An electrical lap guide (ELG) system and method are disclosed for use in lapping a bar (10) of magnetic transducer carrying sliders to a desired transducer height. A first ELG (ELG1) contained within the bar has at least two first ELG resistive elements (R1, R12). A second ELG (ELG2) contained within the bar has at least two second ELG resistive elements (R21, R23). A first of the at least two first ELG resistive elements is electrically coupled to a first of the at least two second ELG resistive elements to thereby reduce a total number of leads needed between a data acquisition unit (100) and the bar (10) during lapping. The reduction in required data acquisition unit (100) leads (L) allows more ELGs to be included on each bar (10) in order to more accurately control the lapping process.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Paso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>US</td>
<td>United States of America</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td></td>
<td></td>
<td>SK</td>
<td>Slovakia</td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TR</td>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UG</td>
<td>Uganda</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
</tr>
</tbody>
</table>
IMPROVED ELG WIRING CONFIGURATION

BACKGROUND OF THE INVENTION

The present invention relates generally to the batch fabrication of sliders which carry magneto resistive (MR) and/or inductive transducers for data storage applications. More particularly, the present invention relates to an improved electrical lap guide (ELG) wiring configuration which allows more ELGs to be included on a row or bar of transducers to be machined, and which reduces the number of electrical connections needed between the bar and the lapping machine for a given number of ELGs on the bar.

During the fabrication of magnetic transducer carrying sliders for use in magnetic data storage systems, an array of sliders is fabricated on a common substrate in a deposition of metallic and nonmetallic layers. Typically, resistive or other elements which cooperatively function as electrical lap guides (ELGs) are also fabricated in the deposition of layers for use in lapping or machining the sliders. ELGs of various types are well known in the art. See for example, U.S. Patent No. 5,023,991 entitled ELECTRICAL GUIDE FOR TIGHT TOLERANCE MACHINING which issued to Alan Smith on June 18, 1991.

Patterning of the sliders (including the magnetic transducers) and ELGs is accomplished using photolithography in combination with etching and lift-off processes. The finished wafer is then optically and electrically inspected and subsequently cut into smaller arrays, known as rows or bars. Next, the individual bars of sliders are machined, at a surface which will eventually face the recording medium (i.e., the air bearing surface or ABS), to obtain a desired MR transducer height (sometimes referred to as the stripe
height SH) or to obtain a desired inductive transducer height (sometimes referred to as the throat height TH). During machining or lapping of a particular bar of transducers and ELGs, the machined surface moves from a beginning position to a final position, while reducing the height of the transducers. The primary function of the one or more ELGs located on the bar is to control the machining process such that the desired transducer height is achieved. After a particular bar of sliders is machined to the desired transducer height as controlled by the ELGs, the bar is cut or diced into individual sliders. During this process, the ELGs can be destroyed if desired since the purpose for which they exist has been accomplished.

Typically, each ELG includes one or more resistive elements which are fabricated in the deposition of layers along with the sliders. A very simple ELG design has one resistor which is aligned with a transducer such that the machining process reduces the height of both the transducer and the resistor at the same time. The resistance of the machined resistor (frequently referred to as the analog resistor) is monitored to determine when the desired height of the transducer has been achieved so that the machining process can be halted at this point. More common ELG designs include at least two resistive components, one machined (analog) and typically one or two non-machined reference resistors. Two or three resistor ELG's require at least three electrical access terminals on a surface of the bar in order to monitor the resistance of the ELG resistors. In some ELG designs, the resistance of each of the reference resistors is measured prior to lapping and used to calculate the local sheet resistance Q for the bar. The resistance of the machined resistor
is compared to the constant resistance of one of the reference resistors during the machining process. When the resistance of the machined resistor equals the resistance of the reference resistor, the machining process is halted, presumably at the point where the height of the machined resistor is approximately equal to the desired transducer height. Sheet resistance Q is used to compensate the calculations for feature size variation, sometimes referred to as edge movement.

