(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

A 0 A

(43) International Publication Date (10) International Publication Number

11 July 2002 (11.07.2002) PCT WO 02/054194 A2

(51) International Patent Classification’: GO6F 1/00 (74) Agents: SIMCOE, Elliott, S. et al.; Smart & Biggar, P.O.
Box 2999, Station D, 900-55 Metcalfe Street, Ottawa, On-
(21) International Application Number: PCT/CA01/01865 tario KIP 5Y6 (CA).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,

(22) International Filing Date:
21 December 2001 (21.12.2001)

(25) Filing Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(26) Publication Language: English SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

VN, YU, ZA, ZM, ZW.

30) Priority Data:
(30) Priority Data (84) Designated States (regional): ARIPO patent (GH, GM,

09/749,421 28 December 2000 (28.12.2000) US KE. 1S MZ, SD, SL. SZ, TZ, UG, ZM, ZW)
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(71) Applicant (for all designated States except US): NETAC- European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
TIVE LLC. [US/US], 318 Danada COUIT, Napewi]le, IL GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
60563-2344 (US). (BE, B, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

NE, SN, TD, TG).
(72) Inventor; and
(75) Inventor/Applicant (for US only): LAROSE, Gordon, Published:
Edward [CA/CA]; 2417 Baseline Road, Ottawa, Ontario — without international search report and to be republished
K2C 0E3 (CA). upon receipt of that report

[Continued on next page]

(54) Title: ADAPTIVE SOFTWARE INSTALLATION PROCESS SUPPORTING MULTIPLE LAYERS OF SECURITY-RE-

LATED ATTRIBUTES
DEVELOPMENT PC ol ExecUTONFC
- - g o™ VERSION ONE
! '
jos |
1
—————————————————————— i 310 1
| CORE FUNCTIONALTY | W =t /
390
I = [l I ==
| : O S i
[103 | COWVERSION | Tl EXECUTION
E Lis | OTHER | | PROCESS ‘ PROCESS
: ill B | ua*'v@ - |
| 0 302 ! UINSPECTION! _BINDING |
o | IFUNCTIONS| _ _FUNCTIONS]
T AA a0 MMeoape NN /T T T T
. 304 8»305 ' i .
! " i 8»301 9~302 8\:
| VERSION ONE VERSIONTWD ! i 30
| GRAPHICS FILES GRAPHICS FILES | ' . VERSION TWO
i | U Bhaod Ghaos ! 12
b B B ! an |
(@] i VeRSIOH THREE | ;]
| VERSION THREE N i
ENHANCED GAME |
GRAPHICS FILES ! |
< | GRAPHCS FLES 4 EUGE £ | | GwBonm
) ! VERSION THREE
1 i
3 ol T
= ! 305 {08
c“ (57) Abstract: A system for providing security for programs installed in a computer is disclosed in which the original program is
~~ divided into versions of increasing functionality and in which higher functioning versions depend upon and utilize security-related
c" attributes of the computer on which the program is to be executed. The versions are installed on the user’s computer. Upon initiation

of execution of the lowest functioning version, the security-related attributes of the user’s computer are inspected and the execution
of the second version is initiated in the place of the first version if the security-related attributes of the second computer support the
increased functionality of the second version. If so, the security-related attributes are used in the second version prior to execution.
In either case, the remaining version is then executed without the need for further intervention for security purposes.

w0 02/054194 A2 IO R0 00 0 O A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 02/054194 PCT/CA01/01865
-1 -
ADAPTIVE SOFTWARE INSTALLATION PROCESS SUPPORTING MULTIPLE
LAYERS OF SECURITY-RELATED ATTRIBUTES

FIELD OF THE INVENTION

This invention relates to computer systems and in
particular to improved systems, methods and apparatus for

providing security for programs installed in computer systems.

'BACKGROUND OF THE INVENTION

Since the start of the personal computing era in the
late 19708, software publishers have been concerned with
software piracy, that is, the unlicensed copying, or

installation, or use of software by the user.

Most unprotected software programs can be easily
copied onto transportable media. Accordingly, such software
may be and is often installed on one or more personal computers
other than the one for which the software was originally
licensed, without the publisher being able to recover any
additional licence fees from the users of these additional
computers. The advent of network connections means that even
the minimal requirement of transportable media is obviated. It
is understood for the purposes of this invention that the term
“computer” includes any generally programmable processor-based
device, including but not limited to, personal computers, video
game consoles, Personal Digital Assistants and wireless

devices.

Copy protection approaches known in the art have
represented a trade-off because the effectiveness of the
protection generally has a direct correlation to the
intrusiveness of the protection approach. More generally, the

field of Digital Rights Management seek to control use of all

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 2 -

forms of digital goods and limit such use only to authorized

usersg. The same tradeoffs also apply in this field.

In the current art there are various software-only
approaches that are minimally intrusive, but many of them are
also only minimally effective. Such approaches often involve
code that attempts to obtain an authentication, in the form of

a registration number or a password.

In the most simple and most easily implemented
approaches to Digital Rights Management, authentication is
verified at the time of installation to permit access to the
software. Once the authentication has been verified, the
software is forever unlocked and can be used with impunity and
even copied to other computers, whether that of the user or

that of another.

For example, U.S. Patent No. 6,041,411, entitled
“Method for defining and verifying user access rights to a
computer information” issued March 21, 2000 to Wyatt, discloses
a system for the secure purchase of software. The software
cannot be executed unless the user enters an activation code

into the computer prior to the first execution of the software.

U.S. Patent No. 6,009,525 entitled “Multi-tier
electronic software distribution” issued December 28, 1999 to
Horstmann, is a slightly more complex variant. It discloses an
incremental shrink-wrapping process in which each stage of the
software distribution process can edit distribution rules which
must be satisfied, before that shrink-wrapping layer will be
unlocked. When all of the shrink-wrapping layers have been
unlocked, the software may be installed and subsequently used

with impunity.

