
US 20130246446A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0246446 A1

TaranOV (43) Pub. Date: Sep. 19, 2013

(54) OPTIMIZING DATA PROCESSING USING (52) U.S. Cl.
DYNAMIC SCHEMAS CPC G06F 17/30569 (2013.01)

USPC .. T07/756
(71) Applicant: MICROSOFT CORPORATION,

Redmond, WA (US)
(57) ABSTRACT

(72) Inventor: Igor Taranov, Bellevue, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA A computer system accesses rows of feed data and converts
(US) the received feed data into portions of binary blob data. The

computer system also sends the binary blob data to a database
(21) Appl. No.: 13/887,557 server which is configured to access metadata associated with

a feed including a dynamic server statement to determine how
(22) Filed: May 6, 2013 to convert the binary blob data to a server table with a blob

column configured to store the rows of feed data. The data
Related U.S. Application Data base server accesses feed data belonging to a particular feed

(63) Continuation of application No. 13/180,131, filed on and executes a dynamic server statement to create a relational
Jul. 11, 2011, now Pat. No. 8,458,203. dataset in an In-memory table ofthe server. A second dynamic

statement applies data processing conditions indicated in the
Publication Classification metadata. When feed data rows match conditions, the com

puter system places feed data row information into an alert
(51) Int. Cl. table that includes references to the blob table with blob data,

G06F 7/30 (2006.01) thereby triggering an alert.

r",
FeedData 101 Fixed-Size Application Server 105 Database Server 125

EH Fields 102 Data 110 Data 130
104A- Row 1 I x Wariable-Si ACCessing Receiving

aale-Size Module

104B- Row 2 || Fields 103
: 111 Metadata 120

Feed Dynamic
104N- Row N Data 121

Dynamic 135
115 Statement

Execution
Module

FeedData 136
Rows

Converting
Module

Fixed-Size Varying-Size
Binary Data

Representation Fields
Data Store 140
FeedData
In BLOB
Column 141

US 2013/0246446 A1 Sep. 19, 2013 Sheet 1 of 5 Patent Application Publication

? aun61-I

Patent Application Publication Sep. 19, 2013 Sheet 2 of 5 US 2013/0246446 A1

200

St.

ACCeSS ROWS Of FeedData

COnvert Received FeedData
into Binary Blob Data

Send Binary Blob Data
TO Database Server

Figure 2

Patent Application Publication Sep. 19, 2013 Sheet 3 of 5 US 2013/0246446 A1

300

S.

Receive Binary Blob Data
At Database Server

Execute Dynamic Server Statement To
Store Binary Blob Data into Database Table

Restore Feed Data ROWS
From Binary Blob Data

Store Restored Feed Data
In Blob Data Column

Figure 3

Patent Application Publication Sep. 19, 2013 Sheet 4 of 5 US 2013/0246446 A1

400

S'

ACCeSS FeedData

Execute Dynamic Server Statement
TO Create Relational DataSet

Applying Second Dynamic Server
Statement To Data Feed

Place FeedData ROW information
About Matching Data Rows into Alert

Table To Trigger Alert

Figure 4

US 2013/0246446 A1

OPTIMIZING DATA PROCESSING USING
DYNAMIC SCHEMAS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 13/180,131, filed Jul. 11, 2011, and
entitled “Optimizing Data Processing. Using Dynamic Sche
mas.” The contents of the foregoing application are incorpo
rated by reference herein in their entirety.

BACKGROUND

0002 Computers have become highly integrated in the
workforce, in the home, in mobile devices, and many other
places. Computers can process massive amounts of informa
tion quickly and efficiently. Software applications designed
to run on computer systems allow users to perform a wide
variety of functions including business applications, School
work, entertainment and more. Software applications are
often designed to perform specific tasks, such as word pro
cessor applications for drafting documents, or email pro
grams for sending, receiving and organizing email.
0003. In many cases, software applications are designed to
interact with other Software applications or other computer
systems. For example, applications may communicate with
databases to store data. These databases may receive the data
and store and process it according to predefined, static data
schemas. These data schemas are specific to each type of data,
and only a certain number of static, predefined schemas can
be used in a given database implementation.

