

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/043873 A1

(43) International Publication Date
24 March 2016 (24.03.2016)

WIPO | PCT

(51) International Patent Classification:
G09G 3/32 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2015/044796

(22) International Filing Date:
12 August 2015 (12.08.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/052,720 19 September 2014 (19.09.2014) US

(71) Applicant: KOPIN CORPORATION [US/US]; 125 North Drive, Westborough, MA 01581 (US).

(72) Inventors: SEO, Yong, Seok; 3728 Louis Road, Palo Alto, CA 94303 (US). KIM, Jin, Kuk; 1151 Quail Ridge Court, San Jose, CA 95120 (US). KIM, Seung, Youb; 4295 Bidwell Drive, Fremont, CA 94538 (US). KIM, Jang, Ho; 3783 Woodleaf Court, San Jose, CA 95117 (US).

(74) Agents: SMITH, James, M. et al.; Hamilton, Brook, Smith & Reynolds, P.C., 530 Virginia Rd, P.O. Box 9133, Concord, MA 01742-9133 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: ACTIVE MATRIX LED PIXEL DRIVING CIRCUIT AND LAYOUT METHOD

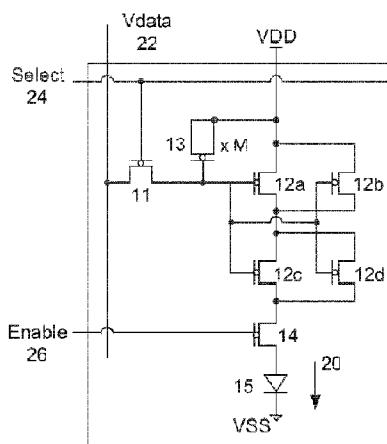


FIG. 2

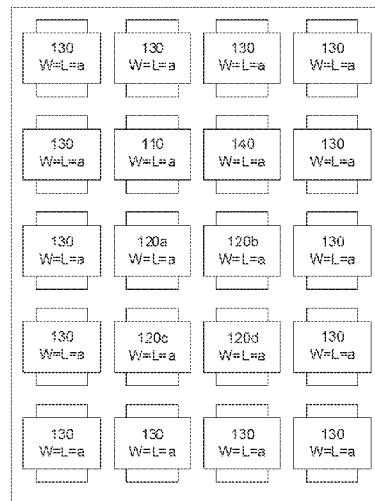


FIG. 4

(57) Abstract: A unit pixel driver circuit includes a capacitor (13) configured to store a voltage corresponding to a desired pixel brightness and a control block. The control block may include a first (12a), second (12b), third (12c) and fourth (12d) transistor, all of which are connected together, both in parallel and in series. The control block controls, based on the voltage stored in the capacitor, the amount of current flowing through a pixel LED (15). The first transistor, second transistor, third transistor and fourth transistor all share a common gate geometry size.

WO 2016/043873 A1

ACTIVE MATRIX LED PIXEL DRIVING CIRCUIT AND LAYOUT METHOD

RELATED APPLICATION(S)

[0001] This application claims the benefit of U.S. Provisional Application No. 62/052,720, filed on September 19, 2014. This application is related to U.S. Application No. 14/732,058, filed on June 5, 2015. The entire teachings of the above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] Mobile computing devices, such as notebook PCs, smart phones, and tablet computing devices, are now common tools used for producing, analyzing, communicating, and consuming data in both business and personal life. Consumers continue to embrace a mobile digital lifestyle as the ease of access to digital information increases with high-speed wireless communications technologies becoming ubiquitous. Popular uses of mobile computing devices include displaying large amounts of high-resolution computer graphics information and video content, often wirelessly streamed to the device.

[0003] While these devices typically include a display screen, the preferred visual experience of a high-resolution, large format display cannot be easily replicated in such mobile devices because the physical size of such device is limited to promote mobility. Another drawback of the aforementioned device types is that the user interface is hands-dependent, typically requiring a user to enter data or make selections using a keyboard (physical or virtual) or touch-screen display.

