发明名称
硫代苯甲酰胺类化合物及其应用

摘要
本发明公开了一种新型硫代苯甲酰胺类化合物，其结构式如图 I 所示：

式 I 中：R₁ 选自 Cl 或 Br；R₂ 选自甲基、异丙基、烯丙基；R₃ 选自 H 或 Cl。通式 I 化合物具有优异的杀虫活性，可用于农、林常见害虫尤其是抗性害虫的防治。
1. 一种具有通式 I 结构的化合物用于控制刺吸式害虫，结构如通式 I 所示：

式 I 中：
- R_1 选自 Cl 或 Br；
- R_2 选自甲基，异丙基，烯丙基；
- R_3 选自 H 或 Cl。
硫代苯甲酰胺类化合物及其应用

技术领域

0001 本发明属于农业杀虫剂领域，涉及一种硫代苯甲酰胺类化合物及其应用。

背景技术

0002 由于大量频繁的用药，害虫对现有杀虫剂产生了不同程度的抗药性，开发新型作用机制的杀虫剂，是治理害虫抗药性的有效手段。随着人们对生活质量及环保要求的提高，研究开发高效安全、绿色环保杀虫剂符合农药发展趋势要求。WO 2003/015519 公开了如下具有杀虫活性的化合物 (KC)。该化合物作为杀虫剂已商品化（商品化名：康宽），对鳞翅目害虫具有超高效、长持效等特点，但存在溶解性差、可加工剂型少等缺点。

0003

0004 在现有的技术中，如本发明所示的硫代酰胺类化合物的制备及其杀虫活性未见公开。

发明内容

0005 本发明的目的在于提供一种新的杀虫防治剂，它可用于农业（或林业）常见害虫的防治。根据生物电子等排理论，本发明化合物不仅继承了原有化合物（如 KC）的高活性，且在有机溶剂中有较高的溶解度，特别有利于配制水乳剂、微乳剂等绿色剂型制剂，硫取代氧也有利于降低化合物对有脊柱动物的毒性。因此本发明的化合物更有潜力开发成高效绿色环保杀虫剂。

0006 本发明的技术方案如下：

0007 一种硫代苯甲酰胺类化合物，如通式 I 所示：

0008

0009 式中：R，选自 Cl 或 Br；

0010 R₂ 选自 H，甲基，乙基，异丙基，烯丙基；
[0011] \(R_3 \) 选自 H 或 Cl。

[0012] 本发明中进一步优选化合物为，通式 I 中：

[0013] \(R_1 \) 选自 Cl；

[0014] \(R_2 \) 选自甲基，异丙基，烯丙基；

[0015] \(R_3 \) 选自 H 或 Cl。

[0016] 本发明中进一步优选化合物为，通式 I 中：

[0017] \(R_1 \) 选自 Cl；

[0018] \(R_2 \) 选自甲基，烯丙基；

[0019] \(R_3 \) 选自 H 或 Cl。

[0020] 本发明的通式 I 化合物可由如下方法制备，反应式中各基团定义同前。

[0021]

[0022] 通式 II 化合物在适宜的溶剂中，温度为 -5℃到回流温度下与化合物 III 反应 1-24h 制得通式 I 化合物，反应过程中可加入缚酸剂提高反应速度，适宜的缚酸剂选自三乙胺、吡啶、甲基吡啶或碳酸钠、碳酸钾等；反应过程适宜的溶剂选自乙酸乙酯、乙腈、苯、甲苯、THF、二氧六环或 DMF 等；通式 III 化合物可以参考 US2006/079561A1、WO2009/085816A1 或 CN10133213A 中的方法制备。表 1 列出了部分通式 I 化合物的结构和物理性质。

[0023] 表 1 部分通式 I 化合物的结构和物理性质

<table>
<thead>
<tr>
<th>化合物</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>外观（熔点℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl</td>
<td>CH₃</td>
<td>H</td>
<td>浅黄色（178 ~ 181）</td>
</tr>
<tr>
<td>2</td>
<td>Cl</td>
<td>CH₂(CH₃)₂</td>
<td>H</td>
<td>浅黄色（167 ~ 171）</td>
</tr>
<tr>
<td>3</td>
<td>Cl</td>
<td>CH₂CH = CH₂</td>
<td>H</td>
<td>浅黄色（162 ~ 165）</td>
</tr>
<tr>
<td>4</td>
<td>Br</td>
<td>CH₃</td>
<td>Cl</td>
<td>白色（172 ~ 175）</td>
</tr>
<tr>
<td>5</td>
<td>Br</td>
<td>CH₂CH = CH₂</td>
<td>H</td>
<td>浅黄色（171 ~ 173）</td>
</tr>
<tr>
<td>6</td>
<td>Cl</td>
<td>CH₃</td>
<td>Cl</td>
<td>白色（161 ~ 164）</td>
</tr>
<tr>
<td>7</td>
<td>Cl</td>
<td>CH₂(CH₃)₂</td>
<td>Cl</td>
<td>白色（156 ~ 159）</td>
</tr>
<tr>
<td>8</td>
<td>Cl</td>
<td>CH₂CH = CH₂</td>
<td>Cl</td>
<td>白色（148 ~ 151）</td>
</tr>
</tbody>
</table>

