© 2017/023510 A1 I KO 10 R0 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/023510 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

9 February 2017 (09.02.2017) WIPOIPCT
International Patent Classification:
GO6F 21/62 (2013.01) GO6F 9/50 (2006.01)
GO6F 21/60 (2013.01)
International Application Number:
PCT/US2016/042381

International Filing Date:
15 July 2016 (15.07.2016)

Filing Language: English
Publication Language: English
Priority Data:

3995/CHE/2015 31 July 2015 (31.07.2015) IN
14/865,570 25 September 2015 (25.09.2015) US

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US).

Inventors: COSTA, Manuel;, Microsoft Technology Li-
censing, LLC, Patent Group Docketing (Bldg. 8/1000),
One Microsoft Way, Redmond, Washington 98052-6399
(US). HODSON, Orion Tamlin, Microsoft Technology
Licensing, LLC, Patent Group Docketing (Bldg. 8/1000),
One Microsoft Way, Redmond, Washington 98052-6399
(US). RAJAMANI, Sriram Kottarakurichi; Microsoft
Technology Licensing, LLC, Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). PEINADO, Marcus; Microsoft
Technology Licensing, LLC, Patent Group Docketing

(74

(8D

(84)

(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). RUSSINOVICH, Mark Eugene;
Microsoft Technology Licensing, LLC, Patent Group
Docketing (Bldg. 8/1000), One Microsoft Way, Redmond,
Washington 98052-6399 (US). VASWANI, Kapil, Mi-
crosoft Technology Licensing, LLC, Patent Group Docket-
ing (Bldg. 8/1000), One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US).

Agents: MINHAS, Sandip et al.; Microsoft Corporation,
Patent Group Docketing (Bldg. 8/1000), One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: TECHNIQUES TO SECURE COMPUTATION DATA IN A COMPUTING ENVIRONMENT

System 100

Secure Computation Provider 120

Application Programming
Interface (AP1) Component
122-1

Input
110 |

Isolated Memory Region 122-2

Qutput
130

Attestation Key 122-3

Untrusted Code 122-4

FIG. 1

(57) Abstract: Techniques to secure computation data in a computing environment from untrusted code. These techniques involve
an isolated environment within the computing environment and an application programming interface (API) component to execute a
key exchange protocol that ensures data integrity and data confidentiality for data communicated out of the isolated environment.
The isolated environment includes an isolated memory region to store a code package. The key exchange protocol further involves a
verification process for the code package stored in the isolated environment to determine whether the one or more exchanged en-
cryption keys have been compromised. If the signature successfully authenticates the one or more keys, a secure communication
channel is established to the isolated environment and access to the code package's functionality is enabled. Other embodiments are
described and claimed.

WO 2017/023510 A1 AT 00T 00O A AR

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, Published:
GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

Declarations under Rule 4.17: — before the expiration of the time limit for amending the

— as to applicant’s entitlement to apply for and be granted claims and to be republished in the event of receipt of
a patent (Rule 4.17(ii)) amendments (Rule 48.2(h))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
1

TECHNIOQUES TO SECURE COMPUTATION DATA IN A COMPUTING
ENVIRONMENT

BACKGROUND

[0001] It has become increasingly important for developers (e.g., software application
developers) to ensure data confidentiality and data integrity for their uses, especially when
their programs involve sensitive data. Sophisticated security threats cost governments and
private organizations considerable sums of capitol from delays and expenditures for
preventing/mitigating these threats. As these organizations shift towards using cloud-
based services over a network and away from maintaining on-premises hardware, an
adversary has more opportunities to exploit a software vulnerability and jeopardize the
security of other organizations. Due to the cloud computing environment’s hierarchical
privilege structure, programs that operate on such computing bases may inherit software
vulnerabilities from privileged software code, such as an operating system component or a
hypervisor component.
[0002] Various code-partitioning schemes provide a considerable number of opportunities
for malicious attacks and reduce the benefits and practicality of executing these portions in
a separate execution environment with a different privilege level. Large amounts of
trusted code also inhibit any meaningful examination as to correctness. Furthermore, the
code-partitioning schemes often require substantially manual tasks that prove to be error-
prone and slow.
[0003] It is with respect to these and other considerations that the present improvements
have been needed.

SUMMARY
[0004] The following presents a simplified summary in order to provide a basic
understanding of some novel embodiments described herein. This summary is not an
extensive overview, and it is not intended to identify key/critical elements or to delineate
the scope thereof. Its sole purpose is to present some concepts in a simplified form as a
prelude to the more detailed description that is presented later.
[0005] Various embodiments are generally directed to techniques to provide secure
computation in a computing environment via secure hardware abstraction. As described
herein, the computing environment is controlled by a secure computation provider and
may refer to a cloud-based environment or an on-premises (e.g., local) computing

environment. The secure computation provider generally includes suitable secure

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
2

hardware components, such as a secure processor. In an isolated memory region of the
computing environment, a code package may be stored that is secure hardware-agnostic
and operates with any secure computation provider. According to the various
embodiments described herein, techniques that use signed data to verify the code package
as being trusted code and authenticate message data originating from the isolated memory
region enable secure computation by different providers. The message data generated by
the code package can be used to share secrets between trusted code in the isolated memory
region and remotely stored trusted code in a remote machine using various mechanisms
such as those described herein and also encompassing those with similar features.

[0006] Some embodiments are particularly directed to techniques to enable access to the
code package stored in the isolated memory region. The code package may implement
functionality configured to execute a set of computations on data stored in external
storage. Providing secure computation for the code package involves isolating part or all
of the package’s data and code from the untrusted code components (e.g., privileged
software, such as an operating system component or a virtual machine monitor
component) while maintaining a primitive programming model for communications
between the isolated memory region and the untrusted code components. In general, the
primitive programming model is an abstraction of underlying (secure) hardware that still
provides secure computation over stored data. Secure computation may be enhanced by
establishing one or more secure communication channels between the isolated code
package and one or more remote trusted components running on remote machines.
Because the isolated code package operates independently from underlying hardware,
software and/or firmware, the various embodiments described herein can be implemented
in any hardware configuration.

[0007] In one embodiment, for example, an apparatus may comprise logic operative on a
logic circuit to configure an isolated memory region in a computing environment for
secure communications with code running outside of the isolated memory region, generate
signed data using an attestation key that corresponds to the computing environment, the
signed data comprising a secured encryption key and a signature to authenticate the
secured encryption key, and communicate the signed data to a remote trusted component
to access secret code stored in the isolated memory region. Other embodiments are
described and claimed.

[0008] To the accomplishment of the foregoing and related ends, certain illustrative

aspects are described herein in connection with the following description and the annexed

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
3

drawings. These aspects are indicative of the various ways in which the principles
disclosed herein can be practiced and all aspects and equivalents thereof are intended to be
within the scope of the claimed subject matter. Other advantages and novel features will
become apparent from the following detailed description when considered in conjunction
with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 illustrates an embodiment of a system to secure computation data in a
computing environment.

[0010] FIG. 2 illustrates an embodiment of an operating environment for a trusted
component.

[0011] FIG. 3 illustrates an embodiment of an operating environment for a trusted
component with a support region.

[0012] FIG. 4 illustrates an embodiment of a key exchange protocol between a trusted
component and a remote trusted component.

[0013] FIG. 5 illustrates an embodiment of a secure communication channel between a
trusted component and a remote trusted component.

[0014] FIG. 6 illustrates an embodiment of an isolated environment for trusted code in an
isolated memory region.

[0015] FIG. 7 illustrates an embodiment of a system for a secure computation provider.
[0016] FIG. 8 illustrates an embodiment of a centralized system for the system of FIG. 1.
[0017] FIG. 9 illustrates an embodiment of a logic flow for the system of FIG. 1.
[0018] FIG. 10 illustrates an embodiment of a logic flow for the trusted component of
FIG. 5.

[0019] FIG. 11 illustrates an embodiment of a logic flow for the remote trusted
component of FIG. 4.

[0020] FIG. 12 illustrates an embodiment of a computing architecture.

[0021] FIG. 13 illustrates an embodiment of a communications architecture.

DETAILED DESCRIPTION

[0022] Various embodiments are directed to an application programming interface (API)
component in a computing environment that is operative to isolate trusted code from
untrusted code in the computing environment and secure data generated by that trusted
code when such data is being processed by the untrusted code. The API component, in
general, provides a secure hardware abstraction layer by implementing a primitive

programming model through which the untrusted code and the trusted code establish a

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
4

secure connection or communication channel. Both untrusted code and trusted code can
use primitive functions of the primitive programming model to generate and manage an
isolated environment. Via the primitive programming model, the trusted code implements
an encryption protocol for securing network data traffic between the isolated environment
and the untrusted code.

[0023] As described herein, the isolated environment may include various computer code
and data stored in an isolated memory region of a computing device’s memory. In some
embodiments, the primitive programming model of the API component is used by the
untrusted code to configure the isolated memory region with secure communication
channels to code that is executable in memory region that is different from the isolated
memory region, including privileged code components running outside of the isolated
memory region. The primitive programming model may enable, among others, secure
communication of the data to the untrusted code for processing by one of the untrusted
code’s functions, for storage in external storage, and/or for transmission to a remote
machine over a network. The primitive programming model implemented by the API
component may also enable additional management functions, such as file system
operations, threading, synchronization, memory allocation and/or the like. In some
embodiments, computation data is communicated with a signature (or another
authentication code) to a remote machine and is secured with an encryption key that is
generated through the primitive programming model. The signature ensures the integrity
of the encryption key and verifies to the remote machine that the computer code in the
isolated memory region has not been compromised or corrupted.