BRIEF SUMMARY

0004 Embodiments described herein are directed to effi
ciently uploading data to a database using dynamic schemas
and to efficiently processing data using dynamic schemas. In
one embodiment, a computer system accesses rows of feed
data. The feed data includes data fields of fixed and varying
lengths. The computer system converts the received feed data
into portions of binary blob data. The binary blob data is
allocated in fixed-size data portions representing feed rows.
Varying length feed fields are represented by both a fixed-size
field, with a length of the feed field, and a reference into the
blob data that includes the actual varying size feed data. The
computer system also sends the binary blob data to a database
server. The database server is configured to access metadata
associated with a feed. Metadata contains dynamic server
statement to determine how to convert the binary blob data to
a server table with a BLOB column configured to store the
rows of feed data.
0005. In another embodiment, a database server receives
from an application server various portions of binary blob
data. The database server executes a dynamic server State
ment to store the binary blob data into a database table. The
dynamic server statement is stored within metadata associ
ated with the feed. The database server restores feed data rows
from the binary blob data by substituting varying size refer
ences with the actual feed data, while keeping the feed data in
a binary format. The database server also stores the restored
feed data in the database table in a BLOB data column. Each
feed data row results in one binary blob value in one corre
sponding row in the database table.
0006. In yet another embodiment, a database server
accesses feed data belonging to a particular feed and executes

Sep. 19, 2013

a dynamic server statement to create a relational dataset with
data type fields from the feed data in an in-memory table of
the server. The dynamic server statement is stored within
metadata associated with the feed. Then database server
applies a second dynamic server statement to the data feed
which applies data processing conditions indicated in the
metadata. Also, upon determining that one or more feed data
rows match the data processing conditions the database server
places feed data row information about the matching data
rows into an alert table that includes references to the table
with the BLOB column containing the feed data, thereby
triggering an alert.
0007. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed Subject matter.
0008. Additional features and advantages will be set forth
in the description which follows, and in part will be obvious
from the description, or may be learned by the practice of the
teachings herein. Features and advantages of the invention
may be realized and obtained by means of the instruments and
combinations particularly pointed out in the appended
claims. Features of the present invention will become more
fully apparent from the following description and appended
claims, or may be learned by the practice of the invention as
set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. To further clarify the above and other advantages
and features of embodiments of the present invention, a more
particular description of embodiments of the present inven
tion will be rendered by reference to the appended drawings.
It is appreciated that these drawings depict only typical
embodiments of the invention and are therefore not to be
considered limiting of its scope. The invention will be
described and explained with additional specificity and detail
through the use of the accompanying drawings in which:
0010 FIG. 1 illustrates a system architecture in which
embodiments of the present invention may operate including
efficiently uploading data to a database using dynamic sche

aS.

0011 FIG. 2 illustrates an application server side flow
chart of an example method for efficiently uploading data to
a database using dynamic schemas.
0012 FIG.3 illustrates a database server side flowchart of
an example method for efficiently uploading data to a data
base using dynamic schemas.
0013 FIG. 4 illustrates a database server side flowchart of
an example method for efficiently processing data using
dynamic schemas.
0014 FIG. 5 illustrates a database server side example
application of dynamic server statements for efficiently pro
cessing data using dynamic schemas.

DETAILED DESCRIPTION

0015 Embodiments described herein are directed to effi
ciently uploading data to a database using dynamic schemas
and to efficiently processing data using dynamic schemas. In
one embodiment, a computer system accesses rows of feed
data. The feed data includes data fields of fixed and varying
lengths. The computer system converts the received feed data

US 2013/0246446 A1

into portions of binary blob data. The binary blob data is
allocated in fixed-size data portions representing feed rows.
Varying length fields are represented by both a fixed-size
field, with a length of the feed field, and a reference into the
blob data that includes the actual varying size feed data. The
computer system also sends the binary blob data to a database
server. The database server is configured to access metadata
associated with a feed. Metadata contains dynamic server
statement to determine how to convert the binary blob data to
a server table with a BLOB column configured to store the
rows of feed data.