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 3 -

Another example of such an approach is U.S. Patent
No. 5,337,357 entitled “Method of software distribution
protection” issued August 9, 1994 to Chou et al. Random and
unique identifiers are obtained from the hardware environment
of the computer on which the software is to be installed and
executed. The installation utility generates a first key that
the user communicates to the vendor, who calculates a unique
gecond key based on the first key and a decrypting key. The
second key entered by the user into the computer is compared
against both the first key data and the underlying identifiers
on the computer to validate both the key and the computer prior

to installation.

More sophisticated software approaches are used to
provide increased effectiveness. They cause the software to
automatically retrieve information such as a user
authentication from the architecture of the computer itself or
externally, in the form of a password which was entered into
the computer memory at an earlier point for subsequent
reference by the program. The intrusion of the approach is
minimized because the software automatically retrieves the
authentication, so that the performance of the software is not

materially impaired by the protection scheme.

However, the open, multitasking nature of personal
computers renders such software approaches relatively
vulnerable to attack. Because multiple processes can operate
concurrently, with each process having access to the entirety
of the computer, the software putatively protected by such
software approaches may co-exist with other software, such as a
software debugger, which can be used to examine the actions and

responses of the protected software. Accordingly, the control

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 4 -

mechanisms can be identified and the code of the protected

software modified to disable the protection only.

Such attacks can be made extremely difficult by
appropriate design of the software protection mechanisms. For
example, in U.S. Patent No. 5,935,246 entitled “Electronic copy
protection mechanism using challenge and response to prevent
unauthorized execution of software” issued August 10, 1999 to
Benson, there is disclosed an electronic copy protection scheme
using public key cryptography. The software periodically
issues an encrypted challenge which encompasses both the public
key adopted by the user and the private key adopted by the
vendor, which information is contained in a keyfile generated
by'the vendor upon registration of the software from
information provided by the user. The keyfile may contain
hidden information concerning selective activation of services

of the copy-protected program.

However, such approaches cannot in principle be made
inviolable. The modified software that results from a
successful attack can then be circulated with impunity and used

even by technically unsophisticated users of the software.

Rather the approaches depend on making it so
difficult to defeat the Digital Rights Management scheme that
the potential gain from doing so is outweighed by the effort in
achieving it. However in achieving this result, the software
developer must typically expend considerable effort and expense

to implement such a scheme.

An example is U.S. Patent No. 5,940,590, entitled
“System and method for securing computer-executable program
code using task gates” and issued August 17, 1999 to Lynne et

al. A system of securing program code modifies the original

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
-5 -

software prior to installation to introduce so-called task
gates. These gates will control unauthorized entry to a task
or boost the user’s authority while the tasgsk is executed. The
task gates determine, when they are encountered during
execution, whether the user executing the modified software
meets the security authorizations specified by the gate.
Accordingly, this process consumes significant development
resources, as the software developer must identify each task to
be protected, the exact security authorization to be specified

and insert the appropriate task gates.

A recently popular variant of such software
approaches i1s to provide multi-level security. For example, a
software program may be sold to a user with minimal
functionality at the outset, but with considerable additional
functionality installed but not immediately accessible. The
software purchaser may use the minimal functionality software
with impunity, and even copy it, but will not be permitted to
access the additional functionality until an additional licence
fee is paid. Upon payment of the fee, the purchaser is
provided with a password or key that can be supplied to the
software, for example by typing it into a registration window,
thereafter unlocking some or all of the enhanced features.

This multi-level security feature provides marketing advantages

in terms of ability to try out software and convenience.

However, the multi-level security feature is at its
essence a software security device and subject to the class of

attacks previously described.

There have been a number of approaches in which the
run-time execution of a process is interrupted to obtain

security information. Such approaches can be made effective by

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 6 -

increasing the extent of run-time intervention required by the

protection scheme.

For instance, the user can be prompted to provide the
authentication at certain points in the execution of the
software. Other approaches regquire ongoing interaction with

and/or support by the software vendor.

For example, in U.S. Patent No. 6,009,543 entitled
“Secure software gsystem and related techniques” igsued December
28, 1999 to Shavit, there is disclosed a processing system
which includes a code extraction processor. The code
extraction processor parses an original software program into a
first and second program, where the first program is made
freely available to the user. The second program contains a
small portion of the program that is required for proper
execution of the program and is installed on a dedicated server
operated by the software vendor. The second program is made
selectively available to the user by means of queries along a
communications network from the first program on the user’s
computer to the dedicated server on which the second program

resides.

However, with such increased intervention, the
performance of the software will be correspondingly degraded.
Such approaches therefore are generally characterized by delay
or slow execution, as the security investigation takes place on
a number of occasions during and throughout the execution of
the software. Eventually, the user perceives the intervention

as a nuisance.

Other effective protection approaches involve the use
of hardware. Generally, the computer on which the software is

to execute is required to have installed a secure, tamper-

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
-7 -

resistant hardware-based adjunct device. An example of this is
the “dongle”, a piece of hardware that attaches to a personal
computer via one of its external ports, and which is required
in order for the software to properly function. Other examples
include smart cards and cryptographic co-processor chips
located on personal computer internal buses or peripheral

cards.

Such hardware security devices are effectively "on-
off” solutions, that is, they can be used only to allow or deny
the use of the software in its entirety. Multiple levels of
functionality cannot be accommodated by a single such device.

Rather a plurality of such devices would be required.