[0024] Application development frameworks (e.g., secure Hadoop) partition their data and
code such that a portion is isolated from privileged software (e.g., the operating system)
but require compatibility with underlying hardware within the computing environment.
The primitive programming model of the API component provides interoperability with
any underlying hardware. In some embodiments, the API component implements
functions that produce communication primitives to communicate data securely. Although
some of these communication primitives may incorporate or resemble known inter-process
communication primitives, the embodiments envisioned by the present disclosure are not
restricted to any particular construct. The API component implements a minimal number
of functions to achieve secure computation and secure communication while limiting

access to the isolated memory region only to code in that region. Hence, even if the

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
5

privileged software is compromised or operated by a malicious administrator, the attackers
cannot access the data and code in the isolated memory region.

[0025] As a result, the embodiments can improve affordability, scalability, modularity,
extendibility, or interoperability for an operator, device or network.

[0026] We describe how the untrusted code in the cloud creates an isolated region with
some code provided by the user, and how the trusted code inside the isolated region
communicates with the code outside. We also describe how the trusted code in a remote
machine can establish a secure channel with the trusted code inside the isolated region.
[0027] With general reference to notations and nomenclature used herein, the detailed
descriptions which follow may be presented in terms of program procedures executed on a
computer or network of computers. These procedural descriptions and representations are
used by those skilled in the art to most effectively convey the substance of their work to
others skilled in the art.

[0028] A procedure is here, and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. These operations are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these quantities
take the form of electrical, magnetic or optical signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like. It should be noted, however, that all of
these and similar terms are to be associated with the appropriate physical quantities and
are merely convenient labels applied to those quantities.

[0029] Further, the manipulations performed are often referred to in terms, such as adding
or comparing, which are commonly associated with mental operations performed by a
human operator. No such capability of a human operator is necessary, or desirable in most
cases, in any of the operations described herein which form part of one or more
embodiments. Rather, the operations are machine operations. Useful machines for
performing operations of various embodiments include general purpose digital computers
or similar devices.

[0030] Various embodiments also relate to apparatus or systems for performing these
operations. This apparatus may be specially constructed for the required purpose or it may
comprise a general purpose computer as selectively activated or reconfigured by a
computer program stored in the computer. The procedures presented herein are not

inherently related to a particular computer or other apparatus. Various general purpose

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
6

machines may be used with programs written in accordance with the teachings herein, or it
may prove convenient to construct more specialized apparatus to perform the required
method steps. The required structure for a variety of these machines will appear from the
description given.

[0031] Reference is now made to the drawings, wherein like reference numerals are used
to refer to like elements throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order to provide a thorough
understanding thereof. It may be evident, however, that the novel embodiments can be
practiced without these specific details. In other instances, well known structures and
devices are shown in block diagram form in order to facilitate a description thereof. The
intention is to cover all modifications, equivalents, and alternatives consistent with the
claimed subject matter.

[0032] FIG. 1 illustrates a block diagram for a system 100. In one embodiment, the
system 100 may comprise a computer-implemented system 100 having a secure
computation provider 120 and one or more components 122-a. Although the system 100
shown in FIG. 1 has a limited number of elements in a certain topology, it may be
appreciated that the system 100 may include more or less elements in alternate topologies
as desired for a given implementation.

[0033] It is worthy to note that “a” and “b” and “c” and similar designators as used herein
are intended to be variables representing any positive integer. Thus, for example, if an
implementation sets a value for a =5, then a complete set of components 122-a may
include components 122-1, 122-2, 122-3, and 122-4. The embodiments are not limited in
this context.

[0034] The system 100 may comprise a secure computation provider 120 that is in control
over a computing environment. The secure computation provider 120 may be generally
arranged to provide computing services to a number of computing devices in operation
locally or remotely. One example of the computing environment includes configurations
of processing resources and storage resources in the form of virtual machines that run
various applications. One physical computer may be abstracted into several virtual
machines and, alternatively, two or more physical computing devices may allocate
processing power and/or storage space towards a executing a processing job on a
computing framework, for example, to perform a large set of parallel computations on a

large dataset.

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
7

[0035] Various embodiments describes herein refer to an application programming
interface (API) component 122-1 operative to generate a primitive programming service
comprising a number of primitive functions. The primitive functions may represent a
minimum number of primitives suitable to support different secure computation providers
and facilitate interactions with each provider’s functionality. The API component 122-1
may be further operative to provide access to this primitive programming service, for
example, for trusted code components within an isolated memory region 122-2. Via the
API component 122-1, trusted code running within the isolated memory region 122-2 may
execute a key exchange protocol with a remote trusted component running on a remote
machine.

[0036] One feature of the key exchange protocol is an attestation key 122-3, which may be
private to the secure computation provider 120, for authenticating data communicated out
of the isolated memory region 122-2. The attestation key 122-3 may correspond
specifically to the secure computation provider 120; therefore, using this key to produce a
digital signature for some data ensures that data’s integrity when transmitted out of the
computing environment controlled by the secure computation provider 120. The data can
be verified using a public key that corresponds to the attestation key 122-3. Because the
remote trusted component can confirm the authenticity of the data, the secure computation
provider 120 can ensure that the data has not been compromised while being outside of the
isolated memory region 122-2.

[0037] The combined aspects of the digital signature from the attestation key 122-3 and a
secured encryption key from the API component 122-1 provides additional data
confidentiality and integrity for data communicated between the isolated memory region
122-2 and any trusted component outside of that region. In an embodiment where that
trusted component includes remotely stored code, because the secured encryption key is
encrypted through a scheme known to that code, it is unlikely that the encryption key has
been compromised. Thus, the remotely stored code can be assured that communications
with the isolated memory region 122-2 are secure.

[0038] Untrusted code 122-4, according to one embodiment, is executed in a memory
region outside of the isolated memory region 122-2 and communicates with that region
through the API component 122-1. Once the key exchange protocol has been completed
successfully, application code may run a set of computations on stored data, for example,
in parallel with other trusted components. The application code running in the isolated

memory region may use I/O control codes to instruct the untrusted code 122-4 to perform

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
8

various computing tasks. Thus, the API component 122-1 provides secure
communications between code running in the isolated memory region 122-2 and
components running in memory regions outside of the isolated memory region 122-2.
These components may include remotely stored code on a remote machine or the untrusted
code 122-4.
[0039] The untrusted code 122-4 may create an isolated environment within storage
memory and configure this isolated environment with computer code and/or data. To
illustrate by way of example, the API component 122-1 implements the following function
IsolatedRegionCreate() which when invoked, creates the isolated environment and loads a
computer code package specified by a packagePath argument into that environment:
HANDLE
IsolatedRegionCreate(
In LPCTSTR packagePath,
In ISOLATION PROVIDER isolationProvider,
_In opt CALL OUT HANDLER callOutHandler

)

[0040] In the above example, the isolationProvider identifies the underlying provider of
secure computation services, e.g., VSM. The packagePath argument may refer to file data
in a global or cloud file system instead of a local file system. The callOutHandler
identifies a function in the untrusted code that can handle IO control codes sent from
inside the region. The package is a container of code (e.g., trusted application code) and
data. One example package is a mobile application package that is downloadable from a
mobile application platform. The package also includes configuration parameters such as
the size of the region.
[0041] The untrusted code 122-4 may invoke code in the isolated memory region 122-2.
One way to achieve this is to send an Input/Output (I0) control code (e.g., an IOCTL
code) to the isolated memory region 122-2:

IRIO_ RESULT

IsolatedRegionIOControl(

In HANDLE region,

In DWORD calllnld,

_In_reads bytes opt (inputBufferBytes) LPCVOID

inputBuffer,

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
9

In SIZE T inputBufferBytes,

_Out_writes bytes to opt (outputBufferBytes,

*bytesReturned) LPVOID outputBuffer,

In SIZE T outputBufferBytes,

_Out_opt_ PSIZE T bytesReturned

)
[0042] The region argument defines an address or location of the isolated memory region
122-2. The callInID argument identifies a function in the isolated memory region 122-2
that 1s configured to handle control codes (or other communication primitives) from the
untrusted code 122-4. The callInID argument may be supplied by information
accompanying the code package. The inputBuffer and outputBuffer arguments are
memory buffers that store the control codes and returned results, respectively. Finally, the
untrusted code 122-4 can destroy the isolated memory region, for example, by calling the
following function:
VOID IsolatedRegionClose(_In_ HANDLE region)

[0043] As noted herein, the functions implemented by the API component 122-1 may be
extended to perform additional tasks, such as memory management functions. As an
example, Virtual Alloc () and VirtualFree () could be implement inside the isolated
memory region 122-2 to dynamically allocate/free virtual memory.
[0044] FIG. 2 illustrates an embodiment of an operational environment 200 for the system
100. As shown in FIG. 2, the API component 122-1 receives control directives, such as
communication primitives, from the trusted code 202 running within an isolated memory
region 202. Some control directives instruct the API component 122-1 to communicate
the signed data 214 to a remote machine. A remote trusted component 206 running on the
remote machine may execute a verification process on the signed data 122-3 to determine
whether such data has been misappropriated and/or to protect the remote machine from
malicious activity.
[0045] According to one example embodiment, the trusted code 202 and the remote
trusted component 206 engage in a key exchange protocol through which one or more
encryption keys are securely communicated through untrusted code. One example
implementation of the trusted code 202 invokes a communication primitive via a function
call to instruct the API component 122-1 to generate an encryption key. The trusted code
202 secures the encryption key, for example, by encrypting the encryption key with a

public key of the remote trusted component 206. The trusted code 202 invokes another

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
10

primitive function to request a signature for the secured encryption key, which is then
stored in the signed data 214. It is appreciated that numerous alternative key exchange
protocols may be implemented. As one alternative, for instance, the trusted code 202 may
use another encryption scheme.

[0046] In one embodiment, the remote trusted component 206 encrypts code (e.g., a
library of functions) and data and binds them into a code package 208. Encryption keys
used to generate the encrypted code package 208 are referred to as user keys 210. A
portion of the code package 208 may be public code and can be stored in the trusted code
202. Another portion may include supporting code files and also can be stored in the
trusted code. Another portion may remain secure as secret code 212 in the isolated
memory region 122-2 until a secure communication channel has been established. In
some embodiments, the code package 208 includes metadata to identify function or
functions that handle communication primitives (e.g., /O codes) from code executed in a
memory region other than the isolated memory region 122-2. Each function definition in
the metadata enables instant communication and control over application functionality for
untrusted code.

