a2 United States Patent

Bradford et al.

US008141098B2

US 8,141,098 B2
*Mar. 20, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(63)

(1)

(52)

(58)

CONTEXT SWITCH DATA PREFETCHING IN
MULTITHREADED COMPUTER

Inventors: Jeffrey Powers Bradford, Rochester,
MN (US); Harold F. Kossman,
Rochester, MN (US); Timothy John
Mullins, Rochester, MN (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 674 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/354,859

Filed: Jan. 16, 2009

Prior Publication Data
US 2009/0125913 Al May 14, 2009

Related U.S. Application Data

Continuation of application No. 10/739,738, filed on
Dec. 18, 2003, now Pat. No. 7,493,621.

Int. Cl1.

GO6F 9/46 (2006.01)

GO6F 12/00 (2006.01)

GO6F 9/26 (2006.01)

GO6F 9/30 (2006.01)

GO6F 9/44 (2006.01)

US.CL. .. 718/108; 718/102; 718/107; 711/204;

711/140, 711/123;711/124; 711/125; 712/205;
712/207,712/228; 712/229; 712/230; 712/237
Field of Classification Search
See application file for complete search history.

12

12

(56) References Cited
U.S. PATENT DOCUMENTS
4,860,192 A 8/1989 Sachs et al.
5,872,985 A 2/1999 Kimura
5,893,159 A 4/1999 Schneider
5,907,702 A 5/1999 Flynn et al.
5,958,045 A 9/1999 Pickett
6,014,728 A 1/2000 Baror
6,073,215 A 6/2000 Snyder
6,138,212 A * 10/2000 Chiacchiaetal. 711/137
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1276888 A 12/2000
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 09/458,883, filed Dec. 10, 1999, by Puzak et al.
U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 10/739,738, dated Oct. 2, 2007.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 10/739,738, dated Apr. 4, 2008.

(Continued)

Primary Examiner — Jennifer To

Assistant Examiner — Abdullah Al Kawsar

(74) Attorney, Agent, or Firm — Wood, Herron & Evans
LLP

(57) ABSTRACT

An apparatus initiates, in connection with a context switch
operation, a prefetch of data likely to be used by a thread prior
to resuming execution of that thread. As a result, once it is
known that a context switch will be performed to a particular
thread, data may be prefetched on behalf of that thread so that
when execution of the thread is resumed, more of the working
state for the thread is likely to be cached, or at least in the
process of being retrieved into cache memory, thus reducing
cache-related performance penalties associated with context
switching.

20 Claims, 4 Drawing Sheets

12
10

L/

I

{ 7
’PROCESSOR‘ [PHOCESSOR‘ ooo | PROCESSOR

16
\ CACHE
SYSTEM
28 I 28
26 APP |[APP |ooo[APP [
14 T OPERATING SYSTEM |
\ MAIN STORAGE
18 I:‘:I
/O SYSTEM
20 ! 24
—p_ 2 MASS

STORAGE

US 8,141,098 B2
Page 2

6,202,130
6,253,306
6,311,260
6,535,962
6,574,712
6,697,935
6,845,501
6,976,147
7,260,704
2003/0023663
2004/0163083
2005/0149697
2006/0294347

U.S. PATENT DOCUMENTS

Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
B2
Al
Al
Al
Al

3/2001
6/2001
10/2001
3/2003
6/2003
2/2004
1/2005
12/2005
8/2007
1/2003
8/2004
7/2005
12/2006

Scales et al.
Ben-Meir et al.
Stone et al.
Mayfield et al.
Kahle et al.
Borkenhagen et al.
Thompson et al.
Isaac et al.
Cooksey et al.
Thompson et al.
Wang et al.
Enright et al.
Zou et al.

FOREIGN PATENT DOCUMENTS
1300006 A

CN

6/2001

OTHER PUBLICATIONS

U.S. Patent and Trademark Office, Notice of Allowance issued in
related U.S. Appl. No. 10/739,738, dated Oct. 7, 2008.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 10/739,739, dated Dec. 12, 2007.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 10/739,739, dated Jun. 20, 2008.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 10/739,739, dated Nov. 6, 2008.

U.S. Patent and Trademark Office, Office Action issued in related
U.S. Appl. No. 10/739,739, dated Mar. 25, 2009.

U.S. Patent and Trademark Office, Notice of Allowance issued in
related U.S. Appl. No. 10/739,739, dated Jul. 1, 2009.

* cited by examiner

US 8,141,098 B2

U.S. Patent Mar. 20,2012 Sheet 1 of 4
12 12 12
[[[
PROCESSOR| |PROCESSOR| ooo |PROCESSOR ./
16 |
CACHE
SYSTEM
28 i 28
26 APP || APP |ooo| APP [7] FIG. 1
14 \\l OPERATING SYSTEM | :
\ MAIN STORAGE
18 '
_| VO SYSTEM
20 24
= = STORAGE
44 42
12
T""K: (. P
| BUFFER
| UL PROCESSOR | BUFFER |
| 40 38
| |
S N | 1 4
| INSTRUCTION 1 | |L1INSTRUCTION L1DATA ||| DATA
| PREFETCHER CACHE CACHE PREFETCHER
0 | o | s
34
g L2 CACHE
16
] 36 | FIG. 2
N L3 CACHE
|

