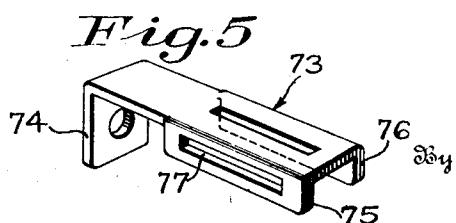
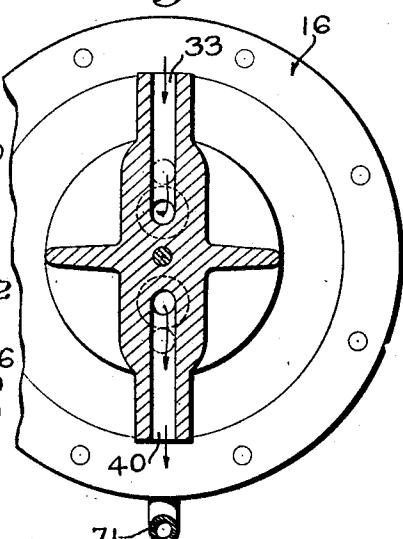
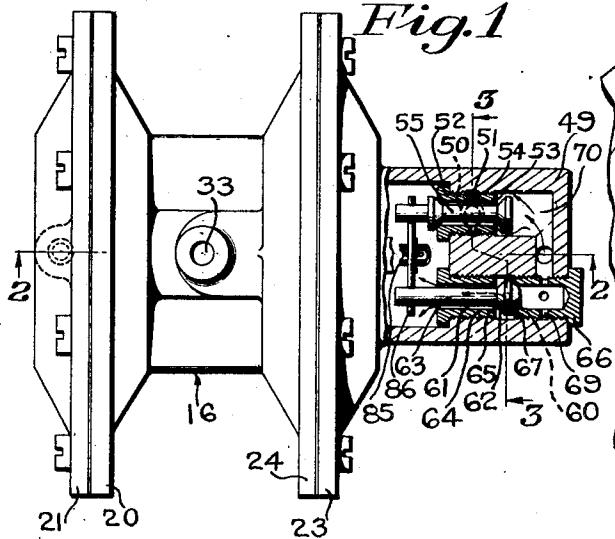
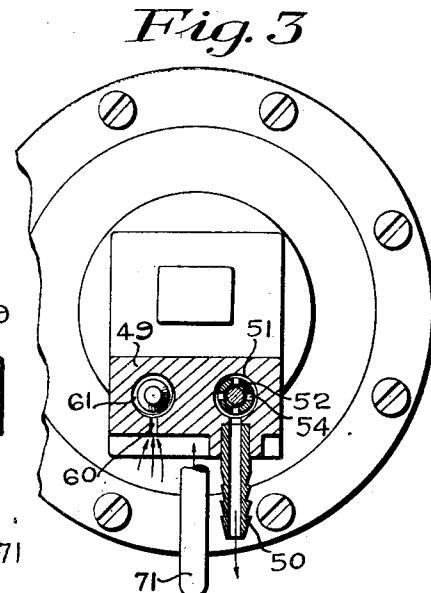
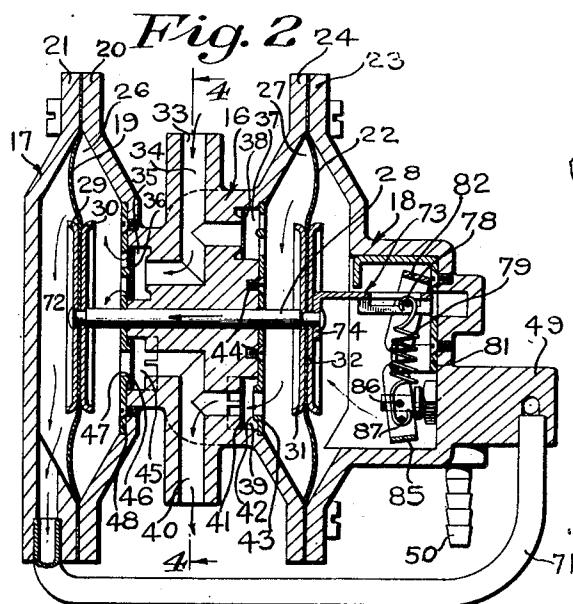


July 25, 1933.