[0047] In one embodiment, the remote trusted component 206 uses the encryption key to
secure the user keys 210, which are encryption keys that initially encrypted the secret code
212 prior to that secret code 212 being transferring to the isolated memory region 122-2.
As described herein with respect to FIG. 1, the secret code 212 may constitute as part of a
computer code package 208 that can be installed in the isolated memory region 122-2 to
perform secure computation on data stored in external storage. According to one
embodiment, the secret code 212 includes parallel processing jobs (e.g., Map and Reduce
functions) to be performed on a substantial data set for a considerable number of client
computing devices.

[0048] The trusted component 202 receives the user keys 210 and decrypts the secret code
212 to access parallel processing job information that defines a set of computations to be
performed on stored data. The secret code 212 distributes the parallel processing jobs
amongst one or more resources within the isolated memory region 122-2 to generate
computation data, which is secured using the encryption key generated during the key
exchange protocol. The trusted component 202 requests a signature for the secured
computation data and both the signature and the secured computation data are
communicated as signed data 214 to the remote trusted component 206. Using one or

more communication primitives (e.g., I/O control codes), the trusted code 202 generate a

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
11

message to store the signed data 214 and writes the message to a memory buffer for
communication to the API component 122-1. It is appreciated that the message contents
can be used to establish shared secret data between the trusted code 202 and the remote
trusted component 206 in a variety of ways (e.g., Diffie-Hellman key exchange). The
embodiments described herein support several of these secure channel establishment
mechanisms and provide a mechanism to select a particular mechanism.

[0049] The remote trusted component 206, in turn, uses the API component 122-1 to
verify the message contents’ integrity and confidentiality. One example implementation
determines whether the signature is produced from a private attestation key corresponding
to the secure computation provider 120 of the computing environment (e.g., instead of a
malicious provider) and whether the message content was generated by the trusted code
202. Another example implementation determines whether the secured computation data
is produced from the secret code 212 (e.g., instead of a compromised code package).
Using one or more communication primitives (e.g., [/O control codes), the trusted
component 202 writes the signed data 214 to and/or reads data to a memory buffer that is
communicated to the API component 122-1.

[0050] The signed data 214 may include a signature or another authentication code
generated from the secure computation provider’s attestation key. In some embodiments,
this key may be a private key under a public key cryptography scheme and correspond
specifically to the associated secure computation provider. In some embodiments, the
signed data further includes an encryption key that is unknown to untrusted code
components in operation at the secure computation provider. Because the encryption key
is secured from the untrusted components, the key may be communicated to code running
outsider of an isolated memory region without being compromised. If that code is running
on a remote machine, the code can verify the key by examining the signature to determine
whether the key was compromised while outside of the isolated memory region. The
signed data 214, hence, verifies the key’s integrity and confidentiality to the remote
machine’s system.

[0051] FIG. 3 illustrates an embodiment of an operating environment 300 for an isolated
memory region 122-2 with a support region for a support component 304. In this
embodiment, the trusted code 202 operates with the support component 304 to achieve
secure computation for data stored in external storage.

[0052] To illustrate by way of example, the secure computation provider 120 may operate

a cloud computing environment where each machine creates a support region 302 in

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
12

memory that is isolated from untrusted code running elsewhere on the machine. Using the
API component 122-1, for instance, the untrusted code may create the support region 302
with IsolatedRegionCreate () and loads that region with the support component 304. The
support component 304 implements one or more management functions that allow the
remote trusted component 206 to send private computer code securely to the cloud
computing environment for storage in the isolated memory region 122-2. The code for
implementing the support component 304 is trivial and can be made public.

[0053] The untrusted code invokes functions in the support component 304 through
IsolatedRegionIOControl () function calls, as described herein. The support component
304 generates a public-private encryption key pair in accordance with an encryption
scheme that not known to another code component. This public-private encryption key
pair may be specific to processing resources that have been allocated to isolated memory
region 122-2. The support component 304 invokes a primitive function on the API
component 122-1 to generate a sealing key for encrypting the private key. The support
component 304 invokes another primitive function to generate a signature for the public
key. Using the signature and the secured private encryption key, the support component
304 engages in a key exchange protocol with the remote machine.

[0054] To illustrate by way of an example, consider that the isolated memory region 122-2
is depicted in FIG. 3 as having the secret code 212, which is secured computer code for
performing a set of computations on stored data. Functions within the secret code 212
may be encrypted with a secret key known to the remote trusted component 206. After the
API component 122-1 verifies the attestation of the public key mentioned above, the
remote trusted component 206 encrypts the secret key for the secret code 212 with the
public key. Hence, this secret key may be known as a user key, similar to the user keys
208 of FIG. 2.

[0055] To secure communications between the support region 302 and the isolated
memory region 122-2 (the support component 304 in this instance constituting as code
running outside of the isolated memory region 122-2), the support component 304 and the
trusted code 202 initiate a key exchange protocol such that the trusted code 202 receives
the secret key for decrypting the secret code 212 and the support component 304 receives
a private key for securing the secret key and possibly other communications in the future.
Once decrypted, functions of the secret code 212 are incorporated into the trusted code
202 and the private key may be used by those functions to secure data (e.g., encryption

value-pairs) written to or read from the untrusted code.

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
13

[0056] FIG. 4 illustrates an embodiment of a key exchange protocol 400 between the
trusted component 202 and the remote trusted component 206.
[0057] As described herein, untrusted code running in the computing environment 120
invokes a function on the API component 122-1 to create an isolated memory region and
load computer code into that region. Executing that computer code generates the trusted
component 202 and initiates the key exchange protocol 400. One example implementation
of the API component 122-1 loads the package into the isolated memory region and sends
the trusted component 202 a public key for the remote trusted component. The API
component 122-1 may store the public key in a memory buffer of a message that is
communicated to the trusted component 202 to initiate setup process 402. The public key
may be specific to a particular remote machine. The message also includes configuration
parameters such as the size of the region.
[0058] To commence the setup process 402, the trusted component 202 may invoke a
primitive function call 404 and in response, the API component 122-1 generates and
returns an encryption key to secure communications between the trusted component 202
and the remote trusted component 206. These keys allow the trusted code to encrypt data,
save it in external storage, and then decrypt it in a subsequent execution.
[0059] In the below example implementation of the primitive function 404, a function call
to Isolated AppGetKey requests a key corresponding to KeyID with parameters
keyBufferBytesRequired and keyBufferBytes in buffer keyBuffer:
BOOL
Isolated AppGetKey(
In Keyld keyld,
_Out_writes_bytes to (keyBufferBytes,
*keyBufferBytesRequired) LPVOID keyBuffer,
_In_SIZE T keyBufterBytes,
_Always (_Out) PSIZE T keyBufferBytesRequired)

[0060] In another operation, the trusted component 202 may secure the encryption key
with the public key and invoke a primitive function 406 and in response, the API
component 122 generates and returns a digital signature of the secured encryption key. In
yet another operation, the trusted component 202 may invoke a primitive function 408 to

write the digital signature and the secured encryption key into a memory buffer and

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
14

communicate a message to the API component 122-1. In response, the API component
122-1 sends the message to the remote trusted component 206.
[0061] In the below example implementation of the primitive function 404, a function call
to Isolated AppSignMessage instructs the API component to generate the digital signature
for the message contents and store the digital signature in the outputBuffer.
BOOL
Isolated AppSignMessage(
_In reads bytes (messageBytes) LPCVOID message,
_In_SIZE T messageBytes,
Out_writes bytes to (outputBufferBytes,
*outputBufferBytesRequired) LPVOID outputBuffer,
_In_SIZE T outputBufferBytes,
_Always (_Out) PSIZE T outputBufferBytesRequired

[0062] The remote trusted component 206 may read data from the memory buffer and
extract the digital signature and the secured encryption key. In one operation, the remote
trusted component invokes a primitive function 410 to generate a cryptographic digest of a
true copy of the package. In another operation, the remote trusted component 206 invokes
a primitive function 412 to determine whether the digital signature was generated by the
package with the cryptographic digest. The API component 122-1 may send a verification
result indicating either that the data in the memory buffer is secure or that the data has
been misappropriated or, at least, incorrect.
[0063] In the below example implementation of the primitive function 404, a function call
to Isolated ApploControl communicates an 10 control code in inputBuffer and the API
component 122-1 performs the 10 control code and returns a result in outputBufter:
IRIO_ RESULT
Isolated ApploControl(
In_ DWORD callOutld,
_In_reads bytes opt (inputBufferBytes) LPCVOID
inputBuffer,
In_ SIZE T inputBufferBytes,
_Out_writes_bytes to opt (outputBufferBytes,
*bytesReturned) LPVOID outputBufter,

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
15

In_ SIZE T outputBufferBytes,
_Out_opt_ PSIZE T bytesReturned)
[0064] The trusted code 202 invokes the above primitive function to instruct the API
component 122-1 to communicate the message in the memory buffer inputBuffer to the
remote trusted component.
[0065] One example mechanism to establish a secure communication channel operates
these functions to verify that the message originated from trusted code 202 in the isolated
memory region:
BOOL
IsolatedRegionGetDigest(
In LPCTSTR packagePath,
_Out_writes bytes to (regionDigestBytes,
*regionDigestBytesRequired)
LPVOID regionDigest,
_In_SIZE T regionDigestBytes,
Out PSIZE T regionDigestBytesRequired

BOOL

IsolatedRegionCheckSignature(
In ISOLATION PROVIDER isolationProvider,
_In _reads_(regionDigestBytes) LPCVOID regionDigest,
_In_SIZE T regionDigestBytes,
_In reads (messageBytes) LPCVOID message,
_In_SIZE T messageBytes,
_In_reads_(signatureBytes) LPCVOID signature,
_In_SIZE T signatureBytes

[0066] The IsolatedRegionGetDigest() function returns a cryptographic digest that
deterministically identifies a code package located at an address denoted in packagePath in
a local file system or global or cloud-based file system. This code package may denote a
clean or uncorrupted version of an application. The cryptographic digest can be passed as

the regionDigest argument to the primitive function IsolatedRegionCheckSignature()

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
16

along with an identifier for the secure computation provider 120. This function returns
Boolean value “true” if the message in the buffer was produced by code on an isolated
region that is created by the secure computation provider. For example, this function may
authenticate the signature using a public attestation key corresponding to the secure
computation provider 120 to confirm that the message contents were not compromised.
As another example, this function may verify that code running inside the isolated
memory region has not been compromised by comparing the above cryptographic digest
to a digest produced for such code and a match indicates an unaltered copy of the code
package. However, a mismatch indicates that the code inside the isolated memory region
is not the same as the clean version. Hence, the contents of the signed/attested message
can be used to share secret data between the trusted code 202 and the remote trusted
component 206 in a variety of ways (e.g., Diffie-Hellman key exchange). The
embodiments described herein support several of these secure channel establishment
mechanisms and let users choose which one to use.

