PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :) " | (11) International Publication Number: WO 97/36242
06F 13/00, 13/14 Al
G ’ (43) International Publication Date: 2 October 1997 (02.10.97)
(21) International Application Number: PCT/US97/04250 | (81) Designated States: JP, European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 18 March 1997 (18.03.97)
Published
(30) Priority Data: With international search report.
08/621,422 25 March 1996 (25.03.96) us
(71) Applicant: I-CUBE, INC. [US/US]; 2605 Winchester Boule-
vard, Campbell, CA 95008-5320 (US).
(72) Inventors: CHOU, Ger-Chih; 6266 Empress Court, San Jose,
CA 95129 (US). DAHLGREN, Kent, Blair; 1126 Hyde
Avenue, San Jose, CA 95129 (US). HSIEH, Wen-Jai; 2633
Waverley Street, Palo Alto, CA 94306 (US).
(74) Agent: BEDELL, Daniel, J.; Smith-Hill and Bedell, P.C., 1440
Pioneer Tower, 888 S.W. Fifth Avenue, Portland, OR 97204
(US).
(54) Title: NETWORK SWITCH WITH ARBITRATION SYSTEM
OuTPUT
TOKEN
TPO
o =—{ ot e
TP1
e i
SWITCHING
SYSTEM
2
WE
ARBITRATION
SEQUENCER
1
vas
rean——
:. see —mf m - \10
RP1 TOKEN
RX23

(57) Abstract

A local area network switch (10) includes a set of input ports (RP0-RP23) each receiving and storing incoming packets from
a corresponding network station, a set of output ports (TPO-TP23) each forwarding packets to a corresponding network station, and a
switching system (11) for routing packets from the input ports (RPO-RP23) to the output ports (TPO-TP23). The output ports (TPO-TP23)
are interconnected to form an output token passing ring and the input ports (RPO-RP23) are interconnected to form an input token passing
ring. Whenever an idle output port receives the output token, it holds the output token and signals the input ports to start an input token
passing cycle. During an input token passing cycle, an input port storing a packet destined for an output token holder terminates the input
token passing cycle when it receives the input token and signals the switching system (11) to establish a connection to the output token
holder. To fairly distribute arbitration priority, input and output ports starting positions are rotated for successive input and output token
passing cycles.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Ammenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Isracl

Iceland

ltaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T)
™
TR
TT
UA
UG
us
vz
VN
YU
W

Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

NETWORK SWITCH WITH ARBITRATION SYSTEM

Background of the Invention

Field of the Invention
The present invention relates in general to a switch for
routing data between network stations, and in particular to a
switch including a system for arbitrating competing demands

for routing paths through the switch.

Description of Related Art

Networks transfer data between computers or other tyves
of network stations. For example 10BASE-T Ethernet systams
use sets of twisted pair conductors in a star network topology
to connect network stations to a central hub or switch. 3
10BASE-T hub is simply a repeater receiving a data packet from
any one station and rebroadcasting it to all other stations.

A header in the data packet indicates the intended destination
station for the packet and each network station looks at the
packet header to determine if it should accept or ignore the
packet. One disadvantage to a hub repeater is that the
twisted pair that carries data packets to each network scatior
not only must convey packets directed to that station but
packets directed to all other stations as well. Thus only
one network station can transmit a packet at any given time.

A network switch, on the other hand, routes an incoming
packet only to its destination station so that each network
station receives only the packet traffic directed to it and
many network switches handle multiple packet transmission
concurrently. A network switch includes input ports for
receiving packets from the network stations, output ports for
transmitting packets to the network stations and a switching
mechanism selectively routing each incoming packet from an
input port to the appropriate output port. The input port
typically stores an incoming packet, determines the
destination output port from the routing data included in the
packet header, and then arbitrates for a switch connection
between the input port and the destination output port. When

10

15

20

25

30

35"

WO 97/36242 PCT/US97/04250

2

the connection is establ%shed, the input port sends the packet
to the output port via the switch.

Since input ports may have competing connection reguasts,
a network switch must provide some kind of arbitration system
to determine an order in which requests are granted. 1In a
typical network switch, each input port sends its connection
request to a central arbiter. The central arbiter monitors
the busy status of the output ports and determines an order in
which pending requests are granted when an output port becomes
idle. When the arbiter grants a request it sends control data
to the switching mechanism causing it to make the desired
connection between input and output ports and then sends an
acknowledgment to the input port that made the request. The
input port then forwards the data to the output port via the
switching mechanism. Typically the central arbiter assigns a
priority level to each input and/or output port and always
requests to the highest priority ports. Many central arbiters
rotate input and output port priority so as to fairly
distribute connection rights over time.

The article "Symmetric Crossbar Arbiters for VLSI
Communication Switches® published *****, 1993 by Tamir et al
in IEEE Transactions on Parallel and Distributed Systems, Vcl.
4, No. 1, discloses a centralized "wave front" arbiter for a
NxN crosspoint switch routing data between N network stations.
The arbiter includes an NxN array of arbitration cells, one
for each possible connection of the crosspoint switch. Each
input port corresponds to one row of cells and supplies a
separate request signal to each cell of the row. Each output
port corresponds to one column of cells and supplies a
separate busy signal to each cell of the column. The cells
are ranked according to priority. When an input port seeks a
connection to an output port it asserts the one of N output
request signals. The asserted request signal drives the
arbitration cell in the column corresponding to the output
port. That arbitration cell grants a request when not
otherwise inhibited from doing so by a higher priority cell.
Priority is periodically shifted from cell to cell using token

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250

3

passing rings to provide equitable allocation of connection
rights to both input and output ports. One problem with this
system is that the arbitration system grows with square of the
number N of network stations and becomes difficult to
implement.

U.S. Patent No. 4,814.762 issued March 21, 1989 to
Franaszek describes a network switch employing a crosspoint
switch wherein the arbitration system is decentralized. To
arbitrate for connections, input and output ports communicate
directly with one another through a "delta' network. When an
input port receives a packet it sends a request to the output
port via the delta network. When an output port receives a
connection request it returns a response to the input port via
the delta network. The response gives the input port a time
when it can make the requested connection between input and
output ports. At the indicated time, the input port sends
control data to the crosspoint switch establishing the
connection. The delta network is formed by several stages of
routing nodes. Each routing node receives a request from one
of two input ports or from one of two nodes of a preceding
stage. On receiving a request a node looks at a destination
port address included in the request and then forwards the
request to one of two nodes of a next stage or to one of twc
output ports. Thus a request works its way between input and
output ports by hopping from node toc node. Responses travel
from output port to input port through the delta network in a
similar manner. The delta network inherently arbitrates
competing requests for the same output node on a first come,
first-served basis. 1In this system the size of the arbitar
also increases more rapidly than the number of network
stations.

U.S. Patent No. 5,430,442 issued July 4, 1995 to Kaiser
et al discloses a partially distributed arbitration system for
& network switch having several ports interconnected by a
crosspoint switch. In this system arbitration for the right
to connect is handled by a central arbiter but control of the

crosspoint switch is distributed among the ports. The ports

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
4

and the arbiter are inte;connected by a common arbitration
bus. Each input port receiving a packet from a network source
sends a connection request over the arbitration bus to the
central arbiter. The arbiter decides the order in which to
grant connection requests and signals the input port wvia the
bus when its request is granted. When a connection request is
granted, the input port directly queries the destination
output port via the bus to determine if the destination output
port is busy. If the destination port is not busy, the
receiving port sends control data to the crosspoint switch to
establish the connection. The arbitration system does not
grow appreciably as the number of network stations increases,
but the bandwidth of the arbitration bus limits the speed with
which the system can handle requests.

What is needed is a network switch having a compact
arbitration system which can quickly and equitably respond to

connection requests from large numbers of network stations.

Summary of the Invention

A local area network switch in accordance with the
present invention switch includes a set of input ports for
receiving and storing incoming packets from corresponding
network stations, a set of output ports for forwarding packets
to corresponding network stations, and a switching system for
selectively routing packets from the input ports to the output
ports. The input and output ports and the switching system
are interconnected by a global communication bus. The output
ports are also interconnected to form an output token passing
ring while the input ports are interconnected to form an input
token passing ring. When an idle output port receives an
output token, it signals the input ports via the global bus to
start an input token passing cycle. The output token holder
also sends its identification code (ID) to the switching
system via the global bus. During the input token passing
cycle, any input port storing a packet destined for the outpuc
token holder may establish a connection to the output token
holder if it is the first such input port to receive the input

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

5

token. The input port establishes the connection by sending
its ID to the switching system via the global bus. The
switching system, having received the IDs of the input and
output ports establishes the connection there between.

The token passing rings operate quickly and can service a
large number of ports efficiently. Since information passes
through the global bus only to start token passing cycles and
to send port IDs to the switching system when a connection is
to be made, bandwidth limitations of the global bus do not
appreciably affect arbitration time.

It is accordingly an object of the pPresent invention to
provide a switch for routing data between network stations.

It is another object of the present invention to provide
a system for arbitrating competing demands for switch routing
resources.

The concluding portion of this specification particularly
points out and distinctly claims the subject matter of the
present invention. However those skilled in the art will best
understand both the organization and method of operation of
the invention, together with further advantages and objects
thereof, by reading the remaining portions of the
specification in view of the accompanying drawing(s) wherein

like reference characters refer to like elements.

Brief Description of the Drawing(s)
FIGS. 1 and 2 illustrate a local area network (LAN)
switch 10 in accordance with the present invention for routing

serial data packets between up to 24 network stations,

FIG. 3 illustrates input buffer RBO of FIG. 2 in more
detailed block diagram form,

FIG. 4 illustrates output buffer TBO of FIG. 2 in more
detailed block diagram form,

FIG. 5 is state diagram illustrating a synchronization
process carried out by input segquencer 74 of FIG. 4,

FIG. 6 illustrates memory controller 24 of FIG. 2 in more
detailed block diagram,

10

15

20

25

30

35

-

WO 97/36242 PCT/US97/04250
6

FIG. 7 illustrates the address mapping system 26 of FIG.
1 and address translation unit 44 of FIG. 3 in more detailed
block diagram form,

FIGC. 8 is a flow chart illustrating operation of state
machine 100 of FIG. 7,

FIG. 9 is a flow chart illustrating operation of state
machine 95 of FIG. 7,

FIG. 10 illustrates an output polling version of output
arbiter RAO0 of FIG. 2 in more detailed block diagram form,

FIG. 11 is a flow chart illustrating operation of state
machine 120 of FIG. 10,

FIG. 12 illustrates an output polling version of input
arbiter RAQO of FIG. 2 in more detailed block diagram form,

FIG. 13 is a flow chart illustrating operation of state
machine 170,

FIG. 14 illustrates an output polling version of
arbitration sequencer 22 of FIG. 2 in more detailed block
diagram form,

FIG. 15 is a flow chart illustration operation of state
machine 210 of FIG. 14,

FIG. 16 illustrates an event driven version of
arbitration sequencer 22 of FIG. 2 in more detailed block
diagram form,

FIG. 17 is a flow chart detailing the logic of state
machine 400 of FIG. 16,

FIG. 18 illustrates an event driven version of output
arbiter TDO of FIG. 2 in more detailed block diagram form,

FIG. 19 is a flow chart illustrating operation of state
machine 500 of FIG. 18,

FIG. 20 illustrates an event driven version of output
arbiter RAO of FIG. 2 in more detailed block diagram form, and

FIGS. 21 and 22 are flow charts depicting operations of
state machine 600 of FIG. 20.

Description of the Preferred Embodiment(s)

FIG 1A illustrates a local area network (LAN) switch 10
in accordance with the present invention for routing serial

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
7

data packets between up to 24 network stations. Switch 19
receives data packets from network stations via serial input
buses RX0- RX23 and forwards then to the network stations via
serial output buses TX0-TX23.

Switch 10 includes a set of input ports RPO-RP23 each
receiving and storing incoming packets arriving on a
corresponding one of input buses RX0-RX23 and a set of output
ports TPO-TP23, each storing packets for transmission outward
on a corresponding one of output buses TX0-TX23. & switching
system 1l routes packets stored in the input ports RPO-RP23 to
the appropriate one of output ports TPO-TP23. The switching
system 11 includes a set of 24 “"vertical? conductors V0-v23,
each connected to a corresponding one of input ports RP0O-RP23
and a set of 24 '"horizontal" conductors HO-H23, each connacted
to a corresponding one of output ports TPO-TP23. In response
to input control data conveyed on a global bus (GLOBAL_BUS)
from the input and output ports, switching system 11 can make
and break connections between any pair of horizontal and
vertical conductors, thereby making or breaking a packet
routing path from any input port to any output port.