As the data storage industry is continuously driven to lower machining costs, there has been a steady demand for higher output (i.e., the number of sliders/transducers per wafer, and thus per bar). This increased bar densification leads to thinner and more flexible bars with more sliders per bar. The bar stiffness bears a cubic relationship to the bar thickness. At the same time, the sensor height machining tolerance for new higher density transducers has been steadily tightened. In order to meet these requirements, it is imperative that more individual ELGs be included on each bar to guide the lapping process so that sensor height can be more accurately controlled. However, the need for more ELGs is in direct conflict with the requirement that more sliders be placed on each bar.

The biggest single impedance to placing more ELGs on each bar of sliders is the space required for electrical connections needed for accessing the ELG components. Typically, for a two or three element ELG, three electrical connections (sometimes referred to as terminals, pads, or studs) are required. Also, as the number of electrical terminals on each bar increases due to an increased number of ELGs per bar, the number of leads needed to access the ELG components increases.
significantly. Frequently, lapping system data acquisition units (DAUs) treat each ELG as individual sets of components. Therefore, for each three terminal ELG on the bar, the lapping system requires three leads for passing current through the ELG components, and three leads for sensing voltage drops across the ELG components. Thus, for a three resistor ELG, current ELG wiring schemes require 6N (where N is equal to the number of ELG's per bar) leads between the DAU and the bar or work piece. As the number of ELGs included in each bar is increased, the scale factor of 6 imposes significant increases in cost and complexity to the DAU in electrical connection related implementation (i.e., the DAU channels, cable size, flex-circuit density, wire-bonds, and carrier size). Consequently, an ELG system which overcomes or minimizes the effect of these limitations would be a significant improvement in the art.

SUMMARY OF THE INVENTION

An electrical lap guide (ELG) system and method are disclosed for use in lapping a bar of magnetic transducer carrying sliders to a desired transducer height. A first ELG contained within the bar has at least two first ELG resistive elements. A second ELG contained within the bar has at least two second ELG resistive elements. A first of the at least two first ELG resistive elements is electrically coupled to a first of the at least two second ELG resistive elements to thereby reduce a total number of leads needed between a data acquisition unit and the bar during lapping. The reduction in required data acquisition unit leads allow more ELGs to be included on each bar in order to more accurately control the lapping process.
In the ELG system, the first ELG includes at least three first ELG electrical terminals coupled to the at least two first ELG resistive elements for providing electrical access to the at least two first ELG resistive elements. The second ELG also includes at least three second ELG electrical terminals coupled to the at least two second ELG resistive elements for providing electrical access to the at least two second ELG resistive elements. In preferred embodiments, a first of the at least three first ELG electrical terminals is connected to a first of the at least three second ELG electrical terminals to thereby electrically couple the first of the at least two first ELG resistive elements to the first of the at least two second ELG resistive elements. However, in some embodiments, the first of the at least three first ELG electrical terminals also functions as the first of the at least three second ELG electrical terminals to thereby reduce a total number of terminals positioned on a surface of the bar.

In preferred embodiments, ELG system of the present invention includes a total of N ELGs contained within the bar, with each of the N ELGs having at least two resistive elements. A first resistive element of substantially each of the N ELGs is connected to a first resistive element of the adjacent one of the N ELGs to thereby reduce a total number of data acquisition unit leads needed between the data acquisition unit and the bar to determine the resistances of each of the resistive elements of each of the N ELGs to a number substantially no greater than the number represented by the expression $4N+2$.

In more particular embodiments of the present invention, the at least two ELG resistive elements for
each of the N individual ELGs are connected to each other at a corresponding one of N nodes located within the bar and associated with the particular ELG. The ELGs are paired by connecting the node associated with each ELG to the node associated with another ELG during lapping. The ELGs can be connected in this manner to reduce the total number of data acquisition unit leads needed between the data acquisition unit and the bar to determine the resistances of each of the resistive elements of each of the N ELGs to a number substantially no greater than a number represented by the expression 2N+2.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagrammatic view of a bar of magnetic transducer carrying sliders which includes a number of three resistor ELGs for use in controlling the lapping or machining process and which can be configured in accordance with preferred embodiments of the present invention to reduce the number of lead wires needed between the bar and the lapping system DAU.

