An enclosure for a disc-shaped medium includes a cover panel integrally formed with a media panel. The panels are delineated by a single or double fold forming a spine. The single or double fold allows the cover panel and the media panel to be opened and closed like a book. A disc holder secures the medium to the media panel. A pocket for a fragrance vial or atomizer, or another item, is formed and secured at inner-facing surfaces of the cover panel, media panel and/or spine.
Fig. 1A
Fig. 2
Fig. 7
Fig. 8
OPTICAL DISC ENCLOSURE
INCORPORATING FRAGRANCE ATOMIZER

BACKGROUND

1. Technical Field

This present specification relates to optical disc packaging and, more specifically, to optical disc packages incorporating items such as promotional vials, fragrance atomizers, or other goods.

2. Description of Related Art

Optical discs such as prerecorded compact discs ("CDs") typically are sold in a "jewel box" or "jewel case" that is a clam-shell container made of relatively hard, transparent, molded plastic material. FIG. 2 is an example of a conventional jewel case 20 commonly comprises three attachable sections: a back portion 21, a lid portion 22 and a media tray 24. Each section is generally made of transparent and rigid polystyrene, although the media tray 24 is sometimes made of opaque flexible polystyrene. The lid portion 22 has two tabs 23 that hingedly connect with the back portion 21 such that the lid portion 22 may open and close over the back portion 21. The media tray 24 is inserted into the back portion 21. The media tray 24 may have a disc shaped depression 25 for accommodating a disc and a center hub 26 for securing the disc. The surfaces of the media tray that are not part of the depression 25 are raised. A bridge section 27 is raised even further so that it may be flush with the surface of the lid 22 when it is in a closed position. A hollow space is therefore created between the bridge 27 and the back portion 21.

In some cases, cardboard-packaged CDs are distributed, and there is a variety of cardboard package configurations. Such packaging is sometimes used for mailing CDs, or for CDs that are bulk-packaged.

Some performing artists or other famous personalities develop and market their own lines of fragrances and other products. Consumers who favor such personalities and buy their CDs might be inclined to purchase their fragrances as well. Providing potential customers with a free sample of a fragrance has long been an effective method for promoting the sale of commercially available fragrances. Generally, marketers may stand in department stores and distribute small vials or atomizers of fragrance to potential customers. While this method of promoting fragrances has proven effective, providing samples of an artist’s fragrance to customers who purchase the artist’s CDs may allow for enhanced targeting of likely customers. Accordingly, it would be beneficial to utilize a system for inexpensively distributing free samples of fragrance to customers who are likely to purchase CDs.

The typical jewel case for a CD has a hollow space that sometimes is used for various purposes. For example, U.S. Pat. No. 5,850,912, to Gansser et al., proposes using the hollow space to accommodate a closed reservoir that is filled with a substance. U.S. Pat. No. 5,893,455, to Biedebach et al., proposes using the hollow space to accommodate a three-dimensional object. In each of these patents, the object placed in the hollow space must be placed prior to the final assembly of the jewel case. Once the jewel case has been assembled, the object placed within the hollow space is permanently sealed as the jewel case is not designed to be disassembled by the user. Such jewel cases are not believed to be convenient for accommodating a fragrance sample within the hollow space because such hollow spaces are not easily accessible to the user. U.S. Pat. No. 5,971,143, to Yoshioka, proposes a jewel case where the hollow space is topped with a pivotable lid.

The hollow space is compartmentalized and different kinds of filling members, for example fragrant filling, are placed within the various compartments. Such a jewel case would be expensive to manufacture and also does not appear to be convenient for user access. Another example of an optical disc enclosure is a digipack. The digipack comprises a folded cardboard section where a media tray is glued to one of the inner surfaces. U.S. Pat. No. 6,938,832, to Sada, relates to an optical disc enclosure incorporating a "scent strip" on its outer face. Such an optical disc enclosure suffers from the disadvantage of being irregularly shaped. Therefore, additional costs would be associated with the enclosure's handling as the scent strip may perforate, releasing the fragrance potentially damaging shipping equipment and retail space.

SUMMARY

An enclosure for a CD or a similarly shaped optical disc is made of an easily foldable material such as cardboard and includes a cover panel integrally formed with a media panel. The panels are delineated by a single or double fold forming a spine between them. The single or double fold allows the cover panel and the media panel to be opened and closed like a book. An affixing unit removably holds the disc to the media panel. A securing unit secures a vial or atomizer to the inner-facing surfaces of the cover panel, media panel or spine.