[0004] As a result, consumers are now seeking a hands-free high-quality, portable, color display solution to augment or replace their hands-dependent mobile devices.

[0005] One example of such a display solution is the active matrix light emitting diode (LED) display. The active matrix LED display uses a storage capacitor, for each pixel, that is charged by a driving voltage during a display scan period. The capacitor stores the voltage until the next scan frame, at which time the capacitor stores a new voltage corresponding to that scan frame. The stored voltage provides a reference to the pixel circuit for driving current to LED during the one frame time – the amount of current driven depends on the value of the stored voltage.

[0006] For the example active matrix LED display shown in FIG. 1, each unit pixel consists of transistors 1, 2 and 4, a capacitor 3, and an LED 5. The gate of the transistor 1 receives a select signal through a Select Line (SL) while its source receives a voltage data signal through a VData line. The voltage data signal is transmitted to the gate of the transistor 2 when the transistor 1 is turned on by the select signal and the voltage level of the data signal VData turns on the transistor 2 to generate a driving current through the transistor 2 lighting the LED 5 during the transistor 4 turn on time.

[0007] A disadvantage of the circuit depicted in the example of FIG. 1 is that the output of the LED driving circuit (i.e., the LED driving current) may be sensitive to circuit parameter variations. Such parameter variations may include, for example, variations of the transistors' threshold voltages, and variations in the widths and lengths of the transistor physical gate geometries. The differences between the driving currents from pixel to pixel may lead to non-uniform illumination on the active matrix LED display.

SUMMARY OF THE INVENTION

[0008] The described embodiments provide a circuit for controlling a pixel-driving current. The circuit reduces and/or mitigates the effects of process variations inherent in the manufacturing processes used to produce such driving circuits. The described embodiments accomplish the reduction and/or mitigation by forming a current control block that consists of a combination of transistors connected in both parallel and serial. The described embodiments also maintain a common gate geometry size across many or all of the transistors in the current controlling circuit.

[0009] In one aspect, the invention may be a unit pixel driver circuit that includes a capacitor configured to store a voltage corresponding to a desired pixel brightness, a control block having two or more transistors connected together in parallel and in series. The control block may be configured to control an amount of current flowing through a pixel LED corresponding to the voltage stored in the capacitor. The two or more transistors of the control block configured to share a common gate geometry size.

[0010] In one embodiment, the control block may further include a first transistor, a second transistor, a third transistor, and a fourth transistor. All four transistors may be connected together both in parallel and in series. The gates of the first transistor, the second transistor, the third transistor and the fourth transistor may be electrically coupled to one

another to form a first node. The drains of the first transistor and the second transistor may be electrically coupled to one another to form a second node. The sources of the first transistor and the second transistor, and the drains of the third transistor and the fourth transistor may be electrically coupled to one another to form a third node. The sources of the third transistor and the fourth transistor may be electrically coupled to one another.

[0011] In one embodiment, the unit pixel driver circuit may further include a data transistor. The source of the data transistor may be electrically coupled to a data signal line, the drain of the data transistor may be electrically coupled to the first node, and the gate of the data transistor may be electrically coupled to a select line configured to convey a select signal.

[0012] In another embodiment, the unit pixel driver may further include a gating transistor. The source of the gating transistor may be electrically coupled to a reference voltage, the drain of the gating transistor may be electrically coupled to the fourth node, and the gate of the gating transistor may be electrically coupled to an enable line configured to convey an enable signal.

[0013] In another embodiment, the transistors are disposed on a substrate such that the first transistor is adjacent to the second transistor and the third transistor, the second transistor is adjacent to the first transistor and the fourth transistor, the third transistor is adjacent to the first transistor and the fourth transistor, and the fourth transistor is adjacent to the second transistor and the third transistor.