[0025] 本发明的优点和积极效果：与已知的苯甲酰胺类化合物（如 KC）相比，本发明的硫代苯甲酰胺类化合物不仅对鳞翅目害虫具有高活性，且对刺吸式害虫（如稻飞虱）亦有意想不到的高活性，因此具有更好的兼治作用及综合功能。本发明的硫代苯甲酰胺类化合物进入无脊椎的害虫体内，硫原子迅速被氧化成氧原子而发挥毒杀作用，但这个过程在有脊椎的高等动物体内进行很缓慢，故硫原子取代氧原子有利于降低化合物对人畜及环境的影响，因而更安全环保。且硫原子取代氧原子后所制得的本发明化合物在常见有机溶剂中
具体实施方式：

下列合成实例，生测试结果可用来进一步说明本发明，但不意味着限制本发明。

实施例 1 化合物 1 的制备

(1) 8-甲基-1H-[1,3]-苯并噁嗪-2,4-二酮的合成

\[
\text{苯胺} + \text{乙酸乙烯酯} \rightarrow \text{产物}
\]

向 500mL 反应瓶中，分别加入 15.1g (0.1mol) 2-氨基-3-甲苯甲酸，150mL 乙酸乙烯酯，0.5g 催剂，搅拌下于 10℃以下滴加由 19.8g (0.06mol) 三氯乙酸和 100mL 乙酸乙酯组成的溶液，滴毕，于 30-35℃搅拌反应 4 小时，然后升温至 60℃，搅拌 2 小时，去尽气体，冷却至室温，抽滤，水洗，得到白色固体 15.9g，收率 89.8%。

(2) 2-氨基-3-二甲基苯甲酰胺的合成

\[
\text{化合物} + \text{乙胺} \rightarrow \text{产物}
\]

向 250mL 反应瓶依次加入 8-甲基-1H-[1,3]-苯并噁嗪-2,4-二酮 17.8g (0.1mol)，100mL 乙酸乙酯，1.5g 冰乙酸，于 15-20℃下逐渐加入 15.5g (0.2mol) 40%的甲胺水溶液，滴毕，室温搅拌 2 小时，分液，静置分去水层，无水硫酸镁干燥，抽滤，蒸干溶剂，得到白色固体 14.1g，收率 86%。

(3) 2-氨基-5-氯-N,3-二甲基苯甲酰胺的合成

\[
\text{化合物} + \text{氯磺酸} \rightarrow \text{产物}
\]

向 250mL 反应瓶依次加入 2-氨基-5-氯-N,3-二甲基苯甲酰胺 16.4g (0.1mol)，乙腈 80mL，冰浴下滴加 SOCl₂ 16.2g (0.12mol)，滴毕升至室温，搅拌反应 4h，加入 20% NaHCO₃ 水溶液调至中性，抽滤，水洗，得到白色固体 17.6g，收率 88.6%。

(4) 2-氨基-5-氯-N,3-二甲基硫代苯甲酰胺的合成
向 500mL 四口瓶中，加入 \(\text{P}_2\text{S}_5 \) 22.2g (0.1mol)，\(\text{Na}_2\text{CO}_3 \) 10.6g (0.1mol)，乙酸乙酯 200mL，室温搅拌 1h 至体系澄清，分批次加入 2-氨基-5-氯-N,3-二甲基苯甲酰胺 19.85g (0.1mol)，升温至回流 5h，待原料反应完全后，降至室温，加入 30mL 水至体系澄清。分液，乙酸乙酯层用饱和食盐水溶液洗涤 (30mL×2)，无水 \(\text{Na}_2\text{SO}_4 \) 干燥，蒸干溶剂，得到黄色固体 17.3g，产率 80.65%。