E. C. HORTON ET AL

1,920,014

MULTIPLE DIAPHRAGM PUMP

Filed June 26, 1931

3 Sheets-Sheet 1

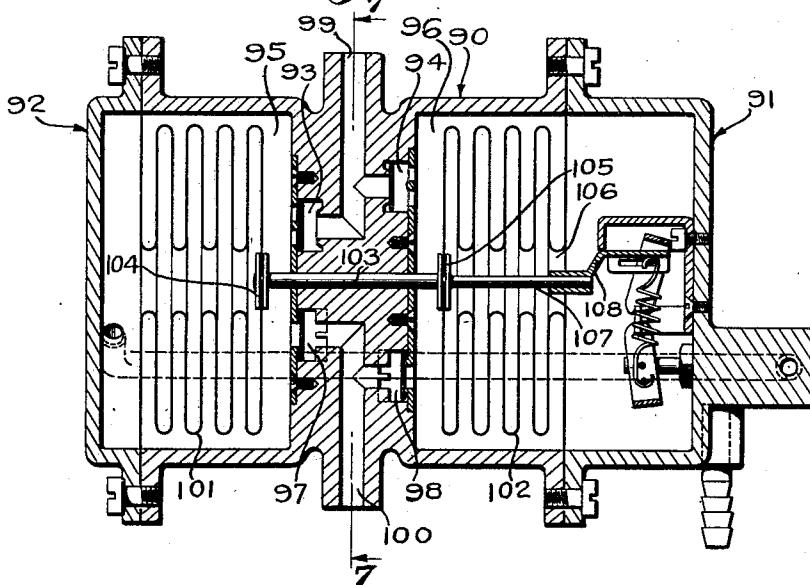
Inventors

Erwin C. Horton
Henry Haeber

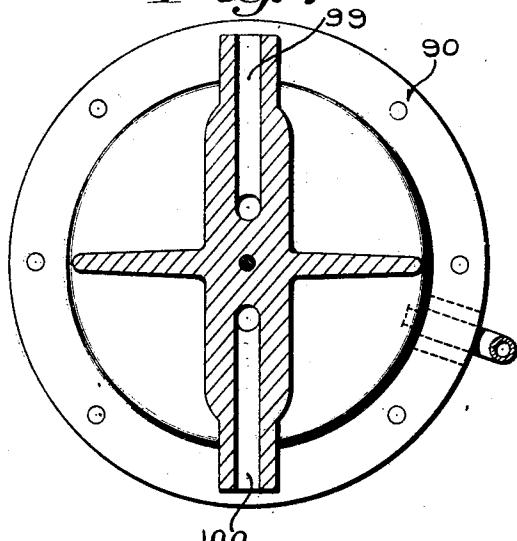
Bean, Brooks & Henry.
Attorneys

July 25, 1933.