Figure 2 is schematic view illustrating the 6N lead wires typically necessary to couple the N ELGs on the machined bar to the lapping system DAU.

Figure 3 is a table illustrating the manner in which the 6N lapping system DAU lead wires can be used to access the ELG resistors on a bar utilizing a three resistor ELG design without the benefit of the present invention.

Figure 4 is a schematic view illustrating a first wiring scheme in accordance with preferred embodiments of the present invention which reduces to 2(2N+1) the number of lead wires needed between the lapping system DAU and the bar to access the resistors of N three resistor ELGs.
Figure 5 is a table illustrating the manner in which the 2(2N+1) lapping system DAU lead wires can be used to access the ELG resistors on a bar utilizing a three resistor ELG design with the benefit of the wiring scheme illustrated in Figure 5.

Figure 6 is a schematic view illustrating a second wiring scheme in accordance with preferred embodiments of the present invention which reduces to 2(N+1) the number of lead wires needed between the lapping system DAU and the bar to access the resistors of N three resistor ELGs.

Figure 7 is a table illustrating the manner in which the 2(N+1) lapping system DAU lead wires can be used to access the ELG resistors on a bar utilizing a three resistor ELG design with the benefit of the wiring scheme illustrated in Figure 6.

Figure 8 is a schematic view illustrating a third wiring scheme in accordance with preferred embodiments of the present invention which reduces to 2(N+1) the number of lead wires needed between the lapping system DAU and the bar to access the resistors of N three resistor ELGs.

Figure 9 is a table illustrating the manner in which the 2(N+1) lapping system DAU lead wires can be used to access the ELG resistors on a bar utilizing a three resistor ELG design with the benefit of the wiring scheme illustrated in Figure 8.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 illustrates bar 10 of magnetic transducer carrying sliders and ELGs. The ELG wiring schemes of the present invention can be used to reduce the total number of lead wires necessary between the lapping system DAU (shown in Figures 2, 4, 6 and 8) and bar 10. Reducing the number of lead wires makes it
possible to include more ELGs on each bar to better control the machining process.

Bar 10 includes a large number of sliders (only sliders 12, 14 and 16 are shown) separated by dice lanes (only dice lanes 11, 13, 15 and 17 are shown). Each of the N ELGs (only ELG1 and ELG2 are shown in Figure 1) on bar 10 has three resistors, R_{N1}, R_{N2} and R_{N3}. For sake of clarity, it must be understood that N is used herein as a designator for each individual ELG.

For example, ELG2 actually includes resistors R_{21}, R_{22} and R_{23}. In some preferred embodiments, resistor R_{N1} of each ELG is an analog resistor exposed to the machined surface, and resistors R_{N2} and R_{N3} of each ELG are reference resistors used for either comparison to the resistance of analog resistors R_{N1} during machining, or for the computation of sheet resistance Q of the bar.

Placing at least one resistor of each ELG in a dice lane, while the other resistors of each ELG are placed within the sliders adjacent the dice lane, reduces the space required for each ELG. While this configuration is a preferred configuration, the present invention can be used with any of a wide variety of ELG designs having at least two resistors per ELG.

To access the resistors of a two or three resistor ELG, at least three electrical access terminals are required. As illustrated in Figure 1, each ELG on bar 10 includes electrical access terminal T_{N1} connected to resistor R_{N1}, access terminal T_{N2} connected to resistor R_{N2}, and access terminal T_{N3} connected to resistor R_{N3}. In some embodiments, access terminals T_{N2} and T_{N3} of each ELG are implemented using bond pads 18, on the surface of each slider, which also function to provide access to the MR or inductive transducers located on the sliders. After machining bar 10 to the
desired height using the ELGs located on the bar, bar 10 is diced into individual sliders. During the dicing process, the dice lanes are destroyed and resistors R_{N2} and R_{N3} of each ELG remain in the corresponding sliders, but have no further use. However, in other possible ELG designs, all of the resistors are located in dice lanes or in sliders, but not in both.

