(11) EP 1 140 935 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:

 14.05.2003 Bulletin 2003/20
- (21) Application number: 99969220.5
- (22) Date of filing: 17.12.1999

- (51) Int CI.7: **C07D 471/04**, C07D 487/04, A61K 31/4365, A61K 31/519, A61P 35/00, C07D 401/06, C07D 403/06
- (86) International application number: **PCT/EP99/10214**
- (87) International publication number: WO 00/039082 (06.07.2000 Gazette 2000/27)
- (54) 1,2-ANNELATED QUINOLINE DERIVATIVES

1,2-ANNELIERTE CHINOLINDERIVATE
DERIVES DE 1,2-QUINOLINE CONDENSEE

- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 23.12.1998 EP 98204444
- (43) Date of publication of application: 10.10.2001 Bulletin 2001/41
- (73) Proprietor: JANSSEN PHARMACEUTICA N.V. 2340 Beerse (BE)
- (72) Inventors:
 - ANGIBAUD, Patrick René, Janssen-Cilag S.A.
 92787 Issy-les-Moulineaux Cedex 9 (FR)

- VENET, Marc Gaston, Janssen-Cilag S.A. 92787 Issy-les-Moulineaux Cedex 9 (FR)
- BOURDREZ, Xavier Marc, Janssen-Cilag S.A.
 92787 Issy-les-Moulineaux Cedex 9 (FR)
- (74) Representative: De Corte, Filip Alois Julia et al Janssen Pharmaceutica N.V.
 Turnhoutseweg 30
 2340 Beerse (BE)
- (56) References cited:

WO-A-97/16443 WO-A-98/49157 WO-A-97/21701

P 1 140 935 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

20

30

35

40

45

50

[0001] The present invention is concerned with novel 1,2-annelated quinoline derivatives, the preparation thereof, pharmaceutical compositions comprising said novel compounds and the use of these compounds as a medicine as well as methods of treatment by administering said compounds.

[0002] Oncogenes frequently encode protein components of signal transduction pathways which lead to stimulation of cell growth and mitogenesis. Oncogene expression in cultured cells leads to cellular transformation, characterized by the ability of cells to grow in soft agar and the growth of cells as dense foci lacking the contact inhibition exhibited by non-transformed cells. Mutation and/or overexpression of certain oncogenes is frequently associated with human cancer. A particular group of oncogenes is known as *ras* which have been identified in mammals, birds, insects, mollusks, plants, fungi and yeasts. The family of mammalian *ras* oncogenes consists of three major members ("isoforms"): H-*ras*, K-*ras* and N-*ras* oncogenes. These *ras* oncogenes code for highly related proteins generically known as p21^{ras}. Once attached to plasma membranes, the mutant or oncogenic forms of p21^{ras} will provide a signal for the transformation and uncontrolled growth of malignant tumor cells. To acquire this transforming potential, the precursor of the p21^{ras} oncoprotein must undergo an enzymatically catalyzed farnesylation of the cysteine residue located in a carboxylterminal tetrapeptide. Therefore, inhibitors of the enzymes that catalyzes this modification, i.e. farnesyl transferase, will prevent the membrane attachment of p21^{ras} and block the aberrant growth of *ras*-transformed tumors. Hence, it is generally accepted in the art that farnesyl transferase inhibitors can be very useful as anticancer agents for tumors in which *ras* contributes to transformation.

[0003] The K-*ras* B isoform has been observed to be the dominant isoform which is mutated in human cancers, particular in colon (50% incidence) and pancreatic (90% incidence) cancers. However, it was also found that *ras* protein activation in the K-*ras* B isotorm transformed cancers is resistant to inhibition of farnesyl transferase. The isoform confers resistance to farnesyl transferase inhibitors, but makes this isoform also substrate for geranylgeranyl transferase I. Therefore, inhibitors of geranylgeranyl transferase may inhibit the aberrant growth of K-*ras* transformed tumors which are resistant to farnesyl transferase inhibitors.

[0004] Since mutated oncogenic forms of *ras* are frequently found in many human cancers, most notably in more than 50 % of colon and pancreatic carcinomas (Kohl et al., *Science*, vol 260, 1834 - 1837, 1993), it has been suggested that farnesyl transferase inhibitors can be very useful against these types of cancer.

[0005] In EP-0,371,564 there are described (1*H*-azol-1-ylmethyl) substituted quinoline and quinolinone derivatives which suppress the plasma elimination of retinoic acids. Some of these compounds also have the ability to inhibit the formation of androgens from progestines and/or inhibit the action of the aromatase enzyme complex.

[0006] In WO 97/16443, WO 97/21701, WO 98/40383 and WO 98/49157, there are described 2-quinolone derivatives which exhibit farnesyl transferase inhibiting activity.

[0007] Unexpectedly, it has been found that the present novel 1,2-annelated quinoline compounds, bearing a nitrogen- or carbon-linked imidazole, show farnesyl protein transferase and geranylgeranyl transferase inhibiting activity.

[0008] The present invention concerns compounds of formula

$$(R^{1})_{r}$$

$$(R^{2})_{s}$$

$$(R^{2})_{s}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^$$

or the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein $=X^{1}-X^{2}-X^{3}$ - is a trivalent radical of formula

$$= N-CR^6 = CR^7 - (x-1),$$

$$=N-N=CR^{6}-$$
 (x-2),

$$= N-NH-C(=O)-$$
 (x-3),

$$=N-N=N- (x-4),$$

$$= N-CR^6 = N-$$
 (x-5),

$$=CR^{6}-CR^{7}=CR^{8}-$$
 (x-6),

$$=CR^{6}-N=CR^{7}-$$
 (x-7),

$$=CR^{6}-NH-C(=O)-$$
 (x-8),

or

$$=CR^{6}-N=N-$$
 (x-9);

wherein each R^6 , R^7 and R^8 are independently hydrogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkyloxy, aryloxy, C_{1-4} alkyloxycarbonyl, hydroxy C_{1-4} alkyl, C_{1-4} alkyl, mono- or di(C_{1-4} alkyl)amino C_{1-4} alkyl, cyano, amino, thio, C_{1-4} alkylthio, arylthio or aryl;

>Y1-Y2- is a trivalent radical of formula

35

50

30

$$>CH-NR^9-$$
 (y-3),

or

$$>C=CR^9$$
- (y-4);

wherein each R^9 independently is hydrogen, halo, halocarbonyl, aminocarbonyl, hydroxy C_{1-4} alkyl, cyano, carboxyl, C_{1-4} alkyl, C_{1-4} alkyloxy,

 C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, mono- or di(C_{1-4} alkyl)amino, mono- or di(C_{1-4} alkyl)amino C_{1-4} alkyl, aryl;

r and s are each independently 0, 1, 2, 3, 4 or 5;

t is 0, 1, 2 or 3;

each R^1 and R^2 are independently hydroxy, halo, cyano, C_{1-6} alkyl, trihalomethyl, trihalomethoxy, C_{2-6} alkenyl, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, aryl, aryl C_{1-6} alkyloxy or aryl C_{1-6} alkyloxy, hydroxycarbonyl, C_{1-6} alkyloxy, amino C_{1-6} alkyloxy, amino C_{1-6} alkyl, mono- or di(C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)

two R^1 or R^2 substituents adjacent to one another on the phenyl ring may independently form together a bivalent radical of formula

$$_{5}$$
 -O-CH $_{2}$ -O- (a-1),

$$-O-CH_2-CH_2-O-$$
 (a-2),

10 -O-CH=CH- (a-3),

-O-CH₂-CH₂- (a-4),

-O-CH₂-CH₂- CH₂- (a-5),

or 20

15

30

35

55

-CH=CH-CH=CH- (a-6);

 $R^{3} \text{ is hydrogen, halo, } C_{1-6}\text{alkyl, cyano, halo} C_{1-6}\text{alkyl, hydroxy} C_{1-6}\text{alkyl, cyano} C_{1-6}\text{alkyl, amino} C_{1-6}\text{alkyl, hydroxy} C_{1-6}\text{alkyl, cyano} C_{1-6}\text{alkyl, amino} C_{1-6}\text{alkyl, hydroxy} C_{1-6}\text{alkyl, aryl} C_{1-6}\text{alkyl, monoord} C_{1-6}\text{alkyl, hydroxy} C_{1-6}\text{alkyl, hydroxy} C_{1-6}\text{alkyl, aryl} C_{1-6}\text{alkyl, monoord} C_{1-6}\text{alkyl, hydroxy} C_{1-6}\text{alkyl, hydroxy}$

 $-O-R^{10}$ (b-1),

-S-R¹⁰ (b-2),

 $-NR^{11}R^{12}$ (b-3),

40 wherein

 R^{10} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, aryl, aryl C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl C_{1-6} alkyl, or a radical of formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;

 R^{11} is hydrogen, C_{1-6} alkyl, aryl or aryl C_{1-6} alkyl;

45 R^{12} is hydrogen, C_{1-6} alkyl, aryl, hydroxy, amino, C_{1-6} alkyloxy, C_{1-6} alkylcarbonyl C_{1-6} alkyl, aryl C_{1-6} alkyl, C_{1-6} alkylcarbonylamino, mono- or di(C_{1-6} alkyl)amino, C_{1-6} alkylcarbonyl, aminocarbonyl, arylcarbonyl, halo C_{1-6} alkylcarbonyl, aryl C_{1-6} alkylcarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxy C_{1-6} alkylcarbonyl, mono- or di $(C_{1-6}$ alkyl)aminocarbonyl wherein the alkyl moiety may optionally be substituted by one or more substituents independently selected from aryl or C_{1-3} alkyloxycarbonyl, aminocarbonylcarbonyl, mono- or di(C_{1-6} alkyl) amino C_{1-6} alkylcarbonyl, or a radical or formula -Alk-OR 13 or -Alk-NR 14 R 15 ;

wherein

Alk is C₁₋₆alkanediyl;

 R^{13} is hydrogen, $\mathsf{C}_{1\text{-}6}$ alkyl, $\mathsf{C}_{1\text{-}6}$ alkylcarbonyl, hydroxy $\mathsf{C}_{1\text{-}6}$ alkyl, aryl or aryl $\mathsf{C}_{1\text{-}6}$ alkyl;

R¹⁴ is hydrogen, C₁₋₆alkyl, aryl or arylC₁₋₆alkyl;

 R^{15} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, aryl or aryl C_{1-6} alkyl;

R⁴ is a radical of formula

 R^{16} (c-1), R^{16} (c-2),

wherein

5

10

15

20

30

 $R^{16} \text{ is hydrogen, halo, aryl, } C_{1\text{-}6}\text{alkyl, hydroxy} C_{1\text{-}6}\text{alkyl, } C_{1\text{-}6}\text{alkyloxy} C_{1\text{-}6}\text{alkyloxy}, C_{1$

 R^{16} may also be bound to one of the nitrogen atoms in the imidazole ring of formula (c-1) or (c-2), in which case the meaning of R^{16} when bound to the nitrogen is limited to hydrogen, aryl, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyl

 R^{17} is hydrogen, C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, aryl C_{1-6} alkyl, trifluoromethyl or di(C_{1-4} alkyl)aminosulfonyl;

 R^5 is C_{1-6} alkyl, C_{1-6} alkyloxy or halo;

aryl is phenyl, naphthalenyl or phenyl substituted with 1 or more substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy or trifluoromethyl.

[0009] A special group of compounds contains those compounds of formula (I) wherein

each R^1 and R^2 are independently hydroxy, halo, cyano, C_{1-6} alkyl, trihalomethyl, trihalomethoxy, C_{2-6} alkenyl, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, C_{1-6} alkyloxy C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, aryl, aryl C_{1-6} alkyloxy, aryl, aryloxy or aryl C_{1-6} alkyloxy, hydroxycarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxycarbonyl; or

two \mathbb{R}^1 or \mathbb{R}^2 substituents adjacent to one another on the phenyl ring may independently form together a bivalent radical of formula

$$-\mathrm{O-CH}_2\mathrm{-CH}_2\mathrm{-O-} \tag{a-2},$$

 $-\text{O-CH}_2\text{-CH}_2\text{-} \tag{a-4},$

$$-O-CH2-CH2-CH2- (a-5),$$

or

45

50

55

 $R^{16} \quad \text{is hydrogen, halo, aryl, C_{1-6}alkyl, hydroxyC_{1-6}alkyl, C_{1-6}alkyloxyC_{1-6}alkyl$

may also be bound to one of the nitrogen atoms in the imidazole ring of formula (c-1), in which case the meaning of R¹⁶ when bound to the nitrogen is limited to hydrogen, aryl, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylS(O)C₁₋₆alkyl or C₁₋₆alkylS(O)₂C₁₋₆alkyl;

R¹⁷ is hydrogen, C₁₋₆alkyl, trifluoromethyl or di(C₁₋₄alkyl)aminosulfonyl.

[0010] As used in the foregoing definitions and hereinafter, halo is generic to fluoro, chloro, bromo and iodo; C_{1-4} alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, e.g. methyl, ethyl, propyl, butyl, 1-methylethyl, 2-methylpropyl and the like; C_{1-6} alkyl includes C_{1-4} alkyl and the higher homologues thereof having 5 to 6 carbon atoms such as, for example, pentyl, 2-methyl-butyl, hexyl, 2-methylpentyl and the like; C_{1-6} alkanediyl defines bivalent straight and branched chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms, such as, for example, methylene, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl, 1,5-pentanediyl, 1,6-hexanediyl and the branched isomers thereof; C_{2-6} alkenyl defines straight and branched chain hydrocarbon radicals containing one double bond and having from 2 to 6 carbon atoms such as, for example, ethenyl, 2-propenyl, 3-butenyl, 2-pentenyl, 3-methyl-2-butenyl, and the like. The term "S(O)" refers to a sulfoxide and "S(O)₂" to a sulfon.

[0011] The pharmaceutically acceptable acid addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid addition salt forms which the compounds of formula (I) are able to form. The compounds of formula (I) which have basic properties can be converted in their pharmaceutically acceptable acid addition salts by treating said base form with an appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic (*i.e.* butanedioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, *p*-toluenesulfonic, cyclamic, salicylic, *p*-amino-salicylic, pamoic and the like acids.

[0012] The term acid addition salts also comprises the hydrates and the solvent addition forms which the compounds of formula (I) are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.

[0013] The term stereochemically isomeric forms of compounds of formula (I), as used hereinbefore, defines all possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures which are not interchangeable, which the compounds of formula (I) may possess. Unless otherwise mentioned or indicated, the chemical designation of a compound encompasses the mixture of all possible stereochemically isomeric forms which said compound may possess. Said mixture may contain all diastereomers and/ or enantiomers of the basic molecular structure of said compound. All stereochemically isomeric forms of the compounds of formula (I) both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.

[0014] Some of the compounds of formula (I) may also exist in their tautomeric forms. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.

[0015] Whenever used hereinafter, the term "compounds of formula (I)" is meant to include also the pharmaceutically acceptable acid addition salts and all stereoisomeric forms.

[0016] A group of interesting compounds consists of those compounds of formula (I) wherein one or more of the following restrictions apply:

- =X¹-X²-X³ is a trivalent radical of formula (x-1), (x-2), (x-3), (x-4) or (x-9) wherein each R⁶ independently is hydrogen, C₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, amino or aryl and R⁷ is hydrogen;
- >Y¹-Y²- is a trivalent radical of formula (y-1), (y-2), (y-3), or (y-4) wherein each R⁹ independently is hydrogen, halo, carboxyl, C₁₋₄alkyl or C₁₋₄alkyloxycarbonyl;
- r is 0, 1 or 2;
 - s is 0 or 1;
 - t is 0

10

15

20

30

35

40

50

55

- R¹ is halo, C₁₋₆alkyl or two R¹ substituents ortho to one another on the phenyl ring may independently form together a bivalent radical of formula (a-1);
- 45 R² is halo;
 - R³ is halo or a radical of formula (b-1) or (b-3) wherein

R¹⁰ is hydrogen or a radical of formula -Alk-OR¹³.

R¹¹ is hydrogen;

 $R^{12} \ \ \text{is hydrogen,} \ \ C_{1\text{-}6} \text{alkyl}, \ \ C_{1\text{-}6} \text{alkylcarbonyl,} \ \ \text{hydroxy,} \ \ C_{1\text{-}6} \text{alkyloxy} \ \ \text{or mono- or di} (C_{1\text{-}6} \text{alkyl}) \\ \text{amino} C_{1\text{-}6} \text{alkylcarbonyl;}$

Alk is C₁₋₆alkanediyl and R¹³ is hydrogen;

• R⁴ is a radical of formula (c-1) or (c-2) wherein

 R^{16} is hydrogen, halo or mono- or di(C_{1-4} alkyl)amino; R^{17} is hydrogen or C_{1-6} alkyl;

aryl is phenyl.

