a2 United States Patent

US007689997B2

(10) Patent No.: US 7,689,997 B2

White et al. 45) Date of Patent: Mar. 30,2010
(54) METHOD FOR ALLOCATING MEMORY TO (56) References Cited
TASKS WITHOUT EXCEEDING
PREDEFINED MEMORY REQUIREMENTS U'Sﬂ; PAl;ENT DOE}IIJMENTS ’
5,504,814 A 4/1996 Miyaharacccouueeneeneee 726/4
. . . . 5,559,980 A * 9/1996 Connorsetal. 711/100
(75) Inventors: Peter Duncan Whlt.e, Foun.taln Hills, 5574912 A 11/1996 Hu et al.
AZ (US); Conan Brian Dailey, .
Scottsdale, AZ (US); Hua Chen, Tempe, (Continued)
AZ (US); Pamela Tam Carmony, OTHER PUBLICATIONS
Tempe, AZ (US);.Jen.nlfer Lynn John Rushby, Design and Verification of Secure System , 8™ Sympo-
Amstutz, Fountain Hills, AZ (US); sium on Operating System Principles, Dec. 14-16, 1981, vol. 15, No.
Keith Michael Hines, Phoenix, AZ 5, pp. 12-21.
(US); Francis Gregory Sydnor, Jr., A Guide to Understanding Covert Channel Analysis of Trusted Sys-
Scottsdale, AZ (US) tems, National Computer System Principles, Nov. 1993,
’ XP-002192422.
(73) Assignee: General Dynamics C4 Systems, Inc., (Continued)
Scottsdale, AZ (US) Primary Examiner—Lewis A Bullock, Jr.
(*) Notice: Subject to any disclaimer, the term of this ?;j;szlzlzz Exam{;nerl—Cha;es E ?nya ia Fisher & L.
patent is extended or adjusted under 35 PC orney, Agent, or firm——Iligrassia F1Siet orenz,
U.S.C. 154(b) by 1637 days. o
57 ABSTRACT
(21) Appl. No.: 10/866,564 7)
A computer-implemented system (90) is provided that sup-
p p Y p p
(22) Filed: Jun. 10, 2004 ports a high degree of separation between processing ele-
. .. ments. The computer-implemented system (90) comprises a
(65) Prior Publication Data plurality of cells (92) residing on the computer-implemented
US 2004/0268356 Al Dec. 30, 2004 system, where each cell (92) includes a domain of execution
L. (94) and at least one processing element (96); a separation
Related U.S. Application Data specification (99) that governs communication between the
(63) Continuation of application No. 09/443,597, filed on processing elements (96); and a kernel (98) of an operating
Nov. 19, 1999, now Pat. No. 6,772,416. system that facilitates execution of the processing elements
(96) and administers the communication between the pro-
(51) Int.CL cessing elements (96) in accordance with the separation
GOGF 9/46 (2006.01) specification (99), such that one processing element (96) can
GO6F 13/00 (2006.01) influence the operation of another processing element (96)
(52) US.CL ..covvvnne 718/104; 711/170; 718/100; only as set forth by the separation specification (99). In par-
719/312 ticular, the separation specification provides memory alloca-
(58) Field of Classification Search 711/145, tion, remote procedure calls and exception handling mecha-

711/150, 152, 105, 170; 713/164; 718/102-104,
718/106, 107, 108, 100; 719/312
See application file for complete search history.

nisms.

11 Claims, 7 Drawing Sheets

PROVIDING TASK MEMORY REQUIREMENTS

INITIALIZING A MEMORY SPACE

v

ALLOCATING THE MEMORY SPACE

EXECUTING

THE TASK

PREVENTING
ALLOCATION

ADDITIONAL
OF MEMORY

RELEASING THE

MEMORY SPACE

US 7,689,997 B2
Page 2

5,574,914
5,729,710
5,841,869
5,890,189
5,893,159
6,199,181
6,292,874
6,314,501

U.S. PATENT DOCUMENTS

A 11/1996
A 3/1998
A 11/1998
A * 3/1999
A * 4/1999
Bl 3/2001
B1* 9/2001
Bl* 11/2001

Hancock et al.

Magee et al.

Merkling et al.

Nozueetal.c..... 711/100
Schneiderc..ccoe.. 711/150
Rechef et al.

Barnettcovvvevnnnnnnn. 711/153

Gulick etal. 711/153

6,691,298 B1* 2/2004 Russoetal. ... 717/100
OTHER PUBLICATIONS

Setrlimit(2) , Red Hat Linux/I386 5.2 Man Page, Jul. 23, 1993,
XP-002192423.

ISA H et al, Multi-threading Architecture for Multilevel Secure
Transaction Processing , May 1999, pp. 1-15.