E. C. HORTON ET AL


1,920,014

MULTIPLE DIAPHRAGM PUMP


Filed June 26, 1931

3 Sheets-Sheet 2

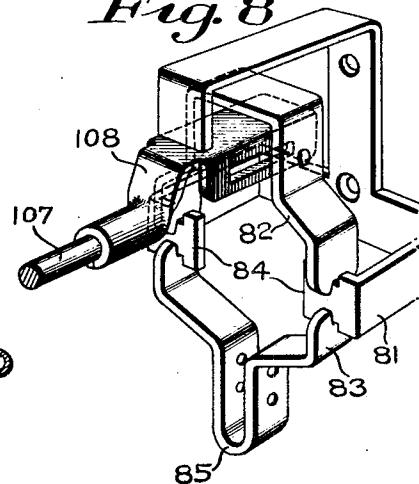

Fig. 6

Fig. 7

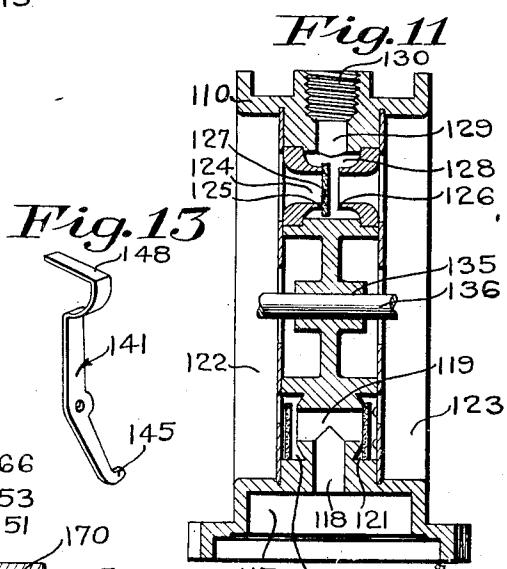
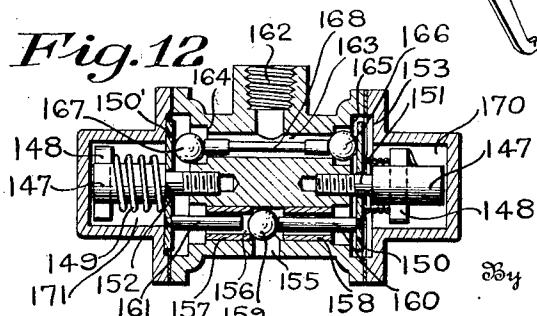
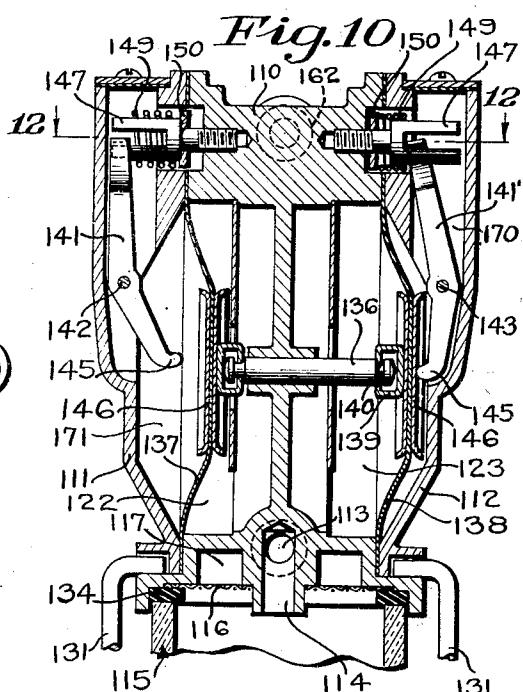
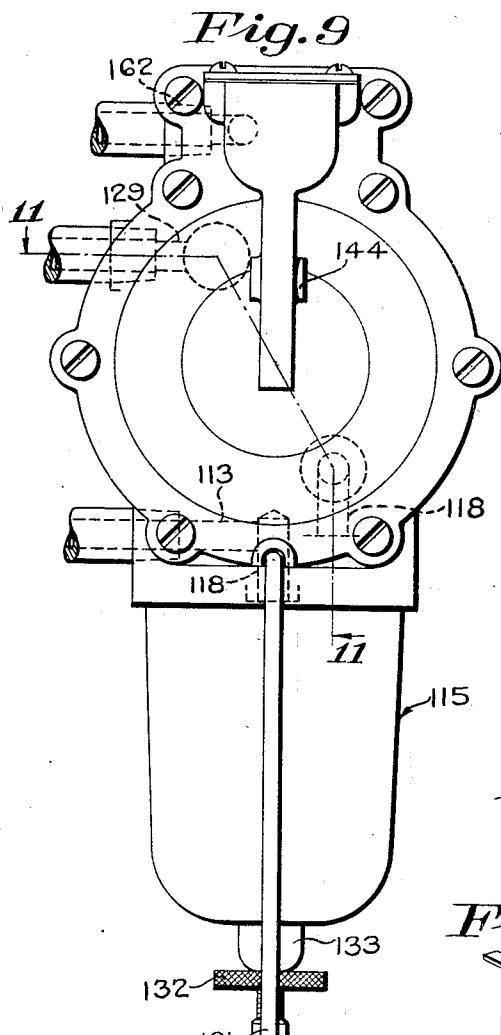
Fig. 8

Inventors

Erwin C. Horton
Henry Hueber

By *Dean, Brooks + Henry*
Attorneys

July 25, 1933.





E. C. HORTON ET AL

1,920,014

MULTIPLE DIAPHRAGM PUMP

Filed June 26, 1931

3 Sheets-Sheet 3

Erwin C. Horton
Henry Hueber

By Bean, Brooks & Henry.
Attorneys

UNITED STATES PATENT OFFICE

ERWIN C. HORTON, OF HAMBURG, AND HENRY HUEBER, OF BUFFALO, NEW YORK,
ASSIGNORS TO TRICO PRODUCTS CORPORATION, OF BUFFALO, NEW YORK

MULTIPLE DIAPHRAGM PUMP

Application filed June 26, 1931. Serial No. 547,132.

The present invention relates to differential pressure fluid pumps and more particularly to multiple diaphragm pumps which possess propulsive action upon movement of 5 the piston connecting rod in any permitted direction of movement.

The instant pump provides a plurality of pumping diaphragms which coordinate in their action to deliver substantially continuous and uniform flow of fluid. Preferably the propelling action of the pump is obtained efficaciously from a source of diminished pressure or suction, such as that obtaining within the intake manifold of an 10 internal combustion engine, or from other suitable source of suction, whereby the difference in pressure existing between atmospheric pressure and that obtaining at the suction source is used to actuate the pistons 15 and diaphragms of the pump and produce work thereupon.

The instant invention is further provided with means for alternately permitting the admission and withdrawal of propelling 20 fluid to the diaphragms of the pump whereby suitable pressure is maintained thereupon for moving the pumping diaphragm thereof to and fro.

Several embodiments of the instant invention are illustrated in the appended drawings, wherein:

Fig. 1 is a plan view of the device partly in section.

Fig. 2 is a vertical section on line 2—2 of Fig. 1.

Fig. 3 is an irregular cross-section on the line 3—3 of Fig. 1.

Fig. 4 is a cross-section on the line 4—4 of Fig. 2.

Fig. 5 is an enlarged perspective view of the valve actuating member.