Figure 2 illustrates the connections required between lapping system DAU 50 and the resistors of N ELGs on a bar of sliders to be machined. Typically, lapping system DAUs treat each ELG as an individual set of components, separate from the components of other ELGs on the bar. Thus, lapping system DAU 50 requires three leads L_{N1}, L_{N3} and L_{N5} for each of the N ELGs on bar 10 in order to selectively pass current through the ELG resistors. Lapping system DAU 50 also requires three leads L_{N2}, L_{N4} and L_{N6} for sensing voltage across the ELG components. Thus, lapping system DAUs require six leads for each ELG in conventional ELG wiring schemes. As an example, for a bar containing 14 three terminal ELGs, the DAU will require 84 total leads, 14 sets of three leads for passing current through the resistors of the 14 individual ELGs, and 14 sets of three leads for sensing voltage across the resistors of the 14 individual ELGs.

Figure 3 is a table which illustrates the manner in which a lapping system DAU having six leads per ELG can be used to control the lapping process for a bar having a conventional ELG wiring scheme. At the start of lapping, current is applied across leads L_{N1} and L_{N3} for each of the N ELGs on the bar (e.g. across lead wires L_{11} and L_{13} of ELG1). Simultaneously, the voltages is sensed across leads L_{N4} and L_{N6} for each of the N ELGs on the bar (e.g., across leads L_{14} and L_{16} for
ELG1). Using the current and sensed voltage values, resistor R_{N2} for each ELG (e.g., R_{22} for ELG2) can be calculated prior to or at the start of lapping. During lapping, current is applied across leads L_{N1} and L_{N3} (e.g., lead wires L_{11} and L_{13} for ELG1) while the voltage is sensed between leads L_{N2} and L_{N4} (e.g., leads L_{12} and L_{14} for ELG1) and between leads L_{N4} and L_{N6} (e.g., leads L_{14} and L_{16} for ELG1) for each ELG. These currents and voltages are used to calculate the resistances of resistors R_{N1} and R_{N3} (e.g., leads R_{11} and R_{13} of ELG1) of each ELG.

As more and more ELGs are needed to guide the lapping process, the scale factor of six leads per ELG imposes significant lapping system costs and limitations. The wiring schemes illustrated in Figures 4, 6 and 8 require fewer DAU leads per ELG, and thus allow more ELGs per to be included on each bar without increasing the number of leads required. The only hardware changes required to a typical lapping system DAU are related to relay switching logic for four-wire resistance measurement control.

Figure 4 illustrates an ELG wiring scheme or configuration, in accordance with the preferred embodiments of the present invention, which reduces the leads or connections required between the lapping system DAU and the resistors of the N ELGs on a bar of sliders. As was the case in Figure 2, each of the N ELGs included in bar 10 in the configuration illustrated in Figure 4 is a three resistor ELG. However, a new wiring configuration between ELGs reduces the total number of lead wires necessary between lapping system DAU 100 and bar 10.

As can be seen in the ELG wiring configuration illustrated in Figure 4, at least one access terminal of
each of the N ELGs on the bar is electrically connected to an access terminal on an adjacent ELG. As illustrated, access terminal T\textsubscript{13} of ELG1 is connected to access terminal T\textsubscript{21} of adjacent ELG2. In general, for ELGs other than ELG1 and ELGN, terminal T\textsubscript{N1} is coupled terminal T\textsubscript{N+13}, while terminal T\textsubscript{N3} is coupled to terminal T\textsubscript{N+11}. The connected access terminals for adjacent ELGs can be coupled together using either wire bonding at the surface of bar 10, or using wafer processing steps to connect the corresponding resistors internally within bar 10. Of course, if the connection is made internal to bar 10, one of the two connected access terminals can be eliminated altogether from the surface of bar 10. In either case, the leads from lapping system DAU 100 normally coupled to one of the two access terminals can be eliminated.