These approaches are also effective, but suffer from
intrusiveness of a different character. Rather than impacting
the run-time performance by requiring user input, hardware
approaches are inconvenient because of the requirement for a
hardware adjunct device. The hardware components generally add
to the purchase price of the software and consumers are
generally unwilling to bear this additional cost, especially
when its sole purpose is to prevent them from doing with the
software what they otherwise could freely do. Moreover, the
hardware component is a tangible and often visual reminder of
the lack of trust that the software manufacturer has for the
consumer of its products, with attendant marketing drawbacks.
For this reason, such hardware approaches have to date obtained

limited commercial acceptance.

The lack of commercial acceptance of hardware adjunct
devices has led to a "Catch-22" situation. The manufacturers
of personal computers will not add the capability to

accommodate such hardware components if consumers are unwilling

10

WO 02/054194 PCT/CA01/01865

to pay for it, especially since there is no direct benefit to
the manufacturer for so doing. Sales of such devices will be
adversely impacted if there are only a small number of
computers that can accommodate them. Moreover, software
publishers will not write software that makes use of such
capability unless and until there is a significant base of

personal computers having such capability.

Nevertheless, it is anticipated that the installed
base of computers that will accommodate and have installed such
devices will gradually increase. Eventually, the installed
base will reach a critical mass and hardware protection schemes

will become a viable alternative.

10

15

20

25

WO 02/054194 PCT/CA01/01865

SUMMARY OF THE INVENTION

Accordingly, it would be advantageous to provide
gsimple, inexpensive and efficient mechanisms for implementing
such protection schemes into software products under

development.

Additionally, it would be advantageous to provide
mechanisms to retrofit such protection schemes into software
products that are already on the market and have not yet become

outdated without significant development effort.

Accordingly, it is desirable to provide an improved

system for securing computer programs that is convenient,

effective and does not require material interruption of the

program execution.

The present invention accomplishes these aims by
providing a system in which the original software is
transformed into a plurality of versions, each having a
different level of capability. A first version with less
capability than a second version contains inspection functions
that identify security-related attributes of the computer on
which the software is to be executed. The second version
contains binding functions that make use of the security-
related attributes of the computer associated with that version

of the software.

All of the versions are available for installation on
the user’s computer. As part of the startup of the first
version, its inspection functions are invoked and if the
gecurity-related attributes required for the second version are
found in the user’s computer the second version is started up

in the place of the first version. When the second version

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 10 -

executes, the binding functions are invoked and the security-
related attributes of the user's computer are invoked by the

executable image.

According to a broad aspect of an embodiment of the
present invention, there is disclosed a processing system
comprising: a generation processor at a first computer to
receive an original software product and to provide a first
version of the software having a limited functionality and a
second version of the software having increased functionality
which is dependent upon and utilizes security-related
attributes of the computer on which the software is to be
executed; and an execution processor at the second computer,
adapted to receive the versions of the software from the first
computer, comprising: an assessor for identifying, prior to
execution of the first version, the security-related attributes
of the second computer; a version initiator for initiating the
execution of the second version in the place of the first
version if the security-related attributes of the second
computer supports the increased functionality of the second
version during which the security-related attributes of the
second computer are utilized; and a code processor for

executing the version of the software to be executed.

According to a second broad aspect of an embodiment
of the present invention, there is disclosed a generation
processor at a first computer to receive an original software
product and to provide a first version of the software having a
limited functionality and second version of the software having
increased functionality which is dependent upon and utilizes
security-related attributes of the computer on which the
program is to be executed, whereby an execution processor at

the second computer may receive the versions of the software

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 11 -

from the first computer, identify, prior to execution of the
first version, the security-related attributes of the second
computer, initiate the execution of the second version in the
place of the first version if the security-related attributes
of the second computer supports the increased functionality of
the second version during which the security-related attributes
of the second computer are utilized, and execute the version of

the software to be executed.

According to a third broad aspect of an embodiment of
the present invention, there is disclosed an execution
processor at a second computer for receiving from a first
computer, a software product for execution on the second
computer in the form of a first version of the software having
a limited functionality and a second version of the software
having increased functionality which is dependent upon and
utilizes security-related attributes of the computer on which
the program is to be executed, the execution processor
comprising: an assessor for identifying, prior to execution of
the first version, the security-related attributes of the
second computer; a version initiator for initiating the
execution of the second version in the place of the first
version if the security-related attributes of the second
computer supports the increased functionality of the second
version during which the security-related attributes of the
second computer are utilized; and a code processor for

executing the version of the software to be executed.

According to a fourth broad aspect of an embodiment
of the present invention, there is disclosed a method of
selectively controlling the functionality of a software
product, the method comprising the steps of: generating, at a

first computer, a first version of the software having a

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 12 -

limited functionality and a second version of the software
having increased functionality which is dependent upon and
utilizes security-related attributes of the computer on which
the program is to be executed; receiving the versions of the
software from the first computer, at a second computer for
execution thereon; identifying, prior to execution of the first
version, the security-related attributes of the second
computer; initiating the execution of the second version in the
place of the first version 1f the security-related attributes
of the second computer supports the increased functionality of
the second version during which the security-related attributes
of the second computer are utilized; and executing the version

of the software to be executed.