[0067] The following description applies to one or more example embodiments that
implement a support component, such as the support component 304 of FIG.3, in addition
to the isolated memory region 122-2. The support component invokes primitive function
Isolated AppGetKey() on the API component 122-1 to generate an encryption key for use
as a sealing key to encrypt the processor private key. The support component may invoke
primitive function Isolated AppSignMessage () to sign the processor public key and then,
publish the key.

[0068] As users develop application code (e.g., map and reduce functions), the remote
trusted component compiles and encrypts the application code with a secret key and binds
the encrypted application code with public code to produce a code package (e.g., a code
library such as a Dynamic Link Library (DLL) file). The remote trusted component 206
may verify the attestation of the processor public key using function
IsolatedRegionCheckSignature () and then, encrypt the secret key that was used to encrypt
the application code with the processor public key.

[0069] The untrusted code in the cloud computing environment loads the code package
into an isolated memory region with function IsolatedRegionCreate (), and uses function
IsolatedRegionIOControl () to instruct the public code to generate a new random
symmetric key to establish a secure communication channel with the isolated memory
region. The new key for the region is encrypted with the processor public key and the user

region gets a signature by invoking function IsolatedAppSignMessage (). The encrypted

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
17

new key is then sent to the support region. The support region verifies the signature with
IsolatedRegionCheckSignature (), and decrypts the encrypted new key. The support region
then decrypts the secret key for the application code (which was encrypted with the
processor public key), encrypts that secret key with the new key from the isolated memory
region and sends the encrypted secret key to the isolated memory region. Trusted code
running within that region decrypts the secret key and decrypts the application code and
then, invokes functions in the application code by calling function
IsolatedRegionIOControl () to communicate a primitive IO control code (or another
control directive) to a handler for processing IO control codes directed towards the
application code. The trusted code prepares secure computation data for external storage
by directing IO control codes to a particular handler in the untrusted code. For example,
the trusted code invokes function Isolated AppIOControl () to direct a IO control code to
the untrusted code’s handler to instruct that handler to read encrypted key-value pairs; and
after performing computations on those pairs, the trusted code invokes function

Isolated ApplOControl () to direct a IO control code to the untrusted code’s handler to
instruct that handler to write the encrypted key-value pairs.

[0070] FIG. 5 illustrates an embodiment of a secure communication channel 500 between
the trusted code 202 and the remote trusted component 206. When application code
running in the isolated memory region is executing a set of computations for a parallel
processing job, the trusted code 202 invokes a primitive function 502 to read data (e.g., an
encryption value-pair) from untrusted code 122-4. The untrusted code 122-4 to return
encryption value-pairs. The trusted code 202 may invoke this function and perform one or
more computations on the encryption-value pairs. In another operation, the trusted code
202 invokes a primitive function to write encryption-value pairs to external storage and the
untrusted code 122-4 returns an acknowledgment when completed.

[0071] To send these pairs to remote trusted component, the trusted code 202 invokes the
primitive function 404 to process a digital signature for authenticating the encryption-
value pairs. To send a message with the digital signature and the encryption-value pairs,
the trusted code 202 invokes the primitive function 406 to communicate the message to
the remote trusted component. Prior to decrypting the secure computation data, the remote
trusted component invokes the primitive function 412 to verify the digital signature.
[0072] FIG. 6 illustrates an embodiment of an isolated environment 600 for trusted code
and data in the isolated memory region 122-2. Application code 602 may be secret code

in encrypted form. Public code 604 includes an interface for the application code 602 to

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
18

use for executing a set of computations on stored data to produce computation data 606.
The application code 602 may use the public code 604 to secure the computation data 606
with an encryption key 608 and communicate the secured computation data 606 to
untrusted code outside of the isolated memory region 122-2. The public code 604 may
also communicate a signature 610 to code executed in a memory region different from the
isolated memory 122-2 by requesting the signature 610 from an API component and
communicating that signature 610 in a memory buffer of a message. As described herein,
the code executed in the different memory region may refer to untrusted code running in a
cloud computing environment or remotely stored coded executed by a remote machine.
[0073] In some embodiments, the public code 604 may leverage metadata 612 to identify
a memory region of the application code 602 comprising one or more functions that are
configured to handle control directives (e.g., communication primitives, such as I/O
control codes) from untrusted code running outside of the isolated memory region 122-2.
Via an application programming interface (API) component such as those described
herein, the untrusted code may invoke primitive functions to communicate the control
directives to call some of these functions. Hence, the metadata 612 enables access to the
complex functionality implemented by the application code 602 through (e.g., lower-level)
inter-process communication primitives.

[0074] FIG. 7 illustrates an embodiment of a computing environment 700 for a secure
computation provider 720. The secure computation provider 720 depicts an alternative to
the secure computation provider 120 of FIG. 1. In this embodiment, the support
component 304 of FIG. 3 has access to application code running in a processing unit. It is
appreciated that the computing environment 700 represents one alternative to the system
100 of FIG. 1 and other alternatives and modifications are envisioned in this disclosure.
[0075] The secure computation provider 720 in control of the computing environment 700
includes a processor circuit 730 and an isolated memory region 750, which further
comprises the support component 304 and processor keys 752. The isolated memory
region 750 may be configured similar to the isolated memory region 122-2 of FIG. 1. The
application code 602 is executing a set of computations on data using the processor circuit
730. As described herein, the support component 302 generates one or more processor
keys 752 to secure computations at a processing unit-level. Hence, the secured
computation data 608 may be decrypted/encrypted quickly, enhancing computation

throughput with little or no security risk.

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
19

[0076] FIG. 8 illustrates a block diagram of a centralized system 800. The centralized
system 800 may implement some or all of the structure and/or operations for the system
100 in a single computing entity, such as entirely within a single device 820.

[0077] The device 820 may comprise any electronic device capable of receiving,
processing, and sending information for the system 100. Examples of an electronic device
may include without limitation an ultra-mobile device, a mobile device, a personal digital
assistant (PDA), a mobile computing device, a smart phone, a telephone, a digital
telephone, a cellular telephone, ebook readers, a handset, a one-way pager, a two-way
pager, a messaging device, a computer, a personal computer (PC), a desktop computer, a
laptop computer, a notebook computer, a netbook computer, a handheld computer, a tablet
computer, a server, a server array or server farm, a web server, a network server, an
Internet server, a work station, a mini-computer, a main frame computer, a supercomputer,
a network appliance, a web appliance, a distributed computing system, multiprocessor
systems, processor-based systems, consumer electronics, programmable consumer
electronics, game devices, television, digital television, set top box, wireless access point,
base station, subscriber station, mobile subscriber center, radio network controller, router,
hub, gateway, bridge, switch, machine, or combination thereof. The embodiments are not
limited in this context.

[0078] The device 820 may execute processing operations or logic for the system 100
using a processing component 830. The processing component 830 may comprise various
hardware elements, software elements, or a combination of both. Examples of hardware
elements may include devices, logic devices, components, processors, miCroprocessors,
circuits, processor circuits, circuit elements (e.g., transistors, resistors, capacitors,
inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC),
programmable logic devices (PLD), digital signal processors (DSP), field programmable
gate array (FPGA), Application-specific Standard Products (ASSPs), System-on-a-chip
systems (SOCs), Complex Programmable Logic Devices (CPLDs), memory units, logic
gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.
Examples of software elements may include software components, programs, applications,
computer programs, application programs, system programs, software development
programs, machine programs, operating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, procedures, software interfaces,
application program interfaces (API), instruction sets, computing code, computer code,

code segments, computer code segments, words, values, symbols, or any combination

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
20

thereof. Determining whether an embodiment is implemented using hardware elements
and/or software elements may vary in accordance with any number of factors, such as
desired computational rate, power levels, heat tolerances, processing cycle budget, input
data rates, output data rates, memory resources, data bus speeds and other design or
performance constraints, as desired for a given implementation.

[0079] The device 820 may execute communications operations or logic for the system
100 using communications component 840. The communications component 840 may
implement any well-known communications techniques and protocols, such as techniques
suitable for use with packet-switched networks (e.g., public networks such as the Internet,
private networks such as an enterprise intranet, and so forth), circuit-switched networks
(e.g., the public switched telephone network), or a combination of packet-switched
networks and circuit-switched networks (with suitable gateways and translators). The
communications component 840 may include various types of standard communication
elements, such as one or more communications interfaces, network interfaces, network
interface cards (NIC), radios, wireless transmitters/receivers (transceivers), wired and/or
wireless communication media, physical connectors, and so forth. By way of example,
and not limitation, communication media 812, 842 include wired communications media
and wireless communications media. Examples of wired communications media may
include a wire, cable, metal leads, printed circuit boards (PCB), backplanes, switch
fabrics, semiconductor material, twisted-pair wire, co-axial cable, fiber optics, a
propagated signal, and so forth. Examples of wireless communications media may include
acoustic, radio-frequency (RF) spectrum, infrared and other wireless media.