Fig. 6 is a vertical section of a modification of the device.

Fig. 7 is a transverse section along the line 7—7 of Fig. 6.

Fig. 8 is an enlarged view in perspective of the actuating stirrup and rocker arms.

Fig. 9 is a side elevation of a further modification of the device.

Fig. 10 is a fragmentary vertical section along line 10—10 of Fig. 9.

Fig. 11 is an irregular cross-section along line 11—11 of Fig. 9.

Fig. 12 is a horizontal section along line 12—12 of Fig. 10 showing the valve mechanism.

Fig. 13 is a view in perspective of the valve actuating link.

Referring more particularly to the drawings the improved pump, an embodiment of which is shown in Fig. 1, comprises a body member 16, a pump housing member 17, and a valve housing member 18. A flexible pumping diaphragm 19 is provided between the pump housing 17 and the body member 16 and is assembled therewith in fluid tight relation in any desired manner, as for instance by clamping the periphery thereof between flanged portions 20 of the body member and cooperating flange members 21 of the pump housing member 17 by suitable bolts 25. A similar pumping diaphragm 22 is included in fluid tight assembly between the valve housing member 18 and the body member 16 as by clamping the diaphragm between flanges 23 and 24. The diaphragms are preferably of a liquid proof, non-resilient fabric.

This particular disposition of the diaphragms provides a plurality of fuel pumping compartments 26 and 27, as defined by the respective diaphragm and the body member, whereby fuel is expelled from one compartment while the other compartment is intaking fuel; that is to say, propulsion of fuel to the fuel supply line is effected upon movement of the diaphragms in either direction. A continuance of propulsion of the fuel is insured by the provision of the rod 28 connecting the diaphragm 19, as through the cup plates 29 and 30, to the diaphragm 22, as through the cup plates 31 and 32.

Passage of fuel through the device is effected by means of a fuel inlet 33 which is connected by means of the passage 34 to a valve port 35 which has contained therein a suitable valving mechanism 36 permitting uni-directional flow from the inlet 33 to the

fuel chamber 26. The companion fuel chamber 27 is also connected to the fuel inlet passage 33 by means of the valve port 37 regulated by the valve 38. Thus, upon movement of the piston rod in the direction of the arrow, fuel is caused to enter the fuel chamber 26 while upon movement in the opposite direction fuel enters the companion fuel chamber 27.

10 Fuel is caused to flow from the pumping chamber 27 upon movement of the rod and diaphragm 28 and 22 respectively, in the direction of the arrow, through the valve port 39 communicating with the fuel reservoir or chamber 27 into the fuel outlet 40. The fluid flow is regulated through the valve port 39 by means of the valve 41 contained therein which valve is adapted to close upon its seat 42 suitably formed in a plate 43 attached to the inner wall of the fuel chamber as by means of screws 44. In like manner the fluid outlet passage 40 is connected to a valve port 45 communicating with the companion fuel reservoir or chamber 26.

15 This valve port is similarly provided with valving means, as indicated at 46, adapted to close upon a seat 47 similarly provided, as for instance, in the plate 48 attached to the inner wall of the body member 16.

20 It is thus seen that upon movement of the rod 28 in the direction of the arrow, fluid is caused to enter the inlet port 33 and flow into the fluid reservoir 26 through the valve port 35, since the valve 38 is closed upon its seat, thus preventing entrance of fuel therethrough. During this movement any fluid contained within the fluid reservoir 27 is caused to pass through the valve port 39 into the outlet passage 40, and is prevented

25 from passing into the companion fuel reservoir 26 since the valving means 46 is closed upon its seat 47. When the piston rod is moved in the direction adverse to the arrow fluid in the fuel reservoir 26, now filled,

30 escapes through the port 45 and into the outlet 40, while the companion fuel reservoir 27 is being filled by fluid which enters the fluid intake port 37 through the passage 34.

35 The differential pressures are so directed upon the sides of the diaphragms that these pressures possess relatively the same ratio and there is no reversal or buckling of the diaphragm thereby insuring a longer life to

40 the pumping portion of the device. The valve housing 18 is provided with an extension 49 having an attaching nipple 50 adapted to be connected to a source of suction such as that provided within the intake

45 manifold of an internal combustion engine. This attachment or nipple is in fluid communication with an annular ring 51, within the extension member 49, which surrounds an internal sleeve 52 and has communication

50 with the passage 53 therethrough, by means

of the ports 54, thus providing means through which fluid may be removed through the passage 53, the port 54 and the nipple 50. The internal sleeve 52 is provided with a valving rod 55 carrying valving means 56 and 57 upon either end thereof capable of seating upon valve receiving portions 58 and 59 respectively formed in the ends of the internal sleeve 52.