The input ports RPO-RP23 access an address mapping system
26 through a bus MAPPING_BUS. The mapping system 26 relates
the network address of each network station to the particular
output buffer TPO-TP23 to which the network station is
connected. When an input port, for example port RP0O, receives
and stores a packet it sends the network address of the
destination station included in the packet to the address
mapping system 26 via the mapping bus. The address mapping
system returns the identification code (ID) of the output
port, for example TPl, to receive the packet. The input
and output ports arbitrate for connections. The output ports
TPO-TP23 are interconnected to form an output token passing
ring. An "output token" is a signal (OUTPUT_TOKEN) that each
output port transmits to a next output port of the ring. One
output port "passes" the output token to the next by asserting
its output OUTPUT_TOKEN signal. The input Dorts RPO-~ RP23 are
similarly interconnected to from an input token passing ring.

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
8

An arbitration seqguencer 22 starts an output token
passing cycle by transmitting an "output seed" to all output
ports TPO- TP23 via the global bus. The output seed is a ccds
identifying a selected one of the output ports as the output
seed port. When the output seed port receives the output
seed, it determines whether it is idle or busy. An output
port considers itself "busy" when it is currently receiving a
data packet and considers itself "idle" when it not curresatly
receiving a data packet. If the output seed port is idle it
“wins" the right to seek a connection. In such case the
winning output port starts an input token passing cycle by
sending an "input seed" to all input ports RPO-RP23 via the
global bus identifying one of them as the input seed port.

The winning output port also sends its own ID to all input
ports and to switching system 11 via the global bus.

wWhen the input seed port receives the input seed it
determines whether it is currently storing a data packet to be
transmitted to the output seed port. If so, the input sead
port, having "won" the arbitration, sends its ID code via the
global bus to the output ports, the switching system 11 and
sequencer 22. Sequencer 22 upon receiving the winning input
port ID transmits a write enable (WE) signal to switching
system 11. Switching system 11, having received the ID's of
winning input and output ports responds to the WE signal by
establishing a connection between them. The winning output
port, having received the ID of the winning input port,
henceforth considers itself busy. After pulsing the WE
signal, arbitration sequencer 22 forwards the winning input
port ID via a response line (RESP) of the global bus to all
input ports RP0-RP23. This tells the winning input port that
it may begin transmitting the data packet through switching
system 11 to the winning output port.

If the input seed port is not storing a packet to send to
the seed output port when it receives the input seed, the
input seed port passes the input token to the next input port.
If that input port has a packet to send to the seed output
port, it wins the arbitration and transmits its ID via the

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250 -
9

global bus to all output ports, to switching system 11 and to
sequencer 22 in order to establish a connection to the output
seed port. Otherwise the input token holder passes the input
token to the next input port. The input token passing cycle
continues until an input port wins the arbitration or until
the input token makes its way around the token passing ring
and returns to the input seed port. In that case, the input
seed port transmits an end of cycle ("EOC") code to the outpurt
seed port telling it that no input port has a packet to be
sent. On receipt of the EOC code, or upon receipt of a wvalid
input port ID indicating a connection has been made, the
output token holder passes the output token to the next outpurc
port.

If the output token holder is busy, it immediately passes
the output token to a next output port of the ring without
starting an input token passing cycle. If the output token
holder is idle, it initiates a new input token passing cycle
by sending its own ID and an input seed to all input ports
RPO-RP23. The input ports, starting with the input seed port,
then pass the input token as described above until an input
port wins the arbitration or until the input seed port sends
an EOC code back to the output token holder. In either case
the output token holder passes the output token to the next
output port which thereupon initiates yet another input token
passing cycle. The process continues with each output port in
turn receiving the output token and, if idle, starting an
input token passing cycle in an attempt to find an input port
with a packet destined for the output port.

When the output token returns to the output seed port, it
sends an EOC code to the arbitration sequencer 22 indicating
that the output token passing cycle has come to an end. The
arbitration sequencer 22 thereafter starts a next token
passing cycle by sending another output seed to the output
ports TPO- TP23.

As should be apparent from the foregoing discussion, the
output seed port has the highest priority for obtaining a

connection during an output token passing cycle because it has

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
10

the first chance to initiate an input token passing cycle. To
ensure all output ports have equal opportunity to establish
connections over the long term, arbitration sequencer 22
starts each successive output token passing cycle by choosing
a next successive one of the output ports TP0O-TP23 as the
output seed. Similarly, the input seed port has the highest
priority for obtaining a connection to the current output
token holder during an input token passing cycle, because the
input seed port has the first opportunity to make the
connection. Thus to ensure that all input ports are treated
equally over the long term, each output port chooses a next
successive one of the input ports RPO- RP23 as the input seed
port each time the output port starts an input token passing
cycle.

FIG. 2 illustrates the local area network switch 10 of
FIG. 1 in more detailed block diagram form. Input port RPO of
FIG. 1 includes an input arbiter RAQO and an input buffer RBO
as illustrated in FIG. 2. The input buffer RB0O receives and
stores packets arriving on line TX0 and later forwards them on
line V0. Output port TPO of FIG. 1 includes an output arbiter
TAO and an output buffer TBO shown in FIG. 2. Output buffer
TBO receives and stores packets arriving on line HO and
forwards them to a network station via line RX0. Input ports
RP1-RP23 and output ports TP1-TP23 have similar buffer and
arbiter components. All input arbiters RAO-RA23 form the
input token passing ring and all output arbiters TA0-TA23 form
the output token passing ring. The global bus interconnects
all arbiters with the arbitration sequencer 22.

Switching system 11 of FIG. 1 includes a crosspoint
switch 12, a random access memory (RAM) 14 and a memory
controller 24. Crosspoint switch 12 includes an array of CMOS
pass transistors 20, each having source and drain terminals
connected to one of horizontal lines HO-H23 and to one of
vertical lines V0-V23. RAM 14 stores 24 24-bit words and
supplies a separate control signal CONT to the gate of each
transistor 20. When a CONT signal is asserted, it turns on a

pass transistor 20, thereby establishing a signal path between

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

11

one horizontal and one vertical line. The state of each CONT
signal supplied to a transistor 20 of the Jth row of
transistors 20 is determined by a corresponding bit of a Jth
data word stored in RAM 14. Upon receipt of the write enable
(WE) pulse from sequencer 22, memory controller 24 writes a
selected 24-bit word into RAM 14 by placing the word on bit
lines B0-B23 and pulses one of word lines WO-W23. Wwhen
writing a word to RAM 14, controller 24 sets all but one of
bits B0-B23 to a logical "0" and sets the remaining bit to a
logical "1". Controller 24 chooses the bit to be set to a "1
in response to the winning input port ID appearing on the
global bus and selects the word line WO-W23 to be pulsed in
response to the winning output port ID appearing on the global
bus. When the bit set to a "1" arrives in RAM 14, it asserts
the CONT signal supplied to a corresponding transistor 20.
That transistor then makes the connection between horizontal
and vertical lines leading to the winning input and output
ports.

When an input buffer, for example RB0O, receives and
stores a packet arriving on RX0, it checks the address data in
the packet and communicates with mapping system 26 via the
mapping bus to determine which output buffer, for example TB1
should receive the packet. Input buffer RBO then transmits a
connection request to input arbiter RAO via line V0, the
connection request identifying the output buffer TR1. Aas
described below, the input ports encode inaction requests and
data packets so that the input arbiter can distinguish between
them and can tell when they begin and end. When input arbiter
RAQ detects a connection request on line VO, it saves the
output buffer (TB1l) ID included in the connection request and
thereafter arbitrates for a connection to output buffer TR1.

The 24 output arbiters TAO-TA23 monitor data packets
traveling on corresponding horizontal conductors HO-H23 to
output buffers TB0-TB23. When the connection to output port
TPl is established, output arbiter TaAl sets an internal "IDLE"
flag to indicate that port TPl is now busy receiving a data
packet. When it detects the end of the data packet appearing

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
12

on line H1l, output arbiter TAl'resets its internal IDLE flag
to indicate port TPl is iale. As discussed below, each outpu=-
arbiter TAO0-TA23 consults its IDLE flag during the arbitration
process to determine whether its port TPO-TP23 is idle and

therefore available for a new connection.

Input Buffer

FIG. 3 illustrates input buffer RBO of FIG. 2 in more
detailed block diagram form. Input buffers RB1-RB23 are
similar. A network station transmits a data packet to input
buffer RBO in serial form via bus RX0 using Ethernet 10BASE-T
protocol. The data packet, formatted as a standard Ethernet
protocol data unit, is of variable length and includes the
fields illustrated in Table I:

TABLE I
Field Field Length Purpose
PREAMBLE | 7 bytes Used for synchronizing l
START 1 byte Start of frame delimiter
DEST 6 bytes Destination Network address
SRC 6 bytes Source Network address i
TYPE/LEN 2 bytes Type or Length of data field E
DATA 46-1500 bytes | Data field é
CRC 4 bytes Frame check field 4J

The PREAMBLE and START fields are fixed data patterns
that are the same for all packets. The DEST field indicates
the network address of the station to receive the packet. Tne
SRC field indicates the network address of the station that
transmitted the packet. The TYPE/LEN fields may indicate
either the packet type or the length of the DATA field,
depending on the protocol being employed. The DATA field
holds the packet payload data and may be from 46 to 1500 bytes
long. The CRC field is a frame check field used by the
receiving station to determine whether the packet has been

corrupted in transmission.

(9]

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

13

Referring to FIG. 3, a convention 10BASE-T network
interface circuit 30 receives the incoming packet arriving on
input bus RX0. A carrier signal conveyed on the bus indicates
the beginning and end of packet transmission. As each bit of
a data packet arrives, the network interface circuit 30 pulses
a LOAD signal to store the bit in a 4-bit serial-in/parallel
out shift register 31. When the first 4-bit "nibble" (half
byte) of the data packet following the preamble has been
loaded into register 31, interface circuit 30 asserts a
shift-in (SI) signal to a first-in/first-out (FIFO) buffer 32,
causing the FIFO buffer to store the nibble. Interface
circuit 30 continues to load each successive nibble of the
data packet into buffer 32.

When the longest stored nibble in FIFQO buffer 32 is the
first nibble of a data packet following the preamble, network
interface circuit 30 transmits a START signal to a buffer
state machine 34. Buffer state machine 34 controls the
storage of data packets in a buffer memory, random access
memory (RAM) 36. On receipt of the START signal, buffer state
machine 34 begins pulsing a shift-out signal (SO), each pulse
causing FIFO buffer 32 to shift a 4-bit data nibble out to RAM
36 via a 4-bit data bus 61. RAM 36, controlled by address and
read/write control signals generated by buffer state machine
34, stores the packet data nibbles at sequential addresses.
Network interface circuit 30 counts the nibbles of each packet
it loads into FIFO buffer 32 and also counts pulses of the SO
signal produced by buffer state machine 34 to determine how
many nibbles of the state machine 34 has stored in RAM 36.
After interface circuit 30 shifts the last nibble of a packet
into FIFO buffer 32, it continues to count the number of
nibbles the buffer state machine 34 shifts out of buffer 32
and sends an END signal to state machine 34 to tell it that i-
has acquired the last nibble of the packet. Buffer state
machine 34 also counts nibbles of incoming packet data as they
are stored in RAM 36. After receiving the END signal from
network interface 30, state machine 34 stores its count in RaMm
36 as a LENGTH field in a header portion of the packet. When

10

15

20

25

30

35"

WO 97/36242 PCT/US97/04250
14

the packet is later forwarded to an output buffer, the output
buffer determines the length of the packet from the LENGTH
field.

As it loads packet data into RAM 36, buffer state machine
34 determines from its nibble count when the data packet’s
source and destination fields (SRC, DEST) appear in FIFO
buffer 32. At that point buffer state machine 34 generates a
translate signal (TRANS) causing a pair of registers 40 and 42
to store the SRC and DEST fields. The TRANS signal also
signals an address translation circuit 44 that new address
data is available in registers 40 and 42. The address
translation circuit 44 sends an interrupt signal to central
address mapping system 26 of FIG. 2. The address mapping
system maintains a table for translating network addresses
into switch input/output port IDs. On receiving the
interrupt, the address mapping system obtains the SRC and DEST
fields from translation circuit 44 as well as the ID of output
buffer TBO. (The source network station that sent the packet
via buffer RBO should also be connected to input buffer TBO
for receiving network transmissions.) The address mapping
system then updates its mapping table to map the SRC field
address to output buffer TBO. The mapping system uses this
mapping later when any other network station sends a packet to
the source station connected to buffer TBO.

