the intersection of sets W and G are
added to P. If P still does not have the “max” number of devices, devices from the

intersection of the sets G and W! are added to P until the “max” number is reached. The

-55-

WO 2004/046971 PCT/US2003/036699

remaining devices in the intersection of the sets G and W! are placed in S. In one

embodiment, the devices in intersection of G and W! are ordered with those having more free

space at the front.
P={A,B,C,D}
S = {F}
[0247] Using the skew discussed above, the optimal file layout would be:
A B C D E
Parity Group 1 bl b2 b3 pl --
Parity Group 2 b6 p2 -- b4 b5
Parity Group 3 - b7 b8 b9 p3
Parity Group 4 bll b12 p4d | - b10

[0248] Thus, for Parity Group 1:

O0={A,B,C,D}

N= {E}

C={{A,B}, {B,C}, {C, D}, {0, 0}}
[0249] . For Parity Group 2:

O0={D,E, A, B}

N={C}

C={{D, A}, {A, B}, {B, C}, {0, 0}}
[0250] For Parity Group 3:

0={B,C,D,E}

N={A}

C={{C,D}, {D, A}, {A, B}, {0, 0}}
[0251] For Parity Group 4:

O0={E,A,B,C}

N={D}

C={{B,C}, {C,D}, {D, A}, {0, 0}}
[0252] Parity Group 1 is now used as an example for selecting devices using the

RETURN preference. Recall that:

-56-

WO 2004/046971 PCT/US2003/036699

0=1{A,B,C,D}
[0253] Thus, the first block in F is assigned to A, the second block in F is
assigned to B, the third block in F is assigned to C, and the fourth block in F is assigned to D.
[0254] The selection process is called for each of the protection groups resulting

in the following assignments.

F, = {AB,CD}
F, = {D,E A B}
F; = {B,C,D,E}
F, = {E AB,C}

[0255] Thus, the blocks are stored in the same location as they would be in if the
file were first being written — the same layout as in the optimal file layout discussed above.

4. Sample Pseudocode

[0256] The following provides an example of pseudocode for a sample
implementation of the selection process. It is recognized, however, that the example is not
meant to limit the scope of the invention, but only to provide details for a specific

embodiment.

© 2003 ISILON SYSTEMS, INC.

Performing device selection for a protection group

& means intersect; | means union; ! means inverse

The algorithm attempts to provide F, a set of device selections for a
protection group. All elements of F must be unique. F is an array, indexed
as F[i]. For a FEC-protected (parity-protected) file, F describes the devid
selections for the set of clusters in the protection group, in order of
offset throughout the file. For mirrored files, F describes the devid
selections for all the mirrors in the protection group.

The algorithm considers a number of inputs:
The group index is the index of the protection group. Every file is
divided into a number of disjoint protection groups, which may be

assigned indices.

G is the set of all ‘up' devices--i.e. devices that are available and
are not experiencing failure conditions.

W is the set of devices already occupied by the file. It is an
ordered list.

X is a policy that describes how the file is to be laid out. For
every X, there is a value dev(X) that indicates the number of devices

-57-

WO 2004/046971 PCT/US2003/036699

required to protect the file according to X. Note that this is also
the number of elements in the protection group, so |F] = dev(X). X
also provides a desired width widthpolicy(X) of the file, which is
the number of devices that the file _should occupy under ideal
conditions if |G >= widthpolicy (X). Note that we require
widthpolicy(X) > dev(X).

C describes the existing layout. It describes for each F[i] the set
of devices upon which a copy of the data needed for F[1] may be
found, 1if any. The set of such devices may be delivered as C[i]. |[C]|
== IF].

R is the goal of the algorithm. It describes whether the algorithm
should:

== Repair: Try to minimize block movement when cbtaining F.
R == Rebalance: Try to achieve |W| == widthpolicy(X) while
obtaining F.

1. Begin by verifying that G is suitable for the submitted X. If |G| <
dev(X), then the algorithm cannot succeed, and return an error to
the caller allowing it to retry with a different X.

We wish to establish an ordered array of _preferred devices P, from
which selections of F may be made. Establish P as a subset of the
ordered W as:

P=G&W

Initially set up a _spare_ array S, as all members of G that are not
in W, ordered by their amount of freespace.

S =G & W

P and S are both ordered. Now append to P members from S, until |P|
== wp:

while (|P] < widthpolicy(X) and |S]| > 0) {

S.pop() // take from front
.append(x) // add to end

{
b4
P

}
|P| now represents the ideal list of devices for occupation by the
file. It should be sized as close to widthpolicy(X) as possible,
given G, but of course we may have |G| < widthpolicy(X).

2. Calculate a cycle offset based on the protection group index, to

allow rotation of mirrors and parity. Starting at the cycle offset in
P, count off devices, and add these into an optimal set O: -
cycle offset = group_index % |P]|
for (i = 0; i < dev(X); i++)

O.append (P{ (cycle offset + 1) % |PI|])

Define N as the less-than-optimal devices:

N=P-0

-58-

WO 2004/046971 PCT/US2003/036699

Note:
- N, O and S are disjoint
- N | O ==
3. Iterate over existing current devids, trying to choose each F[i] so

that R is achieved. For R == Repair, we would like to minimize block
movement. For R == Rebalance, we would like F to look close to O.

" For R == Repair, define an ordered array of selection sets as:
A= (0, N, 8)

For R == Rebalance, define A simply as:
A=0

After appropriate selection of A according to R, we can complete F
like this:

for SET in A {
for (1 = 0; i < |F|; i++) {

x = C[i] & SET // intersect existing devids with desired
ones
if (Ixl > 0) { ,
y = x.first() // get one of these
SET = SET - y // prevent it from being reconsidered
Fli] =y // put it into F
}
}
}
4. We still have to choose devids in F for any F[i] where there was not

a suitable selection from C[i], so we complete F as:

for (i = 0; i < |F}; i++) |
if (F[i] unassigned) {
} F = O.pop();

E. Example Pseudocode

[0257] The following provides an example of pseudocode for a sample
implementation of the restriping process. It is recognized, however, that the example is not

meant to limit the scope of the invention, but only to provide details for one embodiment.