Figure 5 is a table which illustrates the manner in which lapping system DAU 100 is used to control the lapping process for a bar having the wiring scheme illustrated in Figure 4. At the start of lapping, the resistances of reference resistor R\textsubscript{12} of ELG1 is calculated by applying current across leads L\textsubscript{11} and L\textsubscript{13} (i.e. across terminals T\textsubscript{11} and T\textsubscript{13} of ELG1) and by reading the voltage across leads L\textsubscript{14} and L\textsubscript{16}. For each of the remaining ELGs, the resistance of resistors R\textsubscript{N2} are calculated by applying current across leads L\textsubscript{N+13} and L\textsubscript{N3} and by reading the voltage across leads L\textsubscript{N4} and L\textsubscript{N6}. During lapping, resistances of resistors R\textsubscript{11} and R\textsubscript{13} of ELG1 are calculated and monitored by applying current across leads L\textsubscript{11} and L\textsubscript{15} and by sensing the voltages across leads L\textsubscript{12} and L\textsubscript{14} and between leads L\textsubscript{14} and L\textsubscript{16}. In order to monitor the resistances of resistors R\textsubscript{N1} and R\textsubscript{N3} of each of the remaining ELGs, current is applied across
leads $L_{QH,N3}$ and L_{N5} while sensing voltage across leads L_{QH}
and L_{N4} and between leads L_{N4} and L_{N6}.
Sharing leads among adjacent ELGs in the
manner illustrated in Figure 4 requires a total of
$2(2N+1)$ leads to connect the N ELGs to lapping system
DAU 100. Thus, with the total number of leads between
the lapping system DAU and the bar previously being a
limiting factor, an increase in the total number of ELGs
on bar 10 can be achieved. The wiring scheme or
configuration illustrated in Figure 4 allows on-line
independent measurements of three components for each
ELG. Initial measurements of the references resistors
R_{N2} and R_{N3} of each ELG are used to calculate local sheet
resistance Q, which is in turn combined with measurement
of resistor R_{N1} (the exposed and machined resistor of
each ELG) to estimate the transducer height during
lapping. The transducer height estimation is
insensitive to feature size variation (edge movement)
caused by wafer processing. Continuously monitoring
each of reference resistors R_{N3} allows compensation for
resistance measurement variation caused by thermal
effects or other sources during lapping. The links
shown in Figure 4 among adjacent ELGs are preferably
simply implemented by wire-bonding.
It is possible to calculate local sheet
resistance Q with only one reference resistor using the
following resistance equation given that $W_{REF} >> \Delta$.

Equation 1

$$R_{REF} = \frac{QL_{REF}}{W_{REF} - \Delta} \cdot \frac{QL_{REF}}{W_{REF}}$$

Where,

$L_{REF} =$ length of the reference resistor;
W_{REF} = width of the reference resistor; and
Δ = quantity of edge movement.

Calculations based on wafer-probed data indicate that difference between Q calculated using two reference resistors (i.e. R_{N2} and R_{N3}) and Q calculated using only one reference resistor is less than 0.5%. Also, calculations based on wafer-probed data shows a smooth variation of Q across bars, with the variation in magnitude of Q for each bar being typically less than 2%. As bar densification increases (i.e., more sliders and ELGs are included per bar), it is unnecessary to estimate Q for each ELG. A local Q can be calculated and shared among adjacent ELGs.

Figures 6 and 7 illustrate an ELG wiring configuration and measurement scheme based upon the above discussion. Each of the N ELGs on bar 10 is paired-up or coupled to one adjacent ELG through wafer links B-B at the node connecting the three resistors of each ELG. In other words, NODE1 of ELG1 is connected via a wafer link to NODE1 of ELG2. The remaining ELGs on bar 10 are connected in pairs in the same manner. Also, one terminal of each ELG is connected to the corresponding terminal on the adjacent ELG with which it is not paired. In other words, as illustrated by way of example in Figure 6, while ELG2 is paired with ELG1 via a wafer link B-B between NODE1 and NODE2, access terminal T_{BA} of ELG2 is coupled to access terminal T_{BA} of ELG3. As can be seen in Figure 6, this ELG wiring configuration requires only the $2(N+1)$ leads between lapping system DAU 200 and bar 10 for N ELGs.