The address mapping system also translates the DEST fielc
acquired from address translation circuit 44 into the ID of
the output buffer to which the destination station is
connected and returns the output port ID to translation
circuit 44. Translation circuit 44 then delivers the output
port ID (PORT_ID) to a FIFO buffer 45. The longest stored
PORT_ID in FIFO buffer 45 is supplied to a ~onnection reguest
generator circuit 46. FIFO buffer 45 asse s an EMPTY signal
to a transmit state machine 50 when is empty and de-asserts it
when it stores a port ID. Transmit sequencer 50 controls the
flow of connection requests and data packets outward from
input buffer RB0 on conductor VO to input arbiter RAO ard
switch 12 of FIG. 2. Sequencer 50 receives a GRANTED s.gnal

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

15

from a response buffer 64: Response buffer 64 monitors tne
RESP line of the global bus from arbitration seqguencer 22 of
FIG. 2. As mentioned above, whenever sequencer 22 of FIG. 2
grants a connection request, it transmits a response on the
RESP line, the response indicting the ID of the input buffer
that requested the connection. When response buffer 63
detects a response conveying the ID of input port RPQ, it
pulses the GRANTED signal. The GRANTED signal pulse tells
sequencer 50 that the last connection request made by buffer
RBO has been granted.and that it is free to issue a next
connection request.

If FIFO buffer 45 is not empty, a connection request 1is
pending. After receiving a GRANTED pulse (or after system
start- up) sequencer 50 monitors an EMPTY signal asserted by
FIFO buffer 45 when buffer 45 contains no port ID’s. When it
sees that the EMPTY signal is de-asserted, indicating a
request is pending, sequencer 45 begins pulsing a SEND signal
causing the request generator 46 to produce a connection
request REQ in the form of a sequence of 5-bit of data values
which pass through multiplexer 52 to a shift register 56. The
connection request references the output port ID longest
stored in FIFO buffer 45. Shift register 56 converts the
sequence of 5-bit data values to a serial data stream and
forwards it on line VO to the input arbiter TAQ of FIG. 2.
Sequencer 50 then pulses a shift-out signal to FIFO buffer 45
telling it to shift out the next port ID, if any, to request
generator 46.

When state machine 50 receives a GRANTED signal pulse it
transmits a NEXT_PACKET signal to buffer state machine 34
telling it it may begin forwarding a next packet. Buffer
state machine 34 then switches a multiplexer 60 to receive a
hardwired 5-bit code "J". Sequencer 34 then shifts the "J"
code output of multiplexer 60 into a FIFO buffer 62, switches
multiplexer 60 to select a hardwired "K' code and shifts the
"K" code output of multiplexer 60 into a FIFO buffer 62. (As
explained below, the JK code sequence marks the beginning of a
data packet transmission on output line V0.) Thereafter,

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

16

state machine 34 switches multiplexer 60 to select the 5-bit
data output of an encoder circuit 58 which converts the 4-bit
data appearing on data input/output bus 61 of RAM 36 to 5-bit
"4B5B" encoded form. Sequencer 34 then begins sequentially
reading 4-bit nibbles of the data packet out of RAM 36. As
encoder 58 converts the nibbles to 5-bit 4BS5B encoded form,
multiplexer 60 passes the 5- bit result to a FIFO buffer 52.
Sequencer 34 strobes a shift in (SI) signal causing FIFO
buffer 62 to load the 5-bit data values. FIFO buffer 62
produces a FULL signal telling state machine 34 when the
buffer is full. The longest stored nibble in FIFO buffer 62
appears at an input of multiplexer 52 controlled by the
transmit sequencer 50. When packet data is currently stored
in FIFO buffer 62, buffer 62 de-asserts an EMPTY signal
supplied to seqguencer 50. When sequencer 50 is not currently
sending a connection request, it switches multiplexer 52 to
deliver the 5- bit output of FIFO buffer 62 to shift register
56. State machine 50 then signals shift register 56 to
convert the 5-bit value to serial form and to forward the data
on line V0 to switch 12 of FIG. 2. Switch 12 routes the datea
to the appropriate output buffer.

As buffer state machine 34 forwards packet data out of
RAM 36 to FIFO buffer 62 it counts the nibbles sent and
compares the count to the known length of the packet. After
it forwards the last nibble of the packet through encoder 58
to FIFO buffer 62, state machine 34 switches multiplexer 60 to
select and forward to FIFO buffer 62 a 5-bit hardwired “T*
code. This code, which marks the end of the packet, passes
through in FIFO buffer 62, multiplexer 52 and serializer 356
and travels out on line V0 at the end of the data packet.

When the last bit of nibble of a packet departs FIFO
buffer 62, it signals state machine 50 that it is empty.
State machine 50 then waits for another GRANTED signal pulse
indicating that a next connection request has been
established. It then signals state machine 34 with a
NEXT_PACKET signal pulse indicating that it may send out
another packet.

10

15

20

25

WO 97/36242 PCT/US97/04250

17

Note that whenever transmit sequencer 50 is ready to send
a connection request out-bn line VO, it simply halts any
current flow of packet data outward on line V0, forwards the
connection request out on V0O, and then resumes the flow of
packet data. Thus a connection request may appear in the
middle of a data packet flowing from input buffer RBO to one
of output buffers TB1-TB23. The receiving output buffer
recognizes and removes any connection requests from the data
stream before forwarding them to the destination network
station. Connection requests are thus forwarded to the input
arbiter RAO while input buffer PBO is still busy forwarding a
data packet so that the arbiter can immediately begin seeking
the connection request as soon as possible after the packat
currently being forwarded leaves the input buffer.

4B5B Encoding

Connection requests and data packets are transmitted on
the same output line VO primarily to reduce the number of
inter- module links since the input buffer and input arbiter
portions of the input port may be implemented on separate
integrated circuits. The input arbiter in any case monitors
the VO line to ascertain when a packet transmission ends .
Connection regquests and data packets are "4B5B" encoded to
enable the input and output arbiters and the output buffers to
determine when connection requests and data packets begin and
end. Consistent with the ANSI standard X379 (FDDI) "4BS5B"
encoding system, encoder 54 converts each incoming 4-bit
nibble into a 5-bit output value as illustrated in Table II.

25

WO 97/36242 PCT/US97/04250

18
TABLE II)
NIBBLE | 4B5B
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

Since only 16 of the 32 possible combinations of the five
bits of a 4B5B code are needed to represent the sixteen
possible values of a 4-bit nibble, the remaining 16
combinations of 4BS5B code are available for other purposes.
Table III below lists how the network switch of the present
invention uses the remaining 16 4B5B codes.

WO 97/36242 PCT/US97/04250

19

TABLE IIIX
4B5B NAME FUNCTION
00000 0 No Operation
11111 I Idle
00100 | H No Operation
11000 | g Packet Start 1
10001 [K Packet Start 2
01101 T End of Packet
00111 R No Operation
11001 S No Operation
00001 |V Violation
00011 |V Violation
00010 |V Violation
00101 |V Violation
00110 |V Violation
01000 |V Violation
01100 |V Violation
10000 CR Con. Reg. Start

The CR code is used to identify the start of a connectionr
request. The Q, H, R and S codes are ignored when they appear
in a 4BS5B encoded data stream. The T code indicates the end
of a 4BSB encoded data packet. The I, J, K and V codes are
used to synchronize transmission and receipt of 4B5B encoded

data streams in the manner described below.

Output Buffer

FIG. 4 illustrates output buffer TBO of FIG. 2 in more
detailed block diagram form. Output buffers TB1-TB23 are
similar. Output buffer TBO includes a 10-bit serial-in,
parallel-out shift register 70 clocked by the system clock
signal CLK for receiving and storing data bits appearing on
the HO line. A set of decoders 72 signal an input sequencer
74 when first five data bits stored in shift register 70
represent the I,V, T or CR 4BS5B codes of Table II above or

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
20

when all ten bits in shift register 70 represent the J and K
codes in succession. A 4B5B decoder 76 converts the secoad
stored 5-bit wvalue into the corresponding 4-bit nibble and
passes it via a multiplexer 78 to the input of a FIFO buffer
80.

FIG. 5 is state diagram illustrating a synchronization
process carried out by input sequencer 74 of FIG. 4. Input
sequencer 74 begins in an "out-of-synchronization" state 81.
Sequencer 74 remains in state 81 until decoder 72 detects the
I (idle) signal. At that point synchronizer 74 moves to a
"pre- synchronization" state 82. When decoder 72 signals
detection of successive J and K symbols (indicating start of a
data packet) synchronizer 74 switches to a “load pattern®
state 83 wherein it switch multiplexer 78 to select the output
of a pattern generator 79. Pattern generator 79 produces the
network protocol PREAMBLE field for the data packet, which is
the same for all data packets. As pattern generator 79
produces the PREAMBLE field, sequencer 70 shifts it into FIFO
buffer 80. Thereafter, sequencer 74 switches multiplexer 78 to
select the output of decoder 76, It then moves to state 84 of
FIG. 5 wherein asserts an SI signal on every 5th pulse of the
system clock signal. If decoder 72 detects the I code while
sequencer 74 reverts to its pre-synchronization state 82. If
decoder 72 detects the V code segquencer 74 reverts to
out-of-synchronization state 106. If decoder 72 detects the
CR code (indicating start of a connection reguest) while
sequencer 74 1is in state 84, the sequencer moves to a
"connection request" state 85. State 85 is similar to state
84 except that in state 85 sequencer 74 does not shift the
output of decoder 76 into FIFO buffer 80. Sequencer 74 revrain:
in state 112 for the number of system clock cycles reqguir:
for the connection request to pass through shift register 70.
The seguencer 74 then reverts to state 84 to resume processing
the data packet.

Referring again to FIG. 4, when FIFO buffer 80 signals iz
is not empty, a buffer state machine 86 shifts data out of
FIFO buffer 80 onto a 4-bit data input/output bus of a random

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

21

access memory (RAM) 87. State machine 82 then supplies
address and control signals to RAM 87 causing it to store the
4-bit nibble in RAM 86. State machine 86 uses RAM 87 as a
large FIFO buffer for assembling and storing each data packet
until it can be transmitted outward to the destination
station. As each data packet arrives, state machine 86 checks
its LENGTH field to determine the length of the packet. “When
the packet is fully assembled state machine 86 reads each
successive nibble of the packet out of RAM 87 and shifts it
into a FIFO buffer 88, bypassing the LENGTH field. State
machine 86 monitors a FULL signal produced by FIFO buffer 88
and suspends loading data into buffer 88 when it is full. The
longest stored nibble in FIFO buffer 88 is supplied to a 4-bit
parallel-in/serial-out shift register 89. The serial output
of shift register 89 passes to a conventional network
interface circuit 90 which forwards each bit to the receiving
network station via the TX0 bus. When it forwards a bit to
the TX0 bus, interface circuit 90 signals an output state
machine 91 and state machine 91 signals shift register 89 to
shift out a bit. When a 4-bit nibble has been shifted out of
register 89, state machine 91 checks an EMPTY signal produced
by FIFO buffer 88. If FIFO buffer 88 is not empty, state
machine 91 shifts a next nibble of the packet out of FIFO
buffer 88 and shifts it into shift register 89.

MEMORY CONTROLLER

FIG. 6 illustrates memory controller 24 of FIG. 2 in more
detailed block diagram. Memory controller 24 includes a pair
of decoders 92 and 93 and a set of tri-state buffers 94.
Decoders 92 and 93 receive the 5-bit INPUT_PORT and
OUTPUT_PORT IDs from the winning input and output port via the
global bus. Decoder 92 produces 24 output bits B0-B23
supplied to RAM 14 of FIG. 2. Decoder 92 sets all bits B0O-B23
to a logical "0" except one particular bit referenced by the
INPUT_PORT ID. Decoder 92 sets that bit to a logical "1,
Decoder 93 also produces 24 output bits WO'- W23’, setting all
of them to a logical "0" except one particular bit referenced

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

22

by the OUTPUT_PORT ID. Decoder 93 sets that bit to a logical
wlv, Tri-state buffers 94 .connect the W0’- W23’ signals to
word lines WO-W23 of RAM 14 of FIG. 2. A pulse of the WE
signal from arbitration sequencer 22 of FIG. 2 briefly enables
tri-state buffers 94 causing a pulse to appear on one of word
line WO-W23 corresponding to the particular one of bits W0'-
W23’ set to a logical "1". RAM 14 of FIG. 2 responds to the
pulse by storing the 24 data bits B0-B23 at a row
corresponding to the pulsed word line. Since only one of bits
B0-B23 is a logical "1", switch 12 of FIG. 2 makes only one
connection to the output buffer corresponding to the row and

breaks any other connections to that buffer.