© 2003 ISILON SYSTEMS, INC.

This section describes the component of the file system that decides how
blocks are allocated at the device level (in the BAM). Allocation at the
disk and block level is handled by the LBM allocation code. The module
described below will be used primarily by the write and restripe components
of the BAM to find out where new blocks should be allocated during the

-59.-

WO 2004/046971 PCT/US2003/036699

writing and restriping process. However, the API may be general enough to
be used by other components as needed.

The function lives in bam layout.c, and is initially used by the new write
and restripe code. Other modules such as the DFM may be modified to use it
in the future, as needed:

int bam layout protection_group
(const struct gmp group info *gi,
long *free cluster_counts,
struct inode *ip,
enum layout_goal_t goal,
struct protection level *protection,
int width policy,
ifs lbn t start_lbn,
int num clusters,
int curr devid depth,
ifs dev1d t **curr _devids,
u ints _t Falloc counts,
ifs dev1d t *result _devids,
ifs baddr t *result pbas)

Overview:

This function computes layout information for a single protection group
under a specific protection setting. This function is called for a complete
protection group (based on the specified protection setting). Layout
recommendations will be returned in an out parameter (result_devids), in
the form of a single device id for each cluster in the group. Another out
parameter (result pbas) will contain a previous block address for each
cluster to be used in allocation.

Parameters:
Gi: Current cluster group info.
free cluster counts: Free cluster count for each node in the group. This

allows the layout engine to make decisions about which devices to use based
upon their current free space. This array should be exactly 'dset size(&gi-
>group) ' in length.

Ip: The inode. This is primarily used for accessing width device info and
previous block address information.

Goal: A flag that specifies the goal of this layout operation. This flag
gives the layout engine a clear objective to refer to when deciding how to
layout blocks. There are currently 3 goals:

LAYOUT REPAIR: This tells the layout engine that the top priority
is minimal block movement. The layout engine will assign new devids
only where required to maintain our protection constraints (mirrors
should be on different devices, etc.). Existing blocks will be moved
only when absolutely necessary. This is a goal likely to be used when
repairing files after a drive or node failure. Since completely
unallocated clusters are still laid out optimally under this
scenario, this is a goal likely to be used by the write path
(bam_new _write). It is at least as fast in all scenarios as the other
two goals, and in many cases *much* faster.

-60-

WO 2004/046971 PCT/US2003/036699

LAYOUT REBALANCE: This tells the layout engine that optimal
devices should be used for the layout. However, those devices can be
shuffled to avoid moving existing blocks. In this way, the system
avoids moving blocks when possible, but will move blocks when
necessary to balance the file across the correct number of nodes. In
many cases this will not be as fast as LAYOUT REPAIR; however, it
will result in a more optimal and better balanced file layout. This
goal is likely to be used by the restriper when changing protection
settings or rebalancing due to new node additions.

LAYOUT RETUNE - This tells the layout engine that optimal layout
is the top priority. No attention will be paid to the location of
existing blocks, and any or all existing blocks may be moved to
layout the file perfectly. If we are working on a falrly well laid
out file, blocks may not need to be moved, since they will already
happen to be on the appropriate devices, but no attempt is made to
achieve this. In fact, the caller may want to reallocate blocks even
if they happen to fall on the optimal device to repair fragmentatlon
in disk. This goal is by far the slowest in most scenarios and will
never be faster than LAYOUT REPAIR or LAYOUT REBALANCE. Callers
likely to choose this goal will Dbe "tunlng" operations like
defragmentation or optimization for read performance. Those processes
will likely run on an "as-needed" basis or in the background during
normal file system operation.

Protection: The desired protection setting. This might not be
identical to the protection setting in the inode (for example, if the
caller is considering writing a parity file at 2% when parity is not
possible). The layout code uses this protection setting when determining
where to place blocks. It will ignore the protection settings in the inode
itself.

width policy: The desired width policy for the file. This is the target
number of nodes on which the entire file should be laid out. This may not
be attainable in many situations, but the layout engine will strive to
fulfill this policy.

start _lbn: The first lbn in the region. This will be at the beginning of a
protection group since this function requires a whole number of -protection
groups on which to operate. Start lbn provides an easy way to calculate
skew, allowing us to rotate data and parity information around the cluster.
These lbns are also used to identify specific blocks in the results
structure.

num_clusters: The total number of clusters in the protection group to be
laid out. For example, in a 3+1 protection setting, each protection group
contains 4 clusters, while a 3x protection group contains 3 clusters.
Num clusters should agree with the protection parameter exactly. If not,
EINVAL will be returned. Note that the num clusters parameter defines the
length of the next three array parameters: curr_devids, alloc_counts, and
result_devids.

curr_devids: The devid of the first allocated block in each cluster.
This is a 2-dimensicnal array that should be exactly 'num clusters' in
length. The second dimension allows the caller to supply alternate existing
locations for each cluster to be laid out. Please refer to the following
"Curr devids'section of this document for a more thorough discussion of
this parameter. Note that many elements of this array may be set to O,
indicating that no blocks are currently allocated in that particular
cluster. The layout engine will attempt to place new blocks where existing
blocks are allocated, unless layout constraints prevent it from doing so.