An alternative enclosure for a CD or a similarly shaped optical disc includes a lid unit hingedly connected to a back unit. A raised media tray is attached to and partially lines an inner surface of the back unit. The raised media tray secures the disc. The raised media tray has a footprint that is smaller than a footprint of the back unit such that an open-topped hollow cavity is formed in the space on the inner surface of the back unit that is not lined by the raised media tray. A shaped insert accommodates a vial or atomizer. The shaped insert is removably disposed within the open-topped hollow cavity.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the present disclosure and many of its attendant advantages will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

FIG. 1A is a plan view of an enclosure for an optical disc or the like along with a small vial or atomizer that may be used to contain a fragrance sample;

FIG. 1B is a perspective view of the enclosure of FIG. 1A, minus the vial or atomizer;

FIG. 1C is a perspective view of the enclosure of FIG. 1A, as seen from the inside of the enclosure;

FIG. 1D is a perspective view of the enclosure of FIG. 1A, as seen from outside the enclosure;

FIG. 1E is a plan view of a blank for use in a reinforced version of the enclosure of FIG. 1A;

FIG. 2 is an exploded view of a conventional jewel case;

FIG. 3 is an exploded view of an optical disc enclosure according to an embodiment disclosed in this patent specification;

FIG. 4 is an exploded view of the optical disc enclosure of FIG. 3 including an atomizer and a shaped insert;
FIG. 5 is a partially-exploded view of the optical disc enclosure of FIG. 4; FIG. 6 is a perspective view of an atomizer and shaped insert of FIG. 4; FIG. 7 is another perspective view of the optical disc enclosure of FIG. 4; and FIG. 8 is a perspective view of the shaped insert of FIG. 7.

DETAILED DESCRIPTION

In describing the preferred embodiments of the present disclosure illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes its technical equivalents that operate in a similar manner. In addition, while in the specific examples described below the item included in the optical disc package is a fragrance vial of atomizer, alternative items can be used that conform to appropriate sizes and shapes compatible with the package.

The disclosed embodiments seek to combine an optical disc or another medium with a fragrance atomizer or vial or another item or container in a single enclosure that is inexpensive to manufacture, easy to ship and use, and is durable.

FIG. 1A is a plan view of an enclosure for an optical disc or the like along with a small vial or atomizer that may be used to contain a fragrance sample. The enclosure 10 may be made of a single, integral, folded or hinged sheet blank 11 that may be paper, cardboard, plastic, or another suitable material. The sheet 11 may be single or double folded to create a spine 14 and may thereby open and close like a book. When closed, those surfaces of the sheet 11 that face each other are the inner-facing surfaces while those surfaces of the sheet that face away from each other are the outer-facing surfaces. On the inner-facing surface of a media panel of the sheet 11a, for example with an adhesive. A securing means 16, e.g., in the form of a pocket or compartment that is integral with blank 1 may secure a vial or atomizer 15 to the sheet 11. For example, the securing means 16 may comprise two or more slits within the sheet 11 such that a portion of the spine 14 located between the slits folds inwardly while the remainder of the spine folds outwardly, thereby defining a pocket or compartment within which the vial or atomizer 15 may be placed. Alternatively, another suitable securing means may be affixed to the sheet 11. For example, one or more loops of paper, cardboard or plastic may be affixed to the sheet 11 to hold a vial 15 in place. According to one embodiment, the securing means 16 may be formed near or at the spine 14 and/or near or at a cover panel 11b of the sheet 11. Alternatively, the securing means may be affixed to another location at the periphery of the sheet 11 such that its placement does not obstruct the closing of the enclosure 10 or press against the optical disc 13.

FIG. 1B illustrates the enclosure of FIG. 1A in perspective view, minus the vial or atomizer. The securing means 16 can comprise two slits, a top slit 16a and a bottom slit 16b that may extend across the spine 14 and may extend beyond the spine 14, into panel 11b as shown, and/or into panel 11a (not shown).

FIG. 1C is otherwise similar to FIG. 1B but illustrates atomizer 15 as inserted into the first slit 16a and back out of the second slit 16b such that the atomizer 15 is held in place by tension and friction. The two longitudinal ends and an elongated atomizer 15 are seen in this view, while the intermediate portion is behind a portion 16 of spine 14 that is folded forward, toward the free ends of panels 11a and 11b.

FIG. 1D illustrates the enclosure as seen from the outside of panels 11a and 11b, i.e., the side opposite that seen in FIG. 1C. In FIG. 1D, in this view, the middle-section of the atomizer 15 is seen; the longitudinal ends are behind spine 14.