[0080] The device 820 may communicate with other devices 810, 850 over a
communications media 812, 842, respectively, using communications signals 814, 844,
respectively, via the communications component 840. The devices 810, 850 may be
internal or external to the device 820 as desired for a given implementation.

[0081] As described herein, a trusted component running on a remote machine desires a
secure communication channel with application code running in an isolated memory
region of the computing environment of FIG. 8. An API component of a secure
computation provider may establish secure communication channels with the isolated
memory region via the primitive programming model. Using function calls that invoke
communication primitives, the untrusted code and the trusted code establish a secure

connection or communication channel by implementing an encryption protocol for

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
21

securing network data traffic, such as a Transport Layer Security (TLS), Secure Sockets
Layer (SSL) and/or the like.

[0082] Included herein is a set of flow charts representative of exemplary methodologies
for performing novel aspects of the disclosed architecture. While, for purposes of
simplicity of explanation, the one or more methodologies shown herein, for example, in
the form of a flow chart or flow diagram, are shown and described as a series of acts, it is
to be understood and appreciated that the methodologies are not limited by the order of
acts, as some acts may, in accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and described herein. For example, those
skilled in the art will understand and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such as in a state diagram.
Moreover, not all acts illustrated in a methodology may be required for a novel
implementation.

[0083] FIG. 9 illustrates an embodiment of a logic flow 900 for the system of FIG. 1. The
logic flow 900 may be representative of some or all of the operations executed by one or
more embodiments described herein. In the illustrated embodiment shown in FIG. 9, the
logic flow 900 may be executed by the API component 122-1 of FIG. 1 to establish a
secure communication channel between trusted code and code running outside of an
isolated memory region at block 906.

[0084] For example, the logic flow 900 may generate the isolated memory region in a
computing environment and a store a code package in that region at block 902 when
untrusted code in the computing environment invokes a primitive function to configure the
isolated memory region according to certain parameters (e.g., size). The logic flow 900
may generate a signature using a private attestation key that corresponds specifically the
secure computation provider 120 that is in control over the computing environment.
[0085] The logic flow 900 may execute a verification process at block 906 during which
the code package is authenticated to a remote trusted component running in a remote
machine. The logic flow 900 may execute the verification process to complete a key
exchange protocol such that the trusted code provides the remote trusted component with
an encryption key secured with a public key and a signature to authenticate the encryption
key. For example, the public key may correspond to credentials corresponding to the
remote machine that has requested computing services. In response, the remote trusted
component returns data on how to access the code package, for example, by securing a

user key using the encryption key and communicated the secured user key to the trusted

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
22

code via a function call to the API component. The function call may result in the
communication of a control code to the trusted code, which prompts that code to read the
secured user key, decrypt the user key and then, decrypt secret code in the code package to
access the code package’s functionality.

[0086] For instance, the API component and the untrusted code may instruct trusted code
in the isolated memory region to initiate a setup process for the key exchange protocol.
The API component may generate and communicate the encryption key to the isolated
memory region. After the trusted code secures the encryption key, the trusted code
requests the API component to generate a signature using a private key corresponding to a
secure computation provider in control over the computing environment. The API
component communicates a message comprising the signature to a remote trusted
component running on a remote machine. After the key exchange protocol, the API
component executes the verification process on the message to extract the message’s
contents and determine how to access the code package. If successful, the verification
process proves that the signed/attested message originated from trusted code in the
isolated memory region. The API component may communicate the secured user keys to
the trusted code running in the isolated memory region. The API component may generate
a cryptographic digest for a clean code package and perform a comparison between that
digest to the cryptographic digest of the code package that originated the message.

[0087] The logic flow 900 may proceed to communicate a verification result, at block 908,
to the remote trusted component running on the remote machine. The logic flow at block
908 completes the establishment of the secure communication channel to the isolated
memory region and code running in that region. For at least this reason, the logic flow
900 may proceed to performing to higher-level computations. These computations
involve more complex control directives than inter-process communication primitives
(e.g., IO control codes). To illustrates, as one option, the logic flow may proceed to block
908 and store secured data (e.g., encryption value-pairs) in a cloud file system where
external storage appears as one file system. As another option, the logic flow 900 may
communicate 1O control codes to the untrusted code and invoke a function (e.g., a
hardware driver function). The embodiments are not limited to this example.

[0088] FIG. 10 illustrates one embodiment of a logic flow 1000. The logic flow 1000
may be representative of some or all of the operations executed by one or more

embodiments described herein.

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
23

[0089] In the illustrated embodiment shown in FIG. 10, the logic flow 1000 may process
user keys and decrypt a secret code package stored in an isolated memory region at block
1002. Map and reduce functions in the decrypted code package, i.e., now trusted code,
may define a set of computations. The logic flow 1000 may run the map and reduce
functions to execute the set of computations on stored data and generate computation data
at block 1004. The logic flow 1000 may secure the computation data using an encryption
key that is unknown to untrusted code running outside of the isolated memory region. The
logic flow 1000 may invoke a primitive function to generate a signature for the secure
computation data at block 1006. The logic flow 1000 invokes, at block 1008, a
communication primitive operative to write the secure computation data to the untrusted
code. For example, the logic flow 1000 may instruct the untrusted code to store the secure
computation data in external storage. The embodiments are not limited to this example.
[0090] FIG. 11 illustrates an embodiment of a logic flow for the remote trusted
component of FIG. 4. The logic flow 1100 may be representative of some or all of the
operations executed by one or more embodiments described herein.

[0091] In the illustrated embodiment shown in FIG. 11, the logic flow 1100 commences at
block 1102 where the logic flow 1100 encrypts a code package and communicates the
encrypted code package to a computing environment along with a public key. The logic
flow 1100 may process a signed/attested message at block 1104 and extract signed data
from a memory buffer in that message. The logic flow 1100 initiates a process at block
1106 to verify that the signed data originated from the secret code package and thus, has
not been tampered or compromised. If verified, the contents of the signed/attested
message can be used to share secret data between the trusted code in an isolated
environment and the remote trusted component in a remote machine in a variety of ways
(e.g., Diffie-Hellman key exchange). The embodiments described herein support several
of these secure channel establishment mechanisms and let users choose which one to use.
[0092] The logic flow 1200 may perform a determination as to whether the signed data
has been compromised at block 1106 and either reject a connection with the isolated
environment at block 1108 or accept the connection at block 1110. Numerous example
embodiments for a verification process are described herein and any of these examples can
be used to render such a determination. If, for instance, the signed data cannot be verified
with a public attestation key for the secure computation provider, it would appear that the
message contents have be tainted. As another example, if the secret code package’s

cryptographic digest does not match the digest of the version stored at the remote machine,

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
24

the code package may have been altered indicating the isolated environment have be
compromised. If the logic flow 1100 determines that the signed data is secure, the logic
flow 1000 may decrypt an encryption key stored in the message and secure user keys for
communication to the trusted code at block 1110. As described herein, the user keys
include encryption keys for decrypting the secret code package. The embodiments are not
limited to this example.

[0093] FIG. 12 illustrates an embodiment of an exemplary computing architecture 1200
suitable for implementing various embodiments as previously described. In one
embodiment, the computing architecture 1200 may comprise or be implemented as part of
an electronic device. Examples of an electronic device may include those described with
reference to FIG. 8, among others. The embodiments are not limited in this context.
[0094] As used in this application, the terms “system” and “component” are intended to
refer to a computer-related entity, either hardware, a combination of hardware and
software, software, or software in execution, examples of which are provided by the
exemplary computing architecture 1200. For example, a component can be, but is not
limited to being, a process running on a processor, a processor, a hard disk drive, multiple
storage drives (of optical and/or magnetic storage medium), an object, an executable, a
thread of execution, a program, and/or a computer. By way of illustration, both an
application running on a server and the server can be a component. One or more
components can reside within a process and/or thread of execution, and a component can
be localized on one computer and/or distributed between two or more computers. Further,
components may be communicatively coupled to each other by various types of
communications media to coordinate operations. The coordination may involve the uni-
directional or bi-directional exchange of information. For instance, the components may
communicate information in the form of signals communicated over the communications
media. The information can be implemented as signals allocated to various signal lines.
In such allocations, each message is a signal. Further embodiments, however, may
alternatively employ data messages. Such data messages may be sent across various
connections. Exemplary connections include parallel interfaces, serial interfaces, and bus
interfaces.

[0095] The computing architecture 1200 includes various common computing elements,
such as one or more processors, multi-core processors, Co-processors, memory units,
chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio

cards, multimedia input/output (I/O) components, power supplies, and so forth. The

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
25

embodiments, however, are not limited to implementation by the computing architecture
1200.

[0096] As shown in FIG. 12, the computing architecture 1200 comprises a processing unit
1204, a system memory 1206 and a system bus 1208. The processing unit 1204 can be
any of various commercially available processors, including without limitation an AMD®
Athlon®, Duron® and Opteron® processors; ARM® application, embedded and secure
processors; IBM® and Motorola® DragonBall® and PowerPC® processors; IBM and
Sony® Cell processors; Intel® Celeron®, Core (2) Duo®, Itanium®, Pentium®, Xeon®,
and XScale® processors; and similar processors. Dual microprocessors, multi-core
processors, and other multi-processor architectures may also be employed as the
processing unit 1204.

[0097] The system bus 1208 provides an interface for system components including, but
not limited to, the system memory 1206 to the processing unit 1204. The system bus 1208
can be any of several types of bus structure that may further interconnect to a memory bus
(with or without a memory controller), a peripheral bus, and a local bus using any of a
variety of commercially available bus architectures. Interface adapters may connect to the
system bus 1208 via a slot architecture. Example slot architectures may include without
limitation Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard
Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral
Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory
Card International Association (PCMCIA), and the like.