61-

WO 2004/046971 PCT/US2003/036699

Note that the parity cluster(s) should be listed last in this as well as
other array parameterg.

alloc_counts: For each cluster, the number of blocks the caller intends
to allocate. This allows the layout engine to leave fully allocated
clusters where they are and move clusters that are partially allocated but
cannot be completed on the current device (because that device has since
run out of free space). This parameter is only consulted when 1 or more
devices nears capacity. This parameter should be exactly 'num clusters' in
length.

result_devids: This out parameter is allocated by the caller and should
be exactly 'num clusters' in length. It contains a recommended devid for
each cluster in the protection group. In the future, the layout engine may
be extended to recommend specific drives as well. The caller will examine
the devid recommended for each cluster. If that devid is not equal to the
devids of blocks that are already allocated in that cluster, then those
existing blocks are moved to meet layout constraints. New blocks are
allocated on the recommended devid. Again, any parity cluster(s) are listed
last in this and other array parameters, and mirrors are listed in
ascending order.

result pbas: This out parameter is allocated by the caller and is the
size of ‘'num clusters' in length. It contains a previous block address
(pba) for each cluster, to be sent along with the block allocation request
for optimal contiguous allocation. Some of these pbas may be zero if there
is no previous data or parity block already allocated on that node. These
may also be zero if non-contiguous writing has prevented us from easily
finding a previously allocated block on that node. Like the other array
parameters, parity cluster(s) are last in this array, and mirrors are
listed in ascending order.

Curr devids Format:

The curr devids argument mentioned above allows the caller to
communicate to the layout engine information about +the locations of
currently allocated blocks in the protection group. The layout engine will
consult this information and attempt to move as few blocks as possible
while still fulfilling the requested 'goal'.

Like the other array parameters, the curr devids array are the size
of 'num clusters' in length (the size of exactly 1 protection group). In
the case of parity, the parity cluster(s) are listed last in the protection
group, and mirrors are listed in ascending mirror index order.

What makes this parameter different from the other arrays is that
this is a 2-dimensional array. The array will contain 1 column of devids
for each cluster in the new protection group (it is 'num clusters' in
length). Each column contains the mirrors of the existing data block
(therefore, the number of rows in this array will almost always be equal to
the data mirror count of the old layout). In this way, the caller can tell
the layout engine that an existing cluster has mirrors on devices A, B, and
C. The layout engine then knows that if it chooses A, B, or C for that
cluster, the caller will likely not have to move any currently allocated
blocks.

A few examples will make this more clear. Suppose that the system is
restriping a file from 3x to 3+l. The system asks the layout engine to
layout 1 3+1 protection group (containing the first 3 clusters of data in
the file). The system constructs the curr devids array by allocating an

-62-

WO 2004/046971 PCT/US2003/036699

array with 4 columns and 3 rows. 4 columns because the new protection group
will have 4 clusters, and 3 rows because each existing block has 3 mirrors:

curr_devids[4] [3]:

———
wN -
— e s
— - —
INEREN}
e b et
———
G W
e
—— -
coo
s s

Note that the 4th column is empty because no parity blocks are currently
allocated, but each data cluster has 3 existing mirrors. This tells the
layout engine everything it needs to know about the current file layout.

Another example. Suppose the system is restriping a file from 3+1
protection to 3x protection. The system is going to create a curr_devids
list which is 3 clusters in length (since our new 3x protection group will
have 3 clusters), and 1 cluster deep (since the old data is not mirrored):

curr_devids([3][1]:
(1110211031

This illustrates the fact that extra rows are only needed if current
clusters are mirrored, and the system wants to tell the layout engine where
the existing mirrors are located. As previously stated, the 2nd dimension
is almost always going to be set to the old data mirror count of the file.
If the old file is parity protection, this will be 1.

The real power of this structure reveals itself when restriping from
one mirroring setting to another. For example, suppose the system 1is
restriping a file from 5x to 2x. The system will create a curr_devids array
which has a length of 2 (since our new protection group will contain 2
clusters), and a depth of 5 (since each existing data cluster has 5
mirrors). The layout engine needs to know the locations of existing mirrors
so it can choose the best 2 to keep:

curr devids[2] [5]:

— - — -
Gl W N
e
——
Ol WN R
NP

Note that in this case some of the information is redundant, because the
system is only talking about 1 data cluster (which is mirrored 5 times).
However, this structure is easy for the layout engine to understand. All
the engine cares about is the fact that it can choose any member of the
first column for the first mirror, and any member of the second.column for
the second mirror, and the resulting layout will require no data block
movement at all. This format gives the layout engine the information that
it needs to make efficient layout decisions.

Most of the time, when writing normal files, this array will be very
simple. The extra complexity is only needed when restriping, or performing
recovered writes when devices are unavailable. For example, i1f writing the
3rd cluster in a 3+1 file, the curr devids array will simply be:

curr_devids[4][1]:

(11021 001T14]

-63-

WO 2004/046971 PCT/US2003/036699

Likewise, if writing the 3rd cluster of a 3x file, the array can simply be:
curr_devids[3] [1]:
(1110271001
In these cases, the existing protection setting is exactly the same as fhe

new setting, so the system can communicate the existing layout information
in a flat array.

Return Values:

0: Success. The out parameter contains device IDs for blocks
which need to be allocated or moved, and no results for blocks
which need not be moved. Every cluster which requires
allocation will have an associated previous block address (pba)
for use in the actual allocation call. .

EROFS: There aren't enough available devices to layout the requested
blocks without violating layout constraints. The caller can
either return this error to their caller, or call
bam_layout protection group() with another desired protection
setting.

EINVAL: Invalid parameter. For example, if the 'num clusters' specified

is not equal to exactly one complete protection group, this
error will be returned. In debug builds, it will also be
accompanied by an assertion failure in the layout module, to
help track down the bad caller. This error code is not expected
in normal operation, and is indicative of a coding error.

Pseudocode:

This document describes the basic implementation of the BAM-level Layout
module.