According to a fifth broad aspect of an embodiment of
the present invention, there is disclosed a computer-readable
medium for storing computer-executable instructions which, when
executed by a processor in a first computer, cause the
processor to: receive an original software product and to
provide a first version of the software having a limited
functionality and a second version of the software having
increased functionality which is dependent upon and utilizes
security-related attributes of the computer on which the
program is to be executed, whereby an execution processor at
the second computer may receive the versions of the software
from the first computer, identify, prior to execution of the
first version, the security-related attributes of the second
computer, initiate the execution of the second version in the
place of the first version if the security-related attributes
of the second computer supports the increased functionality of
the second version during which the security-related attributes
of the second computer are utilized and execute the version of

the software to be executed.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 13 -

According to a sixth broad aspect of an embodiment of
the present invention, there is disclosed a computer-readable
medium for storing computer-executable instructions which, when
executed by a processor in a second computer, cause the
processor to: receive from a first computer, a software product
for execution on the second computer in the form of a first
version of the software having a limited functionality and a
second version of the program having increased functionality
which is dependent upon and utilizes security-related
attributes of the computer on which the program is to be
executed, identify, prior to execution of the first version,
the security-related attributes of the second computer;
initiate the execution of the second version in the place of
the first version if the security-related attributes of the
second computer supports the increased functionality of the
second version during which the security-related attributes of
the second computer are utilized; and execute the version of

the software to be executed.
BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the present invention will now be
described by reference to the following figures, in which
identical reference numerals in different figures indicate

identical elements and in which:

Figure 1 is a diagrammatic representation of the
interplay between versions of the software generated by the

embodiment of Figure 1;

Figure 2 is a block diagram of a hardware environment

in which the embodiment of Figure 1 will operate;

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 14 -

Figure 3 is a diagrammatic representation of an

embodiment of the present invention;

Figure 4 is an example of a metadata file used in the

embodiment of Figure 1; and

Figure 5 is a flow chart showing the execution

processing of the embodiment of Figure 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to Figure 1, there is shown a
diagrammatic representation of the interplay between versions
of a software product generated by an embodiment of the present

invention.

In software suitable for application of the present
invention, functionality can be allocated among a plurality of
versions of software 110, 120, 130, 140 of respectively
increasing capability. Higher capability versiong will make
use of some security-related attribute of the computer in which

the versions are installed for execution.

Such security-related attributes are primarily
embodied in hardware, although it is possible that some may be
embodied in software. Typical hardware security-related
attributes may include adjunct devices, whether or not tamper
resistant, including cryptographic co-processors that contain
cryptographic keys in protected storage, dongles attached to
external ports that contain cryptographic capabilities, or

smart-cards and smart-card readers.

However, security-related attributes need not be
security-specific. Indeed the attribute may be nothing more

than the presence or absence of a hard drive, an internet

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 15 -

connection, an authenticable security capability on a network
coupled to the computer, a user certificate such as an X.509
certificate or an independent authentication for user

identification.

Software attributes, such as the presence of a run-
time debugger (suggesting an attempt at bypassing security
efforts) or evidence of the purchase of an upgrade of the

software may be considered.

Indeed, the presence or absence of virtually any
hardware or software attribute of the environment in which the
computer may execute programs may qualify as a security-related

attribute for the purposes of the present invention.

The sole requirement is that the software product
must be capable of determining if the attribute is present on
the computer on which the software product is to execute and if

so, using the attribute during execution.

A plurality of security-related attributes may be

considered together to compute a figure of merit.

For simplicity, and by way of example, we will
consider a single-player game program that executes on a
personal computer using a Microsoft Windows™ operating system.
The game program, which has already been developed, is

available in three versions.

The first version 110 is to be made available freely,
and operates as a “demo” version of the game. As such, while
it is unrestricted in distribution and use, it is severely
limited in functionality, for example, only one game level is

accessible and the game engine is of a basic variety.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 16 -

The second version 120 makes available additional
game levels but makes use of the same game engine as in the
first version 110. The publisher wishes to make the second
version 120 available free of charge to users who possess a
certain class of smart-card reader and a suitably encoded
smart-card which will authenticably identify the user. Thus,
the second version 120 is made available to users in return for
obtaining personal information about the user, which can be

used for targeted marketing purposes.

The third version 130 makes available still more game
levels than the second version 120, and incorporates an
enhanced game engine to replace the basic game engine of the
first version 110 and second version 120. The third version
130 will be only made available to users with access to the
second version 120 who are willing to purchase the increased
capability of the third version 130 via an internet e-cash

transaction.

Thus, in the exemplary embodiment of Figure 1, only
versions 110, 120 and 130 will be created. Accordingly,
version 140, which is discussed later, is shown in dotted

outline together with other related elements.

Persons having ordinary skill in this art will
readily recognize that the present invention can be
incorporated into any number of types and versions of software
application. The minimum requirement is that the software
application must ha&e at least two versions of varying
functionality 111, 121, 131, 141 or be capable of being so
divided. Further, the version or versions having increased

functionality 121, 131, 141 make use of one or more of the

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 17 -

security-related attributes of the computer on which the

software product is to execute.

Referring now to Figure 2, there is shown a block
diagram of a hardware environment in which the embodiment of
Figure 1 will operate. The hardware environment comprises a
development PC 200 and an execution PC 250, interconnected by

internet network 240.

The development PC 200 is the environment on which
the versions 110, 120, 130, 140 of the software product will be
generated. The versions 110, 120, 130, 140 may be generated
after the completion of the development of the original
software, as in the exemplary embodiment described above. 1In
such a case, the development PC 200 need only have sufficient
capability to execute the conversion processing software

described below.

Alternatively, the versions 110, 120, 130, 140 may be
generated in the course of development of the original
software. In this case, the development PC 200 must have
sufficient capability to support the software development
process in its entirety, in addition to the capability required

to execute the conversion software processing.

The execution PC 250 is the ehvironment in which the
versions 110, 120, 130, 140 will execute. Accordingly, the
execution PC 250 must have sufficient capability to support the
processing of the software product, including, if appropriate,
some or all of the security-related attributes associated with

the higher capability wversions 120, 130, 140 of the software.

In Figure 2, the security-related attributes include

a smart-card reader 280. The smart-card reader 280 accepts a

io0

15

20

25

WO 02/054194 PCT/CA01/01865
- 18 -

smart-card 285 containing processing capabilities. When
inserted into the smart-card reader 280, the smart-card 285
makes available an authenticated user identification to the
execution PC 250 which can be used by software processes

executing on it.