14 '
\{ MAIN STORAGE

U.S. Patent Mar. 20, 2012 Sheet 2 of 4 US 8,141,098 B2
50 50'
\Q:ONTEXT SWITCH) FIG. 3 \»@)NTEXT swncD FIG. 5
52 64
¥ ¥
SAVE STATE OF CURRENT SAVE STATE OF CURRENT
THREAD (INCLUDING PREFETCH THREAD (INCLUDING PREFETCH
CONTROL DATA) CONTROL DATA)
66
54) 1
N DETERMINE NEXT N DETERMINE NEXT-NEXT
THREAD TO EXECUTE THREAD TO EXECUTE
68
56 1 ¥
RETRIEVE PREFETCH CONTROL \ [RETRIEVE PREFETCH CONTROL
DATA FOR NEXT THREAD DATA FOR NEXT-NEXT THREAD
58 T 0 T
INITIATE DATA AND/OR u INITIATE DATA AND/OR |
INSTRUCTION PREFETCH ,.__INSTRUCTIONPREFETCH _ |
__________________ 4
60 I X 3
\| RESTORE STATE OF NEXT THREAD RESTORE STATE OF NEXT THREAD
62 i 0 T
\/ INITIATE EXECUTION OF NEXT Q INITIATE DATA AND/OR !
THREAD | INSTRUCTION PREFETCH |
__________________ d
74 1
DONE [INITIATE EXECUTION OF NEXT
THREAD
INITIATE
T STATE | DET. NEXT T2
EXECUTION | SAVET1| THREAD | PREFETCH | RESTORESTATETZ | pyrcimion
FOR T2
FETCH T2 D/I %K)
FIG. 4
DET.NEXT | INITIATE
T STATE T2
NEXT | PREFETCH| RESTORE STATE T2
EXECUTION | SAVET1| —i=2 1= EXECUTION

FIG. 6

FETCH T3 D/I %&

U.S. Patent Mar. 20, 2012 Sheet 3 of 4 US 8,141,098 B2

80 38
HISTORY TABLE \ STRIDE TABLE 86 82 <
CACHE LINE] 90 94 BASE ADDR
- STRIDE
STREAM | SCHEDULER
L+ ALLOCATION >
S CONTROLLER
o N g Y r84 TO
FROM ‘L RIW J ° “— INC/DEC CACHE
CACHE / CONTROL ,| CONTROL CONTROL
CONTROL 92 —
0./ 1 88~ PREFETCH ENGINE
FIG. 7 SAVE/RESTORE PORT
ADDRESS
32
100 102 l ~104 108
\\4 TAG | INDEX |OFFSET |
FIG. 8
108 110
TAG ARRAY) DATA ARRAY)
TAG DATA
116 118
~
e =2 Y_EiET > —DATA
A0 78 NO :
RW | -
CONTROL [— ,
I 112/ 114/
SEND ADDRESS TO

SAVE/RESTORE PORT NEXT CACHE LEVEL

U.S. Patent Mar. 20, 2012

130

INITIATE INSTRUCTION
PREFETCH

132 l

& RETRIEVE PROGRAM
COUNTER (PC) FROM
STATE INFORMATION

134 Il
K ISSUE TOUCH
INSTRUCTION FOR PC
CACHE LINE
136 !

% ISSUE TOUCH
INSTRUCTION(S) FOR
NEXT N CACHE LINES

FIG. 9
150
INITIATE DATA
PREFETCH
152 T
RETRIEVE BASE ADDRESS
AND STRIDE FROM STATE
INFORMATION
154 l
& MODIFY BASE ADDRESS
BY X*STRIDE
156 !
K WRITE BASE ADDRESS
AND STRIDE TO HW
DATA PREFETCHER

FIG. 11

Sheet 4 of 4 US 8,141,098 B2
140
INITIATE INSTRUCTION
PREFETCH
142 I
(™ ReTRIEVE PROGRAM
COUNTER (PC) FROM STATE
INFORMATION
144 !
INSTRUCT HW INSTRUCTION
PREFETCHER TO PREFETCH
STARTING AT PC CACHE LINE
FIG. 10

160

INITIATE DATA)
62 PREFlETCH
\ RETRIEVE CACHE HISTORY
FROM STATE INFORMATION

164 l
& ISSUE TOUCH
INSTRUCTIONS FOR
LAST N CACHE LINES
FIG. 12

US 8,141,098 B2

1
CONTEXT SWITCH DATA PREFETCHING IN
MULTITHREADED COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/739,738, filed on Dec. 18, 2003 by Jeffrey
Powers Bradford et al., now U.S. Pat. No. 7,493,621, and is
related to U.S. patent application Ser. No. 12/108,998, filed
on Apr. 24,2008, by Jeftrey Powers Bradford et al., now U.S.
Patent Publication No. 2008/0201529, which is also a divi-
sional of the aforementioned U.S. patent application Ser. No.
10/739,738, and to U.S. patent application Ser. No. 12/109,
011, filed on Apr. 24, 2008 by Jeffrey Powers Bradford et al.,
now U.S. Patent Publication No. 2008/0201565, which is also
a divisional of the aforementioned U.S. patent application
Ser. No. 10/739,738 and all of which are entitled CONTEXT
SWITCH DATA PREFETCHING IN MULTITHREADED
COMPUTER. This application is also related to U.S. patent
application Ser. No. 10/739,739, filed on Dec. 18, 2003, by
Jeffrey P. Bradford et al., now U.S. Pat. No. 7,617,499 and
entitled CONTEXT SWITCH INSTRUCTION
PREFETCHING IN MULTITHREADED COMPUTER.
The entire disclosures of all of these applications are incor-
porated by reference herein.

FIELD OF THE INVENTION

The invention relates to computers and computer software,
and in particular to prefetching of instructions and data in a
multithreaded computer system.

BACKGROUND OF THE INVENTION

Given the continually increased reliance on computers in
contemporary society, computer technology has had to
advance on many fronts to keep up with increased demand.
One particular subject of significant research and develop-
ment efforts is parallelism, i.e., the performance of multiple
tasks in parallel.

A number of computer software and hardware technolo-
gies have been developed to facilitate increased parallel pro-
cessing. From a software standpoint, multithreaded operating
systems have been developed, which permit computer pro-
grams to concurrently execute in multiple “threads” so that
multiple tasks can essentially be performed at the same time.
Threads generally represent independent paths of execution
for a program. For example, for an e-commerce computer
application, different threads might be assigned to different
customers so that each customer’s specific e-commerce trans-
action is handled in a separate thread.

From a hardware standpoint, computers increasingly rely
on multiple microprocessors to provide increased workload
capacity. Furthermore, some microprocessors have been
developed that support the ability to execute multiple threads
in parallel, effectively providing many of the same perfor-
mance gains attainable through the use of multiple micropro-
cessors. In contrast with single-threaded microprocessors
that only support a single path of execution, multithreaded
microprocessors support multiple paths of execution such
that different threads assigned to different execution paths are
able to progress in parallel.