An atmospheric port 60 provides fluid communication from the atmosphere to the passage 61 and from thence to the diaphragms 19 and 22 as hereinafter described. This passage is provided with a two-way communication which is governed by a valving means 62, the latter being provided with an extension 63 so placed within an internal sleeve 64 that the stem will move readily therein and permit seating of the valve 62 upon a valving seat 65 formed at one end of the internal sleeve 64. A second sleeve 66, substantially coaxial with the sleeve 64, is spaced therefrom and is provided with a valve seat 67 for cooperating with the valve 63 whereby the passageway 68 of the sleeve is closed. Ports 69 are provided in the sleeve 66 which communicate with a chamber 70, into which air and atmospheric pressure is permitted to flow when the valve 62 is closed upon its seat in the sleeve 64.

The chamber 70, further, is in fluid communication with a conduit 71 which extends therefrom to the pumping chamber 72, formed between the diaphragm 19 and the pump housing 17.

The operation of the pump will now be clearly apparent as the source of suction will cause fluid to flow out of the nipple 50 thus conveying fluid from the pumping chamber 72 through the conduit 71, thereby reducing the pressure within the pumping chamber 72, while at the same time the position of the valving member 62 permits air at atmospheric pressure to enter through the port 60, flow through the sleeve 64, and build up pressure upon the pumping side of the diaphragm 22 thus aiding in the movement of both diaphragms 22 and 19 (in the direction of the arrow shown upon the rod 28 in Fig. 2).

The valves 55 and 62 are actuated by valve actuating means attached to a movable portion of the pump. An embodiment of the valve actuating means is shown in Fig. 5 and comprises a stirrup 73 which is provided with a flanged end 74 for attachment to a portion of the moving piston mechanism, such as the end of the piston rod 28. Depending lateral flanges 75 and 76 are slotted as at 77 to receive a pin member 78 slidable in the slot for carrying a spring 79. The upper portion of the stirrup is slotted as at 80 to provide a receiving and guiding portion for the clip member of the spring 79.

A bracket member 81 is attached to the valve housing and is provided, at a distance spaced from the housing, with angular portions 84 having bearing edge surfaces, for receiving the rocker arm 82 to which the pin 78 is attached for providing a snap valve action upon movement of the piston and actuator arm. A second rocker arm 83 is provided which bears against the lower edge of the angular piece 84 as illustrated in an enlarged view in Fig. 8. The lower U-shape member 85 (Fig. 2) of the rocker arm is attached to a rod 86 connecting the stems 86 and 63 of the valving members 55 and 62, respectively. A pin 87, placed somewhat below the attachment of the rod 86, has attached thereto the other end of the spring 79 and provides the snap mechanism for actuating the valve members 55 and 62.

It will be seen that as the piston and actuator move in the direction of the arrow upon the piston rod 38 that the upper rocker is pulled in the direction of the arrow until the pin 78 is just over the center line connecting that pin with the pin 86, whereupon the spring mechanism 79 causes the lower end 85 of the rocker arm 83 to move to the outward position whereby the valves 55 and 62 are caused to close upon their seats. This position of the valve permits air at atmospheric pressure to flow through the conduit 71 into the pumping chamber 72 and at the same time air is drawn through the suction port 51 thus reducing the pressure in the companion pumping chamber, thereby causing a reversal of the pressure upon the respective diaphragms and hence a reversal in the movements thereof.

A variation of the invention is shown in Fig. 6 wherein the device comprises a body member 90, a valve housing member at 91, and a piston housing member at 92. The body member is provided with valved inlet ports 93 and 94 communicating with the fluid pumping chambers 95 and 96 and with the inlet passage 99. The pumping chambers are provided with fluid outlet ports 97 and 98, respectively, which permit fluid flow from the respective fluid pumping chambers into the outlet conduit 100. The pumping diaphragms comprise longitudinally compressible bellows or accordian diaphragms 101, 102 of suitable composition, such as metal sheets. These diaphragms are connected for coordinate movement by means of a piston rod 103 which is connected to the diaphragms in any suitable manner. In the modification shown in Fig. 6, this connection is made by means of the clips 104 and 105 whereby a fluid tight connection is insured between the clips and the diaphragms. The diaphragm 102 is provided with a passageway 106, which in the modification shown herein is located substantially axially thereof for receiving an extension 107 of the piston rod 103. The extension rod 107 is connected to the actuating member 108 which has actuating connection with a snap valve actuating mechanism of a suitable type such as that described hereinabove.

In the position of the valves and diaphragms shown in Fig. 6, fuel is entering the chamber 95 while it is being expelled from chamber 96 as a pressure less-than-atmospheric exists upon the working side of the diaphragm 101 and atmospheric pressure upon the working side of the diaphragm 102. Upon movement of the piston rod 103 to the left, the snap valve actuator moves the valving mechanism and causes a reversal of the atmospheric air and a reversal in movement of the diaphragms, compressing the diaphragm 102 longitudinally while the diaphragm 101 expands longitudinally.