The internet 240 is a network of network processors
(not shown) which are inter-linked and provide a number of
communications pathways through the network for appropriation
on a shared basis by processors connected by a communications

link to one of the network processors.

The development PC 200 is connected to the internet
240 by a broadband internet connection 241 and the execution
processor 250 is similarly connected to the internet 240 by a

broadband internet connection 242.

A plurality of web sites including web site 243 are
conceptually shown within internet 240. 1In fact, they are
installed on processors (not shown) for access by users of the
internet 240. Web-site 243 is operated by the software
developer and is updated from development PC 200.

The software developer uses web-gite 243 to download
the versions 110, 120, 130, 140 of the software product to
users such as the one associated with execution PC 250. Those
of ordinary skill in this art will readily recognize that there
are other mechanisms for transfer of the versions 110, 120,
130, 140 of the software product to users, including
distribution of a transportable media such as CD-ROM or a

diskette or along a local area network (not shown).

In the exemplary embodiment discussed above, web-site

243 also provides a mechanism to permit the e-cash transaction

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 19 -

required to permit access to the third version 130 of the

software product.

Turning now to Figure 3, there is shown a diagrammatic
representation of the processing involved in the present
invention. The elements concerned with producing the
multilevel application are shown to the left of the dotted
vertical line occur at the development PC 200, while the multi-
level applications themselves and the processes involved in
their use are shown to the right, at the execution PC 250.
Boxes 310, 320 and 330 represent resgpectively, the executable
images for the first, second and third versions respectively.
They are shown overlaying the dotted vertical line to denote
that they are created at the development PC 200 and are
transported for installation onto the execution PC 250 as

discussed above.

In the exemplary embodiment, the software versions
have already been developed and are shown as a core
functionality 300 and additional files 304-307. The core
functionality 300 generally comprises an executable image
(.EXE) 301, a series of dynamic link libraries (DLLs) 302 to
perform certain basic functions and other miscellaneous files
303. 1In addition, there are graphics files for each of the
versions, 304-306 and an executable image comprising the

enhanced game engine 307 to be used for the third version.

The implementation of the exemplary embodiment
comprises the application of a conversion process at the
development PC 200 on the existing software application 300-307
to create a corresponding set of executable files 310, 320, 330
for installation on the execution PC 250. The (in this case

three) sets of executable files 310, 320, 330 may have

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 20 -

considerable overlap between them but are conceptually

different and all are installed on the execution PC 250.

The conversion process performed at the development
PC 200 involves injecting two types of functions into the
executable files corresponding to the software versions to be
converted, inspection functions denoted generally as 308 and

binding functions denoted generally as 309.

In the exemplary embodiment discussed above, the
inspection functions 308 and the binding functions 309 are
implemented in a DLL library 390 that mediates the behavior of

the executable images.

The specific dependencies that will be enforced in a
particular set of executable files are established by files of
metadata which specify which inspection and/or binding
functions should be executed. BAn exemplary metadata file
showing the specification of inspection files is shown in

Figure 4.

The executable image corresponding to the three
versions of the software 110, 120, 130, will result from
linking the DLL library 390 to the corresponding executable
files 310, 320, 330 at the start of execution. Those having
ordinary skill in this art will readily recognize that this is
not the only configuration to permit the injection of such

functions and such a mechanism is for exemplary purposes only.

The advantage of using DLL files for the inspection
308 and binding functions 309 is the ease in which additional
versions of software capability can be added. The developer
must only define additional inspection 132 and binding

functions 145 (shown in dotted outline in Figure 1), create the

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 21 -

required version-specific functionality 141 and modify the
metadata files. The existing executable files 310, 320, 330
would be left undisturbed.

The executable files use the inspection functions 308
injected into them to detect the presence or absence of one or
more security-related attributes on the execution processor

250.

Thus, in the present example, the executable files
corresponding to the first 310 and second versions 320 of the
software will invoke inspection functions 112 to detect the
presence or absence of a smart-card reader 280 of a certain
type. In addition, the executable file for the second version
of the software 320, will invoke inspection functions 122 to
detect the presence or absence of an internet e-cash
capability. On the other hand, the executable file
corresponding to the third version of the software 330 will not
invoke any inspection functions because there is no version of

the software with any greater capability.

The executable files use the binding functions 309
injected into them to use the security-related attributes found
on the execution processor 250 by the inspection functions 308
for the immediately lower version of the software. When the
executable image 340, 350, 360 of the version to be run is
starting up, it invokes the appropriate binding function 309.
The binding function 309 ensures that the executable image can
only be executed on a properly qualified computer environment.
Because the finding function 309 is only invoked during
startup, there is no material delay in the execution

performance of the software version.

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 22 -

It will be readily recognized that the binding
functions 309 may also be invoked during the execution of the
executable image 340, 350, 360 as required by the software
developer, but with the recognition that to do so risks a
material degradation in the execution performance of the

software version.

Thus, in the present example, the executable file for
the second version of the software 320 will use binding
functions 125 to intercept certain file read operations and to
decrypt certain files using the smart-card 185 during the
startup of the executable image corresponding to this version.
This has the effect of restricting the present instance of the
program to execution only on the specific computer, or, absent
other bindings, only on a computer with the specific smart-card

present.

Such intervention is well known in the art. In this
example, it can be accomplished by means of a Virtual Device
Driver (VxD) which hooks file read operations and deals with

the smart-card interface to provide any required decryption.

Similarly, the executable file for the third version
of the software 330 will use binding functions 135 to intercept
file read operations and decrypt certain additional files using
a decryption key provided upon completion of the e-cash
transaction during the startup of the executable image
corresponding to this version. The decryption key may have

been stored upon receipt on the smart-card 185.