Irrespective of the number of separate execution paths that
are supported in the underlying hardware, however, the oper-
ating systems in multithreaded computers are typically
designed to execute multiple threads on each individual

10

20

25

30

35

40

45

50

55

60

65

2

execution path, typically by allocating time slices on each
execution path to different threads. While the threads
assigned to a given execution path technically are not
executed in parallel, by enabling each thread to execute for a
period of time and switching between each thread, each
thread is able to progress in a reasonable and fair manner and
thus maintain the appearance of parallelism.

While multithreading in this nature can significantly
increase system performance, however, some inefficiencies
exist as a result of switching between executing different
threads in a given execution path. In particular, whenever an
execution path switches between executing different threads,
an operation known as a context switch much be performed.
A context switch typically consists of saving or otherwise
preserving the working state of the thread that was previously
being executed, and is now being switched out, and restoring
the working state of the thread about to be executed, or
switched in.

The working state of a thread includes various state infor-
mation that characterizes, from the point of view of a thread,
the state of the system at a particular point in time, and may
include various information such as the contents of the reg-
ister file(s), the program counter and other special purpose
registers, among others. Thus, by saving the working state
when a thread is switched out, or suspended, and then restor-
ing the working state when a thread is switched in, or
resumed, the thread functionally executes in the same manner
as if the thread was never interrupted.

One undesirable side effect of performing a context switch
in many environments, however, is the increased occurrence
of cache misses once a thread is switched back in. Caching is
atechnique that has been universally utilized in modern com-
puter architectures, and is used to address the latency prob-
lems that result from the speed of microprocessors relative to
the speed of the memory devices used by microprocessors to
access stored data.

In particular, caching attempts to balance memory speed
and capacity with cost by using multiple levels of memory.
Often, a computer relies on a relatively large, slow and inex-
pensive mass storage system such as a hard disk drive or other
external storage device, an intermediate main storage
memory that uses dynamic random access memory devices
(DRAM’s) or other volatile memory storage devices, and one
or more high speed, limited capacity cache memories, or
caches, implemented with static random access memory
devices (SRAM’s) or the like. Often multiple levels of cache
memories are used, each with progressively faster and smaller
memory devices. Also, depending upon the memory archi-
tecture used, cache memories may be shared by multiple
microprocessors or dedicated to individual microprocessors,
and may either be integrated onto the same integrated circuit
as a microprocessor, or provided on a separate integrated
circuit.

Moreover, some cache memories may be used to store both
instructions, which comprise the actual programs that are
being executed, and the data being processed by those pro-
grams. Other cache memories, often those closest to the
microprocessors, may be dedicated to storing only instruc-
tions or data.

When multiple levels of memory are provided in a com-
puter architecture, one or more memory controllers are typi-
cally relied upon to swap needed data from segments of
memory addresses, often known as “cache lines”, between
the various memory levels to attempt to maximize the fre-
quency that requested data is stored in the fastest cache
memory accessible by the microprocessor. Whenever a
memory access request attempts to access a memory address

US 8,141,098 B2

3

that is not cached in a cache memory, a “cache miss” occurs.
As a result of a cache miss, the cache line for a memory
address typically must be retrieved from a relatively slow,
lower level memory, often with a significant performance hit.

Caching depends upon both temporal and spatial locality to
improve system performance. Put another way, when a par-
ticular cache line is retrieved into a cache memory, there is a
good likelihood that data from that cache line will be needed
again, so the next access to data in the same cache line will
result in a “cache hit” and thus not incur a performance
penalty.

Other manners of accelerating performance in connection
with caching include techniques such as instruction prefetch-
ing, branch prediction and data prefetching. Instruction
prefetching, for example, is typically implemented in a
microprocessor, and attempts to fetch instructions from
memory before they are needed, so that the instructions will
hopefully be cached when they are actually needed. Branch
prediction, which is also typically implemented in a micro-
processor, extends instruction prefetching by attempting to
predict which branch of a decision will likely be taken, and
then prefetching instructions from the predicted branch. Data
prefetching, which is often implemented in a separate com-
ponent from a microprocessor (but which may still be dis-
posed on the same integrated circuit device), attempts to
detect patterns of data access and prefetch data that is likely to
be needed based upon any detected patterns.

From the perspective of an executing thread, therefore, as a
particular thread executes, more and more of the instructions
and data used by a thread will progressively become cached,
and thus the execution of the thread will tend to be more
efficient the longer the thread is executed.

However, given that the same premise applies to all of the
threads executing in a multithreaded computer, whenever a
thread is suspended as a result of a context switch, and then is
later resumed as a result of another context switch, it is likely
that some or all of the instructions and data that were cached
prior to suspending the thread will no longer be cached when
the thread is resumed (principally due to the caching of
instructions and data needed by other threads that were
executed in the interim). A greater number of cache misses
then typically occur, thus negatively impacting overall system
performance. Prefetching and branch prediction, which rely
on historical data, also typically provide little or no benefit for
a resumed thread upon its initial resumption of execution, as
the prefetching of instructions and data cannot be initiated
until after the thread resumes its execution.

Therefore, a significant need has arisen in the art for a
manner of minimizing the adverse performance impact asso-
ciated with context switching in a multithreaded computer.

SUMMARY OF THE INVENTION

The invention addresses these and other problems associ-
ated with the prior art by initiating, in connection with a
context switch operation, a prefetch of data likely to be used
by a thread prior to resuming execution of that thread. Put
another way, once it is known that a context switch will be
performed to a particular thread, embodiments consistent
with the invention initiate prefetching of data on behalf of that
thread so that when execution of the thread is resumed, more
of'the working state for the thread is likely to be cached, or at
least in the process of being retrieved into cache memory. As
a result, in many instances the cache-related performance
penalties associated with context switching can be reduced,
and thus overall system performance can be increased.