Figure 7 is a table which illustrates the manner in which lapping DAU 200 is used to control the lapping process for a bar having the ELG wiring configuration illustrated in Figure 6. At the start of
lapping, local sheet resistance Q is calculated from initial measurements of one reference resistor for each pair of ELGs. For instance, resistor R_{13} is calculated by applying current across leads L_{11} and L_{15} and sensing voltage across between leads L_{16} and L_{12}. Likewise, for the next pair of ELGs, resistor R_{31} is calculated by applying current across leads L_{31} and L_{35} while sensing voltage leads across L_{36} and L_{41}. Measurement of this reference resistor for each pair of ELGs is used to calculate sheet resistance Q for the pair.

During lapping, analog resistor R_{NI} for each of the N ELGs monitored. For example, by applying current across leads L_{11} and L_{21} and sensing voltage between leads L_{12} and L_{16}, the resistance of resistor R_{11} can be calculated and monitored. Likewise, by applying current across leads L_{11} and L_{21} while reading the voltage between leads L_{16} and L_{22}, the resistance of resistor R_{21} can be calculated and monitored. The local sheet resistance Q for each pair is combined with the continuous measurement during lapping of individual machined resistors R_{NI} for each of the N ELGs in order to estimate the height using each ELG.

One advantage of including three resistors per ELG even with the wiring configuration illustrated in Figure 6 is that the integrity of individual ELGs can be verified for wafer level ELG reliability testing. Wafer-probed resistances of resistors R_{N2} and R_{N3} can be used to predict the resistance of R_{NI} for each of the N ELGs with the consideration of feature size variation, and then compared to the actual measured value of resistance R_{NI} for the corresponding ELG to detect the existence of possible non-functioning ELGs. A significant difference in the calculated and measured
resistances of a resistor \(R_{\text{N1}} \) for a particular ELG is indicative of the ELG being non-functioning.

Electrical connections or links denoted A-A and shown in Figure 6 can be implemented by wire-bonding. Electrical connections or links denoted B-B for connecting the junctions of the resistors to form ELG pairs preferably is accomplished using wafer processing. However, VIAS can be built over these junctions (i.e. over NODE\(_N \) for each of the N ELGs). Then, shared pole plated NiFe or upper pole plated NiFe can be used to form the links internally on the wafer. The links would then either run under or over the coils of any inductive write transducers in each slider. Also, studs or terminals connected to these nodes or junctions can be added such that wire-bonding can be used to form links B-B externally on bar 10.

Figure 8 illustrates an ELG wiring configuration similar to the configuration illustrated in Figure 6, but which can be implemented without wafer modification. Links B-B between pairs of adjacent ELGs are established using the terminals connected to resistors \(R_{\text{N2}} \) for each ELG (i.e., terminal \(T_{12} \) and \(T_{22} \) for ELG1 and ELG2). Thus, both links denoted A-A and links denoted B-B are formed externally by wire-bonding.

However, this wiring configuration requires feeding forward wafer probed \(R_{\text{N2}} \) readings in order to calculate resistances of resistors \(R_{\text{N1}} \) (i.e., \(R_{21}, R_{41}, R_{61} \)). This is illustrated in the table of Figure 9. Like the wiring configuration illustrated in Figure 6, the wiring configuration illustrated in Figure 8 requires a total of \(2(N+1) \) leads between lapping system DAU 300 and bar 10.