ADDRESS TRANSLATION

FIG. 7 illustrates the address mapping system 26 of
FIG. 2 and address translation unit 44 of FIG. 3 in more
detailed block diagram form. Address translation unit 44
includes a state machine 95, a comparator 96, an AND gate 97
and a bus interface circuit 98. Address mapping system 26
includes a microcomputer 100, a counter 101 and a set of
tri-state buffers 103-105.

FIG. 8 is a flow chart illustrating operation of
microcomputer 100 and FIG. 9 is a flow chart illustrating
operation of state machine 95. Referring to FIGS. 3 7, 8 and
9, when 48-bit destination (DEST) and source (SOURCE) address
fields have been stored in registers 40 and 42 (FIG. 3),
buffer state machine 34 signals address translation unit 44 by
pulsing a TRANS signal. Address mapping system 26
continuously polls the address translation unit 44 to
determine if the translation unit has a pending translation
request. Counter 101 produces an output count indicating the
ID of the buffer being polled (PORT_ID).

Following system start up, microcomputer 100 asserts a
POLL output signal (step 108). The POLL signal enables
buffers 103 and 104 which send the PORT_ID of counter 101 via
lines 106 to an input of a comparator 96 within each

translation unit 44. The ID of the input buffer in which each

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

23

translation unit 44 resides (MY_ID) is applied to a second
input of comparator 96. When PORT_ID matches MY_1ID,
comparator 96 asserts its output signal. The comparator 96
output signal and the POLL signal produced by microcomputer
100 are supplied to inputs of AND gate 97. Thus AND gate 97
asserts its output when buffer MY ID is being polled.

After asserting the POLL signal (step 108),
microcomputer 100 looks for an acknowledge (ACK) signal input
from one of the translation units 44 (step 109) indicating the
unit 44 has a pending translation request. If microcomputer
100 does not detect an ACK signal pulse (step 109) it pulses a
NEXT signal which clocks counter 101 (step 110). Counter 101
then increments the value of PORT_ID. That new PORT_ID value
is sent to the translation units (step 108) and microcompiter
100 looks for an ACK pulse in response (step 109).
Microcomputer 100 continues to cycle through steps 108-110
polling each buffer in turn until it obtains an ACK response
at step 109 from a polled translation unit 44 having a pending
translation. The ACK signal pulse tells microcomputer 109 to
read the SOURCE data field from register 40 via bus lines 107
and bus interface circuit 98 (step 111) and to create a table
entry relating the port ID output of counter 101 to the
incoming network SOURCE address (112) . Thereafter,
microcomputer 100 turns off its POLL signal (step 113) to
disable buffers 103 and 104 and to enable buffer 105.
Microcomputer 100 then reads the destination DEST data field
from register 42 via bus lines 107 and bus interface circuit
98 (step 114). Thereafter it accesses its internal
lookup-table to determine the corresponding output port ID,
places the output port (PORT_ID) on lines 106 (step 116),
sends a STEP signal pulse to state machine 95 (step 116) and
then waits for an ACK signal pulse (step 117). It then starts
another polling cycle by pulsing the NEXT signal (step 110),
turning on the POLL signal (step 108) and then looking for
another ACK response (step 109).

Following system startup, state machine 95 waits for a
TRANS signal pulse (step 118) indicating that new SOURCE and

10

15

20

25

30

WO 97/36242 PCT/US97/04250
24

DEST fields are available in registers 40 and 42 (FIG. 3) It
then waits until the outpﬁt_of AND gate 97 indicates it is
being polled (step 119). It then sends an ACK signal pulse to
microcomputer 100 (step 120) and awaits a STEP signal pulse
indicating the DEST field has been translated an that the
corresponding output PORT_ID is ready on lines 106 (step 125).
On receipt of the STEP signal pulse, state machine 95 pulses
the shift in (SI) input signal to FIFO buffer 45 of FIG. 3
(step 126) which stores the port ID appearing on data bus 106
for subsequent use in a connection request. Thereafter state
machine 95 pulses the ACK signal (step 127) and returns to
step 118 where it waits for another translation request.

ARBITRATION

In a preferred embodiment of the invention, as
illustrated in FIGS. 10-15, LAN switch 10 of FIG. 2 employs
"output polling" arbitration. In an alternative embodiment of
the invention, as illustrated in FIGS. 16-22 LAN switch 10 of
FIG. 2 employs "event driven" arbitration. In both systems
the arbitration sequencer 22 initiates each output token
passing cycle. Also in both systems, each idle output
arbiter, upon receiving an output token, initiates an input
token passing cycle in an attempt to establish a connection to
an input port. In the output polling arbitration system,
sequencer 22 initiates an output token passing cycle upon
system start up and starts a new output token passing cycle
whenever a previous output token passing cycle ends. However,
in the event driven arbitration system, arbitration sequeancer
22 starts an output token passing cycle only when an input
arbiter RAO-RA23 signals sequencer 22 that it has a new
connection request or when an output arbiters TAO0-TA23 signals
that its port has become newly idle. The input and output
arbiters RAO-RA23 and TA0-TA23 and the arbitration sequencer
22 of FIG. 2 differ in some respects for the two types of

35~ arbitration systems.

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

25

Output Arbiter - Output Polling

FIG. 10 illustrates-éq output arbiter RAO of FIG. 2 for
use in the output polling system in more detailed block
diagram form. The global bus of FIG. 2 which interconnects
the input and output arbiters and the arbitration sequencer 22
includes 24 lines conveying eight data values or control

signals as illustrated in Table IV.

TABLE IV

VALUE/SIGNAL LINES PURPOSE

CLK 1 Global clock

INPUT_SEED 5 Input seed ID

OUTPUT_SEED 5 Output seed ID

INPUT_PORT 5 Input token holder ID
OUTPUT_PORT 5 Output token holder ID
REQUEST 1 Connection Request
SAMPLE_EVENTS 1 Starts token passing cycle
GRANTED 1 Indicates connection granted |

Output arbiter TA0 includes a state machine 127 clocked
by the system clock (CLK) for controlling arbiter operation.
Arbiter TAO0 also includes an end-of-packet (EOP) detection
circuit 128 for detecting the end of a data packet appearing
on horizontal line HO of switch 12 (FIG. 2). The Q output of
a flip-flop 129, supplied as an IDLE signal to state machine
127, indicates when the port is idle. Detection circuit 128
sets flip-flop 129 when it detects the end of a packet. State
machine 127 resets the flip-flop whenever a connection to the
port has been granted. Output arbiter TDO also includes a set
of three tri-state buffers 130-132, a set of comparators
133-135 and an "input seed generator" circuit 136. Comparator
133 asserts its output signal when an output port ID appearinc
on the OUTPUT_SEED lines matches MY_ID, the ID of output port
TPO. Comparator 134 asserts its output signal whern data
appearing on the INPUT_PORT lines matches an end-of-cycle

10

15

20

25

30

35"

WO 97/36242 PCT/US97/04250

26

(EOC) code. Comparator 135 asserts its output signal when an
output port ID appearing on the OUTPUT_PORT lines matches
MY_ID.

FIG. 11 is a flow chart illustrating operation of state
machine 127 of FIG. 10. Referring to FIGS. 10 and 11, on
system power up, state machine 127 initializes itself (step
140). During step 140, state machine 127 de-asserts its
QUTPUT_TOKEN signal supplied to the next output arbiter.

State machine 127 also sets three output signals END_CYCLE,
CONSUME and SEED to turn off the three tri-state buffers
130-132 and pulses the CLEAR output signal to reset flip-flop
128. State machine 127 then awaits a pulse on the
SAMPLE_EVENTS line (step 142).

To start a token passing cycle, central arbitration
sequencer 22 (FIG. 2) places the ID of one of the output ports
on the OUTPUT_SEED lines and then signals the start of the
output token passing cycle by pulsing the SAMPLE_EVENTS line.
On detecting the SAMPLE_EVENTS pulse, state machine 127
determines whether its output port is the output seed by
looking at the output of comparator 133 (step 144). As shown
in FIG. 10, comparator 133 compares the output port’s ID
(MY_ID) with the port ID conveyed on the OUTPUT_SEED lines and
signals state machine 127 with the comparison result. If
output port TPO is not the output seed, then state machine 127
waits (step 146) until it has received the output token (i.e.
its input OUTPUT_TOKEN signal is asserted) and then moves to
step 148. Otherwise if output port TPO is the output seed anc
has not received the output token (step 147), sate machine 127
moves directly to step 148.

At step 148 state machine 127 checks its IDLE input
signal to determine whether its output port TP0 is idle. 1If
port TPO is not idle, state machine 127 passes the output
token to the next output port (step 149). 1If port TPO is idle
at step 148, state machine 127 pulses a NEXT signal input to
seed generator 136 and sets its CONSUME and SEED output
signals to turn on tri-state buffers 131 and 132 of FIG. 10
(step 150). When tri-state buffer 131 turns on, it places the

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250

27

ID of output port TPO_(MY_ID) on the OUTPUT_PORT lines. Seed
generator 136 contains alerating table of input port IDs and
supplies one of the input port IDs as input to buffer 132. a
pulse of the NEXT signal tells seed generator 136 to select a
next one of the input port IDs from its rotating table as its
output. When tri-state buffer 132 turns on it places the
output of SEED generator 136, the ID of one of input ports
RP1-RP23, on the INPUT_SEED lines. When a valid ID appears on
the INPUT_SEED lines, the input arbiters RAO-RA23 arbitrate
for connection to the output port (TP0) whose ID appears on
the OUTPUT_PORT lines. If an input arbiter having a pending
connection request for output port TPO wins the arbitration,
it places its input port ID on the INPUT_PORT 1lines and
asserts the REQUEST signal line. If no input arbiter has a
pending request for output port TPO, the seed input port
places an EOC (end-of- cycle) code on the INPUT_PORT lines.

After initiating an input token passing cycle at step
150, state machine 127 cycles through steps 152 and 154
looking for either an EOC code on the INPUT_PORT lines (step
152) or assertion of the REQUEST signal (step 154). If the
REQUEST signal is asserted, there is a pending request for
port TPO that is about to be granted. Accordingly state
machine 127 resets flip-flop 129 (step 156) to indicate port
TPO0 is no longer idle and then waits for assertion of the
GRANTED signal (step 158). Central arbitration sequencer 22
of FIG. 2 asserts the GRANTED signal when it has established
the connection between input and output ports. After the
connection has been granted, state machine 127 passes the
output token to the next output port (step 160).

After passing the output token at steps 149 or 160, state
machine 127 again checks whether port TPO is the output seed
(step 162). 1If not, state machine 127 waits until the output
of comparator 135 indicates that an EOC code appears on the
OUTPUT_PORT lines (step 164). The output seed places the EOC
code on the OUTPUT_PORT lines to mark the end of the output
token passing cycle. At that point state machine 127
re-initializes the output arbitrator (step 140) and then waits

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250
28

(step 142) for a SAMPLE EVENTS pulse signaling the start of
another output token passing cycle.

If state machine 127 determines at either step 144 or 16z
that port PTO is the output seed, it reverts to step 147 where
it checks whether it has the output token (step 147). If the
output seed has received the token, the output token passing
cycle has ended, all output arbiters having received and
passed the output token. Thus state machine 127 sets its
END_CYCLE output signal (FIG. 10) to turn on tri-state buffer
130 to put the EOC code on the OUTPUT_PORT lines (step 165) tc
signal the end of the output token passing cycle. State
machine 127 then waits (step 168) until the central arbiter 22
(FIG. 2) responds to the EOC code by pulsing the GRANTED
signal. State machine 22 then returns to initialize step 140,
re-initializes the output arbiter and thereafter awaits the

start of another output token passing cycle (step 142).