[0014] One embodiment further includes a data transistor and a gating transistor. The gating transistor and a data transistor may be disposed on the substrate such that the data transistor is adjacent to the first transistor and the gating transistor, and the gating transistor is adjacent to the second transistor and the data transistor.

[0015] In one embodiment, the first transistor, the second transistor, the third transistor, the fourth transistor, the data transistor and the gating transistor form a transistor group, and the capacitor is distributed about a perimeter of the transistor group.

[0016] In another embodiment, the capacitor is implemented using one or more transistors. The one or more transistors that implement the capacitor may share a common gate geometry size with the two or more transistors of the control block.

[0017] In another aspect, the invention may be a unit pixel driver circuit that includes two or more transistors connected together in parallel and in series. The two or more transistors

may be configured to control an amount of current flowing through a pixel LED corresponding to a signal applied to gates of the two or more transistors. The two or more transistors may be distributed on a substrate in a uniform pattern, the two or more transistors configured to share a common gate geometry size. In one embodiment, the uniform pattern is a set of rows and columns.

[0018] In another aspect, the invention may be a method of driving a pixel LED, comprising applying a control signal to a block of two or more transistors connected together in parallel and in series, and configured to share a common gate geometry size. The method may further include controlling an amount of current flowing through the pixel LED, the amount of current corresponding to the control signal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.

[0020] FIG. 1 shows an example prior-art active matrix LED display.

[0021] FIG. 2 shows an example active matrix LED display according to an embodiment of the invention.

[0022] FIG. 3 shows example gate geometries corresponding to the display circuit shown in FIG. 1.

[0023] FIG. 4 shows example gate geometries according to one embodiment of the invention, corresponding to the display circuit shown in FIG. 2.

DETAILED DESCRIPTION OF THE INVENTION

[0024] A description of example embodiments of the invention follows.

[0025] The FIG 2 is a unit pixel circuit configured according to an embodiment of the invention.

[0026] The unit pixel circuit of FIG. 2 includes six transistors 12a, 12b, 12c, 12d, 11 and 14a, a capacitor 13, and an LED 15. Although the example embodiments describe driving an

LED within the pixel circuit, the concepts described may be used for other pixel elements for providing a visual display aspect.

[0027] The capacitor 13 may be implemented by a transistor constructed and arranged in a particular way, as described in more detail below. The capacitor 13 may be implemented using alternative techniques known in the art, for example using oxide as the capacitor dielectric and either metal or heavily doped silicon as the capacitor plates. In FIG. 2, the capacitor 13 includes a designation of “x M,” meaning that the capacitor 13 may actually consist of M transistors, where M is an integer.

[0028] Transistors 12a, 12b, 12c and 12d in FIG. 2 provide a function that is similar to the function performed by transistor 2 in FIG 1. Together, transistors 12a, 12b, 12c and 12d form a control block that controls the LED drive current 20 supplied to LED 15. The amount of LED drive current 20 depends on the value of the voltage stored in storage capacitor 13 (or storage capacitor 3 in the circuit shown in FIG. 1).

[0029] Transistor 11 is referred to herein as a data transistor. The data transistor 11 conveys a data signal from VData line 22 to the gates of transistors 12a, 12b, 12c and 12d, and to capacitor 13, when the data transistor 11 is turned on. The data transistor 11 is turned on based on an Select signal applied from Select line 24. As used herein, the term “line,” as in “VData line 22,” may refer to any physical medium capable of conveying a signal, such as an electrical conductor (e.g., wire, coaxial cable, printed circuit board trace), optical fiber, waveguide, microstrip, or strip line, among others.

[0030] Transistor 14 is referred to herein as a gateway transistor. The gateway transistor 14 controls the LED drive current 20, based on an Enable signal applied to the gateway transistor’s gate via the Enable line 26. In other words, transistor 14 gates the LED drive current 20, according to the enable signal conveyed via the Enable line 26.