Although the present invention has been described with reference to preferred embodiments,
workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
WHAT IS CLAIMED IS:
1. An electrical lap guide (ELG) system for use in lapping a bar of magnetic transducer carrying sliders to a desired transducer height, the ELG system comprising:
 a first ELG contained within the bar and having at least two first ELG resistive elements; and
 a second ELG contained within the bar and having at least two second ELG resistive elements, wherein a first of the at least two first ELG resistive elements is electrically coupled to a first of the at least two second ELG resistive elements.
2. The ELG system of claim 1, wherein the first ELG further comprises at least three first ELG electrical terminals coupled to the at least two first ELG resistive elements, wherein the second ELG further comprises at least three second ELG electrical terminals coupled to the at least two second ELG resistive elements, and wherein a first of the at least three first ELG electrical terminals is connected to a first of the at least three second ELG electrical terminals to thereby electrically couple the first of the at least two first ELG resistive elements to the first of the at least two second ELG resistive elements.
3. The ELG system of claim 2, wherein the first of the at least three first ELG electrical terminals also functions as the first of the at least three second ELG electrical terminals to thereby reduce a total number of terminals positioned on a surface of the bar.
4. The ELG system of claim 1, wherein the at least two first ELG resistive elements are connected to each other at a first ELG node located within the bar, and wherein the ELG system further comprises a third ELG contained within the bar, the third ELG having at least two third ELG resistive elements positioned within the bar, wherein the at least two third ELG resistive elements are connected to each other at a third ELG node located within the bar, and wherein the first ELG node is coupled to the third ELG node during lapping.

5. The ELG system of claim 1, wherein the ELG system further comprises a total of N ELGs contained within the bar, each of the N ELGs contained within the bar having at least two resistive elements, wherein a first resistive element of each of the N ELGs is connected to a first resistive element of the adjacent one of the N ELGs to thereby reduce a total number of data acquisition unit leads needed between the data acquisition unit and the bar to determine the resistances of each of the resistive elements of each of the N ELGs to a number no greater than the number represented by the expression 4N+2.

6. The ELG system of claim 5, wherein for each of the N ELGs contained within the bar, the at least two resistive elements are connected to one another at a node associated with the particular ELG, and wherein the node associated with each of the N ELGs is connected to the node associated with another of the N ELGs to thereby reduce the total number of data acquisition unit leads needed between the data acquisition unit and the bar to determine the resistances of each of the resistive elements of each of the N ELGs to a number no greater than a number represented by the expression 2N+2.
7. A lapping system for use in lapping a bar of magnetic transducer carrying sliders to achieve a desired transducer height, the lapping system comprising:

- a data acquisition unit having current generating and voltage sensing circuitry coupleable through electrical leads to the bar for use in determining resistances of electrical lap guide (ELG) resistors contained within the bar;

N ELGs contained within the bar, wherein each of the N ELGs includes at least two resistive elements and at least three electrical terminals associated with the at least two resistive elements for connecting the at least two resistive elements to the data acquisition unit leads, wherein a first resistive element of each of the N ELGs is connected to a first resistive element of an adjacent one of the N ELGs to thereby reduce a total number of data acquisition unit leads coupled between the data acquisition unit and the bar needed to determine the resistances of each of the resistive elements of each of the N ELGs to a number less than the number represented by the expression 6N.

8. The lapping system of claim 7, wherein the first resistive element of each of the N ELGs is connected to the first resistive element of the adjacent one of the N ELGs to thereby reduce the total number of data acquisition unit leads coupled between the data
acquisition unit and the bar needed to determine the resistances of each of the resistive elements of each of the N ELGs to a number no greater than the number represented by the expression 4N+2.

9. The lapping system of claim 8, wherein for each of the N ELGs contained within the bar, the at least two resistive elements are connected to one another at a node associated with the particular ELG, and wherein the node associated with each of the N ELGs is connected to the node associated with another of the N ELGs to thereby reduce the total number of data acquisition unit leads coupled between the data acquisition unit and the bar needed to determine the resistances of each of the resistive elements of the N ELGs to a number no greater than a number represented by the expression 2N+2.

10. An electrical lap guide (ELG) system for use in lapping a bar of magnetic transducer carrying sliders to a desired height, the ELG system comprising:

a first ELG contained within the bar, the first ELG comprising:

at least two first ELG resistive elements positioned within the bar;
and
at least three first ELG electrical terminals positioned on a surface of the bar, the at least three first ELG electrical terminals being coupled to the at least two first ELG resistive elements for coupling the at least two first ELG resistive elements to external circuitry;
a second ELG contained within the bar, the
second ELG comprising:
at least two second ELG resistive
elements positioned within the bar;
and
at least three second ELG electrical
terminals positioned on a surface
of the bar, the at least three
second ELG electrical terminals
being coupled to the at least two
second ELG resistive elements for
coupling the at least two second
ELG resistive elements to external
circuitry;
wherein a first of the at least three first
ELG electrical terminals is coupled to a
first of the at least three second ELG
electrical terminals during lapping to
thereby reduce a total number of leads
between the external circuitry and the
bar necessary to couple the at least two
first ELG resistive elements and the at
least two second ELG resistive elements
to the external circuitry.