0016. In another embodiment, a database server receives
from an application server various portions of binary blob
data. The database server executes a dynamic server State
ment to store the binary blob data into a database table. The
dynamic server statement is stored within metadata associ
ated with the blob data's original feed. The database server
restores feed data rows from the binary blob data by substi
tuting varying size references with the actual feed data, while
keeping the feed data in a binary format. The database server
also stores the restored feed data in the database table in a
BLOB data column. Each feed data row results in one binary
blob value in one corresponding row in the database table.
0017. In yet another embodiment, a database server
accesses feed data belonging to a particular feed and executes
a dynamic server statement to create a relational dataset with
data type fields from the feed data in an in-memory table of
the server. The dynamic server statement is stored within
metadata associated with the feed. The database server
applies a second dynamic server statement to the data feed
which applies data processing conditions indicated in the
metadata. The dynamic server statement is stored within the
metadata associated with the feed. Also, upon determining
that one or more feed data rows match the data processing
conditions the computer system places feed data row infor
mation about the matching data rows into an alert table that
includes references to the table with the BLOB column con
taining the feed data, thereby triggering an alert.
0018. The following discussion now refers to a number of
methods and method acts that may be performed. It should be
noted, that although the method acts may be discussed in a
certain order or illustrated in a flow chart as occurring in a
particular order, no particular ordering is necessarily required
unless specifically stated, or required because an act is depen
dent on another act being completed prior to the act being
performed.
0019 Embodiments of the present invention may com
prise or utilize a special purpose or general-purpose computer
including computer hardware. Such as, for example, one or
more processors and system memory, as discussed in greater
detail below. Embodiments within the scope of the present
invention also include physical and other computer-readable
media for carrying or storing computer-executable instruc
tions and/or data structures. Such computer-readable media
can be any available media that can be accessed by a general
purpose or special purpose computer system. Computer
readable media that store computer-executable instructions in
the form of data are computer storage media. Computer
readable media that carry computer-executable instructions
are transmission media. Thus, by way of example, and not
limitation, embodiments of the invention can comprise at
least two distinctly different kinds of computer-readable
media: computer storage media and transmission media.

Sep. 19, 2013

0020 Computer storage media includes RAM, ROM,
EEPROM, CD-ROM, solid state drives (SSDs) that are based
on RAM, Flash memory, phase-change memory (PCM), or
other types of memory, or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store desired program code
means in the form of computer-executable instructions, data
or data structures and which can be accessed by a general
purpose or special purpose computer.
0021. A "network” is defined as one or more data links
and/or data switches that enable the transport of electronic
data between computer systems and/or modules and/or other
electronic devices. When information is transferred or pro
vided over a network (either hardwired, wireless, or a com
bination of hardwired or wireless) to a computer, the com
puter properly views the connection as a transmission
medium. Transmissions media can include a network which
can be used to carry data or desired program code means in
the form of computer-executable instructions or in the form of
data structures and which can be accessed by a general pur
pose or special purpose computer. Combinations of the above
should also be included within the scope of computer-read
able media.
0022. Further, upon reaching various computer system
components, program code means in the form of computer
executable instructions or data structures can be transferred
automatically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a network interface card or “NIC), and then
eventually transferred to computer system RAM and/or to
less Volatile computer storage media at a computer system.
Thus, it should be understood that computer storage media
can be included in computer system components that also (or
even primarily) utilize transmission media.
0023 Computer-executable (or computer-interpretable)
instructions comprise, for example, instructions which cause
a general purpose computer, special purpose computer, or
special purpose processing device to perform a certain func
tion or group of functions. The computer executable instruc
tions may be, for example, binaries, intermediate format
instructions such as assembly language, or even Source code.
Although the Subject matter has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described
features or acts described above. Rather, the described fea
tures and acts are disclosed as example forms of implement
ing the claims.
0024. Those skilled in the art will appreciate that the
invention may be practiced in network computing environ
ments with many types of computer system configurations,
including personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi
processor Systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main
frame computers, mobile telephones, PDAs, pagers, routers,
Switches, and the like. The invention may also be practiced in
distributed system environments where local and remote
computer systems that are linked (either by hardwired data
links, wireless data links, or by a combination of hardwired
and wireless data links) through a network, each perform
tasks (e.g. cloud computing, cloud services and the like). In a