Input Arbiter - Output Polling

FIG. 12 illustrates an input arbiter RAO of FIG. 2 for
use in the output polling arbitration system. Arbiters
RA1-RA23 are similar. Arbiter RAO includes a state machine
170 for sequencing arbiter operations. An interface circuit
172 monitors a connection requests arriving from input buffer
RBO via vertical line VO of switch 12 (FIG. 2) and stores the
ID (PORT_ID) of the destination port conveyed in an incoming
request. If the VO line is not conveying a packet, or when
interface circuit 172 detects the end of a packet transmission
on the VO line, interface circuit 172 supplies its stored
PORT_ID data to the input of a register 174, input enabled by
the SAMPLE_EVENTS signal. When the connection request 1is
granted, state machine 170 pulses a CLEAR signal to clear the
PORT _ID data stored in interface 172. A comparator 176
signals state machine 170 when the destination port ID
(PORT_ID) stored in register 174 matches the ID conveyed on
the OUTPUT_PORT line. A tri-state buffer 178 when enabled by
a CONSUME output of state machine 170, places the ID (MY_ID)
of input buffer RBO on the INPUT_PORT lines. A tri-state

10

15

20

25

30

35.-

WO 97/36242 PCT/US97/04250
29

buffer 179 when enabled by a END_CYCLE output of state machine
170, places the EOC code ‘on the INPUT PORT lines. A
comparator 180 signals staée machine 170 when MY_ID, the ID of
input buffer RB0O, matches the input port ID conveyed on the
INPUT_SEED lines. A comparator 181 signals state machine 170
when the INPUT_PORT lines convey the EOC code.

FIG. 13 is a flow chart illustrating operation of state
machine 170. Referring to FIGS. 12 and 13, following system
power up, state machine 170 initializes by setting its CONSUME
output signal to turn off buffer 178 and by pulsing the CLEAR
signal to initialize the PORT ID data in interface circuit 172
(step 182). Thereafter state machine waits (step 184) until
it detects a pulse on the SAMPLE_EVENTS line, indicating the
start of a token passing cycle. State machine 170 then checks
the output of comparator 180 to determine if its input port
(RPO) is the input seed (step 186). If port RPO is the input
seed and does not have the token (step 188) or if input port
RPO is not the input seed but does have the token (step 190),
state machine 170 checks the output of comparator 176 to
determine if there is a pending request for the output buffer
whose ID appears on the OUTPUT_PORT lines (step 192). TIf
input port RPO does not have a pending request for the output
buffer, state machine 170 passes the input token (step 194) by
asserting its output INPUT_TOKEN signal. It then waits for a
pulse of the GRANTED signal or appearance of an EOC code on
the INPUT_PORT lines (step 196) indicating the end of either
an output or input token passing cycle. Thereafter, state
machine 170 reinitializes (step 182) and waits for the start
of another input token passing cycle (step 184).

If at step 190 state machine 170 has not received the
input token, it cycles through steps 190 and 191 until it
receives the input token (step 190) or until it detects from
the outputs of comparator 180 that a request has been granted
(step 191). 1If a request is granted to another input before
state machine 170 receives the input token, state machine 170
re- initializes (step 182) and waits for the start of another

input token passing cycle (step 184).

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250

30

If at step 192 state machine 170 determines from the
output of buffer 176 that it has a pending request for the
output buffer whose ID appears on the OUTPUT_PORT lines, then
at step 198 state machine 170 sets its CONSUME signal output
to turn on buffer 178 thereby placing the ID of input poxrt RPO
on the INPUT_PORT lines. At step 198 state machine 170 also
asserts the REQUEST signal to signal that it is requesting a
connection and pulses its CLEAR output to clear the connection
request in interface circuit 172. The state machine 170 then
waits for a pulse of the GRANTED signal or appearance of an
EOC code on the INPUT_PORT lines (step 196) indicating the end
of either an output or input token passing cycle. Thereafter,
state machine 170 re-initializes (step 182) and waits for the
start of another input token passing cycle (step 184).

If state machine 170 determines at step 186 that its
input port is the input seed and at step 188 that it has the
input token, then state machine 170 sets its END_CYCLE output
signal so that buffer 179 places the EOC code on the
INPUT _PORT line (step 200) to signal the end of the input
token passing cycle. It then waits (step 202) for sequencer
22 of FIG. 2 to acknowledge the end of the input token passing
cycle by pulsing the GRANTED signal. Thereafter state machine
170 re-initializes (step 182) and waits for the start of
another input token passing cycle (step 184).

Arbitration Sequencer - Output Polling

FIG. 14 illustrates arbitration sequencer 22 of FIG. 2 in
more detailed block diagram form. Sequencer 22 includes a
state machine 210 for sequencing device operations. An output
seed generator 212 contains a rotating table of output p- ¢
IDs and places one of the output port IDs on the OUTPUT_ :D
lines of the global bus. A pulse of a NEXT signal produ. .1 by
state machine 210 tells seed generator 212 to select a next
one of the output port IDs from its rotating table for
placement on the OUTPUT_SEED lines. A comparator 214 signals
state machine 210 when the OUTPUT_PORT lines convey the EOC
(end-of-cycle) code. State machine 210 also supplies the

10

15

20

25

30

35°

WO 97/36242 PCT/US97/04250
31

write enable signal WE fo; the memory controller. When state
machine pulses a shift in (SI) signal, a parallel-in/serial
out shift register 218 stores the input port ID appearing on
the INPUT_PORT lines. When state machine 210 asserts a
RESPOND signal, a tri-state buffer 220 connects the output of
shift register 218 to a response line RESP of the global bus.
State machine pulses a shift out signal (SO) to serially shifs
the input port ID out of shift register 218, thereby sending &
response to input buffers RBO-RB23 of FIG. 2 via the RESP
lines. This tells the indicated input buffer that its last
connection reguest has been granted. .

FIG. 15 is a flow chart illustration operation of state
machine 210 of FIG. 14. Referring to FIGS. 14 and 15, state
machine 210 initializes tollowing power up by setting the
RESPOND signal to turn off buffer 220, and driving its GRANTED
and SAMPLE_EVENTS signals low. (step 230). State machine 210
then pulses the NEXT signal causing seed generator 212 to
place an output port ID on the OUTPUT_SEED lines (step 234).
State machine 210 next pulses the SAMPLE_EVENTS line to signal
the start of an output token passing cycle (step 236). It
then continues to repeat steps 238 and 240 until at step 238
it detects a pulse on the REQUEST signal or at step 240
comparator 214 signals detection of the EOC code on the
OUTPUT_PORT line.

An input arbiter pulses the REQUEST signal to request a
connection between input and output ports identified by the
codes on the INPUT_PORT and OUTPUT_PORT lines. On detection
of the REQUEST signal pulse at step 238, state machine 219
transmits a write enable signal WE to memory controller 24 of
FIG. 2 (step 242). The memory controller responds by storing
data in RAM 14 of FIG. 2 establishing the connection between
the winning input and output ports. State machine 210 then
pulses the GRANTED line (step 244) to tell the input and
output buffers that the request is granted and pulses the ST
signal to load the input port ID into shift register 218 (step
246). State machine 210 then sends a response to the input
buffers (step 248) by asserting the RESPOND signal to turn on

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

32

buffer 220 and pulsing the SO signal to shift the input port
ID onto the RESP line via buffer 220. Thereafter state
machine 210 returns to steps 238/240. TIf, at step 240,
comparator 214 signals state machine 210 that it has detected
the end of an output token passing cycle, state machine 210
re-initializes (step 230) and begins a next output token

passing cycle.

EVENT DRIVEN ARBITRATION

In an alternative embodiment of the invention, s
illustrated in FIGS. 16-22, LAN switch 10 of FIG. 2 employs
event driven arbitration. In this system, an output
arbitration cycle begins either when an output buffer becomes
newly idle or when an input buffer issues a new connection
request. In the event driven version of switch 10, the global
bus interconnecting the input and output arbiters and the
arbitration sequencer 22 includes 26 lines conveying 10 data
values or control signals as illustrated in Table V.

TABLE V

VALUE/SIGNAL LINES PURPOSE

CLK 1 Global clock

INPUT_SEED 5 Input seed ID

OUTPUT_SEED 5 Qutput seed ID

INPUT_PORT 5 Input token holder ID

OUTPUT_PORT 5 Output token holder ID }
OUTPUT_ARB_CYCLE | 1 Starts output token passing
INPUT_ARB_CYCLE 1 Starts input token passing
SAMPLE_EVENTS 1 Sampies new request for new idle |
NEW_REQ 1 New request signal i
NEW_IDLE 1 New idle signal {

Arbitration Sequencer - Event Driven

FIG. 16 illustrates the event driven version of
arbitration sequencer 22 of FIG. 2 in more detailed block
diagram form. Sequencer 22 incudes a state machine 400 for

controlling sequencer operation, and seed generator circuits

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
33

402 and 404 for generating an output and input seeds.
Tri-state buffers 406 and”498 respectively connect outputs of
seed generator circuits 402 and 404 to the OUTPUT_SEED and
INPUT_SEED lines of the GLOBAL bus. A decoder 408 signals
state machine 400 when detects EOC (end of cycle) or valid
input port ID codes on the INPUT_PORT lines of the GLOBAL bus.
A shift register 412, connected to the RESP bus via a
tri-state buffer 414 serially transmits the ID of a winning
input buffer appearing on the INPUT_PORT lines as a connection
response to the input buffers.

FIG. 17 is a flow chart detailing the logic of state
machine 400 of FIG. 16. Referring to FIGS. 16 and 17, after
system power up, state machine 400 transmits a pulse on a
SAMPLE_EVENTS line of the GLOBAL bus to all input and output
arbiters (step 422). On receipt of the SAMPLE_EVENTS pulse,
each output arbiter for an output buffer having become idle
since a last received SAMPLE_EVENTS pulse agserts a NEW_IDLE
signal on a line of the GLOBAL bus. Similarly on receipt of a
SAMPLE_EVENTS pulse, each input arbiter having stored a new
connection request since the last SAMPLE_EVENTS pulse asserts
a NEW_REQ line of the GLOBAL bus. State machine 400 checks
the NEW_IDLE and NEW_REQ lines (steps 424 and 425), and if
neither line is asserted, returns to step 422 where it again
pulses the SAMPLE_EVENTS line. State machine 400 continues to
cycle through steps 422, 424 and 425 until it detects
assertion of either the NEW_IDLE or the NEW_REQ line.

On detecting assertion of the NEW_IDLE line, state
machine 400 pulses a NEXT_OUTPUT signal'telling seed generator
402 to output a new output seed (step 426) and then asserts a
SEED_OUT signal (step 428) to turn on tri-state buffer 406 to

lace the output seed on the OUTPUT_SEED lines of the GLOBAL
bus. State machine 400 then pulses an OUTPUT_ARB_CYCLE line
of the GLOBAL bus (step 430).

The OUTPUT_ARB_CYCLE pulse tells the input and output
arbiters to arbitrate for a connection. The state machine 400
then waits at step 432 until decoder 408 detects on the
INPUT_PORT lines either a valid input port ID, indicating that

10

15

20

25

30

35 .

WO 97/36242 PCT/US97/04250
34

a connection request is ready to be granted, or an
end-of-cycle code (EOC} indicating that no connection reqguest
is ready to be granted. If-the arbiters determine that a
connection request can be granted, the IDs of the winning
input and output buffers appear on the INPUT PORT and
OUTPUT_PORT lines. When decoder 408 indicates a valid input
port ID appears on the INPUT_PORT lines, state machine 400
sends the write enable signal WE to memory controller telling
it to grant the request by making the connection (step 434).
State machine 400 then sends a response to the input buffers
(step 436) by pulsing an SI signal causing shift register 412
to load the input port ID on the INPUT_PORT lines, asserting a
RESPOND signal to turn on tri-state buffer 414, and then
successively pulsing an SO signal causing shift register 412
to shift out the input port ID onto the RESP line to the inpu:
buffers. Thereafter state machine 400 pulses the
OUTPUT_ARB_CYCLE line to tell all arbiters that the request
has been granted (step 438). State machine 400 then returns
to step 422. If at step 432 decoder 408 detects the EOC code
on the INPUT_ PORT lines, state machine 400 skips steps 434 anc
436 and no connection is granted.

On detecting assertion of the NEW_REQ line at step 425,
state machine 400 pulses a NEXT INPUT signal telling seed
generator 404 to output a new input seed (step 440) and then
asserts a SEED_IN signal (step 442) to turn on tri-state
buffer 408 to place the input seed on the INPUT_SEED lines ot
the GLOBAL bus. State machine 400 then pulses an
INPUT_ARB_CYCLE line of the GLOBAL bus (step 444). The
INPUT ARB_CYCLE pulse tells the input and output arbiters to
arbitrate for a connection. The state machine 400 then
performs steps 432, 434, 436 438 in the manner described above
to gr .at any connection requested by the input and output
arbiters and to send a response to the input buffers if a

connection is granted.