20

25

30

35

40

45

50

55

60

65

4

These and other advantages and features, which character-
ize the invention, are set forth in the claims annexed hereto
and forming a further part hereof. However, for a better under-
standing of the invention, and of the advantages and objec-
tives attained through its use, reference should be made to the
Drawings, and to the accompanying descriptive matter, in
which there is described exemplary embodiments of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is ablock diagram of an exemplary apparatus incor-
porating context switch prefetching consistent with the inven-
tion.

FIG. 2 is a block diagram of the interconnection of a
processor with a main storage via a cache system in the
apparatus of FIG. 1.

FIG. 3 is a flowchart illustrating the program flow of a
context switch routine executed by the apparatus of FIG. 1.

FIG. 4 is a functional timeline illustrating the sequence of
operations occurring during execution of the context switch
routine of FIG. 3.

FIG. 5 is a flowchart illustrating the program flow of an
alternate context switch routine to that illustrated in FIG. 3.

FIG. 6 is a functional timeline illustrating the sequence of
operations occurring during execution of the context switch
routine of FIG. 5.

FIG. 7 is a block diagram of an exemplary implementation
of the data prefetcher referenced in FIG. 2.

FIG. 8 is a block diagram of an exemplary implementation
of the L1 data cache referenced in FIG. 2.

FIG. 9 is a flowchart illustrating the program flow of an
exemplary initiate instruction prefetch routine executed by
the apparatus of FIG. 1 during a context switch.

FIG. 10 is a flowchart illustrating the program flow of
another exemplary initiate instruction prefetch routine
executed by the apparatus of FIG. 1 during a context switch.

FIG. 11 is a flowchart illustrating the program flow of an
exemplary initiate data prefetch routine executed by the appa-
ratus of FIG. 1 during a context switch.

FIG. 12 is a flowchart illustrating the program flow of
another exemplary initiate data prefetch routine executed by
the apparatus of FIG. 1 during a context switch.

DETAILED DESCRIPTION

The embodiments discussed hereinafter utilize context
switch prefetching to prefetch data likely to be used by a
thread prior to resumption of execution of the thread. In this
context, data that is likely to be used by a thread may be
considered to include both the instructions that are executed
by a thread, as well as the data that is processed by those
instructions as a result of their execution.

As will become more apparent below, context switch
prefetching may be used to prefetch data for a thread in
connection with a context switch to that thread, or in the
alternative, in connection with a context switch to another
thread (e.g., when the thread for which the data is prefetched
will be resumed upon the next context switch). Moreover, the
prefetching may be software- or hardware-based, and may be
performed for instructions, data to be processed by instruc-
tions, or both. Various methods of initiating a prefetch,
including issuing a touch instruction, programming a hard-
ware prefetcher and/or writing control data to a buffer, may
also be used.

Furthermore, the types of state information that may be
stored in connection with saving the working state of a thread,

US 8,141,098 B2

5

and later used to initiate a prefetch during a context switch,
may vary in different embodiments. For example, for
prefetching instructions, state information such as a program
counter, branch prediction information, hardware prefetcher
state information, and/or cache state information such as tag
array data, most-recently-used (MRU) data and/or way pre-
diction data (among others), may be used. Likewise, for
prefetching data processed by instructions, state information
such as cache history information, hardware prefetcher state
information, base addresses and strides used in connection
with data prefetching, and/or cache state information such as
tag array data, most-recently-used (MRU) data and/or way
prediction data (among others), may be used. Furthermore,
precisely when during a context switch a prefetch is initiated
can vary in different embodiments, e.g., before restoring a
working state, while restoring a working state, after restoring
a working state, or even during execution of another thread
scheduled for execution prior to resumption of the thread for
which the prefetch is to be initiated.

It will be appreciated that a number of other modifications
and variations may be utilized in other embodiments consis-
tent with the invention. The invention is therefore not limited
to the specific embodiments disclosed hereinafter.

Turning now to the Drawings, wherein like numbers
denote like parts throughout the several views, FIG. 1 illus-
trates a computer 10 incorporating context switch prefetching
consistent with the invention. Computer 10 generically rep-
resents, for example, any of a number of multi-user comput-
ers such as a network server, a midrange computer, a main-
frame computer, etc. However, it should be appreciated that
the invention may be implemented in other computers and
data processing systems, e.g., in single-user computers such
as workstations, desktop computers, portable computers, and
the like, or in other programmable electronic devices (e.g.,
incorporating embedded controllers and the like), such as set
top boxes, game machines, etc.

Computer 10 generally includes one or more system pro-
cessors 12 coupled to a main storage 14 through one or more
levels of cache memory disposed within a cache system 16.
Furthermore, main storage 14 is coupled to a number of types
of'external devices via a system input/output (1/O) system 18,
e.g., one or more networks 20, one or more workstations 22
and one or more mass storage devices 24. Any number of
alternate computer architectures may be used in the alterna-
tive.

Also shown resident in main storage 14 is a typical soft-
ware configuration for computer 10, including an operating
system 26 (which may include various components such as
kernels, device drivers, runtime libraries, etc.) accessible by
one or more applications 28. As will become more apparent
below, context switch prefetching is typically implemented in
whole or in part in an operating system, and in particular,
within the thread management and scheduling components
thereof. Moreover, as will also become more apparent below,
context switch prefetching may be implemented with or with-
out dedicated hardware components and/or modifications to
conventional hardware components, and in particular, purely
via software executing on a conventional hardware platform.

In general, the software-implemented portions of the rou-
tines executed to implement the embodiments of the inven-
tion, whether implemented as part of an operating system or
a specific application, component, program, object, module
or sequence of instructions, or even a subset thereof, will be
referred to herein as “computer program code,” or simply
“program code.” Program code typically comprises one or
more instructions that are resident at various times in various
memory and storage devices in a computer, and that, when

20

25

30

35

40

45

50

55

60

65

6

read and executed by one or more processors in a computer,
cause that computer to perform the steps necessary to execute
steps or elements embodying the various aspects of the inven-
tion. Moreover, while the invention has and hereinafter will
be described in the context of fully functioning computers and
computer systems, those skilled in the art will appreciate that
the various embodiments of the invention are capable of being
distributed as a program product in a variety of forms, and that
the invention applies equally regardless of the particular type
of computer readable signal bearing media used to actually
carry out the distribution. Examples of computer readable
signal bearing media include but are not limited to recordable
type media such as volatile and non-volatile memory devices,
floppy and other removable disks, hard disk drives, magnetic
tape, optical disks (e.g., CD-ROMs, DVDs, etc.), among oth-
ers, and transmission type media such as digital and analog
communication links.