Another modification of the invention is shown in Figs. 9, 10, 11, 12 and 13. The pump in this modification comprises a body member 110 and housing members 111 and 112. The body member is provided with a fuel inlet port 113 which connects with a passageway 114 in fluid communication with a fuel reservoir 115. The fuel thereafter passes through the screen 116 into the passage 117 and then through the conduit 118 into the valve connecting passage 119 which terminates in valve ports 120 and 121 whereby fluid may be directed in either of two directions into the fluid pumping chamber 122 or the fluid pumping chamber 123. The member 110 is further provided with a passageway 124 which has interrupted fluid communication with the fluid pumping chambers 122 and 123 and which has connected therein the valve seats 125 and 126 and is provided with valving means 127. An annular passageway 128 surrounds the valve seats 125 and 126 whereby the fluid flowing through either of said valves may be transferred from said annular passage through the passageway 129 to the fluid outlet 130.

It is thus seen that fluid from a source such as the fuel reservoir attached to an automotive vehicle, or other source, enters the inlet passage 113, flows therethrough and into the fuel reservoir 115.

The fuel reservoir 115 is attached to the pump in any suitable manner, as for instance to the body member 110, by the clip 131 and screw 132 bearing against the nipple 133 upon the lower portion of the reservoir 115 whereby the same is caused to bear against a gasket 134, thus forming a fluid tight connection between the fuel reservoir and the surfaces of the body member 110. The straining member or screen 116 is placed between the body member 110 and the reservoir 115 whereby fluid from the reservoir is caused to flow therethrough into the passageway 117 which is formed between the

flanges of the body member and the screen 116.

The bearing surface 135 is formed in the body member 110 for receiving the piston rod 136 which connects the diaphragms 137 and 138 in such manner that they move synchronously. The piston rod is connected in any suitable manner to the diaphragms, and in the modification shown in Fig. 10, the collar or clip members 139 on the diaphragms are detachably engaged in the grooves 140 beneath the heads of the rod 136.

The action of this device is substantially similar to the action of the device illustrated in Fig. 2 and described hereinabove. Thus, in the showing in Fig. 10 the diaphragms 137 and 138 are in a position which represents substantially their limit of movement and the fuel pumping chamber 123 is filled with liquid fluid while the pumping chamber 122 is substantially depleted thereof. Upon movement, therefore, of the piston rod and diaphragm in the direction of the arrow upon the rod 136, fluid is caused to flow through the outlet port 124 from the fuel containing chamber 123 into the annular passageway 128 and from thence to the outlet 130. Upon the same stroke of the diaphragm the inlet port 121 is closed by the valving means contained therein, while the valving means in the port 120 are open so that fuel may flow into the fuel containing chamber 122.

The valving mechanism, a modification of which is shown in Figs. 10 and 12, is controlled by the levers 141, Fig. 13, and 141' which are pivoted upon the pins 142 and 143, respectively, the pins being secured to a convenient portion of the housing as for instance at 144. The levers are provided at one end with convenient fingers 145 for contact with the cup plates 146, or other convenient portion of the movable diaphragm, whereby the levers may be pivoted upon the pins when moved by the diaphragms.

Bifurcated guiding or supporting members 147 are attached to the body member 110 and act to guide the upper stirrup portions 148 of the levers upon movement thereof. Resilient means 149 surround the guiding members 147 and bear against the stirrup end 148 of the lever while the other end bears against a valving mechanism 150, supported by members 147, for controlling the action thereof upon movement of the lever. This valving mechanism is guided by the reduced end portions 151 of the stud 147 and is adapted to seat upon the shoulder 152 thereof and upon a flanged portion 153 of the lever housing, Fig. 12. A similar valving mechanism 150' and resilient means 149' are disposed in similar relation to the lever 140'.

The body member 110 is provided with a port 155 one end opening to the atmosphere

and the other end communicating with a passageway 156 provided with internal sleeve 157 and 158 disposed axially with respect to one another and provided with valving seats thereon to accommodate the ball valve 159 whereby atmospheric air may be caused to flow through the one or the other of the sleeves. A pin 160 is provided within the internal sleeve 158 of sufficient length to make propulsive contact with the ball valve 159 and the valve plate 150, so that when the lever mechanism is moved by the diaphragm 138 tension is put upon the resilient means 149 sufficient to overcome the fluid resistance offered by the seated valves, whereby the valve plate 150 is moved from its seat upon the shoulder 152 of the stud 147 and the flanges 153 of the valve housing 112, thereby moving the ball valve 159 from its seat upon the internal sleeve 158 to the seat upon the companion internal sleeve 175. A corresponding valve actuating member 161 is provided between the ball valve 159 and the plate valve 150' for moving the ball in the opposite direction upon movement of the valve plate 150' from its seat.