[0098] The computing architecture 1200 may comprise or implement various articles of
manufacture. An article of manufacture may comprise a computer-readable storage
medium to store logic. Examples of a computer-readable storage medium may include
any tangible media capable of storing electronic data, including volatile memory or non-
volatile memory, removable or non-removable memory, erasable or non-erasable memory,
writeable or re-writeable memory, and so forth. Examples of logic may include
executable computer program instructions implemented using any suitable type of code,
such as source code, compiled code, interpreted code, executable code, static code,
dynamic code, object-oriented code, visual code, and the like. Embodiments may also be
at least partly implemented as instructions contained in or on a non-transitory computer-
readable medium, which may be read and executed by one or more processors to enable

performance of the operations described herein.

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
26

[0099] The system memory 1206 may include various types of computer-readable storage
media in the form of one or more higher speed memory units, such as read-only memory
(ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate
DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable
ROM (PROM), erasable programmable ROM (EPROM), electrically erasable
programmable ROM (EEPROM), flash memory, polymer memory such as ferroelectric
polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-
nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices
such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices
(e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable
for storing information. In the illustrated embodiment shown in FIG. 12, the system
memory 1206 can include non-volatile memory 1210 and/or volatile memory 1212. A
basic input/output system (BIOS) can be stored in the non-volatile memory 1210.

[00100] The computer 1202 may include various types of computer-readable storage
media in the form of one or more lower speed memory units, including an internal (or
external) hard disk drive (HDD) 1214, a magnetic floppy disk drive (FDD) 1216 to read
from or write to a removable magnetic disk 1218, and an optical disk drive 1220 to read
from or write to a removable optical disk 1222 (e.g., a CD-ROM or DVD). The HDD
1214, FDD 1216 and optical disk drive 1220 can be connected to the system bus 1208 by a
HDD interface 1224, an FDD interface 1226 and an optical drive interface 1228,
respectively. The HDD interface 1224 for external drive implementations can include at
least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies.
[00101] The drives and associated computer-readable media provide volatile and/or
nonvolatile storage of data, data structures, computer-executable instructions, and so forth.
For example, a number of program modules can be stored in the drives and memory units
1210, 1212, including an operating system 1230, one or more application programs 1232,
other program modules 1234, and program data 1236. In one embodiment, the one or
more application programs 1232, other program modules 1234, and program data 1236
can include, for example, the various applications and/or components of the system 100.
[00102] A user can enter commands and information into the computer 1202 through
one or more wire/wireless input devices, for example, a keyboard 1238 and a pointing
device, such as a mouse 1240. Other input devices may include microphones, infra-red
(IR) remote controls, radio-frequency (RF) remote controls, game pads, stylus pens, card

readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, retina

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
27

readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors,
styluses, and the like. These and other input devices are often connected to the processing
unit 1204 through an input device interface 1242 that is coupled to the system bus 1208,
but can be connected by other interfaces such as a parallel port, IEEE 1394 serial port, a
game port, a USB port, an IR interface, and so forth.

[00103] A monitor 1244 or other type of display device is also connected to the system
bus 1208 via an interface, such as a video adaptor 1246. The monitor 1244 may be
internal or external to the computer 1202. In addition to the monitor 1244, a computer
typically includes other peripheral output devices, such as speakers, printers, and so forth.
[00104] The computer 1202 may operate in a networked environment using logical
connections via wire and/or wireless communications to one or more remote computers,
such as a remote computer 1248. The remote computer 1248 can be a workstation, a
server computer, a router, a personal computer, portable computer, microprocessor-based
entertainment appliance, a peer device or other common network node, and typically
includes many or all of the elements described relative to the computer 1202, although, for
purposes of brevity, only a memory/storage device 1250 is illustrated. The logical
connections depicted include wire/wireless connectivity to a local area network (LAN)
1252 and/or larger networks, for example, a wide area network (WAN) 1254. Such LAN
and WAN networking environments are commonplace in offices and companies, and
facilitate enterprise-wide computer networks, such as intranets, all of which may connect
to a global communications network, for example, the Internet.

[00105] When used in a LAN networking environment, the computer 1202 is connected
to the LAN 1252 through a wire and/or wireless communication network interface or
adaptor 1256. The adaptor 1256 can facilitate wire and/or wireless communications to the
LAN 1252, which may also include a wireless access point disposed thereon for
communicating with the wireless functionality of the adaptor 1256.

[00106] When used in a WAN networking environment, the computer 1202 can include
a modem 1258, or is connected to a communications server on the WAN 1254, or has
other means for establishing communications over the WAN 1254, such as by way of the
Internet. The modem 1258, which can be internal or external and a wire and/or wireless
device, connects to the system bus 1208 via the input device interface 1242. Ina
networked environment, program modules depicted relative to the computer 1202, or

portions thereof, can be stored in the remote memory/storage device 1250. It will be

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
28

appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers can be used.

[00107] The computer 1202 is operable to communicate with wire and wireless devices
or entities using the IEEE 802 family of standards, such as wireless devices operatively
disposed in wireless communication (e.g., IEEE 802.11 over-the-air modulation
techniques). This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™
wireless technologies, among others. Thus, the communication can be a predefined
structure as with a conventional network or simply an ad hoc communication between at
least two devices. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, n,
etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used
to connect computers to each other, to the Internet, and to wire networks (which use IEEE
802 .3-related media and functions).

[00108] FIG. 13 illustrates a block diagram of an exemplary communications
architecture 1300 suitable for implementing various embodiments as previously described.
The communications architecture 1300 includes various common communications
elements, such as a transmitter, receiver, transceiver, radio, network interface, baseband
processor, antenna, amplifiers, filters, power supplies, and so forth. The embodiments,
however, are not limited to implementation by the communications architecture 1300.
[00109] As shown in FIG. 13, the communications architecture 1300 comprises
includes one or more clients 1302 and servers 1304. The clients 1302 may implement the
client device 910. The servers 1304 may implement the server device 950. The clients
1302 and the servers 1304 are operatively connected to one or more respective client data
stores 1308 and server data stores 1310 that can be employed to store information local to
the respective clients 1302 and servers 1304, such as cookies and/or associated contextual
information.

[00110] The clients 1302 and the servers 1304 may communicate information between
each other using a communication framework 1306. The communications framework
1306 may implement any well-known communications techniques and protocols. The
communications framework 1306 may be implemented as a packet-switched network
(e.g., public networks such as the Internet, private networks such as an enterprise intranet,
and so forth), a circuit-switched network (e.g., the public switched telephone network), or
a combination of a packet-switched network and a circuit-switched network (with suitable

gateways and translators).

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
29

[00111] The communications framework 1306 may implement various network
interfaces arranged to accept, communicate, and connect to a communications network. A
network interface may be regarded as a specialized form of an input output interface.
Network interfaces may employ connection protocols including without limitation direct
connect, Ethernet (e.g., thick, thin, twisted pair 10/100/1000 Base T, and the like), token
ring, wireless network interfaces, cellular network interfaces, IEEE 802.11a-x network
interfaces, IEEE 802.16 network interfaces, IEEE 802.20 network interfaces, and the like.
Further, multiple network interfaces may be used to engage with various communications
network types. For example, multiple network interfaces may be employed to allow for
the communication over broadcast, multicast, and unicast networks. Should processing
requirements dictate a greater amount speed and capacity, distributed network controller
architectures may similarly be employed to pool, load balance, and otherwise increase the
communicative bandwidth required by clients 1302 and the servers 1304. A
communications network may be any one and the combination of wired and/or wireless
networks including without limitation a direct interconnection, a secured custom
connection, a private network (e.g., an enterprise intranet), a public network (e.g., the
Internet), a Personal Area Network (PAN), a Local Area Network (LAN), a Metropolitan
Area Network (MAN), an Operating Missions as Nodes on the Internet (OMNI), a Wide
Area Network (WAN), a wireless network, a cellular network, and other communications
networks.

[00112] Various embodiments of the present disclosure include an apparatus
comprising a logic circuit and logic operative on the logic circuit to configure an isolated
memory region in a computing environment for secure communications with code
executable in a memory region that is different from the isolated memory region, generate
signed data using an attestation key that corresponds to the computing environment—the
signed data comprising a secured encryption key and a signature to authenticate the
secured encryption key—and communicate the signed data to a remote trusted component
to access secret code stored in the isolated memory region.

[00113] The apparatus of the preceding paragraph may include logic further operative
to generate the signature with a private attestation key that specifically corresponds to a
secure computation provider that is in control of the computing environment. The
apparatus of the preceding paragraph may include logic further operative to generate an
encryption key for trusted code running in the isolated memory region. The apparatus of

the preceding paragraph may include logic further operative to store key-value pairs in a

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
30

buffer that is communicated to trusted code running in the isolated memory region or the
remote trusted component. The apparatus of the preceding paragraph may include logic
further configured to generate a cryptographic digest of a code package on a distributed
file system and use the cryptographic digest to verify the signature of the secured
encryption key. The apparatus of the preceding paragraph may include logic further
operative to process a communication primitive directed towards trusted code running
inside the isolated memory region or untrusted code running outside of the isolated
memory region. The apparatus of the preceding paragraph may include logic further
operative to process a communication primitive operative to invoke a function on the
untrusted code running outside of the isolated memory region or the trusted code running
inside the isolated memory region. The apparatus of the preceding paragraph may include
logic further operative to verify the signature using a public attestation key and decrypt the
secured encryption key to extract the encryption key. The embodiments described in the
previous paragraph may also be combined with one or more of the specifically disclosed
alternatives in this paragraph.

[00114] Various embodiments of the present disclosure also include an article
comprising at least one computer-readable storage medium comprising instructions that,
when executed, cause a system to generate computation data corresponding by executing a
set of computations within an isolated memory region of a computing environment, secure
the computation data using an encryption key to generate secured computation data, and
invoke a primitive to communicate the secured computation data to code running outside
of the isolated memory region.