Those having ordinary skill in this art will readily
recognize that the inspection functions 308 and/or binding
functions 309 may result in modification of the system-level

behavior of the software, whether by modification of the file

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 23 -

input/output resources, user-machine interface, or operating

system resources, including the use of proxies.

Once the conversion process has been completed and
the executable files 310, 320, 330 and the DLL library 390 have
been generated, these files are downloaded and installed on the
execution processor 250. This may take place by conventional
means with which users are already familiar, for example, by
HTTP file transfer from the web-site 243 of a self-exploding
installation file. It is also possible, in order to increase
the security of the overall system, to defer the completion of
the installation of higher levels dependent upon relevant
security attributes. For example, the distribution files for
the second level might be encrypted in such a way that they
require decryption by security hardware before installation.

In this manner, the higher levels are not available for
malicious inspection such as disassembly, except to known

users.

Figure 5 is a flow chart showing the logical
processing which occurs at the execution processor 250 to
execute the software product. The start of the execution
process 500 is signaled by a double click on an icon
representing the executable file for the first version 310 in a
manner well-known to users of computer graphical user

interfaces.

The executable file for the first version 310 begins
loading 505. Under the Windows™ operating system, the loader
loads DLLs specified in the header of the executable file so
invoked and also runs the "load-time" code, if any, present in

each specified DLL, before loading the core program itself.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 24 -

The DLL library 390 is specified in executable file
310 and accordingly is loaded by the loader. The load-time
code of the DLL library 390 reads the appropriate metadata from
a file to first determine whether there are inspection
functions 308 to execute 510. The metadata also specifies
which binding functions 309 to execute, but these are executed

after any inspection functions.

The appropriate inspection functions (in this case,
112) are executed 520. The inspection functions are
independent executable files which run under control of the DLL
library 390. Inspection function 112 determines that smart-

card 185 is loaded in smart-card reader 180.

The inspection function 112 may optionally query the
user to secure permission to load the next (second) version
530. If so, the DLL library 390 spawns a separate process to
load 505 the executable file for the second version 320 and the
process corresponding to the execution of the first version

will be allowed to die.

Similar processing will now take place during the
load of the executable file for the second version 320 with the
result that the inspection functions 122 will be executed which
confirms that the execution processor 250 has e-cash

capability.

The e-cash capability could be demonstrated, for
instance by asking the smart-card 185 to decrypt a token
message encrypted by a public key of a particular e-cash
system, which would only succeed if the smart-card 185
contained a corresponding private key indicating membership in

an e-cash program.

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 25 -

Note that decisions about making the next levels
available such as were earlier described need not be performed
in an entirely local manner, and may involve user interaction
as long as the authorization resulting therefrom is
authenticable. For example, the metadata for a particular
level transition could specify a Universal Resource Locator
(URL) of an internet-based transaction processor to which the
user would be directed via a World Wide Web browser. The web-
resident criteria for authorization could be arbitrary and
return, for example, a success code in the form of a token

which would be authenticated by a local smart-card.

Note that the executable files for the second 120 and
third versions 130 have already been installed, whether or not
the e-cash transaction has already taken place. The inspection
function 122 therefore is configured to also check a robust
success indicator, to determine if the e-cash transaction has
already taken place. If not, the inspection function 122
offers the user the opportunity to purchase the enhanced
software (either periodically or upon each invocation of the
software). If the user agrees to do so and the transaction is
completed, the robust success indicator is modified and the
third version executable file 130 is loaded. The robust
success indicator can thereafter easily be checked without any

further input from the user.

When the executable file for the third version is
loaded 330 and the DLL library 390 invoked, the metadata file
indicates that there are no inspection functions to be
executed, but that there are binding functions 133 to be
executed. These binding functions 133 are executed, and upon
completion, the executable file for the third version 330 is

executed 550.

10

15

20

25

30

WO 02/054194 PCT/CA01/01865
- 26 -

If the execution processor 250 did not have either e-
cash capability or a smart-card capability, then the
corresponding inspection functions 112, 122 would fail and any
binding functions for the present version would execute 545,

followed by the executable file for that version 550.

Apparatus of the invention can be implemented in a
computer program product tangibly embodied in a machine-
readable storage device for execution by a programmable
processor; and methods actions can be performed by a
programmable processor executing a program of instructions to
perform functions of the invention by operating on input data
and generating output. The invention can be implemented
advantageously in one or more computer programs that are
executable on a programmable system including at least one
input device, and at least one output device. Each computer
program can be implemented in a high-level procedural or object
oriented programming language, or in assembly or machine
language if desired; and in any case, the language can be a
compiled or interpreted language. Suitable processors include,
by way of example, both general and specific microprocessors.
Generally, a processor will receive instructions and data from
a read-only memory and/or a random access memory. Generally, a
computer will include one or more mass storage devices for
storing data files; such devices include magnetic disks, such
as internal hard disks and removable disks; magneto-optical
disks; and optical disks. Storage devices suitable for
tangibly embodying computer program instructions and data
include all forms of non-volatile memory, including by way of
example semiconductor memory devices, such as EPROM, EEPROM,
and flash memory devices; magnetic disks such as internal hard
disks and removable disks; magneto-optical disks; and CD-ROM

disks. BAny of the foregoing can be supplemented by, or

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 27 -

incorporated in ASICs (application-specific integrated

circuits) .

Examples of such types of computers are programmable
processing systems contained in the development PC 200 and the
execution PC 250 shown in Fig. 1 suitable for implementing or
performing the apparatus or methods of the invention. The
system may comprise a processor, a random access memory, a hard
drive controller, and an input/output controller coupled by a

processor bus.

It will be apparent to those skilled in this art that
various modifications and variations may be made to the
embodiments disclosed herein, consistent with the present
invention, without departing from the spirit and scope of the

present invention.

For example, the processing on the execution
processor 250 has been described in the context of a Windows™
application. Those of ordinary skill in this art will readily
recognize that similar processing can be accomplished in

operating systems other than Windows™.