[0031] Transistors 12a, 12b, 12c and 12d are connected as shown, both with parallel connection aspects and series connection aspects. The gates of all transistors 12a, 12b, 12c and 12d are all electrically coupled together, and to the drain of transistor 11, to form a first node. The drains of transistors 12a and 12b are electrically coupled together and to reference voltage VDD, to form a second node. The sources of transistors 12a and 12b are electrically coupled to one another and also to the drains of transistors 12c and 12d. The sources of transistors 12c and 12d are electrically coupled one another and also to the drain of transistor

14. Thus, the transistor pairs [12a, 12b] and [12c, 12d] are connected in parallel, while the transistor pairs [12a, 12c] and [12b, 12d] are connected in series.

[0032] In the example embodiment shown in FIG 2, transistors 12a, 12b, 12c and 12d are all disposed on a substrate (e.g., a semiconductor substrate) with the transistors having substantially the same width and length of gate geometry. In other embodiments, all transistors 12a, 12b, 12c, 12d, 11 and 14a in the unit pixel circuit are disposed with substantially the same width and length size gate geometry. This common width and length size may serve to reduce and/or mitigate the effects of process variations, since any process variations may produce a similar effect on elements having similar width and length characteristics.

[0033] FIG. 3 illustrates gate geometries of the transistors for the example prior art circuit shown in FIG. 1. As shown, transistors 1 and 4 share a common gate geometry size (i.e., $W=a$, $L=b$), while the gate geometry size of transistors 2 ($W=c$, $L=d$) and 3 ($W=e$, $L=f$; not shown) are substantially different from one another, and also from transistors 1 and 4.

[0034] FIG. 4 illustrates gate geometries of the transistors for the example unit pixel circuit shown in FIG. 2. In this example embodiment, the gate geometries 110, 120a, 120b, 120c, 120d, 130 and 140 (corresponding to transistors 11, 12a, 12b, 12c, 12d, 13 and 14, respectively), are substantially the same, i.e., width = length = **a**, where “**a**” is a value quantifying a distance along a linear dimension. Examples of such values may be 25 nm or 6.0 μ m (it should be noted that these are merely examples of possible values to illustrate the nature of the value. These specific values are not meant to limit the invention in any way).

[0035] In the example embodiment of FIG. 4, the transistors are distributed in a uniform pattern, in this example a grid formation of rows and columns. Other distribution patterns may be used in alternative embodiments. For example, the distribution could be in concentric circles, a hexagonal honeycomb pattern, or in a set of parallel diagonals.

[0036] The transistor 110 is arranged adjacent to 140, and the transistors 120a, 120b, 120c and 120d are arranged adjacent to one another as shown. The transistors 130, at least some of which collectively form the storage capacitor 13, are arranged in the described embodiment along a perimeter surrounding the remaining transistors 110, 140, 120a, 120b, 120c and 120d.

[0037] In some embodiments, the transistors 130 may each be configured to exhibit a capacitance of a particular value. Techniques for so configuring the transistors 130 are well

known in the art. For example, the gate-to-channel capacitance may be accessed so as to provide the specific capacitance, or the gate-to-bulk capacitance may be used. In some embodiments, the configuration and parameters associated with the transistor 130 may be set to place the transistor 130 in accumulation mode; in other embodiments the transistor may be set up in inversion mode.

[0038] The design of the unit pixel circuit shown in FIG. 2 may require a storage capacitor 13 with a specific capacitance value. In some embodiments, that specific capacitance may be implemented by a selective combination of the transistors 130. In some embodiments, two or more of the transistors 130 may be electrically connected and arranged in a serial or parallel configuration, so that the combined capacitance results in a desired, specific, value.