11. The ELG system of claim 10, wherein the first
of the at least three first ELG electrical terminals is
coupled to the first of the at least three second ELG
electrical terminals by a wire bond connection external
to the bar of magnetic transducers.

12. The ELG system of claim 10, wherein the first
of the at least three first ELG electrical terminals
also functions as the first of the at least three second
ELG electrical terminals to thereby reduce a total
number of electrical terminals positioned on the surface of the bar.

13. The ELG system of claim 10, wherein the at least two first ELG resistive elements are connected to each other at a first ELG node located within the bar, and wherein the ELG system further comprises a third ELG contained within the bar, the third ELG having at least two third ELG resistive elements positioned within the bar, wherein the at least two third ELG resistive elements are connected to each other at a third ELG node located within the bar, and wherein the first ELG node is coupled to the third ELG node during lapping to thereby further reduce the total number of leads between the external circuitry and the bar necessary to couple the at least two first ELG resistive elements, the at least two second ELG resistive elements and the at least two third ELG resistive elements to external circuitry.
At start of lapping:

- Apply current across leads: L_{11}, L_{13} → L_{14}, L_{16} → R_{12}
- Apply current across leads: L_{21}, L_{23} → L_{24}, L_{26} → R_{22}
- Apply current across leads: L_{N1}, L_{N3} → L_{N4}, L_{N6} → R_{N2}

During lapping:

- Apply current across leads: L_{11}, L_{15} → L_{12}, L_{14} → R_{11}
- Apply current across leads: L_{21}, L_{25} → L_{22}, L_{24} → R_{13}
- Apply current across leads: L_{N1}, L_{N5} → L_{N2}, L_{N4} → R_{N1}

Total leads required = $6N$
<table>
<thead>
<tr>
<th>AT START OF LAPPING</th>
<th>DURING LAPPING</th>
<th>CAL RESISTANCE OF RESISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11, L13 → L14, L16</td>
<td>L25, L33 → L34, L36</td>
<td>R12, R32</td>
</tr>
<tr>
<td>L15, L23 → L24, L26</td>
<td></td>
<td>R22, R33</td>
</tr>
<tr>
<td>L(N-1)5, L(N-3) → L(N-1)4, L(N-1)6</td>
<td></td>
<td>R(N-1)1, R(N-1)3</td>
</tr>
</tbody>
</table>

TOTAL LEADS REQUIRED = 2(2N+1)

Fig. 5

SUBSTITUTE SHEET (RULE 26)
Fig. 6

LAPPING SYSTEM DATA ACQUISITION UNIT

Fig. 6
Fig. 7

Calculate resistance of resistor:
R₁₃, R₃₃, ...

Read voltage between leads:
L₁, L₂, L₆, L₂₂, ...

Apply current across leads:
L₁₁, L₁₅, L₂₁, L₃₅, ...

At start of lapping:

During lapping:
L₂₁, L₂₄, ...

Total leads required = 2(N+1)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- IPC(6) : B24B 49/00, 51/00, 1/00
- US CL : 451/1, 5, 28; 29/603.16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- U.S. : 451/1, 5, 28; 29/603.16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5,023,991 A (SMITH) 18 June 1991, Fig. 6</td>
<td>1,7,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6,8-9, 11-13</td>
</tr>
<tr>
<td>A</td>
<td>US 4,914,868 A (CHURCH ET AL.) 10 April 1990</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4,689,877 A (CHURCH) 01 September 1987</td>
<td></td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C.
- See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special means (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered obvious in combination with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

12 MAY 1997

Date of mailing of the international search report

4 JUN 1997

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer

Robert Rose
Telephone No. (703) 308-1360

Form PCT/ISA/210 (second sheet)(July 1992)