US 2013/0246446 A1

distributed system environment, program modules may be
located in both local and remote memory storage devices.
0025 FIG. 1 illustrates a system architecture 100 in which
the principles of the present invention may be employed.
System architecture 100 includes an application server sys
tem 105 and a database server 125. These computer systems
may be any type of local or distributed computer systems.
Various embodiments will be described in relation to these
computer systems. For instance, embodiments relating to
high efficiency bulk upload of data with dynamic schemas,
high efficiency processing of data with dynamic schemas and
compact storage of data with dynamic schemas will all be
described.
0026. For instance, a method may be provided that allows
uploading of a data of a large Volume and with arbitrary
schemas by applying the same binary upload approach
regardless of the particular schema used. The application
server system 105 reads data from an arbitrary feed 101 and
packs it in a binary format (blob) 116 as described in FIG. 1.
The format allows representing the feed data that might have
fields of a varying size by rows with fixed length. Varying size
fields are represented by fixed size field data length and ref
erences into the second part of the blob, containing the actual
varying size data.
0027. For scalability purposes, large feed data is chunked
into pieces according to various specifications (e.g., the num
ber of rows is less than 10000 or chunk size is less than 10
MB, etc.). Each chunk may be uploaded to the database server
125 in a single round trip. The database server reads data and
stores it in a table in data store 140. The database server is
aware of the data schema due to the metadata stored for each
registered feed. Metadata includes dynamic server statements
that the database server can execute dynamically when read
ing and storing data. The database serverside restores the feed
data rows by Substituting the varying size references with the
actual data, but still keeping all data in a binary format. As a
result the feed data is stored in the database table in the BLOB
column 141, where each feed row results in one blob value in
the corresponding row in the table. It should be noted that
field data for fields with varying data size may be different in
size for the same field within one feed data reading session.
0028 Regarding high efficiency processing of data with
dynamic schemas, when processing data the database server
125 builds and executes various dynamic server statements,
as shown in FIG. 5. Portions of the various dynamic state
ments are taken from the feed metadata as well. The dynamic
statements may be configured to perform the following: refor
mats incoming feed blob data 116 to represent one row data
with one binary value in BLOB column of a database table,
reads the feed data 140 belonging to a particular feed reading
session from a database table, creates an in-memory database
server relational table using various server commands with
the definition from the metadata, and applies one or more data
processing conditions that are also taken from the metadata.
For the rows that satisfy the data conditions, the server side
creates references in another database table, pointing to the
original database table that contains the binary feed data.
0029) Regarding compact storage of data with dynamic
schemas, the database server 125 may provide compact effi
cient data storage close in size as if the feed data was stored in
a static table. This result may be achieved as the feed data is
stored only in the binary format. The metadata is stored per
feed registration and so its size is of the same order (i.e. like
it would be for a static database table). The system also allows