In addition, various program code described hereinafter
may be identified based upon the application within which it
is implemented in a specific embodiment of the invention.
However, it should be appreciated that any particular program
nomenclature that follows is used merely for convenience,
and thus the invention should not be limited to use solely in
any specific application identified and/or implied by such
nomenclature. Furthermore, given the typically endless num-
ber of manners in which computer programs may be orga-
nized into routines, procedures, methods, modules, objects,
and the like, as well as the various manners in which program
functionality may be allocated among various software layers
that are resident within a typical computer (e.g., operating
systems, libraries, API’s, applications, applets, etc.), it should
be appreciated that the invention is not limited to the specific
organization and allocation of program functionality
described herein.

Those skilled in the art will recognize that the exemplary
environment illustrated in FIG. 1 is not intended to limit the
present invention. Indeed, those skilled in the art will recog-
nize that other alternative hardware and/or software environ-
ments may be used without departing from the scope of the
invention.

FIG. 2 next illustrates the interconnection of one of pro-
cessors 12 from computer 10 with main storage 14 via cache
system 16. In the illustrated implementation, cache system 16
is shown including three levels of cache memory, with a first
level (I1) including separate instruction and data caches 30,
32, and with second and third level (L2 and L.3) caches 34, 36
configured to cache both instructions and data. As is known in
the art, each of caches 30-36 may be integrated onto the same
integrated circuit device or chip as processor 12, or may be
disposed on one or more external chips. Moreover, each of
caches 30-36 may be dedicated to processor 12, or shared by
processor 12 with one or more additional processors. Further-
more, as noted above, any processor 12 may include one or
more cores providing separate paths of execution, and one or
more cache memories may be dedicated to individual cores in
some implementations.

Consistent with the invention, a context switch operation is
utilized to initiate a prefetch of data likely to be used by a
thread, prior to resumption of execution of that thread. In this
regard, a prefetch of data may result in the retrieval of data
into any or all of the cache memories in a cache system.

Moreover, initiation of a prefetch may be performed
entirely in software, entirely in hardware, or using a combi-
nation of hardware and software. In this regard, for imple-
mentations that are wholly or partially reliant on hardware, a
hardware-based prefetcher, e.g., a data prefetcher 38, may be
used to provide data prefetching functionality. In addition, in

US 8,141,098 B2

7

some embodiments, it may be desirable to additionally
include hardware-based prefetching of instructions, e.g.,
using an instruction prefetcher 40. In some embodiments, the
functionality of prefetchers 38 and 40 may be combined. In
other implementations, a cache controller may be configured
to be controlled directly to prefetch instructions and/or data
during a context switch as required.

A hardware-based prefetcher typically includes function-
ality to provide commands to a cache controller in cache
system 16 and/or to main storage 14 to initiate the retrieval of
data in a particular cache line. As will become more apparent
below, many conventional data prefetchers attempt to detect
patterns in data access, and prefetch data according to such
detected patterns. Instruction prefetchers, on the other hand,
often are incorporated directly into a processor, and typically
prefetch based upon the instruction stream, often by prefetch-
ing subsequent cache lines to that pointed to be the program
counter, and optionally using branch prediction to prefetch
instructions from one or more decision paths.

To control a hardware-based prefetcher in response to a
context switch, a number of different configurations may be
used. For example, a prefetcher may be directly readable and
writable by a processor to implement software-based control.
In other embodiments, a buffer, e.g., one of buffers 42, 44,
which may be logical or physical in nature, may be used to
store prefetch control data that is read out by a prefetcher to
prefetch data. For example, in some embodiments, software
may write prefetch control data to such a buffer, and a
prefetcher may be configured to read out the prefetch control
data in response to detection of a context switch. In addition,
in some embodiments, a write to a buffer may be used to
trigger a prefetch by a hardware prefetcher.

Where initiation of a prefetch is entirely implemented in
software, such initiation may be implemented, for example,
through the use of dedicated instructions, such as touch
instructions (e.g., dcbt in the PowerPC ISA), or through
execution of load or store instructions to appropriate memory
addresses (which are then handled by the cache system if the
memory addresses are not cached).

Now turning to FIG. 3, an exemplary implementation of a
context switch routine 50 is illustrated. Routine 50 may be
executed, for example, by the scheduling logic of a multi-
threaded operating system Routine 50 may also be executed
by other operating system components and/or within a runt-
ime library, and may be triggered by a number of different
events. For example, a context switch may be triggered by
expiration of a hardware or software timer, e.g., once a time
slice allocated to a thread has expired. A context switch may
also be triggered by a thread voluntarily releasing or suspend-
ing, e.g., if the thread is waiting on a disk access. A context
switch may also be triggered by a preemptive action such as
a higher priority thread or an interrupt.

Routine 50 begins in block 52 by saving the working state
of the current thread being executed, including any prefetch
control data as needed to indicate what data and/or instruc-
tions should be prefetched prior to resumption of execution of
the thread. Next, block 54 determines which thread should be
executed, e.g., using any number of known thread scheduling
algorithms, e.g., a round-robin algorithm. Block 56 then
retrieves the stored prefetch control data for the next thread,
and block 58 initiates a data and/or instruction prefetch on
behalf of the next thread, using any of the variations discussed
herein. Block 60 then restores the working state of the next
thread, in a manner generally known in the art. Execution of
the next thread is then resumed in block 62, and routine 50 is
complete.