Phase 1: Based on the group info, width requirements, and per-device free-
block statistics, a list of available devices with enough free space to use
is formed. Cases where the system is out of space or too many devices are
down to write at the desired protection level will be caught here, and
errors will be returned to the caller.

Phase 2: A different devid is assigned from the list of devices to each
cluster in the protection group. If there are already blocks allocated on a
specific device, the system attempts to assign devids such that existing
blocks do not need to be moved. This may or may not be possible depending
on the existing block layout and the currently available devices. Note that
the goal parameter will play a large part here. If the goal 1is
LAYOUT REPAIR, every attempt will be made to avoid moving blocks. If the
goal is LAYOUT REBALANCE, the system attempts to avoid moving blocks, but
will do so if needed to balance the file properly. Finally, if the goal is
LAYOUT RETUNE, optimal layout will be computed, regardless of where
existing blocks live.

Phase 3: Having assigned a devid to every cluster, the systems assigns a
pba to each cluster for allocation purposes. This is done by looking at the
pba lists in the struct inode that gives the block addresses of the last
block allocated on each device. The system grabs the correct one for each
cluster and is done. The only subtlety here is that the system wants data

-64-

WO 2004/046971 PCT/US2003/036699

blocks to use data pbas and parity blocks to use parity pbas. They are
stored separately in the struct inode, so the correct 1list should be
consulted.

Issues:

1) out of disk space: One outstanding question with this algorithm is what
to do when some or all nodes near capacity. If possible, the system would
like to avoid recommending devices to the caller that will result in ENOSPC
errors on allocation. Those errors will not trigger a syscall restart if no
array state has changed, and will therefore be propagated all the way back
to the user. This issue 1s best handled in Phase 2, when we are actually
assigning devids to the result list. At that time, we can check the
available disk space on that device (remembering to account for reserved
space which we can't access). Here is how that information affects each
scenario:

LAYOUT RETUNE: No change in behawior. This scenario prefers optimal
layout no matter what. If the system gives less than optimal layout,
chances are it is no better than what is already available.

LAYOUT REPAIR/LAYOUT REBALANCE: If the systems is assigning a devid
that matches the current devid passed in, the system does not need to
worry about free space. The system has already allocated blocks
allocated there, so the system either will not be moving any of them,
or will only be allocating a few. The system wants to move as few
blocks as possible in these scenarios, so leave those devids as they
are.

When the system is about to assign a devid to an empty slot (meaning there
is no current devid for that cluster), look at the free space for that
device. If it's near full, attempt to find another preferred device that
has more free space, and use that instead. If all of the preferred devices
are near full, assign the device that has the greatest amount of free space
out of both the preferred and spare device lists.

Note that ENOSPC is not returned from the layout engine API. Free space
information is a little out-of-date, since it takes some time to retrieve
those counts from remote devices. When space 1is tight, the system
recommends the most promising devices based on the existing counts. At
worst, the caller will get an ENOSPC when allocation is attempted.

Algorithm Pseudocode:

int

bam layout protection group(gi, free_clusters, ip, goal, protection,
width policy, start_lbn, num_clusters, curr_devid depth, curr_devids,
alloc_counts, *result devids, *result_pbas)

/* Get current width device list from dinode. */
/* Remove n DOWN devices from the list. */
/* Compute max width (MAX WIDTH - n). */

/* Add all remaining UP devices to the list. */
while (width device list size < UP device list size) {
/* Add UP device with most free clusters. */

}
/*

* Truncate the list to max width in length. This prevents us
* from overflowing the dinode width device limit.

-65-

WO 2004/046971 PCT/US2003/036699

*/

/*
* -Calculate preferred width and min_width, using width _policy
* and the desired protection parameter

*/

/* Verify that we have enough available devices. */
if (not)
return EROFS;

~
*

*

At this point, we have a list of all of the online devices we
could possibly use. At the beginning of the list are devices
currently used by this file, followed by all remaining devices
sorted by avallable free space.

* ok *

*
~

Split the list into 2 parts. The first sublist will be exactly
preferred width in length starting at the beginning of our master
list. The second sublist contains the rest of the master list. We
will call the first list our 'preferred devices', and the second
list our 'spare devices'. The second list may be empty.

* ook %k Xk

/
/* Now, begin laying out the protection group. */

/* Sanity check num clusters and alloc_ counts. */
If (insane)
/%
* We need a whole number of protection groups,
* and alloc_counts should be between 0 and 16.
*/
return EINVAL;

/* Calculate start lbn (first lbn in protection group). */
/* Calculate a group number using start_lbn. */

/* Clear elements of current devids which are DOWN. */
/* Clear duplicate devices in current devids. */

/*

* Calculate a start offset in the preferred device list
* (probably just (group number % list size)). This will
* take care of skew.

*/

/*

Starting at start offset in the preferred_list, step
through the list for each cluster we are assigning, and
copy each devid to a new list (wrapping around to the
beginning of the preferred list if necessary). This new
sublist will be called the optimal device list.

/

EE T

/* Assign devids based on the caller-specified goal. */
switch (goal) {
case LAYOUT REPAIR:
/* Avoid block movement. */
error = bam_layout repair();

-66-

WO 2004/046971 PCT/US2003/036699

break;

case LAYOUT REBALANCE:
/* Ensure balanced layout. */
error = bam layout rebalance();
break;

case LAYOUT RETUNE:
/* Optimal layout. */
error = bam layout retune();

break;
default:
ASSERT (0) ;
}i
/%
* Almost Done! Every cluster should now be assigned a devid.
*/
/* Now we just have to choose previous block addresses... */

for (each cluster in the protection group) {
/* Initialize pba to zero baddr. */

/* Determine if this is a parity or data cluster. */

§

/* Grab the proper pba list from the struct inode. */

/* Search for a useable pba. */
for (each item in the pba list) {
/%
* If the devid matches our recommended devid
* for this cluster, use this pba, and break.