Sep. 19, 2013

detection of the data change between Subsequent feed reading
sessions by hashing each feed row blob value. The database
server uses the data change detection mechanism to avoid
storing of duplicate data. Each of these concepts will be
explained in greater detail below with regard to methods 200,
300 and 400 of FIGS. 2, 3 and 4, respectively.
0030. In view of the systems and architectures described
above, methodologies that may be implemented in accor
dance with the disclosed subject matter will be better appre
ciated with reference to the flow charts of FIGS. 2 and 3. For
purposes of simplicity of explanation, the methodologies are
shown and described as a series of blocks. However, it should
be understood and appreciated that the claimed Subject matter
is not limited by the order of the blocks, as some blocks may
occur in different orders and/or concurrently with other
blocks from what is depicted and described herein. Moreover,
not all illustrated blocks may be required to implement the
methodologies described hereinafter.
0031 FIG. 2 illustrates a flowchart of a method 200 for
efficiently uploading data to a database using dynamic sche
mas. The method 200 will now be described with frequent
reference to the components and data of environment 100.
0032 Method 200 includes an act of accessing one or
more rows offeed data, the feed data including one or more
data fields of fixed and varying lengths (act 210). For
example, data accessing module 110 may access feed data
101. Feed data 101 includes multiple different rows of data,
including row 1 (104A), row 2 (104B) and so on to row N
(104N). As will be understood, substantially any number of
rows may be included in feed data 110. The data may include
fixed-size fields 102 or variable-size fields 103. Any given
feed row data may include only fixed-size fields, only vari
able-size fields, or combinations of both. The feed data is
represented by various extensible markup language (XML)
files which include a definition of each field including the
field's data type and data length. This field definition may be
used by the data converting module 115 to convert the feed
data to binary blob data 116 using a dynamic schema.
0033 Method 200 includes an act of converting the
received feed data into one or more portions of binary blob
data, wherein the binary blob data is allocated in fixed-size
data portions representing feed rows, and wherein varying
length fields are represented by both a fixed-size field and a
reference into the blob data that includes the actual varying
size feed data (act 220). For example, data converting module
115 may convert received feed data 111 into various portions
of blob data 116. The binary blob data may include two
different portions. The first portion 117 includes fixed-size
binary representations of each row, while second portion 118
contains data of varying-size fields. The first portion may
contain references to the second portion for varying-size
fields.

0034. In some cases, the binary blob data representing
multiple feed rows is sent to the database server 125 in a
single round trip. Thus, rather than requiring one round trip
for each row or table that is to be updated, all of the blob data
may be sent to the database in a single round trip. The same
technique may be used for converting and uploading data to a
database server regardless of a particular feed data's schema
and sizes. Still further, various portions of field data for fields
with varying data size may be different in size for the same
field within a feed data reading session. Thus, at any given

US 2013/0246446 A1

data reading, variable-size field data may differ in size for the
same field, allowing for great flexibility in storing data in a
database table data.

0035 Method 200 includes an act of sending the binary
blob data to a database server, the database server being
configured to access metadata associated with a dynamic
server statement to determine how to convert the binary blob
data to a server table with a BLOB column configured to store
the rows of feed data (act 230). For example, application
server system 105 may send binary blob data 116 to database
server 125. The database server accesses metadata 120 which
includes a dynamic server statement. The metadata indicates
to the server how the binary blob data is to be converted to a
server table with a blob column 141 configured to store the
rows offeed data 101. Execution of the dynamic server state
ment 121 (e.g. by module 135) then converts the data and
stores it in data store 140.

0036. In some cases, the application server may further
determine that the binary blob data 116 is to be divided into
data chunks. Each data chunk is uploaded to the database
server 125 in one round trip. The application server determine
that the binary blob data dividing is to occur based on one or
more conditions. The conditions may include any one or more
of the following: the number of rows in the binary blob data
and the data size of the binary blob data. If one or more of the
condition occurs (e.g. the blob data has a certain number of
rows, or the data size is sufficiently large), then the data will
be divided in a predetermined manner based on the condition
that occurred. Still further, a database server presentation of
the feed data is generated, where each feed row in feed data
101 is represented in a database table by one row with a single
BLOB column containing feed row binary data (e.g. BLOB
column 141 in data store 140).
0037 FIG. 3 illustrates a flowchart of a method 300 for
efficiently uploading data to a database using dynamic sche
mas. The method 300 will now be described with frequent
reference to the components and data of environments 100
and 500 of FIGS. 1 and 5, respectively.
0038 Method 300 includes an act of receiving from an
application server one or more portions of binary blob data at
a database server (act310). For example, data receiving mod
ule 130 may receive binary blob data 116. This binary blob
data may include fixed-size binary representation 117 and
varying-size data fields 118.
0039 Method 300 includes an act of executing a dynamic
server statement to store the binary blob data into a database
table, wherein the dynamic server statement is stored within
metadata associated with the original feed (act 320). For
example, the same technique may be used for converting and
storing feed binary data in the BLOB column of a database
table regardless of a particular feed data schema. In this
manner, using of the static schemas may be avoided, as the
schemas (or dynamic server statements) used are dynamic.
Moreover, because the blob data is processed substantially
entirely in memory, the data processing is performed in a
highly efficient manner.
0040 Method 300 further includes an act of restoring one
or more feed data rows from the binary blob data by substi
tuting varying size references with the actual feed data, while
keeping the feed data in a binary format (act 330). For
example, database server 125 may restore feed data rows 136
from the binary blob data by substituting different size refer
ences with the feed data 101, while keeping the data in a