Wabhbe et al, Efficient Sofiware-Based Fault Isolation, Aug. 1993, pp.
203-216.

* cited by examiner

U.S. Patent Mar. 30, 2010 Sheet 1 of 7 US 7,689,997 B2

BOX,

- I TASK,
o0k TASK;
BOX, I

TASK4I

TASKy

FIG. 1
FIG. 2
/
/ \:Il
/ / TASK4I
/ / /
'I ,l 'I :/
OPERATING SYSTEM
FIG. 38
CELL SEGMENT
PERMANENT TRANSIENT

SHARED SINGLE REGISTERS ASSIGNED SCRATCH MESSAGE

FIG. 4

U.S. Patent Mar. 30, 2010 Sheet 2 of 7 US 7,689,997 B2

STRAND

STRAND; STRAND
STRAND,
]
22
STRAND4_X34
____—\\\\ ’
HANDLERE™ 28 =7 FIC. 5
STRAND 52
STRAND,
STRAND STRAND,
STRAND,
/f
HANDLER - FIC. 6

HANDLE

FIBERNEXT

FIBERINIT

U.S. Patent Mar. 30, 2010 Sheet 3 of 7 US 7,689,997 B2

FIBERNEXT

BERINIT
- @, FIBERNEXT
SYSTEMCA) FIBERINIT w

FIBERNEXT

FIBERINIT @’

52

FIG. 8

62

64 NCA STATE,

&)

NCA STATE,

)

MeA ——gyr;— e, NCA % CELLID—gmr>NCA x CELLTD
FIBERy FIBERg FIBER FIBER
Sthg —FIBERNEXT 5 oo oo FIBERNEXT X,

FIG. 10 FIG. 11

U.S. Patent Mar. 30, 2010 Sheet 4 of 7 US 7,689,997 B2

MCA’

CANNOT
COMMUNICATE

U.S. Patent Mar. 30, 2010 Sheet 5 of 7 US 7,689,997 B2

STRAND

ENCAPSULATED

90 \
STRAND, 92
NCAPSULATEDN\ CELL A
DATA -
STRANDs

)
STRAND 3 “|Ii;E%%!!’ EHRANDI\\\\\\jii-. 96
MESSAGE
\- ST STRATD
HANDLER
KERNEL SEPARATION SPECIFICATION
987 \99
STRAND,
LAUlNCH
STRAND; [z STRAND,
(MESSAGE)
\ ASSIGNED
HANDLER

HAIDLE FIG. 15

U.S. Patent Mar. 30, 2010

LAUNCH

STRAND;

Sheet 6 of 7 US 7,689,997 B2

N
/ ~ -

/" (ASSTGHED)

FIG. 16 / \
/
92,{ LAUNCH
\
' _»[STRAND
STRAND,

ASSIGNED

HANDLER

!

HANDLE

STRAND,

FIG. 17

U.S. Patent Mar. 30, 2010 Sheet 7 of 7 US 7,689,997 B2

PROVIDING TASK WEMORY REQUIREMENTS |
INITIALIZING AJ' MEMORY SPACE |
ALLOCATING THE¢ MEMORY SPACE |

EXECUTIN(}THE TASK |
PREVENTING¢ADDITIONAL I
ALLOCATION OF MEMORY

RELEASING THE¢MEMORY SPACE |

FIG. 18

SENDING AN INPUT MESSAGE
INITIALIZING TﬁE TARGET TASK I
PROVIDING ACCESS¢T0 MEMORY SPACE
RELEASING THElMEMORY SPACE |
PROVIDING A RETUiN 10 SOURCE TASK

FIG. 19

US 7,689,997 B2

1
METHOD FOR ALLOCATING MEMORY TO
TASKS WITHOUT EXCEEDING
PREDEFINED MEMORY REQUIREMENTS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 09/443,597 filed Nov. 19, 1999 now U.S. Pat. No. 6,772,
416.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to using the sepa-
ration principle to design a kernel of an operating system, and
more particularly, the present invention relates to a kernel that
applies the separation principle to memory allocation, remote
procedure call and exception handling mechanisms.

2. Discussion

Separation is an extremely important property in the con-
struction and analysis of secure systems. If two logical enti-
ties A and B (for example, two pieces of software) are sepa-
rate, then separation means that there is no way for A to
influence the operation of B, and vice versa. If the operation
of'A is important to the security of a system, the separation of
A and B means that the operation of B can be ignored when
evaluating how A supports the security of the system. If A and
B are not separate, so that B could influence the operation of
A, then both A and B must be considered in evaluating how A
supports the security of the system. The necessity of evaluat-
ing A and B increases the difficulty and cost of the security
evaluation, and usually yields a lower assurance of security.
Thus lack of separation yields the combination of higher cost
and lower assurance.