*/
}

/* Now we're really done! */

}

int
bam_layout_ repair ()
{

/* Assign existing devids wherever possible. */

/* Fill empty slots with devids from the optimal list. */
}

int
bam_layout_rebalance()

{

/* Zero existing devids that aren't present in the optimal list.

/*
* Reshuffle optimal list if necessary to minimize movement of
* existing blocks, and assign to output.
*/
}
int
bamwlayout_retune()

{
/* Assign optimal list to output, no questions asked. */

-67-

*/

WO 2004/046971 PCT/US2003/036699

IX. COPYRIGHT INFORMATION

[0258] A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the 'patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or records, but otherwise reserves all
copyright rights whatsoever.

X. CONCLUSION

[0259] While certain embodiments of the invention have been described, these
embodiments have been presented by way of example only, and are not intended to limit the
scope of the present invention. Accordingly, the breadth and scope of the present invention

should be defined in accordance with the following claims and their equivalents.

-68-

WO 2004/046971 PCT/US2003/036699

WHAT IS CLAIMED IS:

1. A distributed file system communicating with a plurality of intelligent storage
devices, wherein the distributed file system comprises a messaging system and is configured
to store and manage metadata about files and directories stored on the distributed file system
such that the metadata includes locations of metadata data blocks, content data blocks, and
parity data blocks, and the distributed file system is further configured to restripe data files.

2. The distributed file system of Claim ‘1 further configured to minimize
movement of data during restriping data files.

3. The distributed file system of Claim 1 further configured to restripe data files
to change protection schemes.

4. The distributed file system of Claim 1 further conﬁgured to restripe data files
to add additional storage devices.

5. The distributed file system of Claim 1 further configured to restripe data files
to respond to a failed storage device.

6. The distributed file system of Claim 1 further configured to restripe data files
to remove existing storage devices.

7. A method of restriping data stored in a plurality of smart storage devices in an
intelligent distributed file system, the method comprising:

identifying at least one smart storage device on which clusters of data
from an existing file may be stored;

storing the clusters on the identified smart storage device;

determining that the clusters were successfully stored; and

updating metadata related to the clusters of data to reflect new
assignments.

8. The method of Claim 7 additionally comprising assigning smart storage
devices based on a new protection scheme.

o. The method of Claim 8 additionally comprising updating the metadata to
reflect the new protection scheme. '

10. The method of Claim 7 additionally comprising assigning smart storage

devices in response to a failure of a smart storage device.

-69-

WO 2004/046971 PCT/US2003/036699

11. The method of Claim 7, wherein assigning smart storage devices includes
minimizing data movement.
12. The method of Claim 7, wherein assigning smart storage devices includes
enforcing protection scheme constraints.
13. The method of Claim 7, wherein assigning smart storage devices includes
attempting to incorporate designated i)references.
14. A system for restriping data, the system comprising:
a plurality of smart devices, the smart devices configured to store data
blocks in stripes distributed among the smart devices;
an assignment module configured to assign data blocks to smart
devices; | |
a request module configured to send instructions to the smart devices
to store the data blocks after the data blocks are assigned; and
an update module configured to update metadata related to the data
blocks after the data blocks are stored.
15. The system of Claim 14, wherein the update module is further configured to
determine whether the data blocks were successfully stored.
16. The system of Claim 14, wherein the request module is further éonﬁgured to
determine whether the data blocks were successfully stored.
17. The system of Claim 14, wherein the assignment module is further configured
to minimize data movement among the plurality of smart devices.
18. The system of Claim 14, wherein the assignment module is further configured
to comply with protection scheme constraints.
19. The system of Claim 14, wherein the assignment module is further configured
to attempt to comply with designated preferences.
20. A method of restriping data comprised of data blocks comprising:
assigning a data block to storage unit;
determining if the data block is already stored on the storage unit;
storing the data block on the storage unit if it is not already residing on

the storage unit; and

-70-

WO 2004/046971 PCT/US2003/036699

updating metadata related to the data block if the data block has been
stored.
21. The method of Claim 20 wherein assigning the data blocks includes
minimizing data movement among storage units.
22. The method of Claim 20 wherein assigning the data blocks includes meeting
protection scheme constraints.
23. The method of Claim 20 wherein assigning the data blocks includes
attempting to meet designated preferences. '
24. A method of assigning data blocks to storage units comprising:
identifying available storage units;
selecting an available storage unit for each data block; and
determining related address locations for each selected storage unit.
25. The method of Claim 24 further comprising determining if there are enough
available storage units.
26. The method of Claim 24 wherein selecting the available storage units includes
minimizing data movement among the storage units.
27. The method of Claim 24 wherein selecting the available storage units includes
' meeting protection scheme constraints.
28. The method of Claim 24 wherein selecting the available storage units includes
attempting to meet designated preferences.
29. A method of selecting a storage unit from a set of storage units for storing a
block of data in a protection group comprising:
identifying which storage unit from the set of storage umits is the
optimal storage unit in relation to the protection group; and
selecting the optimal storage unit.
30. The method of Claim 29, wherein determining which storage unit from the set
of storage units is the optimal storage unit is based on a preferred file layout.
31. A method of selecting a storage unit for a block of data comprising:
identifying storage units on which the block of data is currently stored,

identifying an optimal location on a first storage unit;

71-

WO 2004/046971 PCT/US2003/036699

determining a set of optimal storage units;

if the first storage unit is one of the storage units on which the block of
data is currently stored, selecting the first storage unit; and

if the first storage unit is not one of the storage units on which the
block of data is currently stored, selecting one of the set of optimal storage
units.

32. The method of Claim 31, wherein selecting one of the set of optimal storage
units further comprises selecting one of the set of optimal storage units that is also one of the
storage units on which the block of dat'a is currently stored.