[00115] The article of the preceding paragraph may further comprise instructions that,
when executed, cause the system to process a signature of the secured data generated using
a private key that is associated with the computing environment and invoke a primitive to
communicate the secured computation data and the signature to a remote trusted
component. The article of the preceding paragraph may further comprise instructions that,
when executed, cause a system to invoke a primitive function to generate the encryption
key and another primitive function to generate the signature using the encryption key. The
article of the preceding paragraph may further comprise instructions that, when executed,
cause a system to secure the encryption key with a public key that corresponds to a remote
trusted component running on a remote machine. In one or more embodiments of the
articles described above, the public key is communicated with the article. The article of

the preceding paragraph may further comprise instructions that, when executed, cause a

10

15

20

25

30

WO 2017/023510 PCT/US2016/042381
31

system to decrypt secured user keys using the encryption key to extract user keys and use
the user keys to decrypt secret code in the isolated memory region. The embodiments
described in the previous paragraph may also be combined with one or more of the
specifically disclosed alternatives in this paragraph.

[00116] Various embodiments of the present disclosure also include a method
comprising the steps of generating an isolated memory region in a computing environment
to store a code package where the isolated memory region is accessible only to code
running in the isolated memory region, generating a signature using a private attestation
key that corresponds to the computing environment, executing a verification process on
the code package using the signature and a cryptographic digest of the code package, and
communicating a verification result for the code package to a remote trusted component.
[00117] The method of the preceding paragraph may further comprise the step of
communicating a secured user key to transform secret code of the code package into the
application code. The method of the preceding paragraph may further comprise the step of
loading an encrypted code package into the isolated memory region. The method of the
preceding paragraph may further comprise the step of generating an encryption key to
secure communications between the application code and code running outside of the
isolated memory region. The method of the preceding paragraph may further comprise the
step of generating an encryption key to secure communications between the application
code and code running outside of the isolated memory region. The method of the
preceding paragraph may further comprise the step of processing a message comprising
the signed data using a public key that corresponds to the computing environment and
generating a verification result indicating whether a message originated from the trusted
component in the isolated memory region. The embodiments described in the previous
paragraph may also be combined with one or more of the specifically disclosed
alternatives in this paragraph.

[00118] Some embodiments may be described using the expression “one embodiment”
or “an embodiment” along with their derivatives. These terms mean that a particular
feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment. The appearances of the phrase “in one embodiment”
in various places in the specification are not necessarily all referring to the same
embodiment. Further, some embodiments may be described using the expression
"coupled" and "connected" along with their derivatives. These terms are not necessarily

intended as synonyms for each other. For example, some embodiments may be described

10

15

20

25

WO 2017/023510 PCT/US2016/042381
32

using the terms “connected” and/or “coupled” to indicate that two or more elements are in
direct physical or electrical contact with each other. The term "coupled,” however, may
also mean that two or more elements are not in direct contact with each other, but yet still
co-operate or interact with each other.

[00119] Itis emphasized that the Abstract of the Disclosure is provided to allow a
reader to quickly ascertain the nature of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the scope or meaning of the
claims. In addition, in the foregoing Detailed Description, it can be seen that various
features are grouped together in a single embodiment for the purpose of streamlining the
disclosure. This method of disclosure is not to be interpreted as reflecting an intention that
the claimed embodiments require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all
features of a single disclosed embodiment. Thus the following claims are hereby
incorporated into the Detailed Description, with each claim standing on its own as a
separate embodiment. In the appended claims, the terms "including" and "in which" are
used as the plain-English equivalents of the respective terms "comprising" and "wherein,"
respectively. Moreover, the terms "first," "second," "third," and so forth, are used merely
as labels, and are not intended to impose numerical requirements on their objects.

[00120] What has been described above includes examples of the disclosed
architecture. It is, of course, not possible to describe every conceivable combination of
components and/or methodologies, but one of ordinary skill in the art may recognize that
many further combinations and permutations are possible. Accordingly, the novel
architecture is intended to embrace all such alterations, modifications and variations that

fall within the spirit and scope of the appended claims.

WO 2017/023510 PCT/US2016/042381
33

CLAIMS
1. An apparatus, comprising:

a logic circuit; and

logic operative on the logic circuit to configure an isolated memory region in a
computing environment for secure communications with code executable in a memory
region that is different from the isolated memory region, generate signed data using an
attestation key that corresponds to the computing environment, the signed data
comprising a secured encryption key and a signature to authenticate the secured
encryption key, and communicate the signed data to a remote trusted component to

access secret code stored in the isolated memory region.

2. The apparatus of claim 1, wherein the logic is further operative to generate the
signature with a private attestation key that specifically corresponds to a secure

computation provider that is in control of the computing environment.

3. The apparatus of claim 1, wherein the logic is further operative to generate an

encryption key for trusted code running in the isolated memory region.

4. The apparatus of claim 1, wherein the logic is further operative to store key-value pairs
in a buffer that is communicated to trusted code running in the isolated memory region

or the remote trusted component.

5. The apparatus of claim 1, wherein the logic is further configured to generate a
cryptographic digest of a code package on a distributed file system and use the
cryptographic digest to verify the signature of the secured encryption key.

6. The apparatus of claim 1, wherein the logic is further operative to process a
communication primitive directed towards trusted code running inside the isolated
memory region or untrusted code running outside of the isolated memory region,
wherein the logic is further operative to process a communication primitive operative
to invoke a function on the untrusted code running outside of the isolated memory

region or the trusted code running inside the isolated memory region.

WO 2017/023510 PCT/US2016/042381
34

7. The apparatus of claim 1, the logic further operative to verify the signature using a
public attestation key and decrypt the secured encryption key to extract the encryption
key.

8. An article comprising at least one computer-readable storage medium comprising
instructions that, when executed, cause a system to:
generate computation data corresponding to execution of a set of computations
within an isolated memory region of a computing environment;
secure the computation data using an encryption key to generate secured
computation data; and
invoke a primitive to communicate the secured computation data to code running

outside of the isolated memory region.

9. The article of claim 8 further comprising instructions that, when executed, cause the
system to process a signature of the secured data generated using a private key that is
associated with the computing environment and invoke a primitive to communicate the

secured computation data and the signature to a remote trusted component.

10. The article of claim 8 further comprising instructions that, when executed, cause a
system to secure the encryption key with a public key that corresponds to a remote
trusted component running on a remote machine, wherein the public key is

communicated with the article.

11. The article of claim 10 further comprising instructions that, when executed, cause a
system to decrypt secured user keys using the encryption key to extract user keys and

use the user keys to decrypt secret code in the isolated memory region.

12. A method, comprising:
generating an isolated memory region in a computing environment to store a code
package, the isolated memory region being accessible only to code running in the
isolated memory region,
generating a signature using a private attestation key that corresponds to a secure

computation provider of the computing environment;

WO 2017/023510 PCT/US2016/042381

13.

14.

15.

35
executing a verification process on the code package using the signature and a
cryptographic digest of the code package; and
communicating a verification result for the code package to a remote trusted

component.

The method of claim 12 further comprising communicating a secured user key to

transform secret code of the code package into the application code.

The method of claim 12 further comprising loading an encrypted code package into the

isolated memory region.

The method of claim 12 further comprising processing a message comprising the
signed data using a public key that corresponds to the computing environment and
generating a verification result indicating whether a message originated from the

trusted component in the isolated memory region.

PCT/US2016/042381

WO 2017/023510

1/13

I "OIA

o€l
mdin()

p-CCl 2po) parsnaur)

£-77] Aoy uouynisaiy

7-7C] uoi3ay Aiowdpy papjos|

([l)
auoduio)) (1J¥) 2ovfaaguf
Sunuup.i3o.44 uonpajddy

\. J/

0C [12P1A0.1g UOTIDINduio,) s11oo%

ol
mduy

001 U2IsA§

PCT/US2016/042381

WO 2017/023510

2/13

0] 7 SA2Y 428

0T 230YovJ pO.)

907 uduoduio)) P

J/

¢ OIA

[-ccl
auoduio)) (1J¥) 2ovfaa5uy

paIsnL] 210wy

FOT QUIYODIN 2JOUUDY

ocl

SUNUUDAS04J UODI1dd Y

H

J/

 rizvwgpoudls |

(T[Z 2po)) J2492§)

 Zocapop pasnap
7-7C] U013y Adowidapy pajpjos|

007 IUouio1au5] suiiniad()

PCT/US2016/042381

WO 2017/023510

3/13

£ OIA

907 uduoduio))
PIISNA] 2JOUIDY

g

\.