A suitable port 162 is provided for withdrawal of actuating fluid, which withdrawal may be effected by making communication with a source of reduced pressure or suction, such as has been specified hereinabove. This passageway is provided in the body member 110 at a convenient point, as for instance adjacent the top thereof and is in fluid communication with a transverse passage 163 provided with valving seats 164 and 165 at either end thereof. Valving means, such as the ball valve 166, is provided between the valve seat 165 and the plate valve 150, and a similar valve 167 is provided in a companion compartment between the valve seat 164 and the plate 150'. A valve actuating member, such as the floating pin member 168 is provided in the passage 163 and bears against the ball valves 166 and 167 for movement thereof to and from their valve seats in synchrony with the movements of the valve plates 150.

The operation of the valving mechanism is clearly seen as atmospheric air enters the atmospheric port 155, passes through the passage 156 downwardly therefrom past the lever 141 into the pumping chamber 170 between the housing member 112 and the body member 110 and bears against the diaphragm 138.

Since the ball valves 159 and 166 are seated, atmospheric air at normal atmospheric pressure is constrained to pass to the compartment 170 and may not pass out through the passage 163 to the source of suction since the ball valve 166 is seated. The source of suction will draw fluid from the pumping compartment 171 confined between the

valve housing member 111 and the body member 110 through the passageway 163 since the ball valve 167 is unseated as the floating pin member is pushed by the ball 5 valve 166 against the ball valve 167 thereby unseating the same.

It will be noted that in this modification the diaphragms do not buckle or reverse themselves since the relative pressure upon 10 the two sides of the diaphragm is regulated to retain the same relative degree.

Thus the diaphragm 138 retains the same bulge irrespective of the pressure within the pumping chamber 170. Should the pressure in the pumping chamber be atmospheric 15 pressure, and should the diaphragms 137 and 138 be moving in the direction of the arrow, the diaphragm would consequently move against a fluid head created by the 20 fuel contained in the fuel chamber 123 and hence maintain the bulge of the diaphragm. On the other hand, when the fuel pumping chamber 123 is being filled with fuel, the fluid head possessed by the fuel is relative- 25 ly greater than the pressure obtaining within the chamber between the valve housing 112 and the diaphragm 138 which is less-than-atmospheric pressure and hence the bulge is maintained upon the diaphragm in 30 the same direction at all times, both upon the working stroke and the filling stroke.

The diaphragms in the embodiments depicted in Figs. 2 and 10 are preferably non-resilient though readily flexible and, therefore, the sole driving power for the pumps 35 will be fluid pressure controlled by the valve action.

What is claimed is:

1. A pump for motor vehicles, having a 40 pair of end compartments separated by an intermediate body portion, the latter having a rod guide therein between the end compartments, a diaphragm in each compartment partitioning the same into an inner liquid fuel chamber and an outer fluid pressure motor chamber, a rod connecting the 45 two diaphragms for movement in unison, said rod being supported in said rod guide and having free sliding contact therein with the opposite ends of the guide opening into the adjacent liquid fuel chambers, any leakage of fuel from one fuel chamber along the 50 rod guide having free exit to the companion fuel chamber, said intermediate body portion having a common fuel inlet and a common fuel outlet opening directly into and out of the fuel chambers, and means for operatively admitting fluid pressure to the outer, motor chambers.

2. A fuel pump for motor vehicles, having a pair of end compartments with an intermediate body portion, a diaphragm in each compartment partitioning the same into inner and outer chambers, inlet and 65 outlet ports for the outer pair of chambers, inlet and outlet ports for the inner pair of chambers, one pair of chambers constituting fuel chambers and the other pair of chambers constituting fluid pressure motor chambers, a member connecting the two diaphragms for movement in unison, said member being supported by the intermediate body portion, automatic valve mechanism for operatively admitting fluid pressure to the motor chambers through the inlet ports thereof, said automatic valve mechanism embodying resilient means acting during the greater part of each diaphragm movement to hold said automatic valve mechanism operative, and means operable by said moving diaphragms for actuating said automatic valve mechanism toward the end of each diaphragm movement, said means being independent of said mechanism.

3. A fuel pump for motor vehicles, having a pair of end compartments with an intermediate body portion, a diaphragm in each compartment partitioning the same into inner and outer chambers, inlet and outlet ports for the outer pair of chambers, inlet and outlet ports for the inner pair of chambers, one pair of chambers constituting fuel chambers and the other pair of chambers constituting fluid pressure motor chambers, a member connecting the two diaphragms for movement in unison, said member being supported by the intermediate body portion, automatic valve mechanism for operatively admitting fluid pressure to the motor chambers through the inlet ports thereof, and a play connection between said automatic valve mechanism and said moving diaphragms for actuating said valve mechanism toward the end of each diaphragm pumping movement.