33. A system having a storage device containing instructions that, when executed,
cause the system to perform the method of:

identifying storage devices on which clusters of data from existing
files will be stored;

storing the clusters on the identified storage devices;

determining that the clusters were successfully stored; and

updating metadata related to the clusters of data.

34. A distributed file system configured to restripe data files, the system

comprising:
means for identifying devices on which clusters of data from existing
files will be stored; 4
means for storing the clusters on the identified devices;
means for determining that the clusters were successfully stored; and
means for updating metadata related to the clusters of daté.

35. A distributed file system configured to restripe a set of data comprised of data
blocks, the system comprising:

means for assigning the data blocks to a storage unit;

means for determining if the data blocks do already reside on the
assigned storage unit;

means for storing the data blocks on the assigned storage unit if they

are not already residing on the assigned storage unit; and

-72-

WO 2004/046971 PCT/US2003/036699

means for updating metadata related to the data blocks if the data

blocks have been stored on the assigned storage unit.

-73-

l
|
|
I
|
|
|
|
I
!
|
|
l
f
|

WO 2004/046971

PCT/US2003/036699

INTELLIGENT DISTRIBUTED FILE SYSTEM
N N N G
SMART SMART SMART SMART
STORAGE STORAGE STORAGE STORAGE
UNIT UNIT UNIT UNIT
0 1 2 3
25
SWITCH
720
SERVER

r7G. 7

130
I

740

COMMUNICATION
MEDIUM

745

INTERNET

USER

USER

///~Zﬂﬂ

I S

PCT/US2003/036699

WO 2004/046971
2/21
. e e e —_—————— i |
| INTELLIGENT DISTRIBUTED FILE SYSTEM :
774 774 774 774

| A N N N !
} SMART | SMART SMART SMART | !
| | STORAGE STORAGE STORAGE STORAGE | |
| UNIT UNIT UNIT UNIT I

I
| I
: |
! i
| I
| I
| i
a I

G, &2

Y

SWITCH

SERVER

/—/40

COMMUNICATION

MEDIUM

INTERNET

i

A

i
H

USER

H.
\/JU

745

NG M RN I S S N W R NN s e e e e v mmall

/— 725

USER REQUESTS FILE

SWITCH SEES REQUEST
AND FORWARDS TO
AVAILABLE SMART
STORAGE UNIT 0

SMART STORAGE UNIT O
RECEIVES REQUEST

SMART STORAGE UNIT 0
QUERIES SMART
STORAGE UNIT 2 FOR
DIRECTORY METADATA

SMART STORAGE UNIT 0
RECEIVES DIRECTORY
METADATA

SMART STORAGE UNIT 0
QUERIES SMART STORAGE
UNIT 3 FOR DIRECTORY

METADATA

SMART STORAGE UNIT O
RECEIVES DIRECTORY
METADATA

SMART STORAGE UNIT 0
RETRIEVES FILE METADATA

WO 2004/046971 PCT/US2003/036699

3/21
i ///4
SMART STORAGE UNIT
y /“J’Zﬂ
MANAGEMENT MODULE
: ..7.50\
/330
PROCESSING MODULE 57 340
- 1/
BLOCK CACHE MODULE} e 1+ CACHE j=u—»
BLOCK ALLOCATION MANAGER
MODULE (
e BLOCK REQUEST TRANSLATOR
~ MODULE
o FORWARD ALLOCATOR
MODULE
STACK
e FAILURE RECOVERY
MODULE
|
J35 J57
AR |
LOCAL BLOCK REMOTE BLOCK o
MANAGER MODULE MANAGER MODULE |
J
A
v
BLOCK DEVICE
MODULE
)
] J60
STORAGE
DEVICE

V(S

WO 2004/046971

PCT/US2003/036699
4/21
/DFSR
IMPORTANT TEMP oo USER
I l
[] []
[] [}
[] []
PASSWORDS CREDITCARD
|
[]
[]
[]
USER.TXT ADMIN.TXT

6. 4

WO 2004/046971 PCT/US2003/036699

5/21

////—570

MODE

OWNER
TIMESTAMP
SIZE

PARITY COUNT
MIRROR COUNT
VERSION

TYPE

0O NOoOY UL WN O

DATA 10
LOCATION < | 1
TABLE 12

23
REFERENCE COUNT
FLAGS
‘PARITY MAP" POINTER

G o

WO 2004/046971 PCT/US2003/036699

6/21
CTYPE O TYPE 1
DEVICE | BLOCK DEVICE | BLOCK
0 DO 0 DO
1 D1 1 D1
2 D2 2 D2
3 D3 3 D3
4 D4 4 D4
5 D5 5 D5
6 D6 6 D6
7 D7 7 D7
8 D8 8 D8
9 D9 9 D9
10 D10 10 D10
11 D11 11 D11
12 D12 12 D12
13 D13 13 D13
14 D14 14 D14
15 D15 15 SI0
16 D16 16 DIO
17 D17 17 TIO
18 D18 18 SI1
19 D19 19 DI1
20 D20 20 TI1
21 D21 21 SI2
22 D22 22 DI2
23 D23 23 TI2

/6. 64 116G, 67

WO 2004/046971 PCT/US2003/036699

7/21
TYPE 2 TYPE 3
DEVICE | BLOCK DEVICE | BLOCK

0 SI0 0 TIO

1 DIO 1 T
2 TIO 2 TI2
3 SHil 3 TI3
4 DI1 4 T4
5 TI1 5 T15
6 SI2 8 TI8
7 DI2 7 TI7
8 TI2 8 TI8
9 SI3 9 TI9
10 DI3 10| TI10
11 TI3 11 TI11
12 S14 12 TI12
13 DI4 13 TI13
14 TI4 14 TI1 4
15 S15 15 TI15
16 DI5 16 TI16
17 TI5 17 TI17
18 SI6 18 T118
19 DI6 19 TI19
20 TI6 20 TI20
21 SI7 21 | TI21
22 DI7 22 TI22
23 TI7 23 TI23