[-CCI
auoduio)) (1J¥) 2ovfaa5uy
SUNUUDAS04J UODI1dd Y

J/

H H

FOT QUIYODJ 210U Y) P

oc [ac]

Juauoduio)) f&g 00 124298)

rioddng (707 2p0))

paisndf
70§ 7-7T[uo13ay
uo182y 140ddng | | AOWap\ papjos]
0cl

00§ TUaiioI1au5] supniad()

PCT/US2016/042381

WO 2017/023510

4/13

907 mauoduio))
paISNL] 210Uy

J/

| Zli uonoung

| Ol uonoun

JNSay

“uoneoyiep puss

aAljlWlLg mv_o>c_lv

— abexoed]
J0 1s961q winjay

aAljWLg mv_o>c_lv

€«—3bessa|\ puag—

| Aeyoand
pue abexoed puss

>

v "OIA

[l
uauodwo?) [J¥V

\\

80t uoljound

¢ BAI)IWILIg 8YOAU|

F——-ainjeubis uin}ay—»

90 uoljound

¢ BAI)IWILIg 8YOAU|

—A2) uolidAioug uinjay P

0 Uonoun4
¢ SAIIWIIY YOAU|

cov
$S9001d dnjog ajeniu|

=3

00F 10°50j0.4d NMQ%QQR.N A2y]

| C0C 2P0 paIsni]

7

PCT/US2016/042381

WO 2017/023510

5/13

907 uaduoduio))
PIISNA] 2JOUIDY

y-ccl
apo.) pajsnLu/)

« Jnsey |
UONEDNIIS/ PUSS

L clyuonoung

aAlWILd mv_o>c_lv

€«—obessa|\ puog—

| JuswiBpajmousioy
uiniay
9poQ |ouoy |
ejeq SjlM pusg
| slied enjep
uondAioug uiney

opoY |oju0) |
BjeQ pesy pues

-

<€

>

<

$ OIA

[-ccl
uauoduio)) [J¥

90t uoljoung

¢ SAIJIWILI YOAU|

——>0.Injeubls uinjoy—p

0t uoljound

¢ SAIJIWILI YOAU|

¢ 0g uondun4
SAIJIWILI YOAU|
¢0g uonoun4

‘ SAIJIWILI YOAU|

00€ 12UUDY) UOPDITUNUUUIO) d1NIIK§

| C0OC 2P0 PaIsSnA]

WO 2017/023510 PCT/US2016/042381

6/13

Isolated Environment 600

Isolated Memory Region 122-2

4 N\

Application Code 602

Public Code 604

Secure Computation Data 606

Encryption Key(s) 608
Signature 610
Metadata 612

FIG. 6

PCT/US2016/042381

WO 2017/023510

7/13

L OIA

0LL
mdmne

7S/ SADY 408S200.4]

70§ Juaduoduio”) 1i0ddng
0S/ U013y Liowapy papjos]
809 PIv(] uoyvInduio) painoiag
209 apo) uonwouddy
0§/ J1NIA1) A0SSI004]

0C/ A2plaodd EQ.QGNN\NQSQU 2UNI§

s
mduj

00/ TUoutuoJ1au] sunndiuio))

PCT/US2016/042381

WO 2017/023510

8/13

0\

088§

\WEXWELS

|

8 DIA

OF8 auoduio)

SUOTIDITUNWUIO))

€S mauoduio)
3U1§5200.4]
00] WaIsAg

078 TUouTtoIIAi,] SUnnduio,)

008 IUIMMUOLIAUL] PIZ1IDIJUI))

I8 PIpoN

FIS
Sppuig

018
QUIYODIN
NV ENS

~

WO 2017/023510 PCT/US2016/042381
9/13

200

4)

GENERATE ISOLATED MEMORY REGION IN A COMPUTING
ENVIRONMENT AND STORE CODE PACKAGE
202

- J
4)
GENERATE A SIGNATURE USING A PRIVATE ATTESTATION
KEY
204
. J
4)

EXECUTE A VERIFICATION PROCESS TO ACCESS THE CODE
PACKAGE IN THE ISOLATED MEMORY REGION
206

- J
4)
COMMUNICATE A VERIFICATION RESULT TO A REMOTE
MACHINE
208
- /

{

|

|

I STORE SECURED DATA IN A CLOUD FILE SYSTEM AND

: COMMUNICATE CONTROL CODES TO UNTRUSTED CODE
| 910

|

WO 2017/023510 PCT/US2016/042381

10/13

1000

PROCESS USER KEYS AND DECRYPT A SECRET CODE
PACKAGE IN AN ISOLATED MEMORY REGION
1002

. J

4)

RUN MAP AND REDUCE FUNCTIONS 10 PROCESS A SET OF
COMPUTATIONS AND GENERATE COMPUTATION DATA
1004

- J
4)
SECURE THE COMPUTATION DATA USING AN ENCRYPTION
KEY
1006
- J
4 N

INVOKE A COMMUNICATION PRIMITIVE TO WRITE THE
SECURE COMPUTATION DATA TO UNTRUSTED CODE
1008

FIG. 10

WO 2017/023510 PCT/US2016/042381

11/13

1100

ENCRYPT SECRET CODE PACKAGE AND COMMUNICATE TO
A COMPUTING ENVIRONMENT WITH A PUBLIC KEY
1102

PROCESS A MESSAGE COMPRISING SIGNED DATA AND
EXECUTE A MECHANISM TO VERIFY THE SIGNED DATA
1104

REJECT
CONNECTION
1108

DECRYPT AN ENCRYPTION KLY IN THE MESSAGE AND
SECURE USER KEYS FOR COMMUNICATION 10 THE
TRUSTED CODE
1110

FIG. 11

WO 2017/023510

12/13

PCT/US2016/042381

1202
b e £-1230
PROCESSING |_— 1204 | 1 OPERATING SYSTEM _|
UNIT ittty
b e £1232
1208 1206 | 1 APPLICATIONS
SYSTEM L 1234
MEMORY 1210 7E | MODULES |
VL MODDES
1236
> | vorvror e | ymmmmo- DA
! DATA :
R Tt A
voratie 1 1212 '
[————~/——T1—————- 4
1224 ¢ DY B 1 Ve
~ — e e -~
«»| INTERFACE 4’ INTERNAL HDD I\EXTERNALHDDI
26 S~ —— -
1226 FDD 1218
| INTERFACE [e—> v
DISK
2 Y1 1220 1244
) <> INTERFACg lji?—> Ol HovTor
DRIVE L1 7222 1238
1246 DIk V7
— KEYBOARD
“™ aparior [* 1240
£ yRED WIRELESS) MOUSE
€
ggg]UC 7;5 1258 1254 1248
INTERFACE [€——» MODFM |&—1» WAN &> REMOTE
COMPUTER(S)
[1256 1252
NETWORK 1250
> > [AN (e
ADAPTOR (WIRED/WIRELESS) <J>
MEMORY/
STORAGE

FIG. 12

PCT/US2016/042381

13/13

WO 2017/023510

£1 °OIA

(S)HAOLS VIV MAANAS (S)FHOLS VIV INATTO

920¢€1

0IEl 80€1

HAOMANY HA
NOLLVIINIIANNOD

(S)AAN}AS (S)INAITO

/fVQMN NQMNl\

o~
D
~

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/042381

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/62 GO6F21/60
ADD.

GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 26 May 1998 (1998-05-26)
column

column
figures 3, b5a

paragraphs [0028] - [0030],
[0046], [0050] - [0054],
figures 5, 6A, 6B

column 1, line 57 - column 3, line 8
3, line 53 - column 4, line 13
column 5, line 3 - column 5, line 20
6, line 40 - column 6, Tine 65

X US 5 757 919 A (HERBERT HOWARD C [US] ET 1-7

X US 2013/279691 Al (CHEN SHERMAN XUEMIN 1-7

[US] ET AL) 24 October 2013 (2013-10-24)
[0041] -

[0059] - [0062]

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 December 2016

Date of mailing of the international search report

21/12/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Volpato, Gian Luca

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/042381

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2008/086641 Al (RODGERS STEPHANE [US]
ET AL) 10 April 2008 (2008-04-10)
paragraphs [0034] - [0038], [0042],
[0046], [0048], [0056] - [0059]
figures 3, 4A, 4B

US 8 656 482 B1 (TOSA RAUL V [RO] ET AL)
18 February 2014 (2014-02-18)

column 1, line 5 - column 1, line 9
column 1, line 53 - column 2, line 12
column 6, line 8 - column 6, line 66
column 10, line 40 - column 12, Tine 35
figures 3, 8

WO 20157047285 A1l (INTEL CORP [US])

2 April 2015 (2015-04-02)

page 2 - page 5

page 11 - page 11

figures 1, 7

US 2011/302400 Al (MAINO FABIO R [US] ET
AL) 8 December 2011 (2011-12-08)
paragraphs [0001], [0015], [0016],
[0019] - [0022], [0026], [0028],
[0030], [0033], [0048], [0049], [0052]
- [0060]

figures 1A, 1B, 2, 5, 6

US 2015/082304 Al (HEPKIN DAVID A [US] ET
AL) 19 March 2015 (2015-03-19)
paragraphs [0012], [0013], [0023] -
[0028]

figure 3

1-7

8-11

8-11

12-15

12-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/042381
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5757919 A 26-05-1998 AU 5688998 A 03-07-1998
DE 19782169 C2 06-09-2001
DE 19782169 T1 28-10-1999
GB 2334866 A 01-09-1999
HK 1022797 Al 22-03-2002
JP 4140863 B2 27-08-2008
JP 2001508893 A 03-07-2001
us 5757919 A 26-05-1998
WO 0826535 Al 18-06-1998

US 2013279691 Al 24-10-2013 CN 1655503 A 17-08-2005
EP 1560361 Al 03-08-2005
TW 1271077 B 11-01-2007
US 2005172132 Al 04-08-2005
US 2013279691 Al 24-10-2013

US 2008086641 Al 10-04-2008 NONE

US 8656482 Bl 18-02-2014 US 8656482 Bl 18-02-2014
US 2014137115 Al 15-05-2014

WO 2015047285 Al 02-04-2015 CN 105493097 A 13-04-2016
EP 3049989 Al 03-08-2016
US 2015220745 Al 06-08-2015
WO 2015047285 Al 02-04-2015

US 2011302400 Al 08-12-2011 CN 103069428 A 24-04-2013
EP 2577543 Al 10-04-2013
US 2011302400 Al 08-12-2011
WO 2011156261 Al 15-12-2011

US 2015082304 Al 19-03-2015 AU 2014321545 Al 25-02-2016
CA 2922490 Al 26-03-2015
CN 105659211 A 08-06-2016
EP 3047375 Al 27-07-2016
JP 2016535373 A 10-11-2016
KR 20160075499 A 29-06-2016
US 2015082304 Al 19-03-2015
WO 2015041930 Al 26-03-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

International application No.
INTERNATIONAL SEARCH REPORT PCT/052016/042381
BoxNo.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. |:| Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. |:| Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

—_

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

m No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2016/ 042381

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-7

Apparatus for communicating a trusted key

2. claims: 8-11

Software for communicating secured data

3. claims: 12-15

Method for verifying code package

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report
	Page 52 - wo-search-report
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