20

30

35

40

45

50

55

[0017] A particular group of compounds consists of those compounds of formula (I) wherein = $X^1-X^2-X^3$ is a trivalent radical of formula (x-1), (x-2), (x-3) or (x-9), >Y1-Y2 is a trivalent radical of formula (y-2), (y-3) or (y-4), r is 0 or 1, s is 1, t is 0, R¹ is halo, $C_{(1-4)}$ alkyl or forms a bivalent radical of formula (a-1), R² is halo or C_{1-4} alkyl, R³ is hydrogen or a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-1) or (c-2), R⁶ is hydrogen, C_{1-4} alkyl or phenyl, R⁷ is hydrogen, R⁹ is hydrogen or C_{1-4} alkyl, R¹⁰ is hydrogen or -Alk-OR¹³, R¹¹ is hydrogen and R¹² is hydrogen or C_{1-6} alkylcarbonyl and R¹³ is hydrogen;

[0018] Preferred compounds are those compounds of formula (I) wherein $= X^1-X^2-X^3$ is a trivalent radical of formula (x-1), > Y1-Y2 is a trivalent radical of formula (y-4), r is 0 or 1, s is 1, t is 0, R¹ is halo, preferably chloro and most preferably 3-chloro, R² is halo, preferably 4-chloro or 4-fluoro, R³ is hydrogen or a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-1) or (c-2), R⁶ is hydrogen, R⁷ is hydrogen, R⁹ is hydrogen, R¹⁰ is hydrogen, R¹¹ is hydrogen and R¹² is hydrogen:

[0019] Other preferred compounds are those compounds of formula (I) wherein $=X^1-X^2-X^3$ is a trivalent radical of formula (x-2) or (x-3), >Y1-Y2 is a trivalent radical of formula (y-2), (y-3) or (y-4), r and s are 1, t is 0, R¹ is halo, preferably chloro, and most preferably 3-chloro or R¹ is C_{1-4} alkyl, preferably 3-methyl, R² is halo, preferably chloro, and most preferably 4-chloro, R³ is a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-2), R⁶ is C_{1-4} alkyl, R⁹ is hydrogen, R¹⁰ and R¹¹ are hydrogen and R¹² is hydrogen or hydroxy;

[0021] The compounds of formula (I) wherein =X¹-X²-X³ is a trivalent radical of formula (x-1) and R⁶ and R⁷ are hydrogen, represented by compounds of formula (I-1), can generally be prepared by reacting an intermediate of formula (II) with a reagent of formula (III) or a functional derivative thereof, wherein W¹ is an appropriate leaving group (other than a hydroxy group) such as chloro, followed by an intramolecular cyclization which can be performed in a reaction-inert solvent such as xylene and in the presence of a suitable acid, for example acetic acid. The reaction may conveniently be carried out at elevated temperatures ranging from 80°C to reflux temperature.

$$(R^{1})_{r}$$
 $(R^{2})_{s}$
 $H_{2}N$
 (III)
 $(R^{2})_{s}$
 $(R^{2})_{s}$

[0022] Alternatively, compounds of formula (I) wherein $=X^1-X^2-X^3$ is a trivalent radical of formula (x-1), $>Y^1-Y^2$ is a trivalent radical of formula (y-4), R^9 is hydrogen and R^6 and/or R^7 are not hydrogen, represented by formula (I-1-a) can be prepared by reacting a compound of formula (IV) with a reagent of formula (V) followed by an intramolecular cyclization which can be performed in a reaction-inert solvent such as ethanol. The reaction may conveniently be carried out at temperatures ranging from room temperature to 80° C.

[0023] The compounds of formula (I) wherein =X1-X2-X3 is a trivalent radical of formula (x-2), represented by compounds of formula (I-2), can generally be prepared by reacting a compound of formula (II) with an intermediate of formula (VI). Said reaction can be performed in an appropriate solvent such as 1-butanol at elevated temperatures ranging from 80°C to reflux temperature.

Alternatively, compounds of formula (I-2) can be prepared by reacting a compound of formula (VIII) with an intermediate of formula (VII). Said reaction can be performed in an appropriate solvent such as n-butanol at a temperature ranging between room temperature and reflux temperature. The intermediates of formula (VII) can be prepared by reacting an intermediate of formula (II) with N_2H_4 . Said reaction can be performed in a reaction-inert solvent such as dioxane. The reaction may conveniently be carried out at a temperature ranging between room temperature and 100° C.

25
$$H_{2}N \xrightarrow{R}^{6} R^{6}$$

$$(VI) \xrightarrow{R^{3}} R^{4}$$

$$(VI) \xrightarrow{R^{3}} R^{4}$$

$$R^{6} (R^{5})_{i} (I-2)$$

[0024] Compounds of formula (I-2) wherein R⁶ is an amine, represented by compounds of formula (I-2-a) can be prepared by reacting an intermediate of formula (VII) with BrCN in a reaction-inert solvent such as methanol. The reaction may conveniently be carried out at a temperature ranging between 0°C and 100°C.

55

50

15

5

(VII)

BrCN

$$(R^1)_r$$
 $(R^2)_s$
 $(R^3)_r$
 $(R^5)_t$
 $(R^5)_t$
 $(R^5)_t$
 $(R^5)_t$
 $(R^5)_t$
 $(R^5)_t$
 $(R^5)_t$

[0025] The compounds of formula (I) wherein =X1-X2-X3 is a trivalent racial of formula (x-3), represented by com-15 pounds of formula (I-3), can generally be prepared by reacting an intermediate of formula (VII) with a compound of formula (IX) in a reaction-inert solvent such as tetrahydrofuran. The reaction may conveniently be carried out at a temperature ranging between 0°C and 50°C.

Alternatively, the compounds of formula (I-3) can be prepared by reacting a compound of formula (X) with an intermediate of formula (II). Said reaction can be performed in an appropriate solvent such as 1-butanol at an elevated temperature ranging from 80°C to reflux temperature.

(VII)
$$(IX)$$
 (IX) $($

(II)
$$H_{2N}$$
 (X)
 $(X$

[0026] The compounds of formula (I) wherein $=X^1-X^2-X^3$ is a trivalent radical of formula (x-4), represented by compounds of formula (I-4), can generally be prepared by reacting an intermediate of formula (II) with NaN₃ in a reactioninert solvent such as N,N-dimethylformamide. The reaction may conveniently be carried out at an elevated temperature ranging between 60°C and 150°C.

5

20

25

30

35

40

45

5
(II)
$$\frac{NaN_3}{N}$$
 $\frac{(R^1)_r}{R^3}$ R^4 $(R^5)_t$ $(I-4)$

[0027] The compounds of formula (I-4) can also be prepared by reacting an intermediate of formula (XVIII) with $NaNO_2$ in an acidic aqueous medium such as, for example HCl in water.

20
$$H_{2}N$$

$$H_{2}N$$

$$H_{2}N$$

$$H_{2}N$$

$$H_{2}N$$

$$H_{3}N$$

$$R^{4}$$

$$R^{5}$$

[0028] The compounds of formula (I) wherein $= X^1-X^2-X^3$ is a trivalent radical of formula (x-9), $> Y^1-Y^2$ is a trivalent radical of formula (y-4) and R^9 is hydrogen, represented by compounds of formula (I-5), can generally be prepared by reacting an intermediate of formula (XI) with a compound of formula (XII) in a reaction-inert solvent such as methanol. Convenient reaction temperatures range between room temperature and 80° C. The intermediates of formula (XI) can be prepared by reacting an intermediate of formula (XIII) with SeO_2 in a reaction-inert solvent such as dioxane. The reaction may conveniently be carried out at an elevated temperature ranging between room temperature and reflux temperature. Intermediates of formula (XIII) can generally be prepared by reacting an intermediate of formula (XIV) with 2-propanone in an acid solution such as a mixture of acetic acid and H_2SO_4 . The reaction may conveniently be carried out at an elevated temperature ranging between room temperature and reflux temperature.

45
$$(R^1)_r$$
 $(R^2)_s$ $(R^1)_r$ $(R^2)_s$ $(R^3)_t$ $(XIIV)$ $(R^5)_t$ $(XIII)$

5 (XIII)
$$R^3$$
 R^4

10 (XI) R^3 R^4

[0029] Compounds of formula (I-6) defined as compounds of formula (I) wherein >Y¹-Y² is a trivalent radical of formula (y-2) or (y-4) can be converted to the corresponding compounds of formula (I-7) wherein >Y¹-Y² is a trivalent radical of formula (y-3) or (y-1) and R³ is hydrogen, using art-known reduction procedures such as treatment with NaBH₄ or LiAlH₄ in a suitable solvent such as methanol or tetrahydrofuran.

25

$$(R^1)_r$$
 $(R^2)_s$
 R^3
 R^4
 R^4
 $R^5)_t$
 $R^5)_t$

40

45

50

55

[0030] Conversely, compounds of formula (I-7) can be converted to the corresponding compounds of formula (I-6) by art-known oxidation procedures such as oxidation with MnO_2 in a reaction-inert solvent such as dichloromethane. [0031] Also, compounds of formula (1-7) can be converted to compounds of formula (I-7-a) wherein $>Y^1-Y^2$ is a trivalent radical of formula (y-3) or (y-1) and R^9 is other than hydrogen, by reacting these compounds of formula (I-7) with a reagent of formula R^9-W^2 , wherein W^2 is an appropriate leaving group such as iodo, in a reaction-inert solvent such as dimethylformamide and in the presence of NaH. The reaction may conveniently be carried out at a temperature ranging between $0^{\circ}C$ and room temperature

$$R^{1}$$
, R^{2} , R^{2} , R^{3} , R^{4} , R^{2} , R^{5} , R

[0032] The compounds of formula (I) wherein R³ is a radical of formula (c-2) and R⁴ is hydroxy, represented by

compounds of formula (I-8) can be converted to compounds of formula (I-8-a) wherein R⁴ is hydrogen, by submitting the compounds of formula (I-8) to appropriate reducing conditions such as stirring in acetic acid in the presence of formamide.

15

20

$$(R^{1})_{r}$$
 $(R^{2})_{s}$
 $(R^{2})_{s}$

[0033] Further, compounds of formula (I-8) can be converted to compounds of formula (I-8-b) wherein R⁴ is halo, by reacting the compounds of formula (I-8) with a suitable halogenating agent such as thionyl chloride or phosphorus tribromide. Successively, the compounds of formula (I-8-b) can be treated with a reagent of formula H-NR¹¹R¹² in a reaction-inert solvent, thereby vielding compounds of formula (I-8-c).

$$(I-8) \xrightarrow{(R^{1})_{t}} (R^{2})_{s}$$

$$(I-8) \xrightarrow{(R^{2})_{t}} (R^{1})_{t}$$

$$(I-8-b) \xrightarrow{(R^{2})_{t}} (R^{1})_{t}$$

$$(R^{2})_{s}$$

$$(R^{2$$

³⁵ **[0034]** The intermediates of formula (II) when W¹ is chloro can be prepared by reacting an intermediate of formula (XV) with a suitable halogenating reagent such as POCl₃.

$$(XV)$$

$$(R^{1})_{r}$$

$$(R^{2})_{s}$$

$$POCl_{3}$$

$$POCl_{3}$$

$$(XV)$$

50

45

[0035] The intermediates of formula (XV) wherein >Y¹-Y² is of formula (y-1) or (y-4) and R⁴ is of formula (c-1), can be prepared as described in WO 97/16443 from page 6 line 16 to page 16 line 3.

[0036] The intermediates of formula (XV) wherein >Y 1 -Y 2 is of formula (y-1) or (y-4) and R 4 is of formula (c-2), can be prepared as described in WO 97/21701 from page 7 line 28 to page 16 line 3.

[0037] The intermediates of formula (XV) wherein >Y¹-Y² is of formula (y-2) or (y-3) and R⁴ is of formula (c-1) or (c-2), can be prepared as described in WO 98/49157 from page 6 line 27 to page 13 line 14.

[0038] Alternatively, intermediates of formula (II) wherein W^1 is chloro and R^3 is hydroxy, represented by intermediates of formula (II-a) can be prepared by reacting an intermediate of formula (XVI), wherein W^3 is a suitable leaving group such as Br, with an intermediate ketone of formula (XVII). This reaction is performed by converting the intermediate

diate of formula (XVI) into an organometallic compound, by stirring it with a strong base such as butyl lithium and subsequently adding the intermediate ketone of formula (XVII). The hydroxy derivative can subsequently be converted into other intermediates wherein R⁴ has another definition by performing art-known functional group transformations.

5

10

15

20

30

35

40

45

50

55

$$(R^1)_r$$
 $(R^2)_s$
 $(R^2)_s$
 $(R^2)_s$
 $(R^3)_r$
 $(R^2)_s$
 $(R^3)_r$
 $(R^3)_r$

[0039] Intermediates of formula (IV) can be prepared by reacting an intermediate of formula (XIV) with CH_3CN in the presence of NaH and a suitable base such as pyridine. The reaction may conveniently be carried out at an elevated temperature ranging between $50^{\circ}C$ and $100^{\circ}C$.

[0040] Intermediates of formula (XIV) can be prepared according to methods as described in WO 97/16443 and WO 97/21701.

[0041] The compounds of formula (I) and some of the intermediates have at least one stereogenic center in their structure. This stereogenic center may be present in a R or a S configuration.

[0042] The compounds of formula (I) as prepared in the hereinabove described processes are generally racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stereoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starting materials.

[0043] The compounds of formula (I), the pharmaceutically acceptable acid addition salts and stereoisomeric forms thereof have valuable pharmacological properties in that they surprisingly have both farnesyl protein transferase (FPTase) and geranylgeranyl transferase (GGTase) inhibitory effects.

[0044] Furthermore, the compounds of formula (I), in particular those compounds of formula (I) wherein $=X^1-X^2-X^3$ is a trivalent radical of formula (x-4), display potent GGTase inhibition.

[0045] Other compounds of formula (I) are found to be particularly usefull for the inhibition of FPTase activity.

This invention provides a method for inhibiting the abnormal growth of cells, including transformed cells, by administering an effective amount of a compound of the invention. Abnormal growth of cells refers to cell growth independent of normal regulatory mechanisms (e.g. loss of contact inhibition). This includes the abnormal growth of: (1) tumor cells (tumors) expressing an activated ras oncogene; (2) tumor cells in which the ras protein is activated as a result of oncogenic mutation of another gene; (3) benign and malignant cells of other proliferative diseases in which aberrant ras activation occurs. Furthermore, it has been suggested in literature that ras oncogenes not only contribute to the growth of tumors in vivo by a direct effect on tumor cell growth but also indirectly, i.e. by facilitating tumor-induced angiogenesis (Rak. J. et al, Cancer Research, 55, 4575-4580, 1995). Hence, pharmacologically targeting mutant ras oncogenes could conceivably suppress solid tumor growth in vivo, in part, by inhibiting tumor-induced angiogenesis. [0047] This invention also provides a method for inhibiting tumor growth by administering an effective amount of a compound of the present invention, to a subject, e.g. a mammal (and more particularly a human) in need of such treatment. In particular, this invention provides a method for inhibiting the growth of tumors expressing an activated ras oncogene by the administration of an effective amount of the compounds of the present invention. Examples of tumors which may be inhibited, but are not limited to, lung cancer (e.g. adenocarcinoma), pancreatic cancers (e.g. pancreatic carcinoma such as, for example exocrine pancreatic carcinoma), colon cancers (e.g. colorectal carcinomas, such as, for example, colon adenocarcinoma and colon adenoma), hematopoietic tumors of lymphoid lineage (e.g. acute lymphocytic leukemia, B-cell lymphoma, Burkitt's lymphoma), myeloid leukemias (for example, acute myelogenous leukemia (AML)), thyroid follicular cancer, myelodysplastic syndrome (MDS), tumors of mesenchymal origin (e. g. fibrosarcomas and rhabdomyosarcomas), melanomas, teratocarcinomas, neuroblastomas, gliomas, benign tumor

of the skin (e.g. keratoacanthomas), breast carcinoma, kidney carcinoma, ovary carcinoma, bladder carcinoma and epidermal carcinoma.

[0048] This invention may also provide a method for inhibiting proliferative diseases, both benign and malignant, wherein *ras* proteins are aberrantly activated as a result of oncogenic mutation in genes. With said inhibition being accomplished by the administration of an effective amount of the compounds described herein, to a subject in need of such a treatment. For example, the benign proliferative disorder neuro-fibromatosis, or tumors in which *ras* is activated due to mutation or overexpression of tyrosine kinase oncogenes, may be inhibited by the compounds of this invention. **[0049]** The compounds of present invention are particularly useful for the treatment of proliferative diseases, both benign and malignant, wherein the K-*ras* B isoform is activated as a result of oncogenic mutation.

[0050] Hence, the present invention discloses the compounds of formula (I) for use as a medicine as well as the use of these compounds of formula (I) for the manufacture of a medicament for treating one or more of the above mentioned conditions.

[0051] In view of their useful pharmacological properties, the subject compounds may be formulated into various pharmaceutical forms for administration purposes.

[0052] To prepare the pharmaceutical compositions of this invention, an effective amount of a particular compound, in base or acid addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, to aid solubility for example, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause a significant deleterious effect to the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

[0053] Those skilled in the art could easily determine the effective amount from the test results presented hereinafter. In general it is contemplated that an effective amount would be from 0.01 mg/kg to 100 mg/kg body weight, and in particular from 0.05 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 0.5 to 500 mg, and in particular 1 mg to 200 mg of active ingredient per unit dosage form.

[0054] The following examples are provided for purposes of illustration.

Experimental part

[0055] Hereinafter "THF" means tetrahydrofuran, "DIPE" means diisopropylether, "DME" means 1,2- dimethoxyethane and "EtOAc" means ethylacetate.

55

10

20

30

35

40

A. Preparation of the intermediates

Example A1

5 [0056]

10

15

20

25

30

35

40

45

50

55

a) A mixture of (\pm) -6-[(4-fluorophenyl)(1*H*-imidazol-1-yl)methyl]-4-phenyl-2(1*H*)-quinolinone (0.0253 mol) in phosphoryl chloride (30 ml) was refluxed for 1 hour. The mixture was evaporated till dryness and the product was used without further purification, yielding 10.4g (99%) of (\pm) -2-chloro-6-[(4-fluorophenyl)(1*H*-imidazol-1-yl)methyl]-4-phenyl-quinoline (interm. 1).

b) A mixture of intermediate (1) (0.0251 mol) in 2,2-dimethoxyethylamine (20 ml) was stirred at 120° C for 12 hours. The mixture was poured into ice water and extracted with CH_2CI_2 . The organic layer was dried (MgSO₄) and evaporated till dryness. The oily residue (21g) was purified by column chromatography over silica gel. The pure fractions were collected and evaporated, yielding 10g (83%) of (\pm)-*N*-(2,2-dimethoxyethyl)-6-[(4-fluorophenyl)(1*H*-imidazol-1-yl)methyl]-4-phenyl-2-quinolinamine (interm. 2).

Example A2

[0057]

a) Preparation of

intermediate (3)

Sodium hydride (0.0384 mol) was added portionwise to a mixture of (\pm)-[2-amino-5-[(4-chlorophenyl)hydroxy (1-methyl-1H-imidazol-5-yl)methyl]phenyl](3-chlorophenyl)methanone (0.00961 mol) and acetonitrile (0.058 mol) in pyridine (30ml). The mixture was stirred at 90°C for 6 hours and then cooled. H₂O was added. The solvent was evaporated. The residue was taken up in CH₂Cl₂. The organic solution was washed with H₂O, dried (MgSO₄), filtered and the solvent was evaporated. The residue (6.1g) was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated, yielding 2.9g (63%) of intermediate 3.

b) Preparation of

intermediate (4)

Ethyl bromopyruvate (0.0023 mol) was added to a mixture of intermediate (3) (0.0019 mol) in DME (5 ml). The mixture was stirred at room temperature for 19 hours. A gum was filtered off, washed with diethyl ether and used without further purification, yielding intermediate (4).