[0039] While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

CLAIMS

What is claimed is:

1. A unit pixel driver circuit, comprising:
 - a capacitor configured to store a voltage corresponding to a desired pixel brightness; and
 - a control block having two or more transistors connected together in parallel and in series, the control block configured to control an amount of current flowing through a pixel LED corresponding to the voltage stored in the capacitor;
 - the two or more transistors of the control block configured to share a common gate geometry size.
2. A unit pixel driver circuit according to claim 1, wherein the control block further comprises:
 - a first transistor;
 - a second transistor;
 - a third transistor; and
 - a fourth transistor, all four transistors connected together both in parallel and in series;
3. A unit pixel driver circuit according to claim 2, wherein
 - (i) the gates of the first transistor, the second transistor, the third transistor and the fourth transistor are electrically coupled to one another to form a first node;
 - (ii) the drains of the first transistor and the second transistor are electrically coupled to one another to form a second node;
 - (iii) the sources of the first transistor and the second transistor, and the drains of the third transistor and the fourth transistor are electrically coupled to one another to form a third node;
 - (iv) the sources of the third transistor and the fourth transistor are electrically coupled one another.
4. A unit pixel driver circuit according to claim 3, further including a data transistor, the source of which is electrically coupled to a data signal line, the drain of which is

electrically coupled to the first node, and the gate of which is electrically coupled to a select line configured to convey a select signal.

5. A unit pixel driver circuit according to claim 3, further including a gating transistor, the source of which is electrically coupled to a reference voltage, the drain of which is electrically coupled to the fourth node, and the gate of which is electrically coupled to an enable line configured to convey an enable signal.
6. A unit pixel driver circuit according to claim 2, wherein the transistors are disposed on a substrate such that:
 - the first transistor is adjacent to the second transistor and the third transistor;
 - the second transistor is adjacent to the first transistor and the fourth transistor;
 - the third transistor is adjacent to the first transistor and the fourth transistor;and
 - the fourth transistor is adjacent to the second transistor and the third transistor.
7. A unit pixel driver circuit according to claim 6, further including a data transistor and a gating transistor, further including a gating transistor and a data transistor disposed on the substrate such that:
 - the data transistor is adjacent to the first transistor and the gating transistor;
 - the gating transistor is adjacent to the second transistor and the data transistor.
8. A unit pixel driver circuit according to claim 7, wherein the first transistor, the second transistor, the third transistor, the fourth transistor, the data transistor and the gating transistor form a transistor group, and the capacitor is distributed about a perimeter of the transistor group.
9. A unit pixel driver circuit according to claim 1, wherein the capacitor is implemented using one or more transistors.
10. A unit pixel driver circuit according to claim 9, wherein the one or more transistors implementing the capacitor share a common gate geometry size with the two or more transistors of the control block.
11. A unit pixel driver circuit, comprising:

two or more transistors connected together in parallel and in series, the two or more transistors configured to control an amount of current flowing through a pixel LED corresponding to a signal applied to gates of the two or more transistors;

the two or more transistors distributed on a substrate in a uniform pattern, the two or more transistors configured to share a common gate geometry size.

12. A unit pixel driver circuit according to claim 11, wherein the uniform pattern is a set of rows and columns.
13. A unit pixel driver circuit according to claim 11, wherein the two or more transistors further comprises:
 - a first transistor;
 - a second transistor;
 - a third transistor; and
 - a fourth transistor, all four transistors connected together both in parallel and in series;
14. A unit pixel driver circuit according to claim 13, wherein
 - (i) the gates of the first transistor, the second transistor, the third transistor and the fourth transistor are electrically coupled to one another to form a first node;
 - (ii) the drains of the first transistor and the second transistor are electrically coupled to one another to form a second node;
 - (iii) the sources of the first transistor and the second transistor, and the drains of the third transistor and the fourth transistor are electrically coupled to one another to form a third node;
 - (iv) the sources of the third transistor and the fourth transistor are electrically coupled one another.
15. A unit pixel driver circuit according to claim 13, wherein the transistors are disposed on the substrate such that:
 - the first transistor is adjacent to the second transistor and the third transistor;
 - the second transistor is adjacent to the first transistor and the fourth transistor;
 - the third transistor is adjacent to the first transistor and the fourth transistor;and

the fourth transistor is adjacent to the second transistor and the third transistor.