20

25

30

35

40

45

50

55

60

65

8

As shown in FIG. 4, which illustrates the chronological
progression during a context switch from a thread T1 to a
thread T2, initiation of a prefetch prior to restoring the work-
ing state of thread T2 enables the fetching of data and/or
instructions to occur in parallel with restoration in the work-
ing state of thread T2. As such, when thread T2 resumes
execution, some or all of the data and/or instructions used by
the thread will be cached, or at least in the process of being
cached.

As such, initiation of the prefetch during the context switch
of FIG. 4 occurs prior to resuming execution of thread T2, as
well as prior to restoring the working state for thread T2.
However, it will be appreciated that initiation of a prefetch
may occur in other sequences. For example, initiation of a
prefetch may occur concurrently with or otherwise during
restoration of a working state, or even prior to saving the
working state of the thread being suspended. In addition, as
illustrated by routine 50' of FIG. 5, initiation of a prefetch on
behalf of a thread may occur prior to even the context switch
to that thread.

In particular, routine 50' illustrates an implementation of a
context switch routine where initiation of a prefetch on behalf
of a thread occurs during a context switch to another thread
scheduled for execution prior to that thread, e.g., immediately
prior thereto. Routine 50' begins in block 64 by storing the
state of the current thread. Next, block 66 determines the
next-next thread to be executed, i.e., the thread that will be
executed after the thread to which this context switch pertains
has resumed execution. Block 68 then retrieves the prefetch
control data for the next-next thread. Thereafter, block 70
initiates a prefetch of data and/or instructions on behalf of the
next-next thread, and blocks 72 and 74 respectively restore
the state of the next thread and initiate execution of the thread.

As represented by block 70", which may be executed in lieu
otf'block 70, it may be desirable to initiate prefetching at other
points during routine 50', e.g., after restoring the state of the
next thread. In addition, in other embodiments, initiating a
prefetch may occur at any point in the context switch, and
may even occur during execution of the next thread, but prior
to the subsequent context switch to the next-next thread.

Thus, as illustrated in FIG. 6, the chronological progres-
sion of a context switch from a thread T1 to a thread T2 is
illustrated. In this context switch, a next-next thread (here
designated as thread T3) is determined, and data and/or
instructions are prefetched during the context switch. Given
that the execution of thread T2 and the context switch to
thread T3 still must occur prior to usage of the data and/or
instructions prefetched on behalf of thread T3, it will be
appreciated that routine 50' in general provides additional
time to ensure that more necessary data and/or instructions
will be cached upon resuming execution of a suspended
thread.

It will also be appreciated that, in the context of the inven-
tion, initiation of a prefetch prior to resuming execution of a
thread does not necessarily result in the process of fetching
data and/or instructions being complete as of resumption of
execution of the thread, or even that active data transfer will
be initiated as of resumption of execution. So long as the
process of prefetching is initiated prior to such resumption,
and typically while the thread is suspended, it is anticipated
that the latency associated with retrieving needed data and/or
instructions will be improved versus retrieving the data/in-
structions as needed during execution of the thread.

As noted above, the type of state information that may be
stored as part of the working state of a thread, and which may
be used to generate prefetch control data used in the initiation
of prefetching, may vary in different embodiments. For

US 8,141,098 B2

9

example, for prefetching instructions, state information such
as a program counter, branch prediction information, hard-
ware prefetcher state information, and/or cache state infor-
mation such as tag array data, most-recently-used (MRU)
data and/or way prediction data (among others), may be used.
Likewise, for prefetching data processed by instructions,
state information such as cache history information, hardware
prefetcher state information, base addresses and strides used
in connection with data prefetching, and/or cache state infor-
mation such as tag array data, most-recently-used (MRU)
data and/or way prediction data (among others), may be used.

One exemplary implementation of hardware-based data
prefetcher 38, for example, includes a prefetch engine 80 with
a scheduler block 82 that interfaces with an increment/decre-
ment control block 84 that updates entries 88 in a stride table
86. Each entry 88, in particular, includes a base address value
and a stride value, with the base address value representing a
current address to be fetched, and the stride value represent-
ing the amount to add or subtract from the base address to
generate a next address to be fetched.

Data prefetcher 38 generally operates by attempting to
discern access patterns among memory accesses, and predict-
ing which data will likely be needed based upon those pat-
terns. More specifically, once a base address and stride value
are determined, the base address is fetched via a command
from scheduler 82 to the cache system, and the base address
is summed with the stride value by increment/decrement
control block 84, with the new base address value written
back into the table. Scheduler 82 additionally arbitrates
between multiple entries, and throttles the issuance of cache
fetch requests based upon cache workload information pro-
vided by the cache system.

Entries 88 may or may not each be associated with particu-
lar threads. The initial values stores in the entries are typically
determined by analyzing a history table 90 having entries 92
for the last N cache lines accessed (or alternatively the last N
addresses accessed). A stream allocation controller 94 per-
forms such analysis and stores appropriate values in stride
table 96 for regular strides that are detected in the data access
pattern.

In the illustrated embodiment, it may be desirable to store
state information from stride table 86, history table 90, or
both, in connection with context switch prefetching. In this
regard, it may be desirable to provide a read/write control
block 96 to provide a save/restore port for processor access to
the prefetcher. In addition, the prefetch control data that ini-
tiates prefetching on behalf of a thread may use the save/
restore port to update the state of the prefetcher, e.g., by
restoring the state of particular entries in either or both of
tables 86, 90. Where certain entries are only associated with
particular threads, for example, it may be desirable to save
and restore only those entries that are relevant for a particular
thread.

In addition, it may be desirable to provide the ability to
modify an entry in either table. For example, in the case of
stride-based prefetching, it may be desirable to redo one or
more previous fetching operations. In such an instance, for
example, it may be desirable to subtract one or a multiple of
the stride value from the current base address stored as aresult
of a context switch, prior to storing the base address in the
stride value. In many instances, this results in repeating one or
more prior fetch operations that were performed prior to
suspension of a thread. In other embodiments, it may be
desirable to simply utilize the history table to identify cache
lines that should be prefetched on behalf of a particular
thread. It will also be appreciated that the invention may be

20

25

30

35

40

45

50

55

60

65

10

used with other types of hardware prefetchers, e.g., those that
attempt to prefetch linked lists, irregular strides, etc.