Example A3

[0058] A mixture of (\pm)-6-[(4-chlorophenyl)-1*H*-imidazol-1-ylmethyl]-4-phenyl-2(1*H*)-quinolinone (0.022 mol) in phosphoryl chloride (100ml) was stirred and refluxed for 2 hours. The mixture was evaporated in vacuo, the residue was taken up in CH₂Cl₂ and basified with K₂CO₃ (10%). The organic layer was dried (MgSO₄), filtered off and evaporated. The product was used without further purification, yielding 8 g (85%) of (\pm)-2-chloro-6-[(4-chlorophenyl)-1*H*-imidazol-1-ylmethyl]-4-phenylquinoline (interm. 5).

Example A4

[0059]

10

[0060] A mixture of intermediate (6) (0.0242 mol) in hydrazine hydrate (120 ml) and dioxane (240 ml) was stirred at 70° C overnight and then brought to room temperature. H_2O was added and the mixture was extracted with CH_2CI_2 . The organic layer was separated, washed with a saturated NaCl solution, dried (MgSO₄), filtered and the solvent was evaporated, yielding 11.8g of intermediate 7.

Example A5

30 [0061]

[0062] A solution of butyllithium in hexane (1.6 M) (74.4 ml) was added dropwise at -70°C under N_2 flow to a mixture of 1-methylimidazole (0.119 mol) in THF (200 ml). The mixture was stirred at -70°C for 30 minutes. Chlorotriethylsilane (0.119 mol) was added. The mixture was brought slowly to 10°C and cooled again to -70°C. A solution of butyllithium in hexane (1.6 M) (74.4 ml) was added dropwise. The mixture was stirred at -70°C for 1 hour, brought to -15°C and cooled again to -70°C. A mixture of intermediate (8) (0.052 mol) in THF (200 ml) was added dropwise. The mixture was stirred at -70°C for 30 min, hydrolized, extracted with EtOAc and decanted. The organic layer was dried (MgSO₄), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated, yielding 12g (46.5%) of intermediate (9).

Example A6

[0063]

45

50

55

a) Preparation of

A mixture of (\pm)-[2-amino-5-[(4-chlorophenyl)hydroxy(1-methyl-1*H*-imidazol-5-yl)methyl]phenyl](3-chlorophenyl) methanone (0.0415 mol) and 2-propanone (0.124 mol) in sulfuric acid (0.6 ml) and acetic acid (55 ml) was stirred and refluxed overnight, brought to room temperature, poured out on ice, basified with NH₄OH and extracted with CH₂Cl₂. The organic layer was separated, dried (MgSO₄), filtered and the solvent was evaporated. The residue (30 g) was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated, yielding 12g (60%) of product. Part of this fraction (2g) was crystallized from CH₃CN. The precipitate was filtered off and dried, yielding 1.25g (37.5%) of intermediate (10).

A mixture of intermediate (10) (0.0116 mol) and selenium dioxide (0.0116 mol) in dioxane (55 ml) and water (5.5 ml) was stirred and refluxed for 3 hours. The mixture was cooled, filtered over celite, washed with CH_2Cl_2 , dried (MgSO₄), filtered and the solvent was evaporated, yielding 5.66g of intermediate (11).

Example A7

[0064]

5

10

15

30

35

45

50

55

Butyllithium in hexane (1.6 M) (5.3 ml) was added dropwise at -70° C to a mixture of intermediate (12) (0.0071 mol) in tetrahydrofuran (25 ml). The mixture was stirred at -70° C for 30 minutes. A solution of intermediate (13) (0.0078 mol) in THF (10ml) was added dropwise. The mixture was stirred for 1 hour, hydrolized and extracted with EtOAc. The organic layer was separated, dried (MgSO₄), filtered and the solvent was evaporated till dryness. The residue (3.9g) was purified by column chromatography over silica gel. Two pure fractions were collected and their solvents were evaporated, yielding 1.3g (65%; starting material (intermediate 13) and 0.71g (19%) of intermediate (14).

Example A8

[0065] Preparation of

15

20

5

A mixture of (4-chlorophenyl)[2-chloro-4-(3-chlorophenyl)-6-quinolinyl]methanone (0.016 mol) and NaN $_3$ (0.024 mol) in DMF (50ml) was stirred at 100°C for 8 hours, brought to room temperature and poured out on ice. The precipitate was filtered off, washed with H $_2$ O and taken up in CH $_2$ Cl $_2$. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was taken up in CH $_3$ CN. The precipitate was filtered off and dried, yielding 5.1g of intermediate (15) (76%).

Example A9

[0066] Preparation of

25

30

35

40

A mixture of (4-chlorophenyl)[2-chloro-4-(3-chlorophenyl)-6-quinolinyl]methanone monohydrochloride (0.0349 mol) and hydrazinecarboxaldehyde (0.0524 mol) in 1-butanol (180ml) was stirred and refluxed for the weekend. The solvent was evaporated. THF (100ml) and HCl 3N (200ml) were added. The mixture was stirred and refluxed for 3 hours. The mixture was cooled, poured out on ice, basified with NH₄OH, filtered over celite, washed with EtOAc and decanted. The organic layer was dried (MgSO₄), filtered and the solvent was evaporated. The residue (11.8g) was purified by column chromatography over silica gel (eluent: $CH_2CI_2/CH_3OH/NH_4OH$ 97/3/0.1; 20-45 μ m). The pure fractions were collected and the solvent was evaporated. Yielding: 5g of intermediate 16 (34%).

Example A10

[0067]

a) Preparation of

50

45

55

A mixture of 6-bromo-2-chloro-4-(3-chlorophenyl)quinoline (0.0276 mol) in THF (30ml) was cooled to -70°C under N_2 flow. BuLi 1.6N in hexane (0.033 mol) was added dropwise at -70°C. The mixture was stirred at -70°C for 1 hour. A solution of 2,4-difluorobenzaldehyde (0.0276 mol) in THF (100ml) was added dropwise at -70°C. The mixture was stirred at -70°C for 1 hour, hydrolized cold and extracted with EtOAc. The organic layer was separated,

washed with H_2O , dried (MgSO₄), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH_2Cl_2/CH_3OH 99.5/0.5; 20-45 μ m). The pure fractions were collected and the solvent was evaporated. Yielding: 5.2g of intermediate (17) (46%).

b) Preparation of

MnO₂ (0.0374 mol) was added to a mixture of intermediate (17) (0.0125 mol) in dioxane (50ml). The mixture was stirred at 80°C overnight, brought to room temperature, filtered over celite and washed with CH₂Cl₂. The filtrate was evaporated. Yielding: 5g of intermediate (18) (96%).

Example A11

[0068]

5

10

15

20

25

30

35

40

45

50

- a) A mixture of (4-chlorophenyl)(4-nitrophenyl)-methanone (0.0382 mol), 1,2-ethanediol (0.0764 mol) and p-toluenesulfonic acid (0.19 mol) in toluene (150ml) was stirred and refluxed in a Dean Stark apparatus for 24h. The mixture was washed with $\rm K_2CO_3$ 10% and then with water. The organic layer was dried, filtered off and evaporated, yielding (98%) of intermediate 19.
- b) Intermediate 19 and then 3-chloro-benzeneacetonitrile (0.147 mol) were added to a mixture of NaOH (0.409 mol) in methanol (100ml). The mixture was stirred and refluxed. Ice and then ethanol were added. The mixture was allowed to crystallize out. The precipitate was filtered, washed with ethanol and dried, yielding intermediate 20. c) TiCl₃ (15 % in H₂O; 308ml) was added at room temperature to a mixture of intermediate 20 (0.124 mol) in THF (308ml). The mixture was stirred at room temperature for 48 hr. Water was added and the mixture was extracted

with CH₂Cl₂. The organic layer was separated, washed with K₂CO₃ 10%, dried, filtered and the solvent was evaporated, yielding intermediate 21.

d) A mixture of intermediate 21 (0.097 mol) and 2-propanone (0.291 mol) in H_2SO_4 (1ml) and acetic acid (100ml) was stirred and refluxed for 24 hours. The mixture was poured out on ice and NH_4OH and extracted twice with CH_2CI_2 . The combined organic layer was separated, dried, filtered and the solvent was evaporated. The residue was taken up in CH_3CN , filtered off and dried, yielding 24g (63%) of intermediate 22.

e) A mixture of intermediate 22 (0.0255 mol), 1,2-ethanediol (0.102 mol) and p-toluene sulfonic acid (0.0305 mol) in toluene (200ml) was stirred and refluxed for 16 hours.

The mixture was poured out on ice. K_2CO_3 10% was added and the mixture was extracted twice with CH_2CI_2 . The combined organic layer was dried, filtered and the solvent was evaporated. The residue was crystallized from DIPE and pentane. The precipitate was filtered off and dried, yielding 9g (80%) of intermediate 23.

f) A mixture of intermediate 23 (0.0206 mol) and SeO_2 (0.0206 mol) in dioxane (100ml) and H_2O (10ml) was stirred and refluxed for 3 hours. The mixture was filtered warm over celite, washed with H_2O and with CH_2CI_2 and decanted. The organic layer was dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 80/20). The pure fractions were collected and the solvent was evaporated, yielding 4.68g (50%) of intermediate 24.

g) A mixture of intermediate 24 (0.0104 mol) and 4-methyl-benzenesulfonic acid, hydrazide (0.0114 mol) in methanol (60ml) was stirred at 50°C overnight. The mixture was allowed to cool to room temperature. The precipitate was filtered off, washed with ethanol and dried, yielding 4.09g (85%) of intermediate 25.

h) A mixture of intermediate 25 (0.00865 mol) in HCl 6N (40ml) and THF (140ml) was stirred at room temperature for 48 hours. The mixture was poured out on ice, basified with K_2CO_3 10% and extracted with EtOAc. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2Cl_2/EtOAc$ 95/5). The pure fractions were collected and the solvent was evaporated, yielding 1.2g (33%) intermediate 26.

i) NaBH₄ (0.00344 mol) was added at room temperature to a solution of intermediate 26 (0.00286 mol) in THF (10ml) and methanol (10ml). The mixture was stirred at room temperature for 15 min. H_2O was added and the mixture was extracted with CH_2CI_2 . The organic layer was separated, dried, filtered and the solvent was evaporated, yielding 1.2g of intermediate 27.

j) A mixture of intermediate 27 (0.00286 mol) in CH_2Cl_2 (20ml) was stirred at 0°C under N_2 . $SOCl_2$ (5ml) was added. The mixture was stirred at 10°C for 1 hour. solvent was evaporated, yielding intermediate 28.

Example A12

[0069]

5

10

15

20

25

30

35

55

Intermediate 30

Intermediate 32

Intermediate 33

Intermediate 33

a) A mixture of intermediate 29, prepared analogous to example A1 (0.0727 mol), in acetic acid (90ml) and xylene (300ml) was stirred and for 72h. The solvent was evaporated. The residue was taken in CH₂Cl₂, K₂CO₃ 10% was added and filtered over celite. The organic layer was decanted, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH 99/1). The pure frac-

tions were collected and the solvent was evaporated. The residue was recrystallized from CH₃CN. The precipitate was filtered off and dried, yielding 6.7g (56%) intermediate 30.

b) NaBH $_4$ (0.0086 mol) was added portionwise at 10 $^{\circ}$ C to a solution of intermediate 30 (0.00719 mol) in methanol (30ml) and THF (20ml). The mixture was stirred at $^{\circ}$ C for 15 min. Water was added and the mixture was concentrated. The concentrate was taken up in CH $_2$ Cl $_2$. The organic layer was separated, washed with water, dried, filtered and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried, yielding 1.45g (48%) of intermediate 31.

c) A mixture of intermediate 30 (0.0096 mol) in formamide (19ml) and acetic acid (20ml) was stirred at 160° C for 48 hours. The mixture was cooled. Ice was added. The mixture was extracted with CH_2CI_2 and decanted. The organic layer was dried, filtered and the solvent was evaporated, yielding 4.2g of intermediate 32.

d) A mixture of intermediate 32 (0.0096 mol) in HCl 3N (60ml) and 2-propanol (60ml) was stirred at 80° C for 2.5 hours. The mixture was poured out on ice, basified with NH₄OH and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 98/2/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH₃CN and DIPE. The precipitate was filtered off and dried, yielding 1.15g (29%) of intermediate 33.

Example A13

[0070]

5

10

15

20

25

30

35

40

45

intermediate 34

A mixture of intermediate 29 (0.0472 mol) in acetic acid (30ml) and xylenes (200ml) was stirred and refluxed for 48 hr. The solvent was evaporated. The residue was taken up in CH_2CI_2 , washed with K_2CO_3 10%, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2CI_2/CH_3OH/NH_4OH$ 99/1/0.1). The pure fractions were collected and the solvent was evaporated, yielding 15.6g (75%) of intermediate 34.

B. Preparation of the final compounds.

Example B1

[0071] A mixture of intermediate (2) (0.0207 mol) in acetic acid (10 ml) and mixed xylenes (100 ml) was stirred and refluxed for 12 hours and cooled. The mixture was evaporated and the residue was taken up in water, basified with NaOH (2N) and extracted with CH_2CI_2 . The residue was purified by column chromatography over silica gel. The pure fractions were collected and evaporated. The residue was converted into the ethanedioic acid salt (2:3) in $C_2H_5OH/CH_3OH/2$ -propanone, yielding 3.5g (30%) of (\pm)-7-[(4-fluorophenyl)(1*H*-imidazol-1-yl)methyl]-5-phenylimidazo[1,2-a] quinoline ethanedioate(2:3).hemihydrate; mp. 204.3°C (comp. 3).

Example B2

50 [0072] Preparation of

15

20

5

[0073] A mixture of intermediate (4) (0.0019 mol) in ethanol (5 ml) was stirred at 80° C for 5 hours, then cooled and taken up in CH_2CI_2 . The organic solution was washed with K_2CO_3 (10%), dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone and DIPE. The precipitate was filtered off and dried yielding 0.14 g (12%) of compound (95); mp. 143°C.

Example B3

25

[0074] A mixture of intermediate (5) (0.029 mol) and formylhydrazine (0.043 mol) in 1-butanol (150 ml) was stirred and refluxed for 48 hours. The mixture was evaporated, the residue was taken up in CH_2CI_2 and washed with water. The organic layer was dried, filtered off and evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and evaporated. The residue was dissolved in 2-propanone and converted into the ethanedioic acid salt (2:3) yielding 4.4g (26.1%) of (\pm)-7-[(4-chlorophenyl)-1*H*-imidazol-1-ylmethyl]-5-phenyl [1,2,4]-triazolo[4,3-a]quinoline ethanedioate(2:3).hemihydrate (comp. 5).

Example B4

30

35

[0075] A mixture of intermediate (7) (0.0071 mol) and triethyl orthoacetate (0.0086 mol) in n-butanol (35ml) was stirred at 100° C overnight. The solvent was evaporated. The residue was taken up in CH_2CI_2 , washed with H_2O and with a saturated NaCl solution, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried yielding 1.95g (53%) of (±)-5-(3-chlorophenyl)- α -(4-chlorophenyl)-1-methyl- α -(1-methyl-1H-imidazol-5-yl)-1,2,4-triazolo[4,3-a]quinoline-7-methanol (comp. 19).

Example B5

[0076] Preparation of

45

40

50

55

Cyanogen bromide (0.00815 mol) was added portionwise at 5° C to a solution of intermediate (7) (0.00815 mol) in methanol (80 ml). The mixture was stirred at 60° C for 10 minutes, and then brought to room temperature. The solvent was evaporated. The residue was taken up in K_2CO_3 10%, filtered off, washed with K_2CO_3 (10%) and with H_2O and dried. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from THF/DIPE. The precipitate was filtered off and dried yielding 1.45 g (34%) of compound (20).

Example B6

[0077] Preparation of

compound (22)

15

20

5

10

1,1'-carbonylbis-1H-imidazole (0.0055 mol) was added at room temperature to a solution of intermediate (7) (0.00367 mol) in THF (30 ml) and the mixture was stirred at room temperature for 30 min. Ice and then water were added, and the mixture was extracted twice with EtOAc. The combined organic layer was separated, dried, filtered and the solvent was evaporated. The residue was taken up in CH_2CI_2 . The precipitate was filtered off and dried. The residue was crystallized from THE/diethyl ether. The precipitate was filtered off and dried, yielding 0.85g (45%) of compound (22).

Example B7

[0078]

[0078] A mixture of intermediate (5) (0.029 mol) and ethyl carbazate (0.0436 mol) in 1-butanol (150 ml) was stirred and refluxed for one night. The mixture was evaporated in vacuo, the residue was taken up in CH_2CI_2 and washed with water. The organic layer was dried, filtered off and evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and evaporated. The residue was dissolved in 2-propanone and converted into the ethanedioic acid salt (1:1) yielding 1g (6.3%) of (\pm)-7-[(4-chlorophenyl)-1*H*-imidazol-1-ylmethyl]-5-phenyl[1,2,4)triazolo[4,3-a]quinolin-1(2*H*)-one ethanedioate(1:1).hemihydrate; mp. 198.3°C (comp. 7).

30

Example B8

35

45

[0079] A mixture of intermediate (9) (0.006 mol) and sodium azide (0.018 mol) in DMF (20 ml) was stirred at 140°C for 4 hours. The mixture was cooled to room temperature and poured out into ice water. The precipitate was filtered off, washed with H_2O and taken up in CH_2CI_2 . The organic solution was dried, filtered and the solvent was evaporated. The residue was crystallized from CH_3CN and 2-propanone. The precipitate was filtered off and dried yielding 1.2g (38.2%) of (\pm)-5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1-methyl-1*H*-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanol; mp. 139°C (comp. 29).

40 Example B9

roopol A

[0080] A mixture of intermediate (11) (0.0116 mol) and p-toluenesulfonhydrazide (0.0128 mol) in CH₃OH (60 ml) was stirred at 60°C for 2 hours and then brought to room temperature. H₂O was added. The mixture was extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. Two pure fractions were collected and their solvents were evaporated. The desired fraction was crystallized from 2-propanone and CH₃CN. The precipitate was filtered off and dried yielding 1.25 g (21%) of (\pm)-5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1-methyl-1H-imidazol-5-yl)-[1,2,3]triazolo[1,5-a]quinoline-7-methanol; mp. 222°C (comp. 26).