(5) 化合物 1 的合成

向 100mL 反应瓶中加入 2.14g (0.01mol) 2-氨基-5-氯-N,3-二甲基硫代苯甲酰胺，20mL 乙腈，1.21g (0.012mol) 三 Baş胺，搅拌下于 0-10 ℃滴加由 3.53g (0.011mol) 1-(3-氯-2-吡啶基)-3-溴-1H-吡唑-5-甲酰氯与 10mL 乙腈组成的混合溶液，滴毕，室温搅拌 3 小时，旋蒸出溶剂，加水 30mL，用 80mL 二氯甲烷萃取，有机层用饱和碳酸氢钠溶液和食盐水溶液洗涤，无水硫酸钠干燥后浓缩，残余物柱层析提纯 (淋洗剂为乙酸乙酯：石油醚 = 1 : 2) 得 4.4g 淡黄色固体，收率 84.1%。\(\text{H} \) NMR (500MHz, DMSO-\(d_6 \)) \(\delta \) (ppm): 2.137 (s, 3H), 2.882-2.987 (d, 3H), 7.116 (s, 1H), 7.311 (s, 1H), 7.385 (s, 1H), 7.592-7.618 (m, 1H), 8.161-8.177 (d, 1H), 8.487-8.496 (d, 1H), 10.120 (s, 1H), 10.257 (s, 1H)。

实施例 2 合物 3 的制备

(1) 2-氨基-3-甲基-5-氯-N-烯丙基硫代苯甲酰胺的合成

向 500mL 的四口瓶中，加入 \(\text{P}_2\text{S}_5 \) 22.2g (0.1mol)，\(\text{Na}_2\text{CO}_3 \) 10.6g (0.1mol)，乙酸乙酯 200mL，室温搅拌 1h 至体系澄清，分批次加入 22.45g (0.1mol) 2-氨基-3-甲基-5-氯-N-烯丙基苯甲酰胺 (按实施例 1 方法制备)，升温至回流 6h，待原料反应完全后，降至室温，加入 30mL 水至体系澄清，分液，乙酸乙酯层用饱和食盐水溶液洗涤 (30mL×2)，无水 \(\text{Na}_2\text{SO}_4 \) 干燥，蒸干溶剂，得到橙黄色固体 17.3g，产率 71.93%。

(2) 化合物 3 的合成
[0051] 向 100mL 反应瓶中加入 2.4g (0.01mol) 2-氨基-3-甲基-5-氯-N-异丙基硫代苯甲酰胺，20mL 乙腈，1.21g (0.012mol) 三乙胺，搅拌下于 0-10℃滴加由 3.53g (0.011mol) 1-(3-氯-2-吡啶基)-3-溴-1H-吡唑-5-甲酰氯与 10mL 乙腈组成的混合溶液，滴毕，室温搅拌 3 小时，旋蒸出溶剂，加水 30mL，用 80mL 二氯甲烷萃取，有机层用饱和碳酸氢钠溶液和食盐水洗涤，无水硫酸钠干燥后浓缩，残余物柱层析提纯（淋洗剂为乙酸乙酯：石油醚 = 1：2），得 3.4g 淡黄色固体，收率 64.8%。1H NMR (500MHz, DMSO-d6) δ (ppm): 2.139 (s, 3H), 3.801 (s, 2H), 5.049-5.184 (d, 2H), 6.227-6.538 (m, 1H), 7.313 (s, 1H), 7.381 (s, 1H), 7.588-7.622 (m, 1H), 7.756 (s, 1H), 8.151-8.174 (d, 1H), 8.485-8.516 (d, 1H), 10.132 (s, 1H), 10.301 (s, 1H)。

[0052] 实施例 3 化合物 7 的制备

[0053] (1) 2-氨基-3-甲基-5-氯-N-异丙基硫代苯甲酰胺的合成

[0054] 向 500mL 的四口瓶中，加入 P₂S₅ 2.2g (0.1mol)，Na₂CO₃ 10.6g (0.1mol)，乙酸乙酯 200mL，室温搅拌 1h 至体系澄清，分批次加入 2-氨基-3-甲基-5-氯-N-异丙基苯甲酰胺（按实施例 1 方法制备）22.65g (0.1mol)，升温至回流 6h，待原料反应完全后，降至室温，加入 30mL 水至体系澄清，分液，乙酸乙酯层用饱和食盐水溶液洗涤 (30mL × 2)，无水 Na₂SO₄ 干燥，蒸干溶剂，得到黄色固体 17.8g，产率 73.4%。

[0056] (2) 化合物 7 的合成

[0057] 向 100mL 反应瓶中加入 2.42g (0.01mol) 2-氨基-3-甲基-5-氯-N-异丙基硫代苯甲酰胺，20mL 乙腈，1.21g (0.012mol) 三乙胺，搅拌下于 0-10℃滴加由 3.91g (0.011mol) 1-(3-氯-2-吡啶基)-3-溴-1H-吡唑-5-甲酰氯与 10mL 乙腈组成的混合溶液，滴毕，室温搅拌 3h，旋蒸出溶剂，加水 30mL，用 80mL 二氯甲烷萃取，有机层用饱和
碳酸氢钠溶液和食盐水溶液洗涤，无水硫酸钠干燥后浓缩，残余物柱层析提纯（淋洗剂为乙酸乙酯：石油醚 = 1 : 2）得 3.62g 的白色固体，收率 64.5%。1H NMR (500MHz, DMSO-d$_6$) δ (ppm): 1.088 (d, 6H), 2.137 (s, 3H), 4.211–4.463 (m, 1H), 7.218 (s, 1H), 7.467 (s, 1H), 7.761 (s, 1H), 8.148 (s, 1H), 8.472 (s, 1H), 10.191–10.207 (d, 1H), 10.409 (s, 1H).