4. A fuel pump for motor vehicles having the internal combustion engine with its carburetor and supply tank, comprising a central body casting having oppositely disposed chambered face portions each provided with a marginal diaphragm seat, said body casting having peripherally disposed inlet and outlet fuel passages opening through valved ports in the face portions, diaphragms closing the chambers of the body casting and having their peripheral portions engaged on the marginal seats, casting heads arranged over the diaphragms and clamping the same to said seats, said heads having intercommunicating chambers which are closed by said diaphragms, a power transmitting member connecting the two diaphragms, valve means for operatively connecting said head chambers to atmospheres of different pressures whereby the diaphragms will act to intake and expel fuel into, and from said first chambers, said valve means embodying a spring snap-action mechanism, and means operable by the diaphragm movement for engaging said

70

75

80

85

90

95

100

105

110

115

120

125

130

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

5455

5460

5465

5470

5475

5480

5485

5490

5495

5500

5505

5510

5515

5520

5525

5530

5535

5540

5545

5550

5555

5560

5565

5570

5575

5580

5585

5590

5595

5600

5605

5610

5615

5620

5625

5630

5635

5640

5645

5650

5655

5660

5665

5670

5675

5680

5685

5690

5695

5700

5705

5710

5715

5720

5725

5730

5735

5740

5745

5750

5755

5760

5765

5770

5775

5780

5785

5790

5795

5800

5805

5810

5815

5820

5825

5830

5835

5840

5845

5850

5855

5860

5865

5870

5875

5880

5885

5890

5895

5900

5905

5910

5915

5920

5925

5930

5935

5940

5945

5950

5955

5960

5965

5970

5975

5980

5985

5990

5995

6000

6005

6010

6015

6020

6025

6030

6035

6040

6045

6050

6055

6060

6065

6070

6075

6080

6085

6090

6095

6100

6105

6110

6115

6120

6125

6130

6135

6140

6145

6150

6155

6160

6165

6170

6175

6180

6185

6190

6195

6200

6205

6210

6215

6220

6225

6230

6235

6240

6245

6250

6255

6260

6265

6270

6275

6280

6285

6290

6295

6300

6305

6310

6315

6320

6325

6330

6335

6340

6345

6350

6355

6360

6365

6370

6375

6380

6385

6390

6395

6400

6405

6410

6415

6420

6425

6430

6435

6440

6445

6450

6455

6460

6465

6470

6475

6480

6485

6490

6495

6500

6505

6510

6515

6520

6525

6530

6535

6540

6545

6550

6555

6560

6565

65

closing said passages, a rock member pivoted to said wall and having its free end connected to said valves for reversing them, a second rock member pivoted to the wall and having its free end extending oppositely to the free end of said first rock member, means providing a play connection between the free end of said second rock member, and a spring connecting the free ends of said rock members, whereby upon continued movement of the diaphragm to its limit position in either direction the position of the valves will be reversed.

13. In a fluid pressure operable fuel pump, a casing comprising a central section and a pair of end sections, a diaphragm disposed between each end section and the central section, means extending through the central section connecting the diaphragms for movement in unison, said diaphragms and wall

20 portions of the casing providing a pair of chambers therebetween which are alternately enlarged and contracted, passages for alternately opening said chambers to atmospheres of different pressures, said passages 25 extending through said central casing section, valves for controlling said passages supported in said central casing section, and spring snap-action valve actuating means disposed in the interior of said casing and 30 operably associated with the diaphragms and the valves to reverse the latter when the diaphragms reach the limits of their strokes in either direction.

14. A suction operated fuel pump for 35 motor vehicles, comprising a casing structure consisting of end castings and an interposed body casting defining individually separate end compartments, a diaphragm in each compartment partitioning the same into a 40 pump chamber and a motor chamber, means connecting the diaphragms into a movable

unit, valved fuel inlet and outlet passages in one of the castings and having communication with the pair of pump chambers, a suction passage opening through valve seat means on one of said castings, said valve seat means having communication with the atmosphere and with each motor chamber, valve means cooperating with said valve seat means and movable from one to the other of two operative positions first for connecting the suction passage to one motor chamber and the atmosphere to the companion motor chamber and then reversing the connections, spring means for moving and yieldably holding the valve means to its operative positions, and an actuator part within the casing structure and movable by said diaphragm unit into engagement with the spring means to operate the same.

15. A fuel pump for motor vehicles, comprising a central body having its opposite sides hollowed to form fuel chambers separated by a web, said web having a rod bearing and being provided with inflow and outflow passages opening into the fuel chambers, valves contained within the body for directing the flow of fuel into and out of said chambers, chambered heads mounted on the central body over its hollowed sides, pumping elements operating between and in the fuel chambers and the chambers of the heads, a rod supported in said bearing and connecting the pumping elements for movement in unison, said head chambers constituting motor chambers, fluid passages communicating with the motor chambers, and means arranged within one of the motor for operatively admitting fluid pressure to the motor chambers through said fluid passages to actuate the pumping elements.

ERWIN C. HORTON. 105
HENRY HUEBER.