50 Example B10

[0081] A mixture of compound (29) (0.008 mol) in methanol (60ml) was cooled to 5°C. Sodium tetrahydroborate (0.008 mol) was added portionwise. The mixture was stirred at 5°C for 1 hour, hydrolized, extracted with CH_oCl_o and

(0.008 mol) was added portionwise. The mixture was stirred at 5° C for 1 hour, hydrolized, extracted with CH_2CI_2 and decanted. The organic layer was dried, filtered and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried yielding 1.8g (44.6%) of (±)-5-(3-chlorophenyl)- α -(4-chlorophenyl)-4,5-dihydro- α -(1-methyl-1*H*-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanol; mp. 212°C (comp. 30).

Example B 11

5

10

15

20

25

30

35

50

55

[0082] A dispersion of sodium hydride (80%) in a mineral oil (0.0083 mol) was added at 5°C under N_2 flow to a mixture of intermediate (10) (0.007 mol) in DMF (33 ml). The mixture was stirred at 5°C for 30 min. lodomethane (0.008 mol) was added. The mixture was stirred at 5°C for 30 minutes and then hydrolized. The precipitate was filtered off, washed with H_2O and taken up in CH_2Cl_2 . The organic solution was dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH_3CN and DIPE. The precipitate was filtered off and dried, yielding 0.8g (22%) of (\pm)-5-(3-chlorophenyl)- α -(4-chlorophenyl)-4,5-dihydro-4-methyl- α -(1-methyl-1*H*-imidazol-5-yl)tetrazolo [1,5-a]quinazoline-7-methanol; mp. 235°C (comp. 33).

Example B12

[0083] Preparation of

compound (94)

A mixture of (\pm) -5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinoline-7-methanol (0.005 mol) in formamide (10 ml) and acetic acid (20 ml) was stirred at 160°C for 5 hours, poured out on ice, basified with NH₄OH and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH₃CN and diethyl ether. The precipitate was filtered off and dried yielding 0.84g (35%) of compound (94); mp. 166°C

Example B13

[0084] Preparation of

Compound (29) (0.006 mol) was added at a low temperature to thionyl chloride (30 ml). The mixture was stirred at 40°C for 2 hours. The solvent was evaporated, yielding compound (31).

Example B14

[0085] A mixture of 2-propanol and NH $_3$ (35 ml) was added dropwise quickly at 0°C to a mixture of compound (31) (0.006 mol) in THF (35 ml). The mixture was stirred at 5°C for 30 min and then brought to room temperature. The solvent was evaporated. The residue was taken up in CH_2Cl_2 and H_2O and the mixture was decanted. The organic layer was dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH_2Cl_2

and DIPE. The precipitate was filtered off and dried yielding 0.6g (20%) of (\pm)-5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1 -methyl-1*H*-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanamine; mp. 159°C (comp. 32).

Example B 15

5

10

15

20

25

30

35

40

45

50

55

[0086] n-Butyllithium (0.0129 mol) was added slowly at -70°C under N_2 flow to a solution of 1-methylimidazole (0.0129 mol) in THF (25ml). The mixture was stirred for 30 min. Chlorotriethylsilane (0.0129 mol) was added. The mixture was allowed to warm to room temperature and then cooled to -70°C. n-Butyllithium (0.0129 mol) was added. The mixture was stirred at -70°C for 1 hour, then allowed to warm to -15°C and cooled to - 70°C. A solution of (±)-α-(4-chlorophenyl)-5-phenylimidazo[1,2-a]quinoline-7-methanone (0.0107 mol) in THF (12 ml) was added. The mixture was stirred at -70°C for 1 hour. Water was added. The mixture was extracted with EtOAc. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel. The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried, yielding 0.9g (18%) of (±)-α-(4-chlorophenyl)-α-(1-methyl-1*H*-imidazol-5-yl)-5-phenylimidazo[1,2-a]quinoline-7-methanol (compound 11).

Example B16

[0087] Preparation of

compound (25)

A mixture of intermediate 28 (0.00286 mol) and 1H-imidazole (0.017 mol) in CH₃CN (20ml) was stirred and refluxed for 48 hours and then brought to room temperature. H₂O was added. The mixture was extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 98/2/0.1). The pure fractions were collected and the solvent was . The residue was crystallized from CH₃CN and DIPE. The precipitate was filtered off and dried, yielding 0.55g compound 25 (40%).

Example B17

[0088] Preparation of

 H_2SO_4 conc. (0.1ml) was added dropwise to CH_3CN (5ml). Then compound (142) (0.00042 mol) was added portionwise. The mixture was stirred at 80°C for 2 hours, brought to room temperature and poured out into ice water. EtOAc was added. The mixture was basified with K_2CO_3 10% and extracted with EtOAc. The organic layer was separated, washed with H_2O , dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2Cl_2/CH_3OH/NH_4OH$ 96/4/0.1; 15-40 μ m). The pure fractions were collected and the solvent was evaporated. This fraction was crystallized from CH_3CN and DIPE. The precipitate was filtered off and dried, yielding 0.11g of compound (144) (44%).

Example B18

[0089] A mixture of compound 53 (0.00464 mol) in SOCl₂ (30ml) was stirred at 60°C for 6 hours. The solvent was evaporated, yielding compound 76.

Example B19

5

15

20

25

35

45

50

55

[0090] A mixture of compound 16 (0.0022 mol) in 1,2-ethanediol (15ml) and H_2SO_4 (conc.) (5 drops) was stirred and refluxed at 125°C for 6 hours. K_2CO_3 10% was added and the mixture was extracted with CH_2CI_2 . The organic layer was separated, dried, filtered, and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: toluene/2-propanol/NH $_4$ OH 88/12/0.8). The pure fractions were collected and the solvent was evaporated. The residue was converted into the ethanedioic acid salt (1:1) in 2-propanone and crystallized from $CH_3CN/2$ -propanone. The precipitate was filtered off, washed with diethyl ether and dried. yielding 0.5 g of compound 41 (35%); mp. 150°C.

Example B20

[0091] 4-(3-chlorophen yl)- α^6 -(4-chlorophenyl)-2-hydrazino- α^6 -(1-methyl-1*H*-imidazol-5-yl)-3,6-quinolinedimethanol (0.00371 mol) was added to HCl 1N (25 ml) and stirred at room temperature. A solution of NaNO₂ (0.00408 mol) in H₂O (5 ml) was added dropwise and the resulting reaction mixture was stirred and refluxed for one hour. The mixture was allowed to cool to room temperature, then poured out into ice-water and the precipitate was filtered off, washed with water, washed with diethyl ether and dried, yielding 1.95 g of compound 82 (92%; mp: > 280 °C).

Example B21

[0092] HCl 3N (20ml) was added dropwise to a solution of compound 51(0.0123 mol) in H_2O (80ml) (until pH=2). The mixture was stirred for 1 hour. The precipitate was filtered off and dried, yielding 5g of compound 53 (70%); mp. >260°C.

30 Example B22

[0093] NH₂CH₃ (2.5ml) was added dropwise at room temperature to a mixture of compound 25 and compound 47 (0.0086 mol) in THF (45ml). The mixture was stirred at 40°C for 30 min, hydrolized and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: toluene/2-propanol/NH₄OH 85/15/1). Three fractions were collected and their solvents were evaporated. Fraction 1 was crystallized from CH₃CN and DIPE. The precipitate was filtered off and dried, yielding 0.4g of compound 48 (9%); mp. 167°C. Fraction 2 was crystallized from CH₃CN and diethyl ether. The precipitate was filtered off and dried, yielding 0.6g of compound 49 (13%); mp. 206°C.

40 Example B23

[0094] (R)-1-(1-isocyanatoethyl)naphthalene (0.0039 mol) was added to a mixture of compound 18 (0.00196 mol) in THF (10ml). The mixture was stirred and refluxed for 18 hours, hydrolized and extracted with CH_2CI_2 . The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/2-propanol/NH₄OH 70/30/1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH_3CN and DIPE. The precipitate was filtered off and dried, yielding 0.55g of compound 135 (40%).

Example B24

[0095] Compound 18 (0.008 mol) was purified and separated into its enantiomers by chiral column chromatography over Chiralcel OD (eluent: ethanol 100%). Two pure fractions were collected and their solvents were evaporated. Fraction 1 was converted into the ethanedioic acid salt (1:1). The precipitate was filtered off and dried, yielding 1.59g of compound 28 (34%); mp. 180°C. Fraction 2 was converted into the ethanedioic acid salt (1:1) and crystallized from ethanol. The precipitate was filtered off and dried, yielding 1.85g of compound 27 (39%); mp. 172°C.

Example B25

[0096] K_2CO_3 (0.096 mol) was added at 5°C to a mixture of hydroxylamine hydrochloride (0.09 mol) in H_2O (10ml). The mixture was stirred for 15 min. A solution of compound 69 (0.003 mol) in THE (15ml) was added dropwise. The mixture was stirred at 5°C for 30 min. Ice water was added and the mixture was extracted with CH_2CI_2 . The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2CI_2/CH_3OH/NH_4OH$ 95/5/0.3). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from EtOAc. The precipitate was filtered off and dried, yielding 0.17g of compound 98 (11%); mp. 191°C.

Example B26

10

20

30

35

45

50

55

[0097] NH₄OH conc. (10ml) was added dropwise at 5°C to a mixture of compound 76 (0.00464 mol) in THF (20ml). The mixture was stirred at room temperature for 2 hours, poured out on ice and extracted with CH_2CI_2 . The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2CI_2/CH_3OH/NH_4OH$ 95/5/0.1). Two pure fractions were collected and their solvents were evaporated. Fraction 1 was crystallized from CH_3CN and DIPE. The precipitate was filtered off and dried, yielding 0.55g of compound 77 (21%); mp. >250°C. Fraction 2 was purified by column chromatography over silica gel (eluent: $CH_2CI_2/CH_3OH/NH_4OH$ 95/5/0.5; 20-45 µm). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH_3CN . The precipitate was filtered off and dried, yielding 0.17g of compound 80 (6%); mp. >250°C.

Example B27

[0098] Methanamine (30ml; 40% in H₂O) was added to a mixture of compound 119 (0.004 mol) in THF (20ml). The mixture was stirred for 1 hour. K₂CO₃ 10% was added and the mixture was extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 90/10/0.1 and 80/20/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from THF and diethyl ether. The precipitate was filtered off and dried, yielding 1.1g of compound 121 (48%); mp. 224°C.

Example B28

[0099] LiAlH $_4$ (0.00663 mol) was added at 5°C under N $_2$ flow to THE (30ml). Then compound 52 (0.00331 mol) was added portionwise. The mixture was stirred at room temperature for 1 hour. EtOAc was added. The mixture was hydrolized cold, filtered over celite and washed with EtOAc. The filtrate was extracted with EtOAc. The organic layer was separated, washed with H $_2$ O, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/2-propanol/NH $_4$ OH 80/20/1). The pure fractions were collected and the solvent was evaporated. This fraction was crystallized from 2-propanone and diethyl ether. The precipitate was filtered off and dried, yielding 0.98g of compound 75(51%).

[0100] The following compounds were prepared analogous to the one of the above examples (the example number analogous to which they were prepared is indicated between square brackets after the compound number).

10

15

20

25

30

35

40

45

50

Ethanedioate (2:3) Hydrate (2:1) Comp 1[B1]; mp. 225°C

Ethanedioate (2:3) Hydrate (1:1) Comp 2[B1]; mp. 203°C

Ethanedioate (2:3) Hydrate (2:1) Comp 3[B1]; mp. 204°C

Ethanedioate (2:3) Hydrate (2:1) Comp 4[B1]; mp. 202°C

Ethanedioate (2:3) Hydrate (2:1) Comp 5[B3]

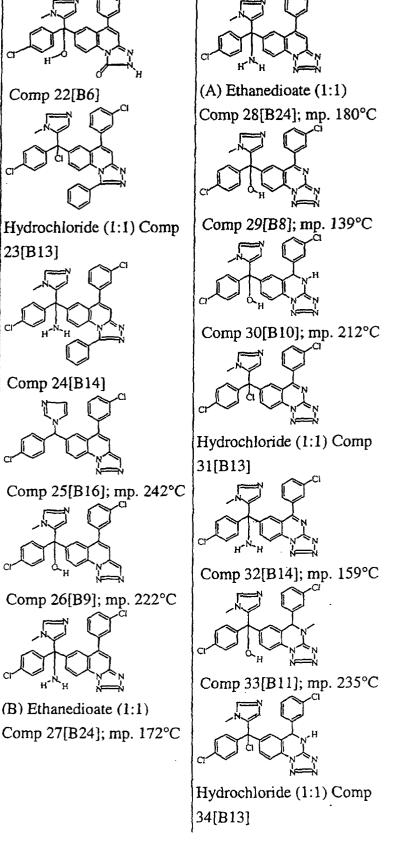
Comp 6[B3]; mp. 259°C

Ethanedioate (1:1) Hydrate (2:1) Comp 7[B7]; mp. 198°C

Ethanedioate (1:1) Comp 8[B20]

Ethanedioate (2:3) Comp 9[B3]; mp. 194°C

Comp 10[B1]; mp. 131°C


Comp 11[B15]

Comp 12[B15]

Hydrochloride (1:2) Comp 13/B13]

Ethanedioate (1:2) Hydrate (2:3) Comp 14[B14]

Comp 21[B4]

20

25

30

35

40

50

55

Hydrochloride (1:1) Comp 36[B13]

Comp 37; mp. 237°C[B14]

Comp 38[B3]; mp. >260°C

Comp 39[B1]; mp. 200°C

45 Comp 40[B17]; mp. ->260°C

Ethanedioate (1:1) Hydrate (1:1) Comp 41[B19]; mp. 150°C

Comp 42[B25]; mp. 205°C

Comp 43[B8]; mp. >260°C

Hydrochloride (1:1) Comp 44[B13]

Comp 45[B14]; mp. 217°C

Comp 46[B25]; mp. 214°C

Hydrochloride (1:1) Comp 47[B13]

Comp 48[B14]; mp. 167°C

Comp 49[B22]; mp. 206°C

Comp 50[B8]; mp. 255°C

Comp 51[B8]

Comp 52[B8]; mp. >260°C

Hydrochloride (1:1) Comp 53[B21]; mp. >260°C

Comp 54[B8]

5

10

15

20

25

30

35

40

45

50

55

Comp 55[B8]; mp. 245°C

Comp 56[B8]; mp. 204°C

Hydrate (1:1) Comp 57[B3]

Hydrochloride (1:1) Comp 58[B13]

Comp 59[B14]; mp. 131°C

Hydrochloride (1:1) Comp 60[B13]

Hydrate (1:1) Comp 61[B14]; mp. 199°C

Comp 62[B8]; mp. 218°C

Hydrochloride (1:1) Comp 63[B13]

Comp 64[B14]; mp.

>260°C

Hydrochloride (1:1) Comp 65[B13]

Comp 66[B14]; mp. 213°C

Comp 67[B8]; mp. 222°C

Comp 68[B8]; mp. >260°C

Hydrochloride (1:1) Comp

Comp 70[B14]; mp. 231°C

Hydrochloride (1:1) Comp

Comp 72[B14]; mp.

>260°C

Hydrochloride (1:1) Comp

Comp 74[B14]; mp. 163°C

10

15

20

25

30

35

40

45

50

55

Hydrochloride (1:1) Comp 76[B18]

Comp 77[B26]; mp.

>250°C

Hydrochloride (1:1) Comp 78[B13]

Comp 79[B14]; mp. 216°C

Comp 80[B26]; mp.

>250°C

Comp 81[B20]; mp. 280°C

Comp 75[B28]; mp. 215°C | Hydrochloride (1:1) Comp 82[B20]; mp. >280°C

Comp 83[B8]; mp. 270°C

Hydrate (1:1) Comp 84[B2]

Comp 85[B15]

Comp 86[B8]; mp. 260°C

Hydrochloride (1:1) Comp 87[B13]

Comp 88[B25]; mp. 220°C

Comp 89[B25]; mp. 157°C

Hydrochloride (1:2) Comp 90[B13]

Hydrate (1:1) Comp

91[B14]; mp. 173°C

Hydrochloride (1:2) Comp

92[B13]

Ethanedioate (2:5) Hydrate (1:2) Comp 93[B14]; mp.

208°C

Comp 94[B12]; mp. 166°C

10

15

20

30

35

45

50

Comp 95[B2]; mp. 243°C

Hydrochloride (1:1) Comp 96[B13]

Comp 97[B14]; mp. 281°C

Comp 98[B25]; mp. 191°C

Comp 99[B25]; mp. 280°C

Comp 100[B25]; mp 215°C

Comp 101[B25]; mp. 218°C

Comp 102[B17]; mp.

Comp 103[B20]; mp.

Comp 104[B8]; mp. 255°C

Comp 105[B20]; mp.

239°C

Comp 106[B8]; mp. 263°C

Comp 107[B17]; mp.

207°C

Comp 108[B25]; mp.

290°C

Comp 109[B8]; mp. 232°C

Comp 110[B17]; mp.

232°C

Comp 111[B17]; mp.

197°C

Comp 112[B8]; mp. 220°C

10

15

20

25

30

35

40

45

50

55

Comp 113[B8]; mp. 246°C

Comp 114[B17]; mp. 236°C

Comp 115[B17]; mp. 245°C

Comp 116[B17]; mp. 210°C

Comp 117[B17]; mp. 238°C

Comp 118[B17]; mp. 223°C

Sulfate (2:1) Comp 119[B17]

Comp 120[B27]; mp. 206°C

Comp 121[B27]; mp. 224°C

Comp 122[B17]; mp. >300°C

Comp 123[B17]; mp. 243°C

Comp 124[B17]; mp.

Hydrate (1:1) Comp

125[B17]; mp. 235°C

Comp 126; mp. 270°C

Comp 127[B17]; mp.

259°C

 $[R(R^*,S^*)]+[S(R^*,R^*)]$

Comp 128[B23]; mp. 187°C

Comp 129[B17]; mp.

241°C

20

25

30

35

40

45

50

55

Hydrochloride (1:1) Comp 131[B13]

Comp 132[B14]; mp. 260°C

Comp 133[B25]; mp. 228°C

Comp 134[B17]; mp. 260°C

[R(R*,R*)]+[S(R*,S*)] Comp 135[B23]; mp. 230°C

Comp 136[B17]; mp. 210°C

Hydrate (1:1) Comp 137[B17]; mp. 217°C

Comp 138[B8]; mp. 270°C

Hydrate (1:1) Comp 139[B17]; mp. 185 °C

Comp 140[B8]

Comp 141[B17]

Comp 142[B8]; mp. 212°C

Comp 143[B8]; mp.