16. A unit pixel driver circuit according to claim 11, wherein the signal applied to the gates of the two or more transistors is a voltage.
17. A unit pixel driver circuit according to claim 15, further including a capacitor configured to store the voltage, the capacitor being electrically coupled to the gates of the two or more transistors.
18. A unit pixel driver circuit according to claim 17, wherein the capacitor is implemented using one or more transistors.
19. A unit pixel driver circuit according to claim 9, wherein the one or more transistors implementing the capacitor share a common gate geometry size with the two or more transistors connected together in parallel and in series.
20. A method of driving a pixel LED, comprising:
 - applying a control signal to a block of two or more transistors connected together in parallel and in series, and configured to share a common gate geometry size; and
 - controlling an amount of current flowing through the pixel LED, the amount of current corresponding to the control signal.

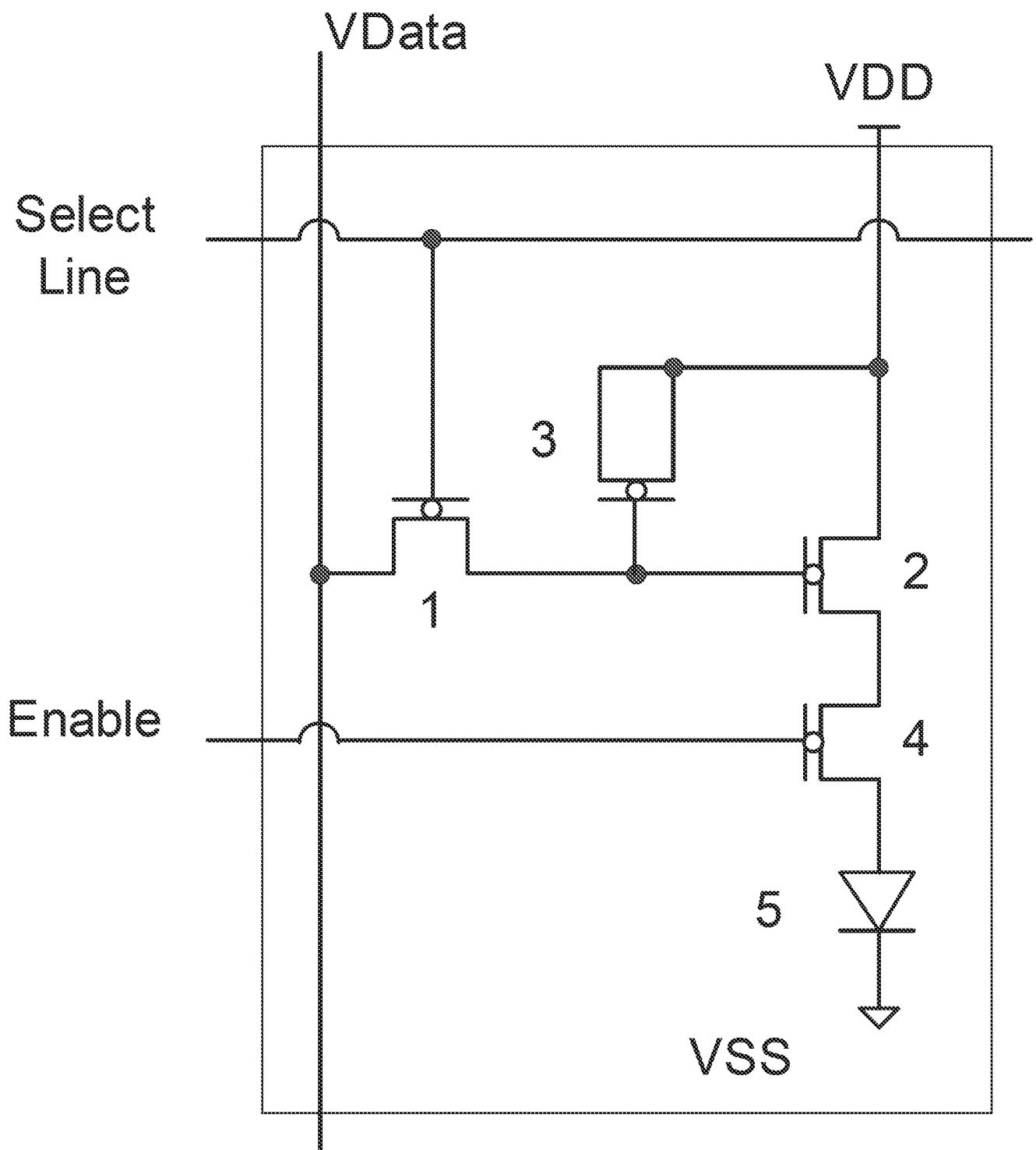


FIG. 1

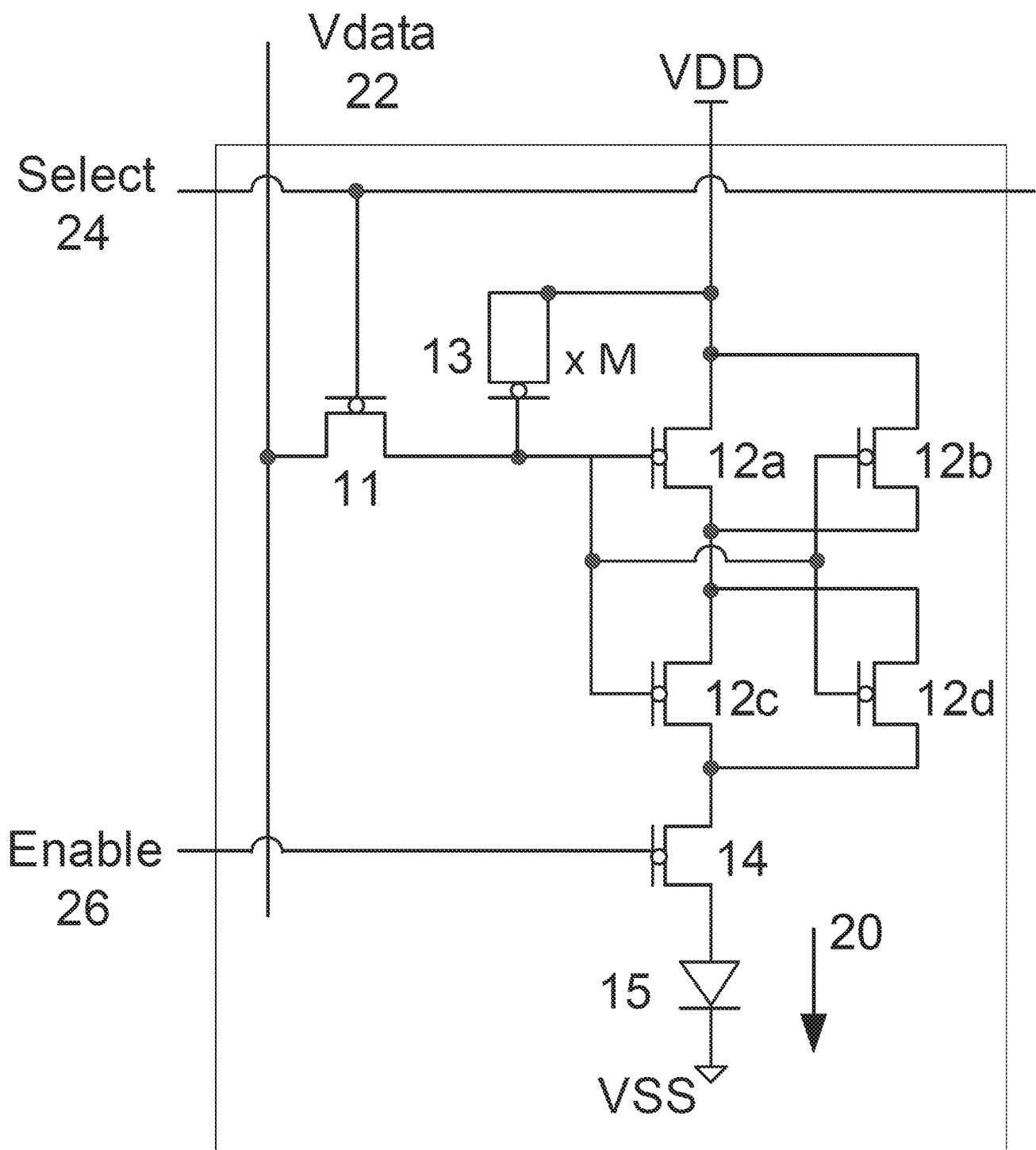


FIG. 2

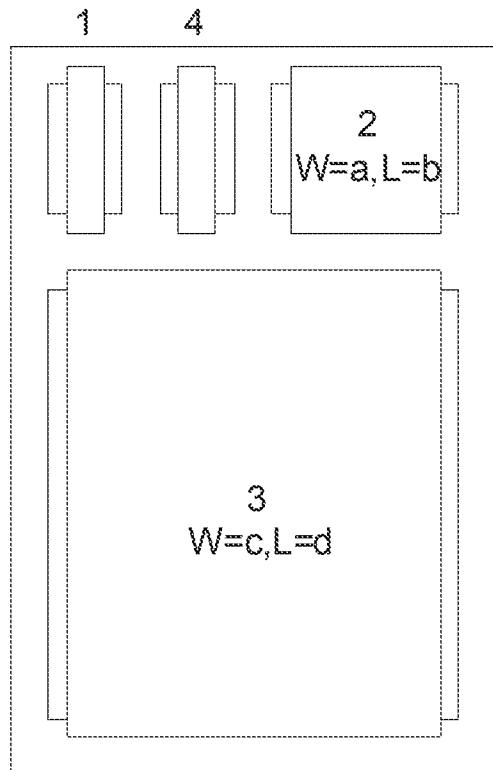


FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2015/044796

A. CLASSIFICATION OF SUBJECT MATTER
INV. G09G3/32
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G09G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2007/200802 A1 (KASAI TOSHIYUKI [JP]) 30 August 2007 (2007-08-30) paragraph [0125] - paragraph [0158]; figures 5-8 -----	1-20
A	US 2007/001945 A1 (YOSHIDA YASUNORI [JP] ET AL) 4 January 2007 (2007-01-04) paragraph [0137] - paragraph [0150]; figures 29-31 -----	1,11,20
A	US 6 228 696 B1 (NGUYEN BAI [US] ET AL) 8 May 2001 (2001-05-08) column 1, line 42 - line 55 -----	9,18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
15 October 2015	05/11/2015
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Demin, Stefan

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/044796

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2007200802	A1 30-08-2007	CN 1490778	A	21-04-2004
		JP 2004117820	A	15-04-2004
		KR 20040027339	A	01-04-2004
		TW I231929	B	01-05-2005
		US 2007200802	A1	30-08-2007
<hr/>				
US 2007001945	A1 04-01-2007	CN 1892767	A	10-01-2007
		KR 20070004424	A	09-01-2007
		US 2007001945	A1	04-01-2007
<hr/>				
US 6228696	B1 08-05-2001	US 6228696	B1	08-05-2001
		US 2001015449	A1	23-08-2001
<hr/>				