[0059] 按照以上方法制备本发明通式 I 中的其他化合物。通式 I 部分化合物的 1H NMR (500MHz, DMSO-d$_6$) δ (ppm) 数据如下:

[0060] 化合物 2: 1.074 (d, 6H), 2.137 (s, 3H), 4.211–4.463 (m, 1H), 7.214 (s, 1H), 7.455 (s, 1H), 7.587–7.613 (m, 1H), 7.756 (s, 1H), 8.142–8.158 (d, 1H), 8.468–8.477 (d, 1H), 10.191–10.207 (d, 1H), 10.409 (s, 1H).

[0061] 化合物 4: 2.137 (s, 3H), 2.887–2.977 (d, 3H), 7.112 (s, 1H), 7.308 (s, 1H), 7.365 (s, 1H), 8.172 (s, 1H), 8.488 (d, 1H), 10.186 (s, 1H), 10.347 (s, 1H).

[0062] 化合物 5: 2.139 (s, 3H), 3.811 (s, 2H), 5.052–5.185 (d, 2H), 6.217–6.536 (m, 1H), 7.312 (s, 1H), 7.385 (s, 1H), 7.577–7.631 (m, 1H), 7.756 (s, 1H), 8.149–8.174 (d, 1H), 8.479–8.518 (d, 1H), 10.135 (s, 1H), 10.321 (s, 1H).

[0063] 化合物 6: 2.145 (s, 3H), 2.788–2.993 (d, 3H), 7.127 (s, 1H), 7.305 (s, 1H), 7.403 (s, 1H), 8.153 (s, 1H), 8.467 (s, 1H), 10.132 (s, 1H), 10.257 (s, 1H).

[0064] 化合物 8: 2.142 (s, 3H), 3.811 (s, 2H), 5.049–5.182 (d, 2H), 6.228–6.538 (m, 1H), 7.309 (s, 1H), 7.367 (s, 1H), 8.274 (s, 1H), 8.536 (s, 1H), 10.147 (s, 1H), 10.331 (s, 1H).

[0065] 生物活性测定

[0066] 实施例 4 杀虫活性测定

[0067] 杀小菜蛾活性测定

[0068] 采用浸渍法。采用国际抗性行动委员会（IRAC）提出的浸渍法。用配制好的待测药液，用直头眼科镊子浸渍甘蓝叶叶，时间 3–5 秒后取下，每份 1 叶。每个样品共 3 份，按样品标记顺序依次放在处理纸上。待药液干后，放入装有标记的 15 cm 长的圆柱型管内，接入 2 龄小菜蛾幼虫 10 条，用纱布盖好管口。将试验处理置于标准处理室内，48h 检查结果，以拔针轻触虫体，不动者为死亡。计算死亡率。试验做 3 次重复，取平均值。实验结果见表 2。

[0069] 表 2 式 I 化合物与已知化合物 KC 杀小菜蛾活性比较（死亡率%）

<table>
<thead>
<tr>
<th>化合物</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>KC</th>
</tr>
</thead>
<tbody>
<tr>
<td>杀虫率 (%) (浓度 1 ppm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>杀虫率 (%) (浓度 0.25 ppm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>97</td>
<td>100</td>
<td>99</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>杀虫率 (%) (浓度 0.0625 ppm)</td>
<td>86</td>
<td>80</td>
<td>72</td>
<td>48</td>
<td>42</td>
<td>77</td>
<td>50</td>
<td>61</td>
<td>78</td>
</tr>
</tbody>
</table>

[0071] 杀稻飞虱活性测定

[0072] 采用浸渍芽法，将长 10–15cm 的水稻幼苗浸入相应处理药液中 5 秒钟后取出，放在报纸上摊开吸干多余的药液后，植入 100mL 透明饲养瓶中，用适量湿润细沙固定，减掉长出瓶口的叶片，再把幼虫放在饲养瓶中饲养。于观察室内保湿保湿饲养，药后 2 天分别调查各
处理活虫数、死虫数，计算死亡率及校正死亡率。实验结果见表 3

表 3 部分化合物对稻飞虱活性试验结果

<table>
<thead>
<tr>
<th>化合物</th>
<th>浓度（ppm）</th>
<th>校正死亡率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>KC</td>
<td>20</td>
<td>34</td>
</tr>
</tbody>
</table>

从表 2 和表 3 生测结果看出，本发明部分化合物较已知化合物 KC 有更高的杀小菜蛾和稻飞虱活性。