>260°C

Comp 144[B17]

Comp 145[B17]

Comp 146[B15]

Comp 147[B17]

C. Pharmacological example.

25

30

35

40

45

50

55

Example C.1: "In Vitro Assay for Inhibition of Farnesyl Protein Transferase":

[0101] An in vitro assay for inhibition of farnesyl transferase was performed essentially as described in WO 98/40383, pages 33-34.

Example C.2: "Ras-Transformed Cell Phenotype Reversion Assay".

[0102] The *ras*-transformed cell phenotype reversion assay was performed essentially as described in WO 98/40383, pages 34-36.

Example C.3: "Farnesyl Protein Transferase Inhibitor Secondary Tumor Model".

[0103] The farnesyl protein transferase inhibitor secondary tumor model was used as described in WO 98/40383, page 37.

Example C.4: "Geranylgeranyltransferase Type I Assay ".

[0104] <u>Background:</u> The enzyme GGTase I catalyzes the covalent attachment of a C-20 geranylgeranyl moiety derived from geranylgeranyl pyrophosphate to the K-ras oncogene product p21^{K-ras}. The geranylgeranylation proceeds via formation of a thioether linkage to a single, specific cysteine residue contained in a cys-A-A-X motif wherein A represents neutral amino acids and X represents a C-terminal leucine or methionine. Farnesylation of H,N, and K-ras isoforms by farnesyl protein transferase is required for activation and attachment of p21^{ras} to plasma membranes. However, the K-ras isoform, which is the dominant isoform of ras in human tumors, is also isoprenylated by GGTase I. Therefore, inhibitors of GGTase I may inhibit the aberrant growth of K-ras transformed human tumors which are resistant to protein farnesyltransferase inhibitors.

Methods: Compounds were screened in *vitro* using GGTase I enzyme prepared from Kirsten virus transformed human osteosarcoma (KHOS) cells. The assay measures the covalent attachment of radioactivity from [³H]-geranylgeranyl pyrophosphate to the K-ras peptide substrate biotinKKKKKSKTLCVIM or biotin YRASNRSCAIL substrate. Measurements: Percent control GGTase I activity.

Derived Variables: Control enzyme activity = [CPM ³H-geranylgeranyl peptide product in the presence of vehicle sol-

vent]

5

[0105] Test compound concentration = $10 \mu M$. Test compound % control activity = (CPM 3 H-geranylgeranyl peptide product in the presence of test compound /control enzyme activity) X 100%

[0106] <u>Standard Conditions:</u> Compounds were dissolved in DMSO at a concentration of 20 mM. Further dilutions were prepared in DMSO. The final concentration of DMSO in the assay medium was 10%. The compound concentration tested for screening was $10 \,\mu$ M.

D. Composition example: Film-coated tablets

Preparation of tablet core

[0107] A mixture of 100 g of a compound of formula (I), 570 g lactose and 200 g starch is mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinyl-pyrrolidone in about 200 ml of water. The wet powder mixture is sieved, dried and sieved again. Then there are added 100 g microcrystalline cellulose and 15 g hydrogenated vegetable oil. The whole is mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of a compound of formula (I).

Coating

20 [0108] To a solution of 10 g methyl cellulose in 75 ml of denaturated ethanol there is added a solution of 5 g of ethyl cellulose in 150 ml of dichloromethane. Then there are added 75 ml of dichloromethane and 2.5 ml 1,2,3-propanetriol. 10 g of polyethylene glycol is molten and dissolved in 75 ml of dichloromethane. The latter solution is added to the former and then there are added 2.5 g of magnesium octadecanoate, 5 g of polyvinyl-pyrrolidone and 30 ml of concentrated colour suspension and the whole is homogenated. The tablet cores are coated with the thus obtained mixture in a coating apparatus.

Claims

30

35

40

45

50

55

1. A compound of formula (I)

 $(R^1)_r$ $(R^2)_s$ R^3 $(R^3)_r$ $(R^3)_r$

or a pharmaceutically acceptable acid addition salt or a stereochemically isomeric form thereof, wherein $=X^{1}-X^{2}-X^{3}$ - is a trivalent radical of formula

$$=N-CR^{6}=CR^{7}-$$
 (x-1),

 $=N-N=CR^{6}-$ (x-2),

=N-NH-C(=O)- (x-3),

=N-N=N- (x-4),

$$= N-CR^6 = N-$$
 (x-5),

$$=CR^{6}-CR^{7}=CR^{8}-$$
 (x-6),

$$= CR^6 - N = CR^7 - (x-7),$$

 $=CR^{6}-NH-C(=O)-$ (x-8),

or

15

 $=CR^{6}-N=N-$ (x-9);

wherein each R^6 , R^7 and R^8 are independently hydrogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkyloxy, aryloxy, C_{1-4} alkyloxycarbonyl, hydroxy C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} -alkyl, mono- or di(C_{1-4} alkyl)amino C_{1-4} alkyl, cyano, amino, thio, C_{1-4} alkylthio, arylthio or aryl; Y^1-Y^2 - is a trivalent radical of formula

$$>$$
CH-NR 9 - (y-3),

or

40

45

50

35
 >C=CR 9 - (y-4);

wherein each R^9 independently is hydrogen, halo, halocarbonyl, aminocarbonyl, hydroxy C_{1-4} alkyl, cyano, carboxyl, C_{1-4} alkyl, C_{1-4} alkyloxy, C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, mono- or di(C_{1-4} alkyl)amino C_{1-4} alkyl, aryl;

r and s are each independently 0, 1, 2, 3, 4 or 5;

t is 0, 1, 2 or 3;

each R^1 and R^2 are independently hydroxy, halo, cyano, C_{1-6} alkyl, trihalomethyl, trihalomethoxy, C_{2-6} alkenyl, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, mono- or di(C_{1-6} alkyl)amino, mono- or di(C_{1-6} alkyl)amino C_{1-6} alkyloxy, aryl, aryl C_{1-6} alkyloxy, hydroxycarbonyl, C_{1-6} alkyloxycarbonyl, amino C_{1-6} alkyl)amino C_{1-6} alkyl

two R¹ or R² substituents adjacent to one another on the phenyl ring may independently form together a bivalent radical of formula

$$-O-CH_2-CH_2-O-$$
 (a-2),

$${}_{5} \hspace{2.5cm} \hbox{-O-CH}_{2}\hbox{-CH}_{2} \hspace{2.5cm} \hbox{(a-4)},$$

$$-O-CH2-CH2-CH2- (a-5),$$

¹⁰ or

20

30

35

40

45

50

55

R³ is hydrogen, halo, C_{1-6} alkyl, cyano, halo C_{1-6} alkyl, hydroxy C_{1-6} alkyl, cyano C_{1-6} alkyl, amino C_{1-6} alkyl, hydroxycarbonyl, hydroxycarbonyl C_{1-6} alkyl, chydroxycarbonyl C_{1-6} alkyl, aminocarbonyl C_{1-6} alkyl, hydroxycarbonyl, hydroxycarbonyl C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, aryl, aryl C_{1-6} alkyloxy C_{1-6} alkyl, mono- or di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or a radical of formula

$$-O-R^{10}$$
 (b-1),

$$-NR^{11}R^{12}$$
 (b-3),

wherein

 R^{10} is hydrogen, C_{1-6} alkyl, C_{1-6} alkyl, aryl, aryl C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, or a radical of formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;

R¹¹ is hydrogen, C₁₋₆alkyl, aryl or arylC₁₋₆alkyl;

 R^{12} is hydrogen, C_{1-6} alkyl, aryl, hydroxy, amino, C_{1-6} alkyloxy, C_{1-6} alkylcarbonyl C_{1-6} alkyl, aryl C_{1-6} alkyl, aryl C_{1-6} alkylcarbonyl, aminocarbonyl, arylcarbonyl, halo C_{1-6} alkylcarbonyl, aryl C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyl, be substituted by one or more substituents independently selected from aryl or C_{1-3} alkylcarbonyl, aminocarbonyl mono- or di $(C_{1-6}$ alkylcarbonyl, or a radical of formula -Alk-OR^{13} or -Alk-NR^{14}R^{15};

wherein

Alk is C₁₋₆alkanediyl;

 $R^{13} \text{ is hydrogen, } C_{1\text{-}6} \text{alkyl, } C_{1\text{-}6} \text{alkylcarbonyl, hydroxy} C_{1\text{-}6} \text{alkyl, aryl or aryl} C_{1\text{-}6} \text{alkyl;}$

R¹⁴ is hydrogen, C₁₋₆alkyl, aryl or arylC₁₋₆alkyl;

R¹⁵ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, aryl or arylC₁₋₆alkyl;

R4 is a radical of formula

$$-N$$
 (c-1), N R^{16} (c-2)

wherein

 $R^{16} \text{ is hydrogen, halo, aryl, } C_{1-6} \text{alkyl, hydroxy} C_{1-6} \text{alkyl, } C_{1-6} \text{alkyloxy} C_{1-6} \text{alkyloxy, } C_{1-6$

 R^{16} may also be bound to one of the nitrogen atoms in the imidazole ring of formula (c-1) or (c-2), in which case the meaning of R^{16} when bound to the nitrogen is limited to hydrogen, aryl, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkylS(O) C_{1-6} Alk

 R^{17} is hydrogen, C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, aryl C_{1-6} alkyl, trifluoromethyl or di(C_{1-4} alkyl)aminosulfonyl; R^5 is C_{1-6} alkyl, C_{1-6} alkyloxy or halo;

aryl is phenyl, naphthalenyl or phenyl substituted with 1 or more substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy or trifluoromethyl .

- di(C_{1-6} alkyl)amino, mono- or di(C_{1-6} alkyl)amino C_{1-6} alkyloxy, aryl, aryl C_{1-6} alkyl, aryloxy or aryl C_{1-6} alkyloxy, hydroxycarbonyl, C_{1-6} alkyloxycarbonyl; or
 - two R¹ or R² substituents adjacent to one another on the phenyl ring may independently form together a bivalent radical of formula

$$-O-CH_2-CH_2-CH_2-$$
 (a-5),

35 or

45

50

5

10

- R¹⁶ is hydrogen, halo, aryl, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkylthio, amino, mono- or di(C_{1-4} alkyl)amino, hydroxycarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylthio C_{1-6} alkyl, C_{1-6} alkyl; or C_{1-6} alkyl;
 - R^{16} may also be bound to one of the nitrogen atoms in the imidazole ring of formula (c-1), in which case the meaning of R^{16} when bound to the nitrogen is limited to hydrogen, aryl, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkyloxycarbonyl, C_{1-6} alkylS(O) C_{1-6} alkyl or C_{1-6} alkylS(O) C_{1-6} alkyl; C_{1-6} alkyl, trifluoromethyl or di(C_{1-4} alkyl)aminosulfonyl.
 - 3. A compound according to any of claims 1 to 2 wherein =X¹-X²-X³ is a trivalent radical of formula (x-1), (x-2), (x-3), (x-4) or (x-9) wherein each R⁶ independently is hydrogen, C₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, amino or aryl and R⁷ is hydrogen; >Y¹-Y²- is a trivalent radical of formula (y-1), (y-2), (y-3), or (y-4) wherein each R⁹ independently is hydrogen, halo, carboxyl, C₁₋₄alkyl or C₁₋₄alkyloxycarbonyl; r is 0, 1 or 2; s is 0 or 1; t is 0; R¹ is halo, C₁₋₆alkyl or two R¹ substituents ortho to one another on the phenyl ring may independently form together a bivalent radical of formula (a-1); R² is halo; R³ is halo or a radical of formula (b-1) or (b-3)
- wherein R^{10} is hydrogen or a radical of formula -Alk-OR¹³, R^{11} is hydrogen, R^{12} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, hydroxy, C_{1-6} alkyloxy or mono- or di(C_{1-6} alkyl)amino C_{1-6} alkylcarbonyl, Alk is C_{1-6} alkanediyl and R^{13} is hydrogen; R^{4} is a radical of formula (c-1) or (c-2) wherein R^{16} is hydrogen, halo or mono- or di(C_{1-4} alkyl) amino; R^{17} is hydrogen or C_{1-6} alkyl; aryl is phenyl.

- **4.** A compound according to any of claims 1 to 3 wherein =X¹-X²-X³ is a trivalent radical of formula (x-1), >Y¹-Y² is a trivalent radical of formula (y-4), r is 0 or 1, s is 1, t is 0, R¹ is 3-chloro, R² is 4-chloro or 4-fluoro, R³ is hydrogen or a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-1) or (c-2), R⁶ is hydrogen, R⁷ is hydrogen, R⁹ is hydrogen, R¹⁰ is hydrogen, R¹¹ is hydrogen and R¹² is hydrogen.
- **5.** A compound according to any one of claims 1 to 4 wherein =X¹-X²-X³ is a trivalent radical of formula (x-2) or (x-3), >Y¹-Y² is a trivalent radical of formula (y-2), (y-3) or (y-4), r and s are 1, t is 0, R¹ is 3-chloro or 3-methyl, R² is 4-chloro, R³ is a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-2), R⁶ is C₁₋₄ alkyl, R⁹ is hydrogen, R¹⁰ and R¹¹ are hydrogen and R¹² is hydrogen or hydroxy.
- 6. A compound according to claim 1 or 2 selected from:

5

10

15

20

25

30

40

45

50

55

7-[(4-fluorophenyl)(1*H*-imidazol-1-yl)methyl]-5-phenylimidazo[1,2-a]quinoline;

 α -(4-chlorophenyl)- α -(1-methyl-1*H*-imidazol-5-yl)-5-phenylimidazo[1,2-a]quinoline-7-methanol;

 $5-(3-\text{chlorophenyl})-\alpha-(4-\text{chlorophenyl})-\alpha-(1-\text{methyl}-1H-\text{imidazol}-5-yl)-\text{imidazo[}1,2-a]\text{quinoline-}7-\text{methanol};$

 $5-(3-\text{chlorophenyl})-\alpha-(4-\text{chlorophenyl})-\alpha-(1-\text{methyl}-1H-\text{imidazol}-5-\text{yl})\text{imidazo}[1,2-a]\text{quinoline-}7-\text{methanomics}$

 $5-(3-\text{chlorophenyl})-\alpha-(4-\text{chlorophenyl})-\alpha-(1-\text{methyl-}$ 1H-imidazol-5-yl)tetrazolo[1,5-a]quinoline-7-methanamine;

 $5-(3-chlorophenyl)-\alpha-(4-chlorophenyl)-1-methyl-\alpha-(1-methyl-1$ *H*-imidazol-5-yl)-1,2,4-triazolo[4,3-a]quinoline-7-methanol;

 $5-(3-\text{chlorophenyl})-\alpha-(4-\text{chlorophenyl})-\alpha-(4-\text{methyl-}1H-\text{imidazol-}5-yl)$ tetrazolo[1,5-a]quinoline-7-methanamine:

 $5-(3-chlorophenyl)-\alpha-(4-chlorophenyl)-\alpha-(1-methyl- 1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanol; <math>5-(3-chlorophenyl)-\alpha-(4-chlorophenyl)-4,5-dihydro-\alpha-(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanol;$

 $5-(3-\text{chlorophenyl})-\alpha-(4-\text{chlorophenyl})-N-\text{hydroxy}-\alpha-(1-\text{methyl}-1H-\text{imidazol}-5-\text{yl})\text{tetrahydro}[1,5-a]\text{quinoline-7-methanamine};$

 α -(4-chlorophenyl)- α -(1-methyl-1*H*-imidazol-5-yl)-5-(3-methyl-phenyl)tetrazolo[1,5-a]quinoline-7-methanamine; pharmaceutically acceptable acid addition salt or a stereochemically isomeric form thereof.

- 7. $5-(3-\text{Chlorophenyl})-\alpha-(4-\text{chlorophenyl})-\alpha-(1-\text{methyl}-1H-\text{imidazol}-5-\text{yl})\text{tetrazolo}[1,5-a]\text{quinazoline-7-methanamine}$ or a pharmaceutically acceptable acid addition salt or a stereochemically isomeric form thereof.;
- **8.** A pharmaceutical composition comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as described in any one of claims 1 to 7.
 - **9.** A process for preparing a pharmaceutical composition as claimed in claim 8 wherein a therapeutically effective amount of a compound as claimed in any one of claims 1 to 7 is intimately mixed with a pharmaceutically acceptable carrier.
 - 10. A compound of formula (II)

 $\mathbb{Q}^{(\mathbb{R}^1)_t}$ $\mathbb{Q}^{(\mathbb{R}^2)_s}$ $\mathbb{Q}^{(\mathbb{R}^2)_t}$ $\mathbb{Q}^{(\mathbb{R}^5)_t}$ $\mathbb{Q}^{(\mathbb{R}^5)_t}$ $\mathbb{Q}^{(\mathbb{R}^5)_t}$

an acid addition salt or a stereochemically isomeric form thereof, wherein the dotted line represents an optional bond; W¹ is a leaving group (other than a hydroxy group), r, s, t, >Y¹-Y², R¹, R², R³, R⁴ and R⁵ are as defined in claim 1.

- 11. A compound according to any one of claims 1 to 7 for use as a medicine.
- 12. A compound according to claim 11 for inhibiting the abnormal growth of cells.
- 5 **13.** A compound according to claim 11 for inhibiting tumor growth.