Further, as indicated above, once the executable file
for a version commenced execution, the binding functions would
have already been executed, and the executable file could run
without interference, or at the option of the software
developer, execute further binding functions during the course

of execution.

Moreover, if the load-time processing of the second
and higher versions is time consuming, the lower version

process may be permitted to proceed to execution while the load

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 28 -

of the higher version takes place, to be terminated upon

commencement of execution of the higher version.

Those persons of ordinary skill in the art will also
recognize that it is not essential that executable files
corresponding to all of the versions of the software be loaded

and installed at once.

Optionally, only the executable file for the first
version 310 need be loaded and installed. In this case, the
inspection function 112 could confirm that there is smart-card
capability and monitor a robust success indicator to determine
whether the executable file for the second version has been
previously downloaded and installed. If not, the user may
optionally be given the choice to effect the download, or the

download may take place automatically.

The download may use, as a security measure, a URL
from which the executable file may be downloaded. An encrypted
version of the URL may be stored in the metadata file which is
decrypted by the smart-card 185. For added security, the
metadata corresponding to the second or higher versions may
itself be encrypted. For still more security, the URL could be

different for different users.

Similar processing could be applied to download the
executable file for the third version 330 upon the first

invocation of the executable file for the second version 320.

Other embodiments consistent with the present
invention will become apparent from consideration of the
specification and the practice of the invention disclosed

therein.

WO 02/054194 PCT/CA01/01865

- 29 -

Accordingly, the specification and the embodiments

are to be considered exemplary only, with a true scope and

spirit of the invention being disclosed by the following

claims.

10

15

20

25

WO 02/054194 PCT/CA01/01865

WE CLAIM:
1. A processing system comprising:

a generation processor at a first computer to receive
an original software product and to provide a first version of
the software having a limited functionality and a second
version of the software having increased functionality which is
dependent upon and utilizes security-related attributes of the

computer on which the software is to be executed; and

an execution processor at the second computer,
adapted to receive the versions of the software from the first

computer, comprising:

an assessor for identifying, prior to execution of
the first version, the security-related attributes of the

second computer;

a version initiator for initiating the execution of
the second version in the place of the first version if the
security-related attributes of the second computer supports the
increased functionality of the second version during which the
security-related attributes of the second computer are

utilized; and

a code processor for executing the version of the

software to be executed.

2. A generation processor at a first computer to receive
an original software product and to provide a first version of
the software having a limited functionality and second version
of the software having increased functionality which is
dependent upon and utilizes security-related attributes of the

computer on which the program is to be executed,

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 31 -

whereby an execution processor at the second computer

may receive the versions of the software from the first
computer, identify, prior to execution of the first version,
the security-related attributes of the second computer,
initiate the execution of the second version in the place of
the first version if the security-related attributes of the
second computer supports the increased functionality of the
second version during which the security-related attributes of
the second computer are utilized, and execute the version of

the software to be executed.

3. The generation processor according to claim 2

comprising:

a mapper for generating a map of the functions of the

original software product into versions of the software.

4. The generation processor according to claim 2

comprising:

a generator for generating the versions of the
software in accordance with a map of the functions of the

original software product into versions of the software

5. The generation processor according to claim 4 wherein
the generator inserts logic into the versions for determining
the security-related attributes of the computer on which the

software is to be executed.

6. The generation processor according to claim 5 wherein

the logic is incorporated in a dynamic link library.

7. The generation processor according to claim 4 wherein

the generator adds logic into the versions to use the security-

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 32 -

related attributes of the computer on which the software is to

be executed.

8. The generation processor according to claim 7 wherein

the logic is incorporated in a dynamic link library.

9. The generation processor according to claim 3 wherein
the generator modifies the system-level behavior of the

software.

10. The generation processor according to claim 9 wherein
the generator modifies the file input/output resources used by

the software.

11. The generation processor according to claim 9 wherein
the generator modifies the user-machine interface used by the

software.

12. The generation processor according to claim 9 wherein
the generator modifies the operating system resources as used

by the application.

13. The generation processor according to claim 12

wherein the generator creates proxies.

14. An execution processor at a second computer for
receiving from a first computer, a software product for
execution on the second computer in the form of a first version
of the software having a limited functionality and a second
version of the software having increased functionality which is
dependent upon and utilizes security-related attributes of the
computer on which the program is to be executed, the execution

processor comprising:

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 33 -

an assessor for identifying, prior to execution of
the first version, the security-related attributes of the

second computer;

a version initiator for initiating the execution of
the second version in the place of the first version if the
security-related attributes of the second computer supports the
increased functionality of the second version during which the
security-related attributes of the second computer area

utilized; and

a code processor for executing the version of the

software to be executed.

15. The execution processor according to claim 14 wherein
the security-related attribute of the second computer on which
the second version depends comprises an attribute of the

environment in which the second computer executes programs.

16. The execution processor according to claim 15 wherein
the presence or absence of the attribute is used in conjunction
with other attributes to compute a figure of merit which

determines whether the second version can be executed.

17. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of an adjunct

device on the second computer.

18. The execution processor according to claim 17 wherein

the adjunct device is tamper-resistant.

19. The execution processor according to claim 17 wherein

the adjunct device is a dongle.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 34 -

20. The execution processor according to claim 15 wherein
the attribute comprises the presence of an authenticable
security capability on a network coupled to the second

computer.

21. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of software for

execution on the second computer.

22. The execution processor according to claim 22 wherein

the software comprises a run-time debugger.

23. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of local

storage with pre-determined attributes.

24, The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a network

connection.

25. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a user

certificate.

26. The execution processor according to claim 25 wherein

the user certificate is an X.509 certificate.

27. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a currently

valid logon session with an identified user.

28. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of an “always-

on” network connection.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 35 -

29. The execution processor according to claim 15 wherein
the attribute comprises evidence of registration of the

upgraded program for the second computer.

30. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a

cryptographic co-processor.

31. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a smart-card

reader adapted to be coupled with a smart-card.

32. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a smart-card

coupled to the second computer through a smart-card reader.

33. The execution processor according to claim 15 wherein
the attribute comprises the presence or absence of a

connection to the internet.

34, The execution processor according to claim 15 wherein
the attribute comprises an independent authentication for user

identification.

35. The execution processor according to claim 14,
wherein the second computer initially installs only the first
version from the first computer and the version initiator
installs the second version of the software and executes it
only if the security-related attributes of the second computer

supports its increased functionality.

36. The execution processor according to claim 35 wherein
the receipt of the second version requires the security-related

attributes of the second computer to be utilized.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 36 -

37. The execution processor according to claim 36 wherein

the second version is encrypted.

38. The execution processor according to claim 36 wherein

the second version is accessed at a URL which is encrypted.

39. The execution processor according to claim 14 wherein

the version initiator makes use of metadata files.

40. The execution processor according to claim 39 wherein
the metadata files are require the security-related attributes

of the second computer to be utilized.

41. A method of selectively controlling the functionality

of a software product, the method comprising the steps of:

generating, at a first computer, a first version of
the software having a limited functionality and a second
version of the software having increased functionality which is
dependent upon and utilizes security-related attributes of the

computer on which the program is to be executed;

recelving the versions of the software from the first

computer, at a second computer for execution thereon;

identifying, prior to execution of the first version,

the security-related attributes of the second computer;

initiating the execution of the second version in the
place of the first version if the security-related attributes
of the second computer supports the increased functionality of
the second version during which the security-related attributes

of the second computer are utilized; and

executing the version of the software to be executed.

10

15

20

25

WO 02/054194 PCT/CA01/01865
- 37 -

42, A computer-readable medium for storing computer-
executable instructions which, when executed by a processor in

a first computer, cause the processor to:

receive an original software product and to provide a
first version of the software having a limited functiomnality
and a second version of the software having increased
functionality which is dependent upon and utilizes security-
related attributes of the computer on which the program is to

be executed,

whereby an execution processor at the second computer
may receive the versions of the software from the first
computer, identify, prior to execution of the first version,
the security-related attributes of the second computer,
initiate the execution of the second version in the place of
the first version if the security-related attributes of the
second computer supports the increased functionality of the
second version during which the security-related attributes of
the second computer are utilized and execute the version of the

software to be executed.

43. A computer-readable medium for storing computer-
executable instructions which, when executed by a processor in

a second computer, cause the processor to:

receive from a first computer, a software product for
execution on the second computer in the form of a first version
of the software having a limited functionality and a second
version of the program having increased functionality which is
dependent upon and utilizes security-related attributes of the

computer on which the program is to be executed,

WO 02/054194 PCT/CA01/01865
- 38 -

identify, prior to execution of the first version,

the security-related attributes of the second computer;

initiate the execution of the second version in the
place of the first version if the security-related attributes
of the second computer supports the increased functionality of
the second version during which the security-related attributes

of the second computer are utilized; and

execute the version of the software to be executed.

PCT/CA01/01865

1/5

WO 02/054194

L ALIYNOLLONDA ||,

oLl Z-L NOLLONNS
. 0l NOLLO3dSNI [>Tl
I "DI4 _ |
Z ALITYNOLLONN4
@)ﬁ
| Z BNIONIG
~ €71
vzl £ NOLLONNA
0L~ NOILOIdSNI [-ZCl
OEL & aLvnorLonnd
soi~(
£ ONIONIS
~—gEl
vel 7€ NOLLONNA |
= |_ NOLLO3dSNI_ -l
y Eézo_szﬁ
¥ INIONIG

WO 02/054194

2/5

WEBSITE
243

INERNET
240

285

250 280

PCT/CA01/01865

PCT/CA01/01865

WO 02/054194

3/5

el
33HHL NOISHIA

143

: |
momT@ Ncm>®
_““H“””.Ilill.'ll
1 0¢€
| 8?@
|
I
OML NOISHIA c0¢: |
\ [8=0
LY
/ ISNOILONNA
|

$53304d

|
}
]
NOILN23IX3 “
"
|

oLl
ANO NOISHIA

Jd NOILNIIXd

T —

SNOLLINMNA

sea

NOI193dSNI!

I
|
|
|
!
|

80¢
SS3204d
NOISH3ANOD

3X3" ANIINT

JWYY 03INVHNA
J34H1 NOISHIA J3HHL NOISH3A

Bm)@ 8?@

S371d SJIHAVYI S311d SIIHAVYY
OM1 NOISHIA ANO NOISH3IA

mom2® gmé@

[4us L0€

H3HL0 | sTd XT
mom;/@

00€
ALITYNOILINNA 3HOD

S3114 SJIHdYYY

002
3d LNINd013AIT

WO 02/054194 PCT/CA01/01865

4/5

< ?xml version="1.0"? >
<am_metadata >
<level one>
</level one>
<level two>
< required="smart-card access" >
<[level two>
<level three >
< required ="e-cash capability” >
</level three >
< [am-metadata >

FIG. 4

WO 02/054194 PCT/CA01/01865

5/5

(START D1\ 500

-1 500

»i

BEGIN LOAD OF VERSION | 1 505

INSPECTION
FUNCTIONS
PRESENT?

RUN INSPECTION FUNCTIONS | 1 520

—»
LOAD NEXT -
VERSION?
545
y
I=1+1 no40 RUN BINDING FUNCTIONS |
Y
EXECUTE VERSION | IMAGE

S
550

FIG. 5 CEMD Dng6s

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