G, 6C 176, 6

WO 2004/046971

7/04

PCT/US2003/036699
8/21
MODE DIRECTORY
OWNER ROOT
TIMESTAMP 65536
SIZE 345
PARITY COUNT 0
MIRROR COUNT 3
VERSION 1
TYPE 1
DEVICE 1 BLOCK 11
DEVICE 2 BLOCK 21
DEVICE 3 BLOCK 31 720
- 750
REFERENCE COUNT 1
FLAGS 777
PARITY MAP POINTER NULL

Ve

A

WO 2004/046971

/"/‘Oﬁ

PCT/US2003/036699

9/21
MODE REGULAR FILE
OWNER ROOT
TIMESTAMP 65892
SIZE 45897
PARITY COUNT 3+1
MIRROR COUNT 1
VERSION 1
TYPE 1
DEVICE 1 BLOCK 11 1
DEVICE 2 BLOCK 21 I
DEVICE 3 BLOCK 31 L
DEVICE 2 BLOCK 100 720
DEVICE 3 BLOCK 343
DEVICE 4 BLOCK 34
¢
- 730
REFERENCE COUNT 1
FLAGS 777
PARITY MAP POINTER 0x12 \
DEVICE 4 BLOCK 45
J40
DEVICE1 BLOCK 87

/16

V74

PCT/US2003/036699

WO 2004/046971

10/21

e
e
U N e U
: : : 4%
. . .
L8 8L 4
YA 3 }
68 14 0
66
¥00178 | 30IA3d -
~ [\
. . .
™ . '
Ll | 4
8¢L 8 }
Gel 6 0
100714 J01A3d

/4

555t
y5sT
N~
: f
" e [~]
. - z
71 / |
600 9 0
40078 | 301A3a
o16—~"

PCT/US2003/036699

WO 2004/046971

11/21

g8 A

|

(

£8g

6¢¢

£9¢g

(=)

LTL

¢l

186

1G9

(Kol B oo le))

V2L

(=
—

[4°14

¥AY

~— T~~~
. . .
XA 2l bl
120 b1 0l
110 Gl 6
110 Vi 8
110 ¢l L
b0 cl 9
Lo | b g
100 Gl 14
100 14’ ¢
100 ¢l 4
100 zl l
100 b 0
40018 | 3DIA3d

£00

Nl o

L68

9

Ol-|N|mitw|lo|~Nolo|2]|Z <iooo

#2078

30IA3d

GZ¢e

-~—
=

LLS

o

[402}

[e]

[4:74

£es

1444

9L%

101

16/

[A%S]

A4

I NIMIt|InD|[wO|~N] oo

GLS

‘—NN)Q‘LO‘—NN)#LO‘—NQ"O

o

A201d

301A3a

QB%I\\\

WO 2004/046971 PCT/US2003/036699

12/21

/ 510

DEVICE BLOCK

0 5 100

1 9 200

2 7 306

3 5 103

4 9 203

5 7 303

6 5 106

7 9 206

8 7 306

9 5 109

. . .

e S NG N

18 5 118

19 9 218

20 7 318

N e N PN

[] [] [

. . .

P ¢ - DEVICE BLOCK
0 6 001
1 8 001
2 10 001
3 6 002
4 8 002
5 10 002
6 6 003

VS A

PCT/US2003/036699

WO 2004/046971

e ——.
(v %0078 008N |}/ o\ oo ‘008 | :008
:00L '00L 0041 11]]S %0078 ‘0oL L :00L
:009 :009 L_ALIMVd ‘009 | *009 | ‘009
‘00§ *00S ‘005 ‘005 L -00§
:00% (0 _ALl¥vd :007 ! 00v :00¥ A L ‘00¥
008 00¢ ¢ 2078 _:00¢ _“ ‘008 i€)0076 | :00¢
00T 002 002 L2078 :00Z _{{]Y! .00z
001 ‘001 ‘001 ‘001 {[i#] 0 ¥0078 ;:00}
0 0 0 0 ‘0
¥ 301A3Q ¢ 30IA30 Z 30IA3a L 30I1A3Q 0 301A3d
- - n \ [.\\ ['\\ (\ [I\\\
. . . 7 LINN ¢ LINN Z 1INN L LINN 0 LINN
009 4 | 39VHOLS LYVAS I9VHOLS LAVAS 39VYOLS LHVAS 39VYOLS LUVAS JOVHOLS LHVAWS
007 g 0]
%2078 |30IA3a d
0Z6 : : :
(\.}/\l/l\ i
[J L J . P
00/ ! g
008 4 7
00g 0 g
00g 4 4
002 } L
00} 0 0
%0078 | 301A3C
ol6—" .

WO 2004/046971 PCT/US2003/036699

14/21

START
/—mm

RECEIVE LOCATION

7020
LOCAL NO
5 * //,—/5u47
YES SEND REQUEST
/aﬁa-\\\ .
1050
RETRIEVE DATA | e
FROM DEVICE RECEIVE DATA

1060
N

RETURN DATA

END

¢, 10

WO 2004/046971 PCT/US2003/036699

15/21

START

///m
RECEIVE FILE NAME

+ 1120

SET ROOT DIRECTORY
METADATA ADDRESS
AS CURRENT

+ ' 1130
————== GET NEXT TOKEN

‘ /-/ 740

REQUEST ADDRESS OF TOKENS
METADATA FROM CURRENT

+ //’”‘/Zﬁﬂ

SET REQUESTED ADDRESS
AS CURRENT

YES ANOTHER

TOKEN

”
Yo ///70

RETURN CURRENT

END

G 17

WO 2004/046971

PCT/US2003/036699

16/21

START
//zm

RECEIVE FILE REQUEST

‘ ///»-zzza7

PERFORM NAME LOOKUP
(FIG.11)

/*/250

GET FILE'S METADATA
(FIG.10)

7240
FOR EACH
BLOCK OF FILE DATA

‘ 1250

GET LOCATION OF
DATA BLOCK

¢ /—/250

GET DATA BLOCK
(FIG.10)

* f/'27ﬂ
END FOR

f/ZéW

RETURN FILE DATA

END

117G, 12

WO 2004/046971

17,/21

START

PCT/US2003/036699

1370
/—

RECEIVE PARITY
INFORMATION

!