10

15

20

25

30

35

40

45

50

55

- **14.** A compound according to claim 11 for inhibiting proliferative diseases.
- 15. A process for preparing a compound as claimed in claim 1, wherein
 - a) $= X^1 X^2 X^3$ is a trivalent radical of formula (x-1) and R⁶ and R⁷ are hydrogen, represented by compounds of formula (I-1), by reacting an intermediate of formula (II) with a reagent of formula (III) or a functional derivative thereof, wherein W¹ is a leaving group (other than a hydroxy group), followed by an intramolecular cyclization;

$$(R^1)_r$$
 $(R^2)_s$
 H_2N
 CH_3
 Y^2
 (III)
 $(R^3)_r$
 $(R^3)_r$
 $(R^2)_s$
 $(R^3)_r$
 $(R^3)_r$

b) = X^1 - X^2 - X^3 is a trivalent radical of formula (x-1), > Y^1 - Y^2 is a trivalent radical of formula (y-4), R^9 is hydrogen and R^6 and/or R^7 are not hydrogen, represented by formula (I-1-a), by reacting a compound of formula (IV) with a reagent of formula (V), followed by an intramolecular cyclization;

$$(IV)$$
 $(R^{1})_{r}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{3})_{r}$
 $(R^{2})_{s}$
 $(R^{3})_{r}$
 $(R^{5})_{t}$
 $(R^{5})_{t}$
 $(R^{5})_{t}$
 $(R^{5})_{t}$
 $(R^{5})_{t}$

c) = X^1 - X^2 - X^3 is a trivalent radical of formula (x-2), represented by compounds of formula (I-2), by reacting a compound of formula (II) with an intermediate of formula (VI) or by reacting a compound of formula (VIII) with an intermediate of formula (VII);

(II)
$$R^{6}$$
 (VI)
 R^{6}
 (VI)
 R^{3}
 R^{4}
 $(R^{5})_{t}$
 $(I-2)$

$$(R^1)_r$$
 $(R^2)_s$
 R^6
 $(VII I)$
 $(R^2)_s$
 $(VII I)$
 $(R^3)_t$
 $(I-2)$
 $(I-2)$

d) compounds of formula (I-2) wherein R^6 is an amine, represented by compounds of formula (I-2-a) are prepared by reacting an intermediate of formula (VII) with BrCN:

(VII) BrCN
$$Y^2$$
 X^3 X^4 X^4 X^5 X^6 X^6

e) $=X^1-X^2-X^3$ is a trivalent radical of formula (x-3), represented by compounds of formula (I-3), by reacting an intermediate of formula (VII) with a compound of formula (IX) or by reacting a compound of formula (X) with an intermediate of formula (II);

(VII)
$$(I-3)$$

(II)
$$H_{2}N$$
 (X)
 $(X$

f) = X^1 - X^2 - X^3 is a trivalent radical of formula (x-4), represented by compounds of formula (I-4), by reacting an intermediate of formula (II) with NaN₃:

(II)
$$\frac{NaN_3}{N}$$
 $\frac{(R^1)_r}{R^3}$ R^4 $R^5)_i$ $(I-4)$

g) = X^1 - X^2 - X^3 is a trivalent radical of formula (x-9), > Y^1 - Y^2 is a trivalent radical of formula (y-4) and R^9 is hydrogen, represented by compounds of formula (I-5), by reacting an intermediate of formula (XI) with a compound of formula (XII);

h) compounds of formula (I-6) defined as compounds of formula (I) wherein $>Y^1-Y^2$ is a trivalent radical of formula (y-2) or (y-4) are converted to the corresponding compounds of formula (I-7) wherein $>Y^1-Y^2$ is a trivalent radical of formula (y-3) or (y-1) and R^9 is hydrogen by reacting them with NaBH₄ or LiAlH₄; conversely, compounds of formula (I-7) are converted to the corresponding compounds of formula (I-6) by oxidation with MnO₂;

$$(R^1)_r$$
 $(R^2)_s$
 $(R^2)_s$
 $(R^3)_r$
 $(R^3)_r$
 $(R^5)_r$
 $(R^5)_r$
 $(R^5)_r$
 $(R^5)_r$
 $(R^7)_r$
 $(R^7)_s$
 $(R^7)_s$

i) compounds of formula (I-7) are converted to compounds of formula (I-7-a) wherein $>Y^1-Y^2$ is a trivalent radical of formula (y-3) or (y-1) and R^9 is other than hydrogen, by reacting these compounds of formula (I-7) with a reagent of formula R^9-W^2 wherein W^2 is a leaving group:

$$R^{1}$$
, R^{2} , R^{2} , R^{3} , R^{2} , R^{3} , R^{2} , R^{4} , R^{2} , R^{4} , R^{2} , R^{2} , R^{3} , R^{4} , R^{2} , R^{2} , R^{3} , R^{4} , R^{2} , R^{2} , R^{3} , R^{2} , R^{3} , R^{4} , R^{2} , R^{3} , R^{3} , R^{4} , R^{2} , R^{3} , R^{4} , R^{2} , R^{3} , R^{3} , R^{4} , R^{2} , R^{3} , R

j) R^3 is a radical of formula (c-2) and R^4 is hydroxy, represented by compounds of formula (I-8) which are converted to compounds of formula (I-8-a) wherein R^4 is hydrogen, by stirring the compounds of formula (I-8) in acetic acid in the presence of formamide;

$$(R^{1})_{r}$$
 $(R^{2})_{s}$
 $(R^{2})_{s}$

k) compounds of formula (I-8) are converted to compounds of formula (I-8-b)

wherein R⁴ is halo, by reacting the compounds of formula (I-8) with a halogenating agent; successively, the compounds of formula (I-8-b) are treated with a reagent of formula H-NR¹¹R¹², thereby yielding compounds of formula (I-8-c);

$$(I-8) \longrightarrow \begin{pmatrix} (R^1)_r & (R^2)_s & (R^2$$

wherein in the above reaction schemes = X^1 - X^2 - X^3 , > Y^1 - Y^2 , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^9 , R^{11} , R^{12} , R^{16} , R^{17} , r, s, t, are as defined in claim 1 and W^1 and W^2 are leaving groups;

- 1) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.
- **16.** A process for preparing an intermediate of formula (II) as claimed in claim 10 wherein an intermediate of formula (XV) is reacted with a halogenating reagent;

wherein the radicals $>Y^1-Y^2$, R^1 , R^2 , R^3 , R^4 , R^5 are as defined in claim 1 and W^1 is a leaving group other than a hydroxy group.

40 Patentansprüche

5

10

15

20

35

45

50

55

1. Verbindungen der Formel (I)

und deren pharmazeutisch unbedenkliche Säureadditionssalze und stereochemisch isomere Formen, wobei

=X1-X2-X3- für einen dreiwertigen Rest der Formel

t für 0, 1, 2 oder 3 steht;

 $\rm R^1$ und $\rm R^2$ jeweils unabhängig voneinander für Hydroxyl, Halogen, Cyano, $\rm C_{1-6}$ -Alkyl, Trihalogenmethyl, Trihalogenmethoxy, $\rm C_{2-6}$ -Alkenyl, $\rm C_{1-6}$ -Alkyloxy, Hydroxy- $\rm C_{1-6}$ -alkyloxy, $\rm C_{1-6}$ -Alkyloxy- $\rm C_{1-6}$ -Alkyloxy, Color Di(Color Di(C

zwei am Phenylring miteinander benachbarte Substituenten R¹ bzw. R² unabhängig voneinander einen zweiwertigen Rest der Formel

10

5

 $-O-CH_2-CH_2-O-$ (a-2),

20

$$-O-CH2-CH2- (a-4),$$

$$-O-CH2-CH2-CH2- (a-5),$$

25

oder

30

35

biden können;

 $R^{3} \text{ für Wasserstoff, Halogen, } C_{1-6}\text{-Alkyl, Cyano, Halogen-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Cyano-} C_{1-6}\text{-alkyl, Amino-} C_{1-6}\text{-alkyl, } C_{1-6}\text{-alkyl, } C_{1-6}\text{-alkyl, Amino-} C_{1-6}\text{-alkyl, Amino-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Cyano-} C_{1-6}\text{-alkyl, Amino-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Cyano-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Cyano-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{-alkyl, Cyano-} C_{1-6}\text{-alkyl, Hydroxy-} C_{1-6}\text{$

$$-O-R^{10}$$
 (b-1),

40

$$-S-R^{10}$$
 (b-2),

45

$$-NR^{11}R^{12}$$
 (b-3),

steht, wobei R^{10} für Wasserstoff, C_{1-6} -Alkyl, C_{1-6} -Alkylcarbonyl, Aryl, Aryl- C_{1-6} -alkyl, C_{1-6} -Alkyloxycarbonyl- C_{1-6} -alkyl oder einen Rest der Formel -Alk-OR¹³ oder Alk-NR¹⁴R¹⁵ steht;

50

55

R¹¹ für Wasserstoff, C₁₋₆-Alkyl, Aryl oder Aryl-C₁₋₆-alkyl steht;

 R^{12} für Wasserstoff, C_{1-6} -Alkyl, Aryl, Hydroxyl, Amino, C_{1-6} -Alkyloxy, C_{1-6} -Alkylcarbonyl- C_{1-6} -alkyl, Aryl- C_{1-6} -alkyl, Color Di(Color Di(Color

wobei Alk für C₁₋₆-Alkandiyl steht;

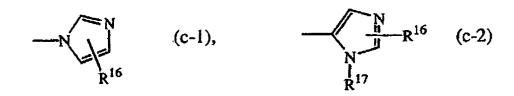
R¹³ für Wasserstoff, C₁₋₆-Alkyl, C₁₋₆-Alkylcarbonyl, Hydroxy-C₁₋₆-alkyl, Aryl oder Aryl-C₁₋₆-alkyl steht;

 R^{14} für Wasserstoff, $\mathsf{C}_{1\text{-}6}\text{-}\mathsf{Alkyl}$, Aryl oder Aryl- $\mathsf{C}_{1\text{-}6}\text{-}\mathsf{alkyl}$ steht;

 $\mathsf{R}^{15} \text{ für Wasserstoff, } \mathsf{C}_{1\text{-}6}\text{-}\mathsf{Alkyl}, \, \mathsf{C}_{1\text{-}6}\text{-}\mathsf{Alkyl} \text{carbonyl, Aryl oder Aryl-} \mathsf{C}_{1\text{-}6}\text{-}\mathsf{alkyl} \text{ steht;}$

R⁴ für einen Rest der Formel

5


10

20

25

30

40

steht, wobei R¹⁶ für Wasserstoff, Halogen, Aryl, C₁₋₆-Alkyl, Hydroxy-C₁₋₆-alkyl, C₁₋₆-Alkyloxy-C₁₋₆-alkyl, C₁₋₆-Alkyloxy, C₁₋₆-Alkyloxy, C₁₋₆-Alkyloxy, C₁₋₆-Alkyloxycarbonyl, C

 R^{16} auch an eines der Stickstoffatome im Imidazolring der Formel (c-1) oder (c-2) gebunden sein kann, wobei die Bedeutung von R^{16} , wenn es an Stickstoff gebunden ist, auf Wasserstoff, Aryl, C_{1-6} -Alkyl, Hydroxy- C_{1-6} -alkyl, C_{1-6} -Alkyloxy- C_{1-6} -alkyl, C_{1-6} -Alkyloxy- C_{1-6} -alkyl oder C_{1-6} -Alkyl-S(O) $_2$ - C_{1-6} -alkyl beschränkt ist

 R^{17} für Wasserstoff, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy- C_{1-6} -alkyl, Aryl- C_{1-6} -alkyl, Trifluormethyl oder Di(C_{1-4} -alkyl)aminosulfonyl steht;

R⁵ für C₁₋₆-Alkyl, C₁₋₆-Alkyloxy oder Halogen steht;

Aryl für Phenyl, Naphthalinyl oder durch 1 oder mehrere Substituenten, jeweils unabhängig voneinander ausgewählt aus Halogen, C₁₋₆-Alkyl, C₁₋₆-Alkyloxy oder Trifluormethyl, substituiertes Phenyl steht.

2. Verbindungen nach Anspruch 1, wobei R¹ und R² jeweils unabhängig voneinander für Hydroxyl, Halogen, Cyano, C₁₋₆-Alkyl, Trihalogenmethyl, Trihalogenmethoxy, C₂₋₆-Alkenyl, C₁₋₆-Alkyloxy, Hydroxy-C₁₋₆-alkyloxy, C₁₋₆-Alkyloxy, C₁₋₆-Alkyloxy, C₁₋₆-Alkyloxy, Mono- oder Di(C₁₋₆-alkyl)amino, Monooder Di(C₁₋₆-alkyl)amino-C₁₋₆-alkyloxy, Aryl, Aryl-C₁₋₆-alkyl, Aryloxy oder Aryl-C₁₋₆-alkyloxy, Hydroxycarbonyl, C₁₋₆-Alkyloxycarbonyl stehen; oder zwei am Phenylring miteinander benachbarte Substituenten R¹ bzw. R² unabhängig voneinander einen zweiwertigen Rest der Formel

$$\hbox{-O-CH}_2\hbox{-CH}_2\hbox{-O-} \qquad \qquad (a-2),$$

-O-CH=CH- (a-3),

$$-O-CH_2-CH_2-$$
 (a-4),

50 oder

55 bilden können:

 R^{16} für Wasserstoff, Halogen, Aryl, C_{1-6} -Alkyl, Hydroxy- C_{1-6} -alkyl, C_{1-6} -Alkyloxy- C_{1-6} -alkyl, C_{1-6} -Alkyloxy, C_{1-6} -Alkylthio, Amino, Mono- oder Di(C_{1-4} -alkyl)amino, Hydroxycarbonyl, C_{1-6} -Alkyloxycarbonyl, C_{1-6} -Alkylthio- C_{1-6} -Alkylthio- C_{1-6} -Alkyloxycarbonyl, C_{1-6} -Alkyloxyca

alkyl, C_{1-6} -Alkyl-S(O)- C_{1-6} -alkyl oder C_{1-6} -Alkyl-S(O) $_2$ - C_{1-6} -alkyl steht; R^{16} auch an eines der Stickstoffatome im Imidazolring der Formel (c-1) gebunden sein kann, wobei die Bedeutung von R^{16} , wenn es an Stickstoff gebunden ist, auf Wasserstoff, Aryl, C_{1-6} -Alkyl, Hydroxy- C_{1-6} -alkyl, C_{1-6} -Alkyloxycarbonyl, C_{1-6} -Alkyl-S(O)- C_{1-6} -alkyl oder C_{1-6} -Alkyl-S(O) $_2$ - C_{1-6} -alkyl beschränkt ist; R^{17} für Wasserstoff, C_{1-6} -Alkyl, Trifluormethyl oder Di (C_{1-4} -alkyl) aminosulfonyl steht.

- 3. Verbindungen nach Anspruch 1 oder 2, wobei =X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-1), (x-2), (x-3), (x-4) oder (x-9) steht, wobei R³ jeweils unabhängig für Wasserstoff, C¹-4-Alkyl, C¹-4-Alkyloxycarbonyl, Amino oder Aryl steht und R³ für Wasserstoff steht; >Y¹-Y²- für einen dreiwertigen Rest der Formel (y-1), (y-2), (y-3) oder (y-4) steht, wobei R³ jeweils unabhängig für Wasserstoff, Halogen, Carboxyl, C¹-4-Alkyl oder C¹-4-Alkyloxycarbonyl steht; r für 0, 1 oder 2 steht, s für 0 oder 1 steht; t für 0 steht; R¹ für Halogen oder C¹-6-Alkyl steht oder zwei R¹-Substituenten, die am Phenylring ortho zueinander stehen, unabhängig zusammen einen zweiwertigen Rest der Formel (a-1) bilden können; R² für Halogen steht; R³ für Halogen oder einen Rest der Formel (b-1) oder (b-3) steht, wobei R¹0 für Wasserstoff oder einen Rest der Formel Alk-OR¹³ steht, R¹¹ für Wasserstoff steht, R¹² für Wasserstoff, C¹-6-Alkyl, C¹-6-Alkylcarbonyl, Hydroxyl, C¹-6-Alkyloxy oder Mono- oder Di(C¹-6-alkyl)amino-C¹-6-alkylcarbonyl steht, Alk für C¹-6-Alkandiyl steht und R¹³ für Wasserstoff steht; R⁴ für einen Rest der Formel (c-1) oder (c-2) steht, wobei R¹⁶ für Wasserstoff, Halogen oder Mono- oder Di(C¹-4-alkyl)amino steht; R¹² für Wasserstoff oder C¹-6-Alkyl steht; Aryl für Phenyl steht.
- 4. Verbindungen nach einem der Ansprüche 1 bis 3, wobei = X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-1) steht, >Y¹-Y² für einen dreiwertigen Rest der Formel (y-4) steht, r für 0 oder 1 steht, s für 1 steht, t für 0 steht, R¹ für 3-Chlor steht, R² für 4-Chlor oder 4-Fluor steht, R³ für Wasserstoff oder einen Rest der Formel (b-1) oder (b-3) steht, R⁴ für einen Rest der Formel (c-1) oder (c-2) steht, R⁶ für Wasserstoff steht, Rⁿ für Wasserstoff steht, R¹¹ für Wasserstoff steht und R¹² für Wasserstoff steht.
 - 5. Verbindungen nach einem der Ansprüche 1 bis 4, wobei = X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-2) oder (x-3) steht, >Y¹-Y² für einen dreiwertigen Rest der Formel (y-2), (y-3) oder (y-4) steht, r und s für 1 stehen, t für 0 steht, R¹ für 3-Chlor oder 3-Methyl steht, R² für 4-Chlor steht, R³ für einen Rest der Formel (b-1) oder (b-3) steht, R⁴ für einen Rest der Formel (c-2) steht, R⁶ für C₁₋₆-Alkyl steht, R⁰ für Wasserstoff steht, R¹⁰ und R¹¹ für Wasserstoff stehen und R¹² für Wasserstoff oder Hydroxyl steht.
 - 6. Verbindungen nach Anspruch 1 oder 2, ausgewählt aus:

7-[(4-Fluorphenyl)(1*H*-imidazol-l-yl)methyl]-5-phenylimidazol[1,2-a]chinolin;

 α -(4-Chlorphenyl)- α -(1-methyl-1*H*-imidazol-5-yl)-5-phenylimidazo[1,2-a]chinolin-7-methanol;

 $5-(3-\text{Chlorphenyl})-\alpha-(4-\text{chlorphenyl})-\alpha-(1-\text{methyl}-1H-\text{imidazol}-5-yl)\text{imidazo}[1,2-a]\text{chinolin-7-methanol};$

 $5-(3-\text{Chlorphenyl})-\alpha-(4-\text{chlorphenyl})-\alpha-(1-\text{methyll}H-\text{imidazol}-5-\text{yl})\text{imidazo[}1,2-\text{a]}\text{chinolin-}7-\text{methanamin;}$

5-(3-Chlorphenyl)-α-(4-chlorphenyl)-α-(1-methyl-1*H*-imidazol-5-yl)tetrazolo[1,5-a]chinolin-7-methanamin;

 $5-(3-Chlorphenyl)-\alpha-(4-chlorphenyl)-1-methyl-\alpha-(1-methyl-1\\H-imidazol-5-yl)-1,2,4-triazolo[4,3-a]chinolin-1\\H-imidazol-5-yl)-1,2,4-triazolo[4,3-a]chinolin-1\\H-imidazol-5-yl)-1,2,4-triazolo[4,3-a]chinolin-1\\H-imidazol-5-yl]-1,2,4-triazolo[4,3-a]chinolin-1$

7-methanol;

5

10

15

25

30

35

40

45

55

 $5-(3-\text{Chlorphenyl})-\alpha-(4-\text{chlorphenyl})-\alpha-(1-\text{methyl}1H-\text{imidazol}-5-yl)\text{tetrazolo}[1,5-a]\text{chinolin-7-methanamin};$

 $5-(3-Chlorphenyl)-\alpha-(4-chlorphenyl)-\alpha-(1-methyl1$ *H*-imidazol-5-yl)tetrazolo[1,5-a]chinazolin-7-methanol;

 $5-(3-\text{Chlorphenyl})-\alpha-(4-\text{chlorphenyl})-4,5-\text{dihydro-}\alpha-(1-\text{methyl-}1H-\text{imidazol-}5-\text{yl})\text{tetrazolo}[1,5-a]\text{chinazolin-}7-\text{methanol}$:

- $5-(3-\text{Chlorphenyl})-\alpha-(4-\text{chlorphenyl})-N-\text{hydroxy}-\alpha-(1-\text{methyl}-1H-\text{imidazol}-5-yl)\text{tetrahydro}[1,5-a]-\text{chinolin-7-methanamin}$
- α -(4-Chlorphenyl)- α -(1-methyl-IH-imidazol-5-yl)-5-(3-methylphenyl)tetrazolo[1,5-a]chinolin-7-methanamin; deren pharmazeutisch unbedenklichen Säureadditionssalzen und stereochemisch isomeren Formen.
- 50
 5-(3-Chlorphenyl)-α-(4-chlorphenyl)-α-(1-methyllH-imidazol-5-yl)tetrazolo[1,5-a]chinazolin-7-methanamin und dessen pharmazeutisch unbedenkliche Säureadditionssalze und stereochemisch isomere Formen.
 - **8.** Pharmazeutische Zusammensetzung, enthaltend einen pharmazeutisch unbedenklichen Trägerstoff und als Wirkstoff eine therapeutisch wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 7.
 - 9. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung nach Anspruch 8, bei dem man eine therapeutisch wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 7 innig mit einem pharmazeutisch unbedenklichen Trägerstoff mischt.