The enclosure 10 of FIG. 1A can be reinforced. FIG. 1E illustrates a blank from which a reinforced enclosure 10 can be formed. The reinforcing panels 16 and 17 are continuous with the sheet 11 and may be folded and secured to the remainder of the sheet 11 for added reinforcement. The reinforcing panels 16 and 17 may be folded either inwardly or outwardly. When they are folded inwardly, a first reinforcing panel 16, that folds over the media panel of the sheet 11a, may contain a hole 18 that is large enough to allow the hub to pass through. Alternatively, the hub may be affixed to the back of the first reinforcing panel 16. When folded inwardly, a second reinforcing panel 17 may have a cutout 19 that is large enough to allow the securing means 16 to pass through when it is folded over the cover panel of the sheet 11a. Alternatively, the securing means 16 may be affixed to the second reinforcing panel 17. In other embodiments, the reinforcing panels may fold down from the top, up from the bottom, or be formed from separate sheets.

Various versions of the optical disc enclosure seen in FIGS. 1A-1E are contemplated to ideally suit various purposes. For example, the enclosure 10 may be made without the reinforcing panels. The hub 12 may be omitted and the disc may be supported by a sleeve or pocket or a portion of a non-permanent adhesive such as a rubber cement or the like whereby allowing the optical disc to be held in place and later removed substantially free from the adhesive. In some used of the disclosed disc enclosure, it may not be necessary to reattach disc after it has been removed. Such modifications to the design of the enclosure 10 may further reduce its cost of manufacture. Such an embodiment may be especially suited for use as a free promotional package including a fragrance sample and an optical disc.

The enclosure 10 may be large enough to accommodate a standard 120 mm optical disc. Alternatively, the enclosure 10 may be made smaller to accommodate 50 mm mini-CDs, truncated 80 mm mini-CDDs (for example 80 mm mini-CDDs with a 60 mm short axis), and/or optical discs of any size.

The enclosure 10 may be made to accommodate a medium other than an optical disc. Examples of other suitable media include, but are not limited to: magneto-optical discs, floppy disks, flash memory cards, smart cards, or any other computer-readable media.

According to other embodiments of the present disclosure, the design of a standard jewel case may be modified to accommodate a vial or atomizer containing a fragrance sample. FIG. 3 is an example of an optical disc enclosure according to another embodiment. The optical disc enclosure 30 comprises three primary parts: a back portion 31, a lid portion 32, and a media tray 34. The back portion 31 and the
lid portion 32 may be substantially identical to the corresponding portions of the conventional jewel case and may be made of transparent ridged polystyrene and/or any other suitable material. The lid portion 32 may be hingedly connected to the back portion 31, for example, according to known jewel case designs. The media tray 34 may be made of transparent ridged polystyrene, flexible opaque polystyrene, and/or any other suitable material. The media tray 34 may lack a raised bridge section 27 used in a conventional jewel case (FIG. 2). Accordingly, the footprint of the media tray 34 is smaller than the footprint of the back portion 31. When the media tray is attached to the back portion 31 (as seen in FIG. 4) an open-topped hollow cavity is formed 37 in the space on the inner surface of the back portion that is not covered by the raised media tray 34.

0034 A shaped insert 38 is provided for securely accommodating a vial or atomizer 39 for containing a fragrance sample. Accordingly, the vial or atomizer 39 may be inserted into the shaped insert 38 and the shaped insert 38 containing the vial or atomizer 39 may be removably secured into the open-topped hollow cavity. The shaped insert 28 may be made of transparent ridged polystyrene or another suitable material and may have an opening for receiving and holding in place the vial or atomizer 39. The shaped insert 28 may have a flat top that is flush with the top surface of the lid portion when the shaped insert 28 is inserted into the open-topped hollow cavity 37 and the lid portion 32 is in the closed position. This feature allows the assembled enclosure 30 to have the same outward size and shape as a conventional jewel case. The opening of the shaped insert may be at its bottom or at its side.

0035 FIG. 5 illustrates the optical disc enclosure of FIGS. 3 and 4 when the vial or atomizer 39 has been inserted into the shaped insert 38 and the shaped insert 38 has been inserted into the open-topped hollow cavity 37. In this stage of assembly, the vial or atomizer 39 is held immobilized to allow for handling and transport without risk of breaking. The shaped insert 38 may be inserted and removed from the open-topped hollow cavity 37 by the user as desired.