/‘/ J20

RECEIVE DATA

LOCATION INFORMATION

‘ /~/550

FOR EACH
PARITY GROUP

\

X

1340
/—

RETREIVE DATA BLOCKS

(FIG.10)

!

/7550

GENERATE PARITY
DATA

!

/—/Jé' 0

STORE IN BUFFER

{ 1570

END FOR

7580
/_

ALLOCATE STORAGE

#

/*/JQO

STORE PARITY DATA

+

STORE PARITY
LOCATION DATA

776, 13

WO 2004/046971

PCT/US2003/036699

18/21

START
/‘/4/0

RECEIVE PARITY
INFORMATION

//420

RECEIVE FAILED
DEVICE INFORMATION

* 14

RECEIVE DATA BLOCK
LOCATION INFORMATION

¢ /‘/ 440

RETRIEVE DATA
(FIG.10)

‘ /—/ 450

PERFORM ERROR

CORRECTION
7460
‘ -
STORE RESULT
L /_/470

RETURN RESULT

END

PG, 14

WO 2004/046971

19/21

(START)

\

/FOR EACH PROTECTION GROUP\<

(FIGURE 16)

ASSIGN SMART STORAGE UNITS

END FOR

~ 7540

PCT/US2003/036699

7520

- 1550

IF BLOCKS ARE ASSIGNED TO A NEW
DEVICE, SEND REQUEST TO STORE DATA
AND RECEIVE ADDRESS LOCATIONS

7550

7560
NO

DATA

STORED
?

YES

UPDATE METADATA DATA
STRUCTURE

- 7570

RETURN
ERROR

|~ 1560

END

r1G. 19

WO 2004/046971

20/21

(START)

STORAGE UNITS

71630

ENOUGH
AVAILABLE SMART

NO

PCT/US2003/036699

IDENTIFYAVAILABLE SMART |~ 7620

STORAGE UNITS

SELECT A SMART STORAGE UNIT
FOR EACH BLOCK
(FIGURE 17)

7650

IDENTIFY THE ”LAST ADDRESS

LOCATIONS” FOR THE SMART

STORAGE UNITS ASSIGNED
TO EACH BLOCK

- 7660

RETURN
ERROR

- 7640

END

76, 16

WO 2004/046971

21/21

(START)

PCT/US2003/036699

/—/7/.5

IDENTIFY SET OF PREFERRED DEVICES

!

1720

IDENTIFY SET OF SPARE DEVICES

//-725

IDENTIFY AN ORDERED SET OF OPTIMAL
DEVICES FOR THIS PROTECTION GROUP

1730

IDENTIFY A SET OF NON-OPTIMAL

DEVICES

7745
\

71735

IDENTIFY DEVICES ON WHICH

CURRENT BLOCKS ARE STORED

ASSIGN DEVICE FROM
THE SET OF
OPTIMAL DEVICES

ASSIGN DEVICES FROM THE

SET OF OPTIMAL DEVICES

IF DATA IS ALREADY ON
THE OPTIMAL DEVICE

// 7zl

ASSIGN DEVICES IN ORDER
ACCORDING TO THE SET
OF OPTIMAL DEVICES

/‘/7.50

ASSIGN DEVICES
FROM THE SET OF
NON-OPTIMAL DEVICES

ASSIGN DEVICES
FROM THE SET OF
SPARE DEVICES

1755

7760
ya

ASSIGN UNASSIGNED
BLOCKS FROM THE SET
OF OPTIMAL DEVICES

ASSIGN DEVICES
FROM THE SET OF
OPTIMAL DEVICES

1770

END

G, 17

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/36699

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 17/30, 7/00, 12/00, 12/08
US CL 707/10, 100, 203, 205; 711/100

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/10, 100, 203, 205; 711/100

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 5,933,834 A (AICHELEN et al) 3 August 1999 (03.08.1999), columns 1-8, lines 1-67. 1-35
Y US 2001/0047451 A1 (NOBLE et al) 29 N(Svember 2001 (29.11.2001), pages 1-7. 1-35
Y US 6,397,311 B1 (CAPPS et al) 28 May 2002 (28.05.2002), columns 1-37, lines 1-67. 1-35
Y US 6,385,626 B1 (TAMER et al) 7 May 2002 (07.05.2002), columns 1-31, lines 1-67. 1-35
Y US 6,070,172 A (LOWE) 30 May 2000 (30.05.2000), columns 1-8, lines 1-67. - 1-35
Y US 6,334,168 B1 (ISLAM et al) 25 December 2001 (25.12.2001), columns 1-9, lines 1-67. 1-35
Y US 2002/0156840 A1 (ULRICH et al) 24 October 2002 (24.10.2002), pages 1-48. 1-35

D Further documents are listed in the continuation of Box C.

D‘

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“Q" document referring to an oral disclosure, use, exhibition or other means

“p” document published prior to the international filing date but later than the
priority date claimed

“T” later document published afier the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Yr document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

01 April 2004 (01.04.2004)

Date of mailing of the international search report

20 APR 2004

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.0. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer
Chongshan Chen ﬂ

Telephone No. (7

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