10

15

20

25

30

35

WO 97/36242 - PCT/US97/04250
35

Output Arbiter - Event Driven.

FIG. 18 illustrates Ehg event driven version of output
arbiter TAO of FIG. 2 in more detailed block diagram form.
Output arbiters TAL1-TA23 of FIG. 2 are similar. Arbiter TAQ
includes a state machine 500 for controlling arbiter
operations. An end-of-packet (EOP) detector 502 detects the
end of a packet passing along horizontal line HO of crosspoint
switch 12 of FIG. 2 to output buffer TBO. On detecting a
packet end, detector 502 sets a pair of flip-flops 504 and 50&
which may be separately reset by state machine 500. The Q
output of flip-flop 504 supplies an IDLE input to state
machine 500. The Q output of flip-flop 506 provides another
input to state machine 500 and turns on a tri-state buffer 50§
which pulls down (asserts) the NEW_IDLE line of the GLOBAL
bus. A comparator 510 signals state machine 500 when the ID
(MY_ID) of output port TPO appears on the OUTPUT_SEED lines.

A comparator 512 signals state machine 500 when the end of
cycle (EOC) code appears on the INPUT_PORT lines. A
comparator 514 signals state machine 500 when MY_TID appears on
the OUTPUT_PORT lines. A tri-state buffer 516 responds to a
CONSUME signal from state machine 500 by placing MY_ID on the
OUTPUT_PORT lines. A seed generator 518 linked to the
INPUT_SEED lines via a tri-state buffer 520 places an input
port ID on the INPUT_SEED lines when state machine 500 asserts
a SEED signal. When state machine 520 supplies a NEXT signal
pulse to seed generator 518, the seed generator selects a next
input port ID as the input seed.

FIG. 19 is a flow chart illustrating operation of state
machine 500 of FIG. 18. Following system start up, state
machine 500 waits for a pulse on the SAMPLE_EVENTS line (step
522). On receipt of the SAMPLE_EVENTS pulse, it checks
whether the central arbitration sequencer is asserting the
OUTPUT_ARB_CYCLE or INPUT_ARB CYCLE lines (steps 524 and 526).
As discussed above, sequencer 22 of FIG. 2 places a port ID on
the OUTPUT_SEED lines and pulses the OUTPUT_ARB_CYCLE lina if
one or more of the output arbiters are asserting the NEW_IDLE
line. Output arbiter TAQ responds to the OUTPUT_ARB_CYCLE

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250

36

pulse by checking the_ou;put of comparator 510 to determine if
its port (TPO) is the output seed (step 528). If not, arbiter
TAQ0 determines whether it has received the output token (step
530). If it has not received the output token, it checks
whether the central arbitration sequencer is again asserting
the OUTPUT_ARB_CYCLE signal (step 532). 1If, so the output
token passing cycle is over, another output arbiter having won
the arbitration. State machine 500 then returns to step 522
to await another token passing cycle. Otherwise, if the
QUTPUT_ARB_CYCLE signal has not been asserted, state machine
500 returns to step 528.

If at step 528 state machine 500 learns that it is the
output seed, or learns that port TPO is not the output seed
(step 528) and state machine 500 of arbiter TAO has received
the output token, state machine 500 checks the IDLE signal
from flip-flop 506 to determine if its output port TPO is
newly idle (step 534). If not, state machine 500 passes the
output token (step 536) and returns to step 528 via step 532.
Otherwise, if output port TPO is idle (step 534), state
machine 500 asserts a CONSUME signal to turn on tri-state
buffer 516 (step 538), thereby placing the ID (MY_ID) of
output port TPO on the OUTPUT_PORT lines. State machine 500
also asserts the SEED signal to turn on tri-state buffer 520,
thereby placing an input port ID produced by seed generator
518 on the INPUT_SEED lines (step 540). This tells the input
arbiters to arbitrate for the right to connect to port TPO.

While the input arbiters are arbitrating, output arbiter
TAO0 monitors the OUTPUT_ARB_CYCLES line (step 542) and the
output of comparator 512 (step 544) to determine whether the
arbitration was successful or unsuccessful. If the
arbitration was successful, the central arbitration sequencer
will pulse the OUTPUT_ARB_CYCLE line 542 and state machine 500
will (at step 546) pulse its NEXT signal to increment the
output of seed generator 134, reset flip-flops 504 and 506 to
indicate the output buffer is no longer idle, and de-assert
the CONSUME and SEED signals to turn off buffers 516 and 520.

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250

37

State machine 500 then reverts to step 522 to await the start
of another token passing cycle.

If the arbitration was unsuccessful (no input port had a
pending request for the newly idle output port TPO), then the
seed input arbiter will place the EOC code on the INPUT_PORT
lines and comparator 512 will notify state machine 500 of this
event. At that point state machine 500 will (step 548) reset
flip-flop 506 and de-assert the CONSUME and SEED signals to
turn off buffers 516 and 520. Note that since port TPO is
still idle the state machine 500 does not reset flip-flop 504.
But it does reset state machine 506 because port TPO is no
longer "newly" idle.

When one or more of the input arbiters asserts the
NEW_REQ line, the central arbitration sequencer will start an
input token passing cycle by pulsing the SAMPLE_EVENTS line
and INPUT_ARB_CYCLE lines. At step 526 state machine 500
responds to the INPUT_ARB_CYCLE pulse by checking the IDLE
output of FLIP- FLOP 504 to determine if output port TPO is
idle (step 550). If the output buffer is not idle, state
machine 500 returns to step 522 to await the start of a new
token passing cycle. If output port TPO is idle, state
machine 500 checks the output of comparator 514 to determine
if the ID of output port TPO (MY_ID) is on the OUTPUT_ PORT
lines (step 552). If not, state machine 500 returns to step
522 to await a new token passing cycle. If MY_ID appears on
the OUTPUT_PORT lines, then an input buffer with a prending
request for port TPO has won the right to have the request
granted. Thereafter (step 554) state machine 500 asserts the
SEED signal to turn on buffer 520 which places an input port
ID on the INPUT_SEED lines. State machine 500 also asserts
and OUTPUT_IDLE line (step 554). Thereafter state machins 50:
where it waits for assertion of the OUTPUT_ARB_CYCLE signal
indicating the connection request has been granted (step 54Z).
When the connection request is granted, state machine 500
pulses its NEXT signal to increment the output of seed
generator 518 and resets flip-flops 504 and 506 to indicate
the output buffer is no longer idle (step 546) and then

10

15

20

25

30

35~

WO 97/36242 PCT/US97/04250
38

reverts to step 522 to await the start of another token

passing cycle.

Input Arbiter - Event Driven

FIG. 20 illustrates the event driven version of output
arbiter RAO of FIG. 2 in more detailed block diagram form.
Output arbiters RA1-RA23 of FIG. 2 are similar. Arbiter RAQ
includes a state machine 600 for controlling arbiter
operations. An interface circuit 602 watches for commands
appearing on vertical line V0 of switch 12 (FIG. 2) from input
buffer RBO, stores the destination port ID (PORT_ID) conveyed
in the command. Interface circuit 602 determines when line VO
is conveying a data packet by noting the beginning and ending
of data packets. When line VO is no longer busy, circuit 602
sets a flip-flop 610. The Q output of flip-flop 610 provides
an input to state machine 600 and also turns on a tri-state
buffer 612. The output of buffer 612 pulls down (asserts) the
NEW_REQ line of the GLOBAL bus when buffer 612 is turned on.
Interface circuit 602 produces output data indicating the
requested destination output port ID (PORT_ID). A register
604 stores the PORT_ID data in response to a SAMPLE_EVENTS
signal pulse and a comparator 606 signals state machine 600
when the PORT_ID data stored in register 604 matches the port
ID appearing on the OUTPUT_PORT lines of the GLOBAL bus. A
tristate buffer 608 places the PORT_ID data stored in register
604 on the OUTPUT_PORT lines when state machine 600 asserts
output signal REQ.

When circuit 602 receives a connection request it sets
flip flop 610 When the request has been granted, state
machine 600 resets flip-flop 610. It also pulses a CLEAR
output signal to tell circuit 602. The CLEAR signal pulse
tells circuit 602 to clear the PORT_ID data from its memory
and begin watching for another connection request. A
tri-state buffer 614 places MY_ID (the ID of input port RPO)
on the INPUT_PORT line when turned on by a CONSUME signal
output of state machine 600. A tri-state buffer 616 places
the EOC code on the INPUT_PORT line when turned on by an

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250
39

END_CYCLE signal output Qf state machine 600. A comparator
618 signals state machiné 600 when MY_ID appears on the
INPUT_SEED lines and a comparator 620 signals state machine
600 when the EOC code appears on the INPUT_PORT lines.

FIGS. 21 and 22 are flow charts depicting operations of
state machine 600 of FIG. 20. Referring to FIGS. 21 and 22,
after system power up, state machine 600 waits for a pulse of
the SAMPLE EVENTS signal (step 622) and then looks for a pulse
of the OUTPUT_ARB_CYCLE signal (step 624) indicating that an
output port is newly idle and that an output token passing
cycle has begun. If so, state machine 600 checks the output
of comparator 618 to determine if its input port RPO is the
input seed (step 626). If input port RPO is the input seed,
state machine 600 checks whether it has received the input
token (step 628). If not, state machine 600 checks the output
of comparator 606 to determine if the output port ID appearing
on the OUTPUT_PORT lines matches the PORT_ID value stored in
register 604. If not, state machine 600 pass the input token
(step 632) and then loocks for a pulse on the OUTPUT_ARB_CYCLE
line indicating the output arbitration has been won by another
input port (step 634). If another input port has not won,
state machine 600 checks the output of comparator 620 to
determine if the EOC code appears on the INPUT_PORT lines. TIf
not, state machine returns to step 626.

IF input port RPO is not the input seed (step 626), then
state machine 600 determines whether it has received the inpuct
token (step 638) and if not, returns to step 626 via steps 634
and 638. When state machine 600 determines at step 638 it has
received the input token, it moves to step 630. If at step
630 the output of comparator 606 indicates the port ID on
OUTPUT_PORT matches PORT_ID in register 604, then port RPO has
a pending request for the indicated output port. 1In that
event, state machine 600 asserts the CONSUME signal to place
MY _ID (the ID of input buffer RBO) on the INPUT_PORT lines
(640) and then waits (step 642) for the central arbitration
sequencer to pulse the OUTPUT_ARB_CYCLE to indicate the
connection between input and output buffers has be made. At

10

15

20

25

30

357"

WO 97/36242 PCT/US97/04250
40

that point (step 644) _state machine 600 pulses the CLEAR
signal to clear the requeét,from circuit 602 and resets
flip-flop 610 to turn off the NEW_REQ signal. It then returns
to step 622 to await the start of a new input token passing
cycle. If at step 628 input port TPO is the input seed and
state machine 600 has determined that it has received the
input token, state machine asserts the END_CYCLE signal (step
646) causing buffer 616 to place the EOC code on the
INPUT_PORT lines. The EOC code tells all arbiters that no
input buffer has a pending request for the newly idle output
buffer. State machine 600 then reverts to step 622 to await
another token passing cycle.

If at step 624 state machine 600 does not detect an
OUTPUT_ARB_CYCLE pulse, it looks for an INPUT_ARB_CYCLE pulse
from the central arbitration sequencer (step 648, FIG. 22)
indicating that an input buffer has a new connection request.
On detecting the INPUT_ARB_CYCLE pulse, state machine 600
checks the output of comparator 618 to determine if input pcrt
RPO is the input seed (step 650). If so state machine 6090
checks whether it has received the input token (step 652). If
it has received the input token, the token passing cycle is
over and no new connection request has been granted. In that
case state machine 600 pulses its END_CYCLE output causing
buffer 616 to place the EOC code on the INPUT_PORT lines (step
654) and returris to step 622 (FIG. 21) to await another input
token passing cycle.