As another example of state information that may be saved
and/or restored in connection with context-based prefetching,
FIG. 8 illustrates one implementation of data cache 32 in
greater detail. In this implementation, data cache 32 is a direct
mapped (non-associative) cache. The cache is accessed via
addresses 100 that are partitioned into tag, index and offset
fields 102, 104, 106. Index 104 is used to index a tag array
108, which stores tags, and a data array 110, which stores
cache lines, in entries 112, 114, respectively. A decision block
116 compares the tag stored at an entry 112 in tag array 110
with the tag field 102 of a provided address. Upon finding a
match (indicating a cache hit), the index 104 is provided via a
block 118 to data array 110, resulting in the output of the
cache line stored at the indexed entry 114. Upon not finding a
match (indicating a cache miss), block 116 passes the address
to the next level of cache to request that the cache line for the
requested address be retrieved from that other cache.

From the perspective of context switch prefetching, it may
be desirable to retrieve the contents of tag array 108 and store
such contents as part of the state information for a thread, e.g.,
via a read/write control block 120. Thereafter, the tag data
may be used to request cache lines identified by the tag array
as being previously cached (it will be appreciated that the
index for a particular tag array entry can be derived from its
position in the array when it is desirable to generate a cache
line for a tag array entry). Moreover, while cache 32 is imple-
mented as a direct-mapped cache, in other embodiments asso-
ciative, or multi-way caches, may be used. In such instances,
it may also be desirable to store other cache state data, e.g.,
MRU data and/or way prediction data.

It will also be appreciated that analysis of data and/or
instruction access patterns may occur purely in software, e.g.,
by analyzing instruction data flow. The invention is therefore
not limited to the particular hardware implementations dis-
cussed herein.

Now turning to FIGS. 9-12, four specific implementations
of prefetch initiation consistent with the invention are shown.
It will be appreciated that multiple of such routines may be
executed in any given context switch.

FIG. 9 illustrates an initiate instruction prefetch routine
130 that implements software-based instruction prefetching.
Routine 130 begins in block 132 by retrieving a program
counter (PC) stored in the state information for a thread.
Block 134 then issues a touch instruction, or any other appro-
priate memory access instruction, to the cache line pointed to
by the PC. Thereafter, block 136 optionally initiates prefetch-
ing for other cache lines. For example, it may be desirable to
initiate prefetching for the next N cache lines following that
identified by the PC. It may also be desirable in other embodi-
ments to prefetch other execution paths, e.g., using branch
prediction data incorporated into the state information such as
in a Branch Target Address Cache (BTAC).

FIG. 10 illustrates an alternate initiate instruction prefetch
routine 140 that implements hardware-based instruction
prefetching. Routine 140 begins in block 142 by retrieving the
PC stored in the state information for the thread. Block 144
then instructs the hardware instruction prefetcher to prefetch
one or more cache lines starting with that identified by the PC.
As above, such prefetching may simply prefetch adjacent
cache lines and/or prefetch other cache lines based upon
branch prediction techniques.

FIG. 11 illustrates an initiate data prefetch routine 150 that
implements stride-based data prefetching. Routine 150
begins in block 152 by retrieving a base address and stride
value from the state information. Block 154 then optionally

US 8,141,098 B2

11

modifies the base address by subtracting one or a multiple of
the stride value from the base address, effectively redoing
prior data accesses. Block 156 then writes the (potentially
modified) base address and stride value into a hardware data
prefetcher. As a result of such an update, the hardware data
prefetcher will then begin prefetching starting at the base
address.

FIG. 12 illustrates an alternate initiate data prefetch routine
160 that performs cache line- or record-based prefetching.
Routine 160 begins in block 162 by retrieving a cache history
from state information for the thread, e.g., using data
retrieved from a tag array and/or a history table. Block 164
then issues touch instructions, or other appropriate memory
access instructions, for the last N cache lines, thus effectively
repeating data access activities that occurred during prior
executions of a thread.

Various additional modifications may be made to the illus-
trated embodiments without departing from the spirit and
scope of the invention. Therefore, the invention lies in the
claims hereinafter appended.

What is claimed is:

1. An apparatus, comprising:

a hardware prefetcher; and

processor logic coupled to the hardware prefetcher and

configured to perform a context switch operation in a
multithreaded computer by initiating a prefetch of data
likely to be used by a thread prior to resuming execution
of the thread, wherein the data for which the prefetch is
initiated is determined using state information stored
during a prior context switch from the thread, wherein
the processor logic is configured to initiate the prefetch
further by retrieving the state information stored during
the prior context switch from the thread, wherein the
state information includes hardware prefetcher state
information, wherein the processor logic is configured
to initiate the prefetch further by initializing the hard-
ware prefetcher using the hardware prefetcher state
information, wherein the hardware prefetcher state
information includes a base address value, wherein the
hardware prefetcher state information further includes a
stride value, and wherein the processor logic is config-
ured to initialize the hardware prefetcher by initializing
the hardware prefetcherto prefetch starting at an address
calculated by subtracting at least one of the stride value
and a multiple of the stride value from the base address,
wherein the processor logic is configured to initialize the
hardware prefetcher further by initializing the hardware
prefetcher to repeat at least one prefetch operation per-
formed prior to the prior context switch from the thread,
wherein the state information identifies at least one
cache line accessed prior to the prior context switch from
the thread, and wherein the processor logic is configured
to initiate the prefetch further by initiating prefetching of
the cache line identified by the state information.

2. The apparatus of claim 1, wherein the processor logic is
configured to initiate the prefetch of data likely to be used by
a thread by initiating a prefetch of at least one instruction
likely to be executed by the thread.

3. The apparatus of claim 1, wherein the processor logic is
configured to initiate the prefetch of data likely to be used by
a thread by initiating a prefetch of data likely to be processed
by at least one instruction executed by the thread.

4. The apparatus of claim 1, wherein the processor logic is
further configured to restore a working state for the thread and
resume execution of the thread upon restoration of the work-
ing state therefor.