0036 Because the shaped insert is removable, means may be utilized for preventing the shaped insert from inadvertently falling out. The shaped insert may be prevented from inadvertently falling out by the shrink-wrapping that customarily protects jewel cases prior to retail sale. Additionally, means may be used to prevent the shaped insert from inadvertently falling out even after the shrink-wrapping has been removed. FIG. 6 shows one example of such a means according to an embodiment of the present invention. Here, the shaped insert 38 is formed to have a structure 40 for accommodating and immobilizing the vial or atomizer 39. A lip 41 may be provided for extending beyond the shaped insert 38 and over the media tray 34. The lip may be somewhat recessed with respect to the top surface of the shaped insert such that when the lid 32 is in the closed position, the lip 41 is pressed between the lid 32 and the media tray 34 to hold the shaped member 38 in place. A depression may be provided in the media tray 34 for accommodating the lip 41 to allow the lid 32 to close flush.

0037 It is advantageous that the lid 22 and back 21 of the conventional jewel case 20 may be used with embodiments of the present invention. As these parts are readily available, the cost for implementing the present invention may be reduced.

0038 FIG. 7 is a perspective view of the optical disc enclosure of FIGS. 3, 4, and 5. As is shown in FIG. 7, the shaped insert 38 has a structure for accommodating and immobilizing the vial or atomizer 39. By way of example, that structure may be provided for by including one or more arch supports 42.

0039 FIG. 8 is a wire frame view of the shaped insert shown in FIG. 7.

0040 The above specific embodiments are illustrative, and many variations can be introduced on these embodiments without departing from the spirit of the disclosure or from the scope of the appended claims. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.

What is claimed is:

1. An enclosure for an optical disc, comprising: a cover panel integrally formed with but delineated from a media panel by a single or double fold forming a spine between the cover and media panels, the single or double fold forming a hinge about which the cover panel and the media panel pivot so the enclosure is opened and closed like a book; a disc holder for securing an optical disc to the media panel; and a pocket secured to at least one of the cover panel and the media panel and shaped and dimensioned for removably securing a vial or atomizer at the inner-facing surfaces of the cover panel and media panel.

2. The enclosure of claim 1, wherein the cover panel and media panel are formed from paper, cardboard or foldable plastic.

3. The enclosure of claim 1, wherein the disc holder is a hub for gripping a center hole of the disc.

4. The enclosure of claim 1, wherein the disc holder is a sleeve or pocket for holding the disc.

5. The enclosure of claim 1, wherein the disc holder comprises non-permanent adhesive for removably securing the disc to the media panel.

6. The enclosure of claim 1, in which the pocket is secured to the spine.

7. The enclosure of claim 1, wherein the pocket comprises two slits in the spine and spine material between the slits extending away from the spine to define said pocket.

8. The enclosure of claim 1, wherein the pocket comprises a loop of paper, cardboard or plastic secured to an inner-facing surface of the enclosure.

9. The enclosure of claim 1, wherein the atomizer or vial contains a fragrance sample.

10. An enclosure for a disc-shaped medium, comprising: a lid unit hingedly connected to a back unit; a raised media tray for securing the medium, attached to and partially lining an inner surface of the back unit, the raised media tray having a footprint that is smaller than a footprint of the back unit such that an open-topped hollow cavity is formed at the inner surface of the back unit that is not lined by the raised media tray; and a shaped insert for accommodating a vial or atomizer, the shaped insert being removably disposed within the open-topped hollow cavity.

11. The enclosure of claim 10, wherein the shaped insert comprises a lip that extends over the surface of the raised media tray such that when the lid is in a closed position, the shaped insert is secured in place.

12. The enclosure of claim 10, wherein the lid, media tray and the back are made of polystyrene.
13. The enclosure of claim 10, wherein the medium is an optical disc.
14. The enclosure of claim 10, wherein the lid and back units are substantially identical to corresponding segments of a conventional CD jewel case.
16. An enclosure for an optical disc, comprising:
a cover panel integrally formed with but delineated from a media panel by a single or double fold forming a spine between the cover and media panels, the single or double fold forming at least one hinge about which the cover panel and the media panel pivot so the enclosure is opened and closed like a book;
a disc holder for securing an optical disc to the media panel; and
a pocket secured to at least one of the cover panel and the media panel and shaped and dimensioned for removably securing an item at the inner-facing surfaces of the cover panel and media panel, said item being offset from the disc along the direction of a radius of the disc.
17. The enclosure of claim 16, wherein the pocket is integrally formed with the cover and media panels from single blank of flexible sheet material.
18. The enclosure of claim 17, wherein the spine is elongated and the blank includes two slits spaced along the length of the spine and each extending at least across the spine, said slits forming said pocket upon folding the blank along said single or double folds.
19. The enclosure of claim 18, wherein the sheet material of the blank is cardboard.
20. The enclosure of claim 16, wherein the pocket is adhesively but removably secured to at least one of the cover panel, the media panel, and the spine.

* * * * *