If at step 652 port RPO does not have the input token,
state machine 600 checks the Q output of flip-flop 610 to
determine if input port RPO has a new connection request (step
655). If not, state machine 600 passes the input token (step
656) and then checks whether the OUTPUT_IDLE line has been
asserted (step 658) This indicates that another input port
has won the arbitration. IF not, state machine 600 checks the
output of comparator 620 to determine if the token passing
cycle has ended (step 660). If not, state machine returns to
step 650. If input port RP0 is not the input seed (step 650)
and state machine 600 has not received the input token (step

10

15

20

25

30

357

WO 97/36242 PCT/US97/04250 -

41

652), state machine 6Q0 cpntinues to cycle through steps 558,
660, 650 and 662 until it gets the input token. When it gets
the input token, state machine 600 checks the Q output of
flip-flop 610 to see if it has a pending new request. 1In not,
it passes the token at step 656. If it does have a new
request, state machine 600 asserts the REQ signal to turn on
buffer 608, thereby placing the requested destination buffer
address on the OUTPUT_PORT lines (step 664). State machine
600 also resets flip-flop 610 (step 664). It then looks at
the OUTPUT_IDLE line to determine the requested output port is
idle (step 666). If not,state machine 600 passes the input
token (step 656).

If the requested output buffer is idle (step 666), state
machine 600 moves to step 668. State machine 600 also moves
to step 668 from step 658. At this point (step 668), the
output arbiter for the requested port has placed a new input
seed on the INPUT_PORT lines and allows all input arbiters to
compete for a connection to that output port. Thus at step
668, state machine 600 checks the output of comparator 618 to
determine if port TPO is the input seed. If it is the input
seed, it again checks the output of comparator 606 to
determine if it has a pending request for the output port

(step 670). 1If not, it passes the input token (step 672) and
checks the OUTPUT_ARB_CYCLE line for a pulse indicating end of
the token passing cycle (step 674). If the token passing

cycle is not at an end, state machine 600 reverts to step 668.
If input port RPO is not the input seed (step 668) and does
not have the input token (step 676) it moves to step 674.
Otherwise it checks the output of comparator 606 to determine
if it has a pending request for the output port (step 670).

If it detects a pending request for the output buffer
(step 670), state machine 600 pulses the CONSUME signal to
turn on buffer 614 thereby placing the ID of port RPO (MY_ID)
on the INPUT_PORT lines (step 678). State machine 600 the
waits for a pulse from the central arbitration sequencer (step
680) indicating that the request has been granted. Thereafter
state machine 600 pulses the CLEAR signal to clear the rejues:

WO 97/36242 PCT/US97/04250

42

from circuit 602 (step 682) and returns to step 622 (FIG. 21)
to await the beginning oflnhe another token passing cycle.
While the forgoing specification has described preferred
embodiment (s) of the present invention, one skilled in the art:
may make many modifications to the preferred embodiment
without departing from the invention in its broader aspects.
The appended claims therefore are intended to cover all such
modifications as fall within the true scope and spirit of the

invention.

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

43
R Claim(s)
What is claimed isg:
1. A network switch for routing data packets between a

plurality of network stations, comprising:

a plurality of input ports interconnected to form an
input token passing ring, each input port including means for
passing an input token to a succeeding input port of the ring
after receiving an input token from a preceding input port of
the ring, and each input port including means for receiving
and forwarding data packets from corresponding network
station;

a plurality of output ports interconnected to form an
output token passing ring, each output port including means
for passing an output token from a succeeding output port of
the ring after receiving the output token from a preceding
output port of the ring, and each output port including means
for receiving and forwarding data packets to a corresponding
network station;

a switching system connected to said input and output
ports for receiving packets forwarded by said input ports and
selectively routing them to said output ports in accordance
with input routing data; and

a global bus interconnecting said input ports, said
output ports and said switching means;

wherein when one of said output ports receives the outpu*
token and is idle (not currently receiving a packet), it
signals the input ports via said global bus to begin passing
the input token, and wherein when a token receiving input port
has received a packet to be forwarded to the token receiving
output port, the token receiving input port sends routing date
to said switching system via said global bus.

2. The network switch in accordance with claim 1
wherein the routing data the token receiving input port sends
to said switching system identifies the token receiving input

port.

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250 - .

44

3. The network switch in accordance with claim 2
wherein
the token receiving output port also includes means for
sending routing data to the switching system identifying
itself, such that the switching system responds to the routing
data from the token receiving input and output ports by
routing the packet stored in the token receiving input port tc
the token receiving output port.

4. The network switch in accordance with c¢laim 1
further comprising seguencer means connected to said global
bus for successively signaling said output ports via said

global bus to begin passing said output token.

5. The network switch in accordance with claim 4

wherein whenever the sequencer means signals the output
ports to begin passing said output token, it transmits to said
output ports via said global bus output seed data identifying
one of said output ports as an output seed port; and

wherein the output seed port, when not idle, responds to
the output seed data by passing the output token and, when
idle, signals said input ports via said global bus to begin

passing said input token.

6. The network switch in accordance with claim 5
wherein the sequencer means alters the output seed data each
time it signals the output ports to begin passing said output
token so that successive ones of said output ports are

successively identified as said output seed port.

7. The network switch in accordance with claim 6
wherein whenever the output seed port receives the output
token, it transmits an end-of-cycle (EOC) signal to the
sequencer means via the global bus indicating that the output
ports have stopped passing the output token.

8. The network switch in accordance with claim 7

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250

45

wherein upon receipt of the EOC signal, the sequencer mean
signals the output ports to begin passing said output token

again.

9. The network switch in accordance with claim 4
wherein when the token receiving input port sends routing datsa
to said switching system, it also transmits an end-of-cycle
(EOC) signal to the sequencer means via the global bus
indicating that an input ports have stopped passing the input

token.

10. The network switch in accordance with claim 9

wherein after receiving the EOC signal, the sequencer
means transmits a SAMPLE_EVENTS signal to the input ports via
the global bus;

wherein after receiving the SAMPLE_EVENTS signal, each
input port having received a packet to be forwarded since
previously receiving the SAMPLE_EVENTS signal, transmits a
NEW_REQUEST signal to the sequencer means via the global bus:
and

wherein, upon receiving said NEW_REQUEST signal, said
sequencer means signals said output ports to begin passing

said output token.

11. The network switch in accordance with claim 9

wherein after receiving the EOC signal, the sequencer
means transmits a SAMPLE_EVENTS signal to the output ports via
the global bus;

wherein after receiving the SAMPLE_EVENTS signal, each
output port having become idle since previously receiving the
SAMPLE_EVENTS signal, transmits a NEW_IDLE signal to the
sequencer means via the global bus; and

wherein, upon receiving said NEW_IDLE signal, said
sequencer means signals said output ports to begin passing
said output token.

12. The network switch in accordance with claim 1

10

15

20

25

30

35°

WO 97/36242 PCT/US97/04250
46

wherein whenever an idle output port signals the input ports
to begin passing said input token, it transmits to said input
ports via said global bus input seed data identifying one of
said input ports as an input seed port, and wherein the input
seed port responds to the input seed data, when not having
received a data packet to be forwarded to the output port, by
passing the input token and responds to the input seed data,
when having received a data packet to be forward to the output
port, by forwarding routing data to said switching means via

said global bus.

13. The network switch in accordance with claim 12
wherein each output port alters the output seed data each time
it signals the input ports to begin passing said input toker
so that successive ones of said input ports are successively

identified as said input seed port.

14. The network switch in accordance with claim 1
wherein each input port encodes each received packet before
forwarding it to an output port via said switching system to
include symbols indicating beginning and ending portions of
the packet, wherein each output port determines when it is
receiving a packet and when it is idle by detecting said
symbols, and wherein each output port decodes each received
packet before forwarding it to a corresponding network
station.

15. The network switch in accordance with claim 1
wherein each of said network stations has a unique network
address, and wherein packets received by said input ports each
include a contain a network address of a destination network
station to receive the packet, wherein said network switch
further comprises:

address translation means for converting the network
address of each network station to a code identifying an
output port to which the network station is connected; and

translation bus means interconnecting the input ports

10

15

20

25

30

35°

WO 97/36242 PCT/US97/04250

47

with said translation means,

wherein each of said input ports sends the network
address of the destination station included in a received
packet to said address translation means via said translation
bus, wherein said address translation means translates the
network address of the destination station into a code
identifying a corresponding output port and returns the code

to the sending input port via said translation bus means.

16. The network switch in accordance with claim 3
further comprising sequencer means connected to said global
bus for successively signaling said output ports via said
global bus to begin passing said output token.

17. The network switch in accordance with claim 16

wherein whenever the sequencer means signals the output
ports to begin passing said output token, it transmits to said
output ports via said global bus output seed data identifying
one of said output ports as an output seed port; and

wherein the output seed port responds to the output seed
data, if not idle, by passing the output token and responds to
the output seed data, if idle, by signaling said input ports
via said global bus to begin passing said input token, the
sequencer means altering the output seed data each time it
signals the output ports to begin passing said output token so
that successive ones of said output ports are successively
identified as said output seed port.

18. The network switch in accordance with claim 17

wherein whenever the output seed port receives the output
token, it transmits an end-of-cycle (EOC) signal to the
sequencer means via the global bus indicating that the output
ports have stopped passing the output token; and

wherein upon receipt of the EOC signal, the sequencer
means signals the output ports to begin passing said output
token.

10

15

20

25

30

35

WO 97/36242 PCT/US97/04250
48

19. The network switch in accordance with claim 17

wherein when the token.receiving input port sends routing
data to said switching system, it also transmits an
end-of-cycle (EOC) signal to the sequencer means via the
global bus indicating that the input ports have stopped
passing the input token;

wherein after receiving the EOC signal, the sequencer
means transmits a SAMPLE_EVENTS signal to the input ports via
the global bus;

wherein after receiving the SAMPLE_EVENTS signal, each
input port having received a packet to be forwarded since
previously receiving the SAMPLE_EVENTS signals, transmits a
NEW_REQUEST signal to the sequencer means via the global bus;

wherein, upon receiving said NEW_REQUEST signal, said
sequencer means signals said output ports to begin passing
said output token;

wherein after receiving the EOC signal, the sequencer
means transmits a SAMPLE_EVENTS signal to the output ports via
the global bus;

wherein after receiving the SAMPLE_EVENTS signal, each
output port having become idle since previously receiving the
SAMPLE_EVENTS signal, transmits a NEW_IDLE signal to the
sequencer means via the global bus; and

wherein, upon receiving said NEW_IDLE signal, said
sequencer means signals said output ports to begin passing

said output token.

20. The network switch in accordance with claim 17

wherein whenever an idle output port signals the input
ports to begin passing said input token, it transmits to said
input ports via said global bus input seed data identifying
one of said input ports as an input seed port, and wherein the
input seed port responds to the input seed data, when not
having received a data packet to be forwarded to the output
port, by passing the input token and responds to the input
seed data, when having received a data packet to be forward tc

10

WO 97/36242 PCT/US97/04250 --

49

the output port, by forwa;ding routing data to said switching
means via said global bus; and

wherein each output port alters the output seed data each
time it signals the input ports to begin passing said input
token so that successive ones of said input ports are
successively identified as said input seed port.

PCT/US97/04250

WO 97/36242

] e2xy LXH oXYd NALSAS
I D4 ‘ e ~——1 ONIddvn
_ s$S3Haqy
Y oo V ONIddVYW
NIMOL ldy -
0l - N — oc
1NdNI 140d 1HOd 1HOd
R Y LNdNI [F— *** “®— 4N 1 1ndNi
[\.e2dd _I _I - 0dy
2/ "y ony sng 1vgo1o
H 140d
E2H ™| LndLno [T &ext
H3ION3IND3S N
NOILvHLIgHY | « »
IM
22’ T :
® ® [
W3LSAS
ONIHOLIMS » _
140d
R T 1ndino [XL
+ N hdl
|
1HOd
on ™1 Lndino = OX1
» - odl
NIMOL

1Nd1no

1/19
SUBSTITUTE SHEET (RULE 26)

PCT/US97/04250

WO 97/36242

W3LSAS
. ONIddVIN
73 $s3aHaav
H3IONIND3S cee o
NOLVHLIgHY ds3d N
° Va0 T®
NIMOL £2vH tvd| Yovd
am “1NdNI d d]
- ﬁm\ fc\fm\
L»f72. vl eee <y ey je
1NOD
AHONAN cos NINOL
SEERE EEEEEEEEREERERE R ._ ~1NdLNO
EZM-OM| €2g-089 : : d4nd
_ Y A “ 14 LV LNdLNO[- EeXL
7 o XN — ad BVad gdv m.m<-h €2d1
. vei] INOOD / : +
.. mN>. —-> ® O>. . [] L] [] L]
[] ” [] [] [] ” [] [] [] []
u [oY] ° ” o o ® [
| WYY “ oA EENT]
: TT A : T Lndinop— X1
L N/ VI VI . adv tdl
o : b v 34Ng
ve . ons """ " Y "]LndLnof = O0xL
PR AT T 84V [0dL
. ; “ovi
.VN nnnnnnnnnnnnnnnnnnn M |||||||| 4