Sep. 19, 2013

binary format. Maintaining the data in a binary format allows
the blob data to be processed by the database server in a highly
efficient manner.
0041 Method 300 also includes an act of storing the
restored feed data in the database table in a blob data column,
wherein each feed data row results in one binary blob value in
one corresponding row in the database table (act 340). For
example, database server 125 may store the restored feed data
rows 136 in data store 140 in BLOB column 141.
0042 FIG. 4 illustrates a flowchart of a method 400 for
efficiently processing data using dynamic schemas. The
method 400 will now be described with frequent reference to
the components and data of environments 100 and 500 of
FIGS. 1 and 5, respectively.
0043 Method 400 includes an act of accessing feed data
belonging to a particular feed (act 410). The database server
then executes a dynamic server statement 510 to create a
relational dataset with data type fields from the feed data in an
in-memory table 515 of the server. The dynamic server state
ment is stored within metadata 120 associated with the feed
data (act 420). The feed data is processed in the memory of the
server, thus not requiring a corresponding static table, to aid in
processing efficiency.
0044) Method 400 further includes an act of applying a
second dynamic server statement 520 to the feed data which
applies various data processing conditions indicated in the
metadata 120. The dynamic server statement is stored within
the metadata associated with the feed (act 430). Then, upon
determining that one or more feed data rows in database table
500 matches the data processing conditions, the feed data row
information about the matching data rows is placed into an
alert table that includes references to the original database
table with feedblob data in BLOB column, thereby triggering
an alert (act 440). Items placed in the alert table thus auto
matically issue an alert 521 to a user 525 that has subscribed
to receive those alerts. Thus, the user can be apprised upon the
occurrence of any of a number of different user-specifiable
conditions. Moreover, referencing feed blob data from the
original database table avoids duplicate data storing and using
static representations of the feed fields.
0045 Accordingly, methods, systems and computer pro
gram products are provided which efficiently upload data to a
database using dynamic server statements. Moreover, meth
ods, systems and computer program products are provided
which efficiently process and store data using dynamic server
statements. Such uploading, processing and storing may lead
to a more efficient data management system.
0046. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid
ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

I claim:
1. A method, implemented at a computer system that

includes one or more processors, for efficiently uploading
data to a database using dynamic schemas, the method com
prising:

an act of receiving from an application server one or more
portions of binary blob data at a database server;

an act of executing a dynamic server Statement to store the
binary blob data into a database table, wherein the

US 2013/0246446 A1

dynamic server statement is stored within metadata
associated with the original feed;

an act of restoring one or more feed data rows from the
binary blob data by Substituting varying size references
with the actual feed data, while keeping the feed data in
a binary format; and

an act of storing the restored feed data in the database table
inablob data column, wherein each feed data row results
in one binary blob value in one corresponding row in the
database table.

2. The method of claim 1, further comprising an act of
accessing the metadata included in the original feed to deter
mine whether data processing conditions exist for the feed
data.

3. The method of claim 2, further comprising, upon deter
mining that one or more data processing conditions exist for
the feed data, an act of creating a reference for each data row
that satisfies the data conditions in a separate database server
table.

4. The method of claim3, wherein the reference includes a
pointer to the feed data's original database server table that
includes the associated binary feed data.

5. The method of claim 3, further comprising issuing an
alert to one or more users based on a determination that at
least one of the rows of the binary blob data satisfies the data
conditions.

6. The method of claim 3, wherein the blob data is opened
and processed in memory and stored in binary format. Such
that storing of static schemas is avoided.