10. Verbindungen der Formel (II)

5

10

15

20

30

35

40

45

50

 $\begin{array}{c|c}
 & R^{3} \\
 & R^{3} \\
 & R^{4}
\end{array}$ (II)

deren Säureadditionssalze und stereochemisch isomere Formen, wobei die gestrichelte Linie für eine gegebenenfalls vorhandene Bindung steht; W^1 für eine Abgangsgruppe (jedoch nicht für eine Hydroxylgruppe) steht, und r, s, t, $>Y^1-Y^2$, R^1 , R^2 , R^3 , R^4 und R^5 wie in Anspruch 1 definiert sind.

- **11.** Verbindungen nach einem der Ansprüche 1 bis 7 zur Verwendung als Arzneimittel.
- 12. Verbindungen nach Anspruch 11 zur Inhibierung von anomalem Zellwachstum.
- 13. Verbindungen nach Anspruch 11 zur Inhibierung von Tumorwachstum.
 - **14.** Verbindungen nach Anspruch 11 zur Inhibierung von proliferativen Erkrankungen.
 - 15. Verfahren zur Herstellung einer Verbindung nach Anspruch 1, wobei

a) =X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-1) steht und R⁶ und R⁷ für Wasserstoff stehen, wiedergegeben durch Verbindungen der Formel (I-1), durch Umsetzung eines Zwischenprodukts der Formel (II) mit einem Reagens der Formel (III) oder einem funktionellen Derivat davon, wobei W¹ für eine Abgangsgruppe (jedoch nicht für eine Hydroxylgruppe) steht, und anschließende intramolekulare Cyclisierung:

$$(R^1)_r$$
 $(R^2)_s$
 $(R^2)_s$

b) $= X^1 - X^2 - X^3$ für einen dreiwertigen Rest der Formel (x-1) steht, $> Y^1 - Y^2$ für einen dreiwertigen Rest der Formel (y-4) steht, und R⁹ für Wasserstoff steht und R⁶ und/oder R⁷ nicht für Wasserstoff steht/stehen, wiedergegeben durch die Formel (I-1-a), durch Umsetzung einer Verbindung der Formel (IV) mit einem Reagens der Formel (V) und anschließende intramolekulare Cyclisierung;

c) =X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-2) steht, wiedergegeben durch Verbindungen der Formel (I-2), durch Umsetzung einer Verbindung der Formel (II) mit einem Zwischenprodukt der Formel (VI) oder durch Umsetzung einer Verbindung der Formel (VIII) mit einem Zwischenprodukt der Formel (VIII);

(II)
$$R^{6}$$
 R^{3} R^{4} R^{5} R^{5} R^{5} R^{6} R^{6}

$$(R^1)_r$$
 $(R^2)_s$
 R^6
 $(VII I)$
 $(HS)_t$
 $(I-2)$
 $(VII I)$
 $(HS)_t$
 $(I-2)$

d) Verbindungen der Formel (I-2), wobei R⁶ für ein Amin steht, wiedergegeben durch Verbindungen der Formel (I-2-a), durch Umsetzung eines Zwischenprodukts der Formel (VII) mit BrCN;

(VII)
$$\frac{BrCN}{N}$$
 $\frac{(R^1)_r}{R^3}$ R^4 $\frac{(I-2-a)}{N}$

e) =X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-3) steht, wiedergegeben durch Verbindungen der Formel (I-3), durch Umsetzung eines Zwischenprodukts der Formel (VII) mit einer Verbindung der Formel (IX) oder durch Umsetzung einer Verbindung der Formel (X) mit einem Zwischenprodukt der Formel (II);

(VIII)
$$(IX)$$
 (IX) (IX)

(II)
$$(X)$$
 (X) (X)

f) = X^1 - X^2 - X^3 für einen dreiwertigen Rest der Formel (x-4) steht, wiedergegeben durch Verbindungen der Formel (I-4), durch Umsetzung eines Zwischenprodukts der Formel (II) mit NaN₃;

(II)
$$\frac{NaN_3}{N}$$
 $\frac{(R^2)_s}{R^3}$ R^4 R^5 , $(I-4)$

g) =X¹-X²-X³ für einen dreiwertigen Rest der Formel (x-9) steht, >Y¹-Y² für einen dreiwertigen Rest der Formel (y-4) steht und R⁹ für Wasserstoff steht, wiedergegeben durch Verbindungen der Formel (I-5), durch Umsetzung eines Zwischenprodukts der Formel (XI) mit einer Verbindung der Formel (XII);

$$(R^{1})_{r}$$
 $(R^{2})_{s}$
 R^{3}
 R^{4}
 $(R^{5})_{t}$
 (XII)
 $(R^{5})_{t}$
 (XII)
 $(R^{5})_{t}$
 $(I-5)$

h) Verbindungen der Formel (I-6), die als Verbindungen der Formel (I) definiert sind, in denen $>Y^1-Y^2$ für einen dreiwertigen Rest der Formel (y-2) oder (y-4) steht, durch Umsetzung mit NaBH₄ oder LiAlH₄ in die entsprechenden Verbindungen der Formel (I-7) umgewandelt werden, wobei $>Y^1-Y^2$ für einen dreiwertigen Rest der Formel (y-3) oder (y-1) steht und R⁹ für Wasserstoff steht; umgekehrt Verbindungen der Formel (I-7) durch Oxidation mit MnO₂ in die entsprechenden Verbindungen der Formel (I-6) umgewandelt werden;

$$(R^1)_r$$
 $(R^2)_s$ $(R^2)_s$ $(R^2)_s$ $(R^3)_r$ $(R^2)_s$ $(R^3)_r$ $(R^3$

i) Verbindungen der Formel (I-7) in Verbindungen der Formel (I-7-a) umgewandelt werden, wobei >Y¹-Y² für einen dreiwertigen Rest der Formel (y-3) oder (y-1) steht und R³ nicht für Wasserstoff steht, durch Umsetzung dieser Verbindungen der Formel (I-7) mit einem Reagens der Formel R³-W², wobei W² für eine Abgangsgruppe steht;

15

20

25

30

35

40

45

50

j) R³ für einen Rest der Formel (c-2) steht und R⁴ für Hydroxyl steht, wiedergegeben durch Verbindungen der Formel (I-8), in Verbindungen der Formel (I-8-a) umgewandelt werden, wobei R⁴ für Wasserstoff steht, durch Rühren der Verbindungen der Formel (I-8) in Essigsäure in Gegenwart von Formamid;

$$(R^{1})_{1}$$
 $(R^{2})_{5}$
 $(R^{1})_{1}$
 $(R^{2})_{5}$
 $(R^{1})_{1}$
 $(R^{2})_{5}$
 $(R^{1})_{1}$
 $(R^{2})_{5}$
 $(R^{2})_{5}$

k) Verbindungen der Formel (I-8) in Verbindungen der Formel (I-8-b) umgewandelt werden, wobei R4 für Halogen steht, durch Umsetzung der Verbindungen der Formel (I-8) mit einem Halogenierungsmittel; anschließend werden die Verbindungen der Formel (I-8-b) mit einem Reagens der Formel H-NR¹¹R¹² behandelt, wodurch man Verbindungen der Formel (I-8-c) erhält;

$$(I-8) \xrightarrow{(R^{1})_{1}} (R^{2})_{3} \\ (I-8) \xrightarrow{(R^{5})_{1}} (I-8-b) \\ (I-8) \xrightarrow{(R^{5})_{1}} (I-8-c) \\ (I-8-b) \xrightarrow{(R^{5})_{1}} (I-8-c)$$

wobei in den obigen Reaktionsschemata =X1-X2-X3, >Y1-Y2, R1, R2, R3, R4, R5, R6, R7, R9, R11, R12, R16, R¹⁷, r, s, t wie in Anspruch 1 definiert sind und W¹ und W² für Abgangsgruppen stehen;

1) oder wobei man Verbindungen der Formel (I) nach im Stand der Technik bekannten Umwandlungsreaktionen in einander umwandelt; oder, falls gewünscht, eine Verbindung der Formel (I) in ein pharmazeutisch unbedenkliches Säureadditionssalz umwandelt oder umgekehrt ein Säureadditionssalz einer Verbindung der Formel (I) mit Alkali in die freie Basenform umwandelt; und, falls gewünscht, stereochemisch isomere Formen davon darstellt.

55 16. Verfahren zur Herstellung eines Zwischenprodukts der Formel (II) nach Anspruch 10, bei dem man ein Zwischenprodukt der Formel (XV) mit einem Halogenierungsmittel umsetzt;

5
$$(R^1)_r$$
 $(R^2)_s$
 $(R^2)_s$
 $(R^2)_s$
 $(R^2)_s$
 $(R^3)_r$
 $(R^3)_r$

wobei die Reste >Y¹-Y², R¹, R², R³, R⁴, R⁵ wie in Anspruch 1 definiert sind und W¹ für eine Abgangsgruppe, jedoch nicht für eine Hydroxylgruppe steht.

Revendications

20

50

1. Composé de formule (I)

ou sel d'addition pharmaceutiquement acceptable à un acide ou forme stéréochimiquement isomère de celui-ci, dans laquelle

40 = X¹-X²-X³- est un radical trivalent de formules

$$=N-CR^6=CR^7-$$
 (x-1),

 $= N-N = CR^{6} - (x-2),$

$$=N-NH-C(=O)-$$
 (x-3),

=N-N=N- (x-4),

$$=N-CR^6=N-$$
 (x-5),

$$=CR^{6}-CR^{7}=CR^{8}-$$
 (x-6),

$$=CR^{6}-N=CR^{7}-$$
 (x-7),

$$=CR^6-NH-C(=0)-$$
 (x-8),

10 ou

20

$$=CR^{6}-N=N-$$
 (x-9);

dans lesquelles R^6 , R^7 et R^8 sont chacun indépendamment un hydrogène, un alkyle en C_{1-4} , un hydroxy, un alkyloxy en C_{1-4} , un aryloxy, un C_{1-4} -alkyloxycarbonyle, un hydroxy- C_{1-4} -alkyle, un C_{1-4} -alkyloxy- C_{1-4} -alkyle, un mono- ou un di(C_{1-4} -alkyl)amino- C_{1-4} -alkyle, un cyano, un amino, un thio, un C_{1-4} -alkylthio, un arylthio ou un aryle ; Y^1 - Y^2 - est un radical trivalent de formules

>CH-CHR⁹- (y-1),

$$>CH-NR^9-$$
 (y-3),

30 ou

45

55

$$>C=CR^9-$$
 (y-4);

dans lesquelles chaque R^9 est indépendamment un hydrogène, un halogéno, un halogénocarbonyle, un aminocarbonyle, un hydroxy- C_{1-4} -alkyle, un cyano, un carboxy, un alkyle en C_{1-4} , un C_{1-4} -alkyloxy, un C_{1-4} -alkyloxycarbonyle, un mono- ou un di(C_{1-4} -alkyl)amino, un mono- ou un di(C_{1-4} -alkyl)amino- C_{1-4} -alkyle, un aryle;

r et s valent chacun indépendamment 0, 1, 2, 3, 4 ou 5;

40 t vaut 0, 1, 2 ou 3;

 $\rm R^1$ et $\rm R^2$ représentent chacun indépendamment un hydroxy, un halogéno, un cyano, un alkyle en $\rm C_{1-6}$, un trihalogénométhyle, un trihalogénométhoxy, un alcényle en $\rm C_{2-6}$, un alkyloxy en $\rm C_{1-6}$, un hydroxy- $\rm C_{1-6}$ -alkyloxy, un $\rm C_{1-6}$ -alkyloxy, un $\rm C_{1-6}$ -alkyloxy, un count di ($\rm C_{1-6}$ -alkyloxy), un mono- ou un di ($\rm C_{1-6}$ -alkyloxy, un aryle, un aryle, un aryle, un aryle, un aryloxy ou un aryle- $\rm C_{1-6}$ -alkyloxy, un hydroxycarbonyle, un $\rm C_{1-6}$ -alkyloxy, un hydroxycarbonyle, un aryle- $\rm C_{1-6}$ -alkyloxy, un hydroxycarbonyle, un aryle- $\rm C_{1-6}$ -alkyloxy, un hydroxycarbonyle, un mono- ou un di($\rm C_{1-6}$ -alkyloxy) amino- $\rm C_{1-6}$ -alkyloxy, un hydroxycarbonyle, un mono- ou un di($\rm C_{1-6}$ -alkyloxy) amino- $\rm C_{1-6}$ -alkyle; ou deux substituants $\rm R^1$ ou $\rm R^2$, adjacents l'un à l'autre sur le noyau phényle, peuvent indépendamment former conjointement un radical bivalent de formules

-O-CH=CH- (a-3),

$$-O-CH2-CH2- (a-4),$$

$$-\text{O-CH}_2\text{-CH}_2\text{-CH}_2\text{-} \tag{a-5},$$

ou

15

25

30

35

40

45

50

55

 $\rm R^3$ est un hydrogène, un halogéno, un alkyle en $\rm C_{1-6}$, un cyano, un halogéno- $\rm C_{1-6}$ -alkyle, un hydroxy- $\rm C_{1-6}$ -alkyle, un cyano- $\rm C_{1-6}$ -alkyle, un $\rm C_{1-6}$ -alkyle, un hydroxycarbonyle, un hydroxycarbonyl- $\rm C_{1-6}$ -alkyle, un $\rm C_{1-6}$ -alkyle, un $\rm C_{1-6}$ -alkyle, un $\rm C_{1-6}$ -alkyle, un $\rm C_{1-6}$ -alkyle, un cyano- $\rm C_{1-6}$ -alkyle, un cyano-

ou un radical de formule

$$-S-R^{10}$$
 (b-2),

 $-NR^{11}R^{12}$ (b-3),

dans lesquelles R^{10} est un hydrogène, un alkyle en C_{1-6} , un C_{1-6} -alkylcarbonyle, un aryle, un aryl- C_{1-6} -alkyle, un C_{1-6} -alkyloxycarbonyl- C_{1-6} -alkyle, ou un radical de formule -Alk-OR¹³ ou -Alk-NR¹⁴-R¹⁵;

R¹¹ est un hydrogène, un alkyle en C₁₋₆, un aryle ou un aryl-C₁₋₆-alkyle ;

 R^{12} est un hydrogène, un alkyle en C_{1-6} , un aryle, un hydroxy, un amino, un alkyloxy en C_{1-6} , un C_{1-6} -alkylcarbonyl- C_{1-6} -alkyle, un aryl- C_{1-6} -alkyle, un C_{1-6} -alkylcarbonylamino, un mono- ou un di(C_{1-6} -alkyl) amino, un C_{1-6} -alkylcarbonyle, un aminocarbonyle, un aryl- C_{1-6} -alkylcarbonyle, un aryl- C_{1-6} -alkylcarbonyle, un aryl- C_{1-6} -alkylcarbonyle, un mono- ou un di(C_{1-6} -alkylcarbonyle, un C_{1-6} -alkyloxy- C_{1-6} -alkylcarbonyle, un mono- ou un di(C_{1-6} -alkyl) aminocarbonyle, où le fragment alkyle peut être éventuellement substitué par un ou plusieurs substituants choisis indépendamment parmi un aryle ou un C_{1-3} -alkyloxy-carbonyle, un aminocarbonylcarbonyle, un mono- ou un di(C_{1-6} -alkyl) amino- C_{1-6} -alkylcarbonyle, ou un radical de formule -Alk-OR 13 ou -Alk-NR 14 R 15 ;

dans lesquelles Alk est un C_{1-6} -alcanediyle ;

 R^{13} est un hydrogène, un alkyle en C_{1-6} , un C_{1-6} -alkylcarbonyle, un hydroxy- C_{1-6} -alkyle, un aryle ou un aryl- C_{1-6} -alkyle;

 R^{14} est un hydrogène, un alkyle en C_{1-6} , un aryle ou un aryl- C_{1-6} -alkyle ;

 R^{15} est un hydrogène, un alkyle en C_{1-6} , un C_{1-6} -alkylcarbonyle, un aryle ou un aryl- C_{1-6} -alkyle;

R⁴ est un radical de formules

-N (c-1), N R^{16} (c-2)

dans lesquelles R^{16} est un hydrogène, un halogéno, un aryle, un alkyle en C_{1-6} , un hydroxy- C_{1-6} -alkyle, un C_{1-6} -alkyloxy- C_{1-6} -alkyle, un alkyloxy en C_{1-6} , un C_{1-6} -alkylthio, un amino, un mono- ou un di(C_{1-4} -alkyl)amino, un hydroxycarbonyle, un C_{1-6} -alkyloxycarbonyle, un C_{1-6} -alkylthio- C_{1-6} -alkyle, un C_{1-6} -alkylS(O) $_2C_{1-6}$ -alkyle;

R¹⁶ peut également être lié à l'un des atomes d'azote dans le noyau imidazole de formule (c-1) ou (c-2), auquel

cas la signification de R^{16} , lorsqu'il est lié à l'azote, est limitée à un hydrogène, un aryle, un alkyle en C_{1-6} , un hydroxy- C_{1-6} -alkyle, un C_{1-6} -alkyle, un C_{1-6} -alkyle, un C_{1-6} -alkyle, un C_{1-6} -alkyle;

 R^{17} est un hydrogène, un alkyle en C_{1-6} , un C_{1-6} -alkyloxy- C_{1-6} -alkyle, un aryl- C_{1-6} -alkyle, un trifluorométhyle ou un di(C_{1-4} -alkyl)aminosulfonyle ;

R⁵ est un alkyle en C₁₋₆, un alkyloxy en C₁₋₆ ou un halogéno ;

aryle est un phényle, un naphtalényle ou un phényle substitué par 1 ou plusieurs substituants choisis chacun indépendamment parmi un halogéno, un alkyle en C_{1-6} , un alkyloxy en C_{1-6} ou un trifluorométhyle.