¢ OI4

2\19
SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

RESP] VO

RESP SHIFT REGITER

PORT [
64 56 RBO

GRANTED+ %5 '/
—— 82 \

A Req DATA
15 62 N 15

- EMPTY FULL
TRANSMIT so_ |, FIFO
STATE =~p| BUFFER [—————

MACHINE |[SEND 46
| REQEST)™

GEN

5 2
EMPTY, f 60
SO FIFO *
30 = BUFFER \45
NEXT_ JKT
PACKET PORT_
sl D

ADDRESS ADDRESS 4B5B

MAPPING —~<—== 1pANSLATION [| ENCODER N
SYSTEM 58

a4 f A
REG A4

5

REG -
40 427 4
31N DEST SRC

SHIFT [FIFO BUFFER F——
AE 5 S RAM

‘ 61 36
ADDR,
LOAD Sl SO TRANS R/W *
=

NETWORK . > BUFFER
VF START STATE

30 EnD ™ MACHINE

T FIC: 3 T NEXT_

RXO PACKET

3/19

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04250 -

WO 97/36242

¢ DIA

318NV
“3Hd
Mr
_1HOd 1HOd HIHIO
1NdLNO “LNdNI 9 ‘OI s = =5
ONAS |———»=| O3H ONAS
)) HO | NOD -3Hd
€6 \Nm "3HLO
03a 03a v
\ a _
£ZM-0M A ONAS
M re 30 1N0J™ N\ u3H10 o
v6 v -
ezm-om Y eza-08 ¥ DI <
oai v ANIHOVIN 3LV1S % anHovw 3Lvis ' anmHoww 3Lvis
/ 1NdNI H344ng 1Nd1NO
IS >E_>m$ oS m_wmm * »
AL PN Y Y Is|TN4 | Jos s |os SN
N Wvd
wEmooom_o umw lvd g | ALdINI ¢ t
7] 6.
¥10 o _ Y |viva 1
E/’« oL a 4 H333nd l£ 833408 | gl S | el yHOM [
. H3IA003A | .| /¥ Odid ¥ Odid y 13N | OXL
oH | 9 S asay v 8, 08”7 88 6887 .5

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04250

WO 97/36242

S1HOd INdNI —~———

SNVHL —pp

H3IH1O NISLINN — | :
NOILVISNVHL OL L "DIH
b
N\ @N/
® i d31S oot
—
MOV
1S3a —» ®
4/ |- T _
30HN0S—#= 5N8 H3LNdWOO
SOl Viva -OHOIN
INIHOVI voL
3LVIS
- T10d
AN S P 10T -]
46 Re 7 g1 LNnoD
IS al~1HOd

S v

\

H344N8 0414

1S3N03H NOILOINNOD O1

5/19
SUBSTITUTE SHEET (RULE 26)

WO 97/36242

110 i
/

(POWER UP)

PCT/US97/04250

108
NEXT POLL ON V
A
109
NO
YES
112
POLL OFF
114
READ |,
SOURCE
READ |, 115
DEST
stepl, 116
117
N
YES ©

6/19

SUBSTITUTE SHEET (RULE 26)

!

ACK

SHIFT IN
PORT_ID

127

126

PCT/US97/04250

WO 97/36242

Odl

c b , _N3¥OL
’ 1 51 i et 1Nd1NO
ckl RER) —
I B "an 7 01 "OI4
L a3aas o
Gel
¢
f ﬂmﬁé
«203. INIHOVIN
eel 31VIS
LEl _ W _
ﬂro%__ ai" AW 621
g=——10
ERle]
JANNSNOD d
- H S
+ Ol +
-.Qow.— |—le r/
LHOG I10AD aN3 FAN dO3 | gz,
SIN3IAT J31NVYHD _ * *
“I1dINVS LNdNI _gd3s NIMOL
1Nd1NO _ Y19 OH
g33s 1s3anbay _ LHod 1Nd1no
~LNdNI 1Nd1NO

719
SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

POWER
uP

®

140

INITIALIZE

INPUT_
PORT_ID
= "EOC"

AM |
N2 OUTPUT
SEED

OUTPUT

SEED
147 156 | RESET
A IDLE
YES 158
NO
150
OUTPUT| 166 0 4
PORT= VES NEXT,
"EQC" SEED,
CONSUME YES
168 NO
O [Pass | 149 160 | PASS
OUTPUT Q\OUTPUT
TOKEN TOKEN
YES (%) (%5
8/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

INPUT_
TOKEN
CLK INPUT _ GRANTED
i l PORT REQUEST
SAMPLE _
CLEAR EVENTS |OUTPUT_ | INPUT_
COM. PORT SEED
— ™| DET. N
172
PORT_ID
REG
176 : Ci7a
CONSUME

STATE MY_ID j{ é #
MACHINE

179

MY_ID

1go:

2?—— EOC
181
e
gl —

- -
INPUT 15 15 15
_ J)
TOKEN 4\/
GLOBAL BUS
FIG. 12
9/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242

(POWER up]
h

182

PCT/US97/04250 -

INITIALIZE

CONSUME,
PRIORITY,
CLEAR

TOKEN |, 194

NO

02

YES

198

FIG. 13
10/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

OUTPUT_ SAMPLE_
CLK NPUT PORT = REQUEST “L\cn1s
PORT | OUTPUT_ | GRANTED
SEED

V // 5 // 5 ’/ 5

B 1

¢
NEXT
| »|SEED ¢
/7 GEN.
STATE 512

MACHINE

‘_<_ EOC

214 *
S| g 220
SO SHIFT | RESP
=~ REG. |-
RESPOND 218
- WE
210

22

FIG. 14

11/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242

(POWEH UP)

»i

INITIALIZE }/

Y

PULSE V/
NEXT

230

234

& 236

PULSE /
SAMPLE_EVENTS

PCT/US97/04250

PULSE

/
250 GRANTED

Y

WRITE
ENABLE

<

Y

PULSE

GRANTED

Y

LOAD
INPUT
PORT ID

L/

Y

SEND
RESPONSE

L/

242

244

246

248

FIG. 15

12/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

OUTPUT_

ARB_ SAMPLE_ INPUT_ NEW

CLK INPUTCYCLE EVENTS SEED REQ
l ARB 4 INPUT_ AOUTPUT_‘ NEW _

CYCLE PORT SEED | IDLE

v ' 15 A£5 L5

-
-l

SEED_OUT

NEXT_
OUTPUT _ ISEED

AGEN.
404 406

STATE SEED_IN
MACHINE

NEXT_
| INPUT__ ISEED

GEN.
402 408
409
EOC -

-—
VALID | DEC f—%

— WE

Sl 414
o | SHIFT

SO = REG. -
400 | RESPOND 412

RESP

22

FIG. 16

13/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

Q’OWER UP)
—

422
SAMPLE_ |,
EVENTS
NO
425
NEW
REQ
?
YES
NEXT_ 426 440
ouTrPuT NEXT_ |/
INPUT
42
seep_ouTt*28 SEED_IN |42
OUTPUT_ | 430 INPUT_ | 444
ARB_ ARB. V
CYCLE CYCLE

‘ /436

SEND
RESPONSE

l FIG. 17

OUTPUT_ | 438
ARB. [

CYCLE 14/19

SUBSTITUTE SHEET (RULE 26)

PCT/US97/04250

WO 97/36242

N

Sy st sy St e nano 81 'OIA
025 'NID
* a33s[o 0%

ovi 805

/ a3ads L 'y
ﬂ 1458

*- 21s @)
..Oom.. > E w
ANIHOVIN
- 31VIS |
. 916 W
| s Q" AW 908
_ REL
L JNNSNOD 4 S
~ 3
I'v

ﬂ ’- — - 13a

8
SLIN3IA3 mumw><o 1HOd » \+/ d03 z0g
“FIdAVS | _ ~1NdNi _

1Nd1No _a33s NDIOL !
370l 1Nd1No _ 310 o4 31aIrman
- H19A9 1Nd1NO
1Ndino 3 d3as _ 1"od
a4y 1NdNI ~"LNdLNO :

“1NdNI

15/19
SUBSTITUTE SHEET (RULE 26)

WO 97/36242

POWER UP

PCT/US97/04250

NO _AUTPUT

SEED
OUTPUT_IDLE

YES

522

NO

AM |

SEED

OUTPUT

534
NO

YES

CONSUME |

538

554

Y

540

SEED

e —

NEXT,
RESET IDLE &
NEW_IDLE,
CONSUME OFH

SEED OFF

/548

RESET
NEW_IDLE
CONSUME OFF
SEED OFF

16/19

SUBSTITUTE SHEET (RULE 26)

FIG. 19

APUT_

ARB_
CYCLE
?

532

WO 97/36242 PCT/US97/04250

INPUT
CLK =
TOKEN VO OUTPUT_
co2 INPUT_ INPUT_ ARB_ NEW._
.) PORT SEED CYCLE REQ
CLEA
1l com OUT- | OUT- | INPUT_
DET. |SAMPLE_| PUT_| PUT_ | ARB_
EVENTS | PORT| IDLE | CYCLE
Y 1-;% 4
QS| |popT_| 612
—-—»R\ ID N 7
REq 610 "ﬂ
604 608
606 REG
Y]
STATE
MACHINE [CONSUME
MY_ID;g —
END_CYCLE 614
616
EOC j{i/c)
— MY_ID
618 -
620
- B |
= 4
| 600 —e
Ys ¥s ks AN
T

17/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

O—= i

622

NO

YE
NO YES
END_ | 646 632
cycle [/
PASS
TOKEN

CLEAR,

RESET |_ .(:)
NEW_REQ

FIG. 21
18/19

SUBSTITUTE SHEET (RULE 26)

WO 97/36242 PCT/US97/04250

REQ,
RESET
NEW_REQ

/678

CONSUME

FIG. 22
19/19

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intcrnational application No.
PCT/US97/04250

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 13/00; 13/14
US CL :395/200.21; 370/352, 424, 450

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/200.4, 200.21; 370/218, 250, 352, 355, 362, 389, 424, 450

Documentation searched other than minimum documentation to the cxtent that such documents are included in the fields searched

None

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Ptease See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A E US, A, 5,613,069 (WALKER) 18 March 1997 1-20

see abstract and column 4 (line 57) - column 5 (line 68).

A P US, 5,546,391 A (HOCHSCHILD ET AL.) 13 August 1996, | 1-20

see abstarct and column 7 (line 6) - column 8 (line 8).

A US, 5,453,979 A (SCHIBLER ET AL.) 26 September 1995, | 1-20

see abstract and column 1 (line 38) -

column 2 (line 3).

Further documents are listed in the continuation of Box C. .

D See patent family annex.

. Special categorics of cited documents: T
AT d defining the g | state of the art which is not considered
to be of particular relevance
“E* carlier document published on or afier the international filing date X
‘L document which m.y !hmw doubts on priority clmm(a) ot which is
cnadlo blish p ion date of ion or other
pecial reason (u pecified) Y
o document referring to an oral discl . use, exhibition or other
means
‘P document published prior to the intemational filing date but Iater than =g+

the prionty date claimed

later d blished aficr the international filing date or priority
date and notmconﬂx.ivnt'hf.lpphamb\ncned to understand the
principle or theory undertying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered 10 involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an mventive step when the documml is
combined with oac or more other such d such bi
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

13 MAY 1997 03 JUL 1997

A o2
Name and mailing address of the ISA/US Auth office
Commussioner of Patents and Trademarks
Box PCT ALPESH M. SHAH

Washington, D.C. 20231

Facsimile No. (703) 305-3230 Telephone No. (703) 305-9698

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT

International application No.

X US, 5,418,780 A (HENRION) 23 May 1995

A US, 5,355,364 A (ABALI) 11 October 1994

PCT/US97/04250
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, 5,434,855 A (PERLMAN ET AL.) 18 June 1995, see 1-20
abstract and Column 3 (line 26) - column 4 (line 12).
1-20

see abstract and column 1 (line 44) - column 2 (line 23).

see abstract and column 1 (line 23) - column 3 (line 33).

1-20

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT lncernational application No.
PCT/US97/04250

B. FIELDS SEARCHED .
Electronic data bases consulted (Name of data base and where practicable terms used):

APS
Search Terms: network or bus switching, input or output ports, routing ot transferring packets, messages, tokens, global
or common or shared bus, preceeding or succeeding ports, selectively routing or transferring or connecting etc.

Form PCT/ISA/210 (extra sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