7. A computer program product for implementing a method
for efficiently uploading data to a database using dynamic
schemas, the computer program product comprising one or
more physical storage devices having stored thereon com
puter-executable instructions that, when executed by one or
more processors of the computing system, cause the comput
ing system to perform the method, the method comprising:

an act of receiving from an application server one or more
portions of binary blob data at a database server;

an act of executing a dynamic server statement to store the
binary blob data into a database table, wherein the
dynamic server statement is stored within metadata
associated with the original feed;

an act of restoring one or more feed data rows from the
binary blob data by Substituting varying size references
with the actual feed data, while keeping the feed data in
a binary format; and

an act of storing the restored feed data in the database table
inablob data column, wherein each feed data row results
in one binary blob value in one corresponding row in the
database table.

8. The computer program product of claim 7, further com
prising an act of accessing the metadata included in the origi
nal feed to determine whether data processing conditions
exist for the feed data.

9. The computer program product of claim 8, further com
prising, upon determining that one or more data processing
conditions exist for the feed data, an act of creating a refer
ence for each data row that satisfies the data conditions in a
separate database server table.

10. The computer program product of claim 9, wherein the
reference includes a pointer to the feed data's original data
base server table that includes the associated binary feed data.

11. The computer program product of claim 9, further
comprising issuing an alert to one or more users based on a

Sep. 19, 2013

determination that at least one of the rows of the binary blob
data satisfies the data conditions.

12. The computer program product of claim 9, wherein the
blob data is opened and processed in memory and stored in
binary format. Such that storing of static schemas is avoided.

13. A computer system, comprising:
one or more processors; and
one or more computer-readable media having stored

thereon computer-executable instructions that, when
executed by one or more processors of the computing
system, cause the computing system to perform a
method for efficiently uploading data to a database using
dynamic schemas, the method comprising:
an act of receiving from an application server one or
more portions of binary blob data at a database server;

an act of executing a dynamic server statement to store
the binary blob data into a database table, wherein the
dynamic server statement is stored within metadata
associated with the original feed;

an act of restoring one or more feed data rows from the
binary blob data by substituting varying size refer
ences with the actual feed data, while keeping the feed
data in a binary format; and

an act of storing the restored feed data in the database
table in a blob data column, wherein each feed data
row results in one binary blob value in one corre
sponding row in the database table.

14. The computer system of claim 13, further comprising
an act of accessing the metadata included in the original feed
to determine whether data processing conditions exist for the
feed data.

15. The computer system of claim 14, further comprising,
upon determining that one or more data processing conditions
exist for the feed data, an act of creating a reference for each
data row that satisfies the data conditions in a separate data
base server table.

16. The computer system of claim 15, wherein the refer
ence includes a pointer to the feed data's original database
server table that includes the associated binary feed data.

17. The computer system of claim 15, further comprising
issuing an alert to one or more users based on a determination
that at least one of the rows of the binary blob data satisfies the
data conditions.

18. The computer system of claim 15, wherein the blob
data is opened and processed in memory and stored in binary
format, such that storing of static schemas is avoided.

19. The computer system of claim 13, wherein the binary
blob data represents feed data that includes a plurality of
rows, each row including one or more data fields that corre
spond to varying length data, Such that at least one row of the
feed data has a varying data length relative to at least one other
row of the feed data, and wherein the binary blob data com
prises:

a first portion that represents each row of the feed data as a
corresponding fixed-size row representation; and

a second portion which includes any varying length feed
data.

20. The computer system of claim 19, wherein each corre
sponding fixed-size row representation includes (i) for any
data field in the corresponding row of the feed data that
corresponds to fixed length feed data, one or more corre
sponding fixed-size data fields; and (ii) for any data field in the
corresponding row of the feed data corresponding to varying
length feed data, both a fixed-size data field specifying a

US 2013/0246446 A1 Sep. 19, 2013

length of the varying length feed data and a fixed-size data
field specifying a reference into the second portion of the
binary blob data, the reference identifying the actual varying
length feed data.