2. Composé selon la revendication 1, dans lequel R¹ et R² représentent chacun indépendamment un hydroxy, un halogéno, un cyano, un alkyle en C₁₋₆, un trihalogénométhyle, un trihalogénométhoxy, un alcényle en C₂₋₆, un alkyloxy en C₁₋₆, un hydroxy-C₁₋₆-alkyloxy, un C₁₋₆-alkyloxy, un C₁₋₆-alkyloxy, un C₁₋₆-alkyloxy, un di(C₁₋₆-alkyloxy, un mono- ou un di(C₁₋₆-alkyl)amino, un mono- ou un di(C₁₋₆-alkyl)amino-C₁₋₆-alkyloxy, un aryle, un aryl-C₁₋₆-alkyle, un aryloxy ou un aryl-C₁₋₆-alkyloxy, un hydroxycarbonyle, un C₁₋₆-alkyloxy-carbonyle; ou

deux substituants R¹ ou R², adjacents l'un à l'autre sur le noyau phényle, peuvent indépendamment former conjointement un radical bivalent de formules

$$-O-CH_2-CH_2-O-$$
 (a-2),

$$-O-CH_2-CH_2- (a-4),$$

$$-O-CH_2-CH_2-CH_2-$$
 (a-5),

ou 35

30

45

R¹⁶ est un hydrogène, un halogéno, un aryle, un alkyle en C_{1-6} , un hydroxy- C_{1-6} -alkyle, un C_{1-6} -alkyloxy- C_{1-6} -alkyle, un alkyle, un alkyloxy en C_{1-6} , un C_{1-6} -alkylthio, un amino, un mono- ou un di(C_{1-4} -alkyl)amino, un hydroxycarbonyle, un C_{1-6} -alkyloxycarbonyle, un C_{1-6} -alkyle, un C_{1-6} -alkyle ou un C_{1-6} -alkyle ou un C_{1-6} -alkyle;

R¹6 peut également être lié à l'un des atomes d'azote dans le noyau imidazole de formule (c-1), auquel cas la signification de R¹6, lorsqu'il est lié à l'azote, est limitée à un hydrogène, un aryle, un alkyle en C_{1-6} , un hydroxy- C_{1-6} -alkyle, un C_{1-6} -alkyloxy- C_{1-6} -alkyloxy- C_{1-6} -alkyloxy- C_{1-6} -alkyle ou un C_{1-6} -alkyle; (O)₂- C_{1-6} -alkyle;

 R^{17} est un hydrogène, un alkyle en C_{1-6} , un trifluorométhyle ou un di $(C_{1-4}$ -alkyl)aminosulfonyle ;

3. Composé selon l'une quelconque des revendications 1 à 2, dans lequel = X¹-X²-X³ est un radical trivalent de formules (x-1), (x-2), (x-3), (x-4) ou (x-9) dans lesquelles chaque R⁶ est indépendamment un hydrogène, un alkyle en C₁₋₄, un C₁₋₄-alkyloxycarbonyle, un amino ou un aryle et R⁷ est un hydrogène; > Y¹-Y² est un radical trivalent de formules (y-1), (y-2), (y-3) ou (y-4) dans lesquelles chaque R⁹ est indépendamment un hydrogène, un halogéno, un carboxy, un alkyle en C₁₋₄ ou un C₁₋₄-alkyloxycarbonyle; r vaut 0, 1 ou 2; s vaut 0 ou 1; t vaut 0; R¹ est un halogéno, un alkyle en C₁₋₆ ou deux substituants R¹, en position ortho l'un par rapport à l'autre sur le noyau phényle, peuvent indépendamment former conjointement un radical bivalent de formule (a-1); R² est un halogéno ou un radical de formules (b-1) ou (b-3) dans lesquelles R¹0 est un hydrogène ou un radical de formule -Alk-OR¹³, R¹¹ est un hydrogène, R¹² est un hydrogène, un alkyle en C₁₋₆, un C₁₋₆-alkylcarbonyle, un hydroxy, un

alkyloxy en C_{1-6} ou un mono- ou un di(C_{1-6} -alkyl)amino- C_{1-6} -alkylcarbonyle, Alk est un C_{1-6} -alcanediyle et R^{13} est un hydrogène ; R^4 est un radical de formules (c-1) ou (c-2) dans lesquelles R^{16} est un hydrogène, un halogéno ou un mono- ou un di(C_{1-4} -alkyl)amino ; R^{17} est un hydrogène ou un alkyle en C_{1-6} ; aryle est un phényle.

- 4. Composé selon l'une quelconque des revendications 1 à 3, dans lequel =X¹-X²-X³ est un radical trivalent de formule (x-1), >Y¹-Y² est un radical trivalent de formule (y-4), r vaut 0 ou 1, s vaut 1, t vaut 0, R¹ est un 3-chloro, R² est un 4-chloro ou un 4-fluoro, R³ est un hydrogène ou un radical de formules (b-1) ou (b-3), R⁴ est un radical de formules (c-1) ou (c-2), R⁶ est un hydrogène, R⁷ est un hydrogène, R⁹ est un hydrogène, R¹⁰ est un hydrogène et R¹² est un hydrogène.
 - 5. Composé selon l'une quelconque des revendications 1 à 4, dans lequel =X¹-X²-X³ est un radical trivalent de formules (x-2) ou (x-3), >Y¹-Y² est un radical trivalent de formules (y-2), (y-3) ou (y-4), r et s valent 1, t vaut 0, R¹ est un 3-chloro ou un 3-méthyle, R² est un 4-chloro, R³ est un radical de formules (b-1) ou (b-3), R⁴ est un radical de formule (c-2), R⁶ est un alkyle en C₁₋₄, R⁹ est un hydrogène, R¹⁰ et R¹¹ sont un hydrogène et R¹² est un hydrogène ou un hydroxy.
 - 6. Composé selon la revendication 1 ou 2, choisi parmi :

la 7-[(4-fluorophényl)(1*H*-imidazol-1-yl)méthyl]-5-phénylimidazo[1,2-a]quinoléine ;

le α -(4-chlorophényl)- α -(1-méthyl-1H-imidazol-5-yl)-5-phénylimidazo[1,2-a]quinoléine-7-méthanol;

le $5-(3-\text{chlorophényl})-\alpha-(4-\text{chlorophényl})-\alpha-(1-\text{méthyl}-1H-\text{imidazol}-5-yl)\text{imidazo}[1,2-a]\text{quinoléine-7-méthanol}$;

la 5-(3-chlorophényl)-α-(4-chlorophényl)-α-(1-méthyl-1*H*-imidazol-5-yl)imidazo[1,2-a]quinoléine-7-méthanamine;

la 5-(3-chlorophényl)- α -(4-chlorophényl)- α -(1-méthyl-1*H*-imidazol-5-yl)tétrazolo[1,5-a]quinoléine-7-méthanamine;

le 5-(3-chlorophényl)- α -(4-chlorophényl)-1-méthyl- α -(1-méthyl-1*H*-imidazol-5-yl)-1,2,4-triazolo[4,3-a]quino-

léine-7-méthanol;

la 5-(3-chlorophényl)- α -(4-chlorophényl)- α -(1-méthyl-1*H*-imidazol-5-yl)tétrazolo[1,5-a]quinoléine-7-méthanamine;

 $le \ 5-(3-chlorophényl)-\alpha-(4-chlorophényl)-\alpha-(1-méthyl-1 \\ H-imidazol-5-yl)tétrazolo[1,5-a] quinazoline-7-méthanol;$

le 5-(3-chlorophényl)- α -(4-chlorophényl)-4,5-dihydro- α -(1-méthyl-1H-imidazol-5-yl)tétrazolo[1,5-a]quinazoline-7-méthanol ;

la 5-(3-chlorophényl)- α -(4-chlorophényl)-N-hydroxy- α -(1-méthyl-1H-imidazol-5-yl)tétrahydro[1,5-a]guinoléine-7-méthanamine ;

la α -(4-chlorophényl)- α -(1-méthyl-1H-imidazol-5-yl)-5-(3-méthylphényl)tétrazolo[1,5-a]quinoléine-7-méthanamine; un sel d'addition pharmaceutiquement acceptable à un acide ou une forme stéréochimiquement isomère de celui-ci.

- **7.** 5-(3-Chlorophényl)-α-(4-chlorophényl)-α-(1-méthyl-1*H*-imidazol-5-yl) tétrazolo[1,5-a]quinazoline-7-méthanamine ou sel d'addition pharmaceutiquement acceptable à un acide ou forme stéréochimiquement isomère de celle-ci.
 - **8.** Composition pharmaceutique comprenant un support pharmaceutiquement acceptable, et en tant qu'ingrédient actif, une quantité thérapeutiquement efficace d'un composé tel que décrit dans l'une quelconque des revendications 1 à 7.
 - **9.** Procédé de préparation d'une composition pharmaceutique selon la revendication 8, dans lequel une quantité thérapeutiquement efficace d'un composé selon l'une quelconque des revendications 1 à 7 est mélangée intimement avec un support pharmaceutiquement acceptable.
 - 10. Composé de formule (II)

50

10

15

20

25

30

40

45

15

5

10

sel d'addition à un acide ou forme stéréochimiquement isomère de celui-ci, dans laquelle la ligne en pointillé représente une liaison facultative; W^1 est un groupe partant (autre qu'un groupe hydroxy), r, s, t, Y^1-Y^2 , Y^1-

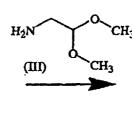
- 20 **11.** Composé selon l'une quelconque des revendications 1 à 7, destiné à être utilisé en tant que médicament.
 - 12. Composé selon la revendication 11 destiné à l'inhibition de la croissance anormale de cellules.
 - 13. Composé selon la revendication 11 destiné à l'inhibition d'une croissance tumorale.

- **14.** Composé selon la revendication 11 destiné à l'inhibition de maladies prolifératives.
- 15. Procédé de préparation d'un composé selon la revendication 1, dans lequel

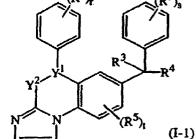
30

25

35


40

45


50

d'une cyclisation intramoléculaire ;

(II)

a) =X¹-X²-X³ est un radical trivalent de formule (x-1) et R⁶ et R⁷ sont un hydrogène, représenté par des composés de formule (I-1), par réaction d'un intermédiaire de formule (II) avec un réactif de formule (III) ou un dérivé fonctionnel de celui-ci, dans laquelle W¹ est un groupe partant (autre qu'un groupe hydroxy), suivie

b) =X¹-X²-X³ est un radical trivalent de formule (x-1), >Y¹-Y² est un radical trivalent de formule (y-4), R⁹ est un hydrogène et R⁶ et/ou R⁷ ne sont pas un hydrogène, représenté par la formule (I-1-a), par réaction d'un composé de formule (IV) avec un réactif de formule (V), suivie d'une cyclisation intramoléculaire ;

$$(IV)$$
 $(R^{1})_{r}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{2})_{s}$
 $(R^{3})_{r}$
 $(R^{3})_{r}$
 $(R^{3})_{r}$
 $(R^{5})_{r}$
 $(R^{5})_{r}$
 $(I-1-a)$

c) $=X^1-X^2-X^3$ est un radical trivalent de formule (x-2), représenté par des composés de formule (I-2), par réaction d'un composé de formule (VII) avec un intermédiaire de formule (VII) ou par réaction d'un composé de formule (VIII) avec un intermédiaire de formule (VIII) ;

(II)
$$R^{6}$$
 R^{3} R^{4} R^{5} R^{5} R^{5} R^{6}

$$(R^1)_r$$
 $(R^2)_s$
 R^6
 $(VII I)$
 $(R^5)_1$
 (VII)

d) des composés de formule (I-2) dans laquelle R^6 est une amine, représentés par des composés de formule (I-2-a), sont préparés par réaction d'un intermédiaire de formule (VII) avec du BrCN;

(VII) $\frac{BrCN}{N}$ $(R^{1})_{r}$ $(R^{2})_{s}$ $(R^{2})_{s}$ $(R^{2})_{s}$ $(R^{2})_{s}$ $(R^{2})_{s}$

e) =X¹-X²-X³ est un radical trivalent de formule (x-3), représenté par des composés de formule (I-3), par réaction d'un intermédiaire de formule (VII) avec un composé de formule (IX) ou par réaction d'un composé de formule (X) avec un intermédiaire de formule (II);

$$(VII) \longrightarrow \begin{pmatrix} R^1 \\ N \\ (IX) \end{pmatrix} \times \begin{pmatrix} R^2 \\ N \\ (I-3) \end{pmatrix}$$

(II)
$$H_2N$$
 (X)
 (X)

f) = X^1 - X^2 - X^3 est un radical trivalent de formule (x-4), représenté par des composés de formule (I-4), par réaction d'un intermédiaire de formule (II) avec du NaN $_3$;

(II)
$$NaN_3$$
 Y^2 $(R^2)_5$ R^3 R^4 $(R^5)_1$ $(I-4)$

10

15

30

35

40

45

50

55

g) = X¹-X²-X³ est un radical trivalent de formule (x-9), >Y¹-Y² est un radical trivalent de formule (y-4) et R⁹ est un hydrogène, représenté par des composés de formule (1-5), par réaction d'un intermédiaire de formule (XI) avec un composé de formule (XII);

25
$$(R^{1})_{r}$$
 $(R^{2})_{s}$ $H_{3}C$ $(R^{1})_{r}$ $(R^{2})_{s}$ $(R^{2})_{s}$ $(R^{3})_{r}$ $(R^{2})_{s}$ $(R^{5})_{1}$ (XI)

h) des composés de formule (I-6) définis comme composés de formule (I) dans laquelle $>Y^1-Y^2$ est un radical trivalent de formules (y-2) ou (y-4), sont transformés en composés correspondants de formule (I-7) dans laquelle $>Y^1-Y^2$ est un radical trivalent de formules (y-3) ou (y-1) et R^9 est un hydrogène, en les faisant réagir avec du NaBH₄ ou du LiAlH₄;

inversement, des composés de formule (I-7) sont transformés en composés correspondants de formule (I-6) par oxydation avec du MnO_2 ;

$$(R^1)_r$$
 $(R^2)_s$
 R^3
 R^3
 R^4
 $R^5)_t$
 $R^5)_t$
 $R^5)_t$
 $R^5)_t$
 $R^5)_t$
 R^7
 R^7

i) des composés de formule (I-7) sont transformés en composés de formule (I-7-a) dans laquelle >Y¹-Y² est un radical trivalent de formules (y-3) ou (y-1) et R³ est autre qu'un hydrogène, en faisant réagir ces composés de formule (1-7) avec un réactif de formule R³-W², dans laquelle W² est un groupe partant ;

j) R³ est un radical de formule (c-2) et R⁴ est un hydroxy, représenté par des composés de formule (I-8) qui sont transformés en composés de formule (I-8-a), dans laquelle R⁴ est un hydrogène, en agitant les composés de formule (I-8) dans de l'acide acétique en présence de formamide ;

k) des composés de formule (I-8) sont transformés en composés de formule (I-8-b) dans laquelle R⁴ est un halogéno, par réaction des composés de formule (I-8) avec un agent d'halogénation ; ensuite, les composés de formule (I-8-b) sont traités avec un réactif de formule H-NR¹¹R¹², en donnant ainsi lieu à des composés de formule (I-8-c) ;

$$(I-8) \xrightarrow{(R^1)_t} (R^2)_s$$

$$R^{17}$$

$$R^{17}$$

$$R^{17}$$

$$R^{17}$$

$$R^{17}$$

$$R^{17}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{18}$$

$$R^{18}$$

$$R^{18}$$

$$R^{18}$$

$$R^{19}$$

$$R$$

où, dans les schémas réactionnels ci-dessus, =X1-X2-X3, >Y1-Y2, R1, R2, R3, R4, R5, R6, R7, R9, R11, R12, R16, R17, r, s, t sont tels que définis dans la revendication 1 et W1 et W2 sont des groupes partants;

1) ou des composés de formule (I) sont transformés les uns en les autres conformément à des réactions de transformation connues dans la technique ; ou, si on le souhaite, un composé de formule (I) est transformé en un sel d'addition pharmaceutiquement acceptable à un acide, ou inversement, un sel d'addition à un acide d'un composé de formule (I) est transformé en une forme basique libre avec un alcali ; et, si on le souhaite, leurs formes stéréochimiquement isomères sont préparées.

16. Procédé de préparation d'un intermédiaire de formule (II) selon la revendication 10, dans lequel un intermédiaire de formule (XV) est mis à réagir avec un réactif d'halogénation ;

10 \mathbb{R}^3 R^3 POCl₃ 15 **(II)** (XV)

5

25

30

35

40

45

50

55

dans laquelle les radicaux > Y^1 - Y^2 , R^1 , R^2 , R^3 , R^4 , R^5 sont tels que définis dans la revendication 1 et W^1 est un 20 groupe partant autre qu'un groupe hydroxy.