20

25

30

35

40

45

50

55

60

65

12

5. The apparatus of claim 4, wherein the processor logic is
configured to initiate the prefetch while restoring the working
state for the thread.

6. The apparatus of claim 4, wherein the processor logic is
configured to initiate the prefetch prior to restoring the work-
ing state for the thread.

7. The apparatus of claim 1, wherein the context switch
operation includes context switching to another thread sched-
uled for execution prior to a context switch to the thread.

8. The apparatus of claim 7, wherein the processor logic is
configured to initiate the prefetch during at least one of restor-
ing a working state for the other thread and resuming execu-
tion of the other thread.

9. The apparatus of claim 1, wherein the processor logic is
configured to instruct the hardware prefetcher to prefetch the
data responsive to an operating system in the computer.

10. The apparatus of claim 1, wherein the processor logic is
configured to initiate the prefetch by executing a touch
instruction.

11. The apparatus of claim 10, wherein the processor logic
is configured to execute the touch instruction responsive to an
operating system in the computer.

12. The apparatus of claim 1, wherein the processor logic is
configured to initiate the prefetch by storing prefetch control
data for the thread in a buffer, the processor logic further
configured to retrieve the prefetch control data from the buffer
and perform a prefetch operation based upon the prefetch
control data.

13. The apparatus of claim 1, wherein the processor logic is
configured to retrieve the data into a cache memory in
response to initiating the prefetch.

14. The apparatus of claim 1, wherein the processor logic is
further configured to store the state information in connection
with storing a working state for the thread during a context
switch from the thread.

15. The apparatus of claim 1, wherein the state information
includes cache state information.

16. An apparatus, comprising:

a hardware prefetcher; and

processor logic coupled to the hardware prefetcher and

configured to perform a context switch operation in a
multithreaded computer by initiating a prefetch of data
likely to be used by a thread prior to resuming execution
of the thread, wherein the data for which the prefetch is
initiated is determined using state information stored
during a prior context switch from the thread, wherein
the processor logic is configured to initiate the prefetch
further by retrieving the state information stored during
the prior context switch from the thread, wherein the
state information includes hardware prefetcher state
information, wherein the processor logic is configured
to initiate the prefetch further by initializing the hard-
ware prefetcher using the hardware prefetcher state
information, wherein the hardware prefetcher state
information includes a base address value, wherein the
hardware prefetcher state information further includes a
stride value, wherein the processor logic is configured to
initialize the hardware prefetcher by initializing the
hardware prefetcher to prefetch starting at an address
calculated by subtracting at least one of the stride value
and a multiple of the stride value from the base address,
wherein the context switch operation includes context
switching to another thread scheduled for execution
prior to a context switch to the thread, wherein the pro-
cessor logic is configured to initiate the prefetch respon-
sive to the thread being scheduled for execution imme-
diately after execution of the other thread, wherein the

US 8,141,098 B2

13 14
state information identifies at least one cache line 18. An apparatus, comprising:
accessed prior to the prior context switch from the a hardware prefetcher; and
thread, and wherein the processor logic is configured to processor logic coupled to the hardware prefetcher and
initiate the prefetch further by initiating prefetching of configured to perform a context switch operation in a
the cache line identified by the state information. 5 multithreaded computer by initiating a prefetch of data

likely to be used by a thread prior to resuming execution
of the thread, wherein the data for which the prefetch is
initiated is determined using state information stored

17. An apparatus, comprising:
a hardware prefetcher; and

processor logic coupled to the hardware prefetcher and during a prior context switch from the thread, wherein

configured to perform a context switch operation in a

the processor logic is configured to initiate the prefetch

multithreaded computer by initiating a prefetch of data 1o further by retrieving the state information stored during
likely to be used by a thread prior to resuming execution the prior context switch from the thread, wherein the
of the thread, wherein the data for which the prefetch is state information includes hardware prefetcher state
initiated is determined using state information stored information, wherein the processor logic is configured
during a prior context switch from the thread, wherein |, to 1n1t1ateftheilpr efet.ch ful?hir b&/ 1mt1a11211{1g gle hard-
the processor logic is configured to initiate the prefetch ware prefetcher using the hardware preletcher state
. C . . . information, wherein the hardware prefetcher state
furthq by retrieving t.he state information stored qur g information includes a base address value, wherein the
the prior context switch from the thread, wherein the hardware prefetcher state information further includes a
state information includes hardware prefetcher state stride value, wherein the processor logic is configured to
information, wherein the processor logic is configured 20 initialize the hardware prefetcher by initializing the
to initiate the prefetch further by initializing the hard- hardware prefetcher to prefetch starting at an address
ware prefetcher using the hardware prefetcher state calculated by subtracting at least one of the stride value
information, wherein the hardware prefetcher state and a multiple of the stride value from the base address,
information includes a base address value, wherein the wherein the state information includes cache state infor-
hardware prefetcher state information further includes a 25 mation and wherein the cache state information includes
stride value, wherein the processor logic is configured to at least one of tag array information, most recently used
initialize the hardware prefetcher by initializing the information, and way prediction 11.1f0rmat10n.)
hardware prefetcher to prefetch starting at an address ~ 19. The apparatus of claim 18, wherein the processor logic
calculated by subtracting at least one of the stride value 18 configured to initialize the hardware prefetcher by initial-
and a multiple of the stride value from the base address, 30 izing the hardware prefetcher to repeat at least one prefetch
wherein the state information identifies at least one operation performed prior to the prior context switch from the
cache line accessed prior to the prior context switch from thread. h £ clai herein th inf
the thread, wherein the processor logic is configured to . 20.' T € apparatus of claim 18, wherein the state informa-
initiate the prefetch further by initiating prefetching of tion identifies at least one cache line accesseq prior to the
35 prior context switch from the thread, and wherein the proces-

the cache line identified by the state information, and
wherein the processor logic is configured to initiate
prefetching of the cache line identified by the state infor-
mation by executing a touch instruction to an address in
the cache line.

sor logic is configured to initiate the prefetch further by ini-
tiating prefetching of the cache line identified by the state
information.