Complete separation (no influence between A and B)
yields a conceptually clean system. Incomplete separation
can still be very good if there are a small (e.g. one, two, or
three) number of known influence paths between A and B, and
these paths have low bandwidth and/or are difficult to use.
Incomplete separation is unacceptable in a high assurance
system when it results from the inherent complexity of the
system, and the resulting inability to analyze the possible

Separation is a principal that has been investigated for the
construction of secure systems for some time. The idea
behind separation can be described with the assistance of
FIG. 1. A system is sometimes implemented as a set of sepa-
rate physical devices, with the devices interconnected by
physical wires. In FIG. 1, if it is important to the security of
the system that box, does not directly intercommunicate with
box,, then one need only look at the arrangement of the
physical boxes and wires to determine the truth of this prop-
erty.

It is often the case that the same system will be imple-
mented in one physical box, but with logical entities (e.g.
software processes) performing the same functions as the
physical boxes of FIG. 1. This new implementation may
result from increasing miniaturization of components, or the
increasing memory and processing power available within on
processor platform. This new implementation of the same
system is depicted in FIG. 2. The tasks are performing the
same functions and are interconnected in the same way as the
boxes of FIG. 1. If it was important before that box,; does not
directly intercommunicate with box,,, then it is still important
that task, does not directly intercommunicate with task,.

20

25

30

40

45

50

55

60

65

2

Analyzing the system of FIG. 2 may not be as easy as it was
in FIG. 1. The reason for the increasing difficulty of analysis
is shown in FIG. 3.

The problem is that all of the tasks communicate with the
operating system, thus the operating system becomes a means
whereby information can be transmitted between tasks, and
tasks can influence each other even when not permitted by the
communication policy of the operating system. FIG. 3 shows
task, influencing task, by means of operating system mecha-
nisms. A standard example of this is memory allocation. If all
of'the tasks allocate memory from a shared pool of resources,
then task, could allocate all of the memory. When task, runs
and attempts to allocate memory, it will receive a failing
return from the operating system. This failing return could
encode a “1” transmitted from task; to task,. If task; then
releases some memory, when task, runs, it will try to allocate
some memory again, this time receiving a successful return
from the operating system. This successful/failure return
from the operating system was never intended to be used as a
communication channel, nevertheless a good hacker can
make use of it in this way. In other words, the problem is that
the other software (e.g., other tasks and the operating system)
can now influence the operation of the task under analysis,
and thus the task under analysis cannot be analyzed in isola-
tion.

Therefore, itis desirable to provide a high-grade separation
between processing elements in a system. This high-grade
separation permits the system designer to establish high
assurance secure systems by allowing each processing ele-
ment to be analyzed in isolation. To achieve high-grade sepa-
ration, the present invention applies the separation principle
to the design a kernel of an operating system. More specifi-
cally, the kernel incorporates memory allocation, remote pro-
cedure call and exception handling mechanisms in such a way
that supports the separation concept.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be described in con-
junction with the appended drawing figure(s), wherein like
numerals denote like elements, and:

FIG. 1 is a diagram depicting a box and wire model for a
typical system architecture;

FIG. 2 is a diagram depicting a task model that may reside
on a physical device in a typical system architecture;

FIG. 3 is a diagram depicting the task model that is sup-
ported by an operating system in a typical multi-tasking
architecture;

FIG. 4 is a diagram illustrating the different types of
memory segments supported by the framework of the present
invention;

FIG. 5 is a diagram illustrating the cell abstraction concept
of the present invention;

FIG. 6 is a diagram illustrating the interaction between
cells in accordance with the present invention;

FIG. 7 is a diagram depicting a single cell and two cell
operations in accordance with the separation principle of the
present invention;

FIG. 8 is a diagram depicting a multiple cell abstraction
system,

FIGS. 9-11 illustrate the fundamental relationships and
equations that define the separation specification of the
present invention;

FIGS. 12 and 13 illustrate the first and second separation
axioms, respectively, in accordance with the separation speci-
fication of the present invention;

US 7,689,997 B2

3

FIG. 14 depicts a separation kernel that supports a high
degree of separation between processing elements in a com-
puter-implemented system in accordance with the present
invention;

FIGS. 15-17 illustrate various operations of a strand in a
cell in accordance with the present invention;

FIG. 18 illustrates a method for allocating memory in
accordance with the present invention; and

FIG. 19 illustrates a method for performing remote proce-
dure calls in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention generally relates to designing a ker-
nel of an operating system in accordance with the separation
principle. A framework for designing the separation kernel is
set forth below. It is to be understood that this framework, the
subsequent description of the separation principle and its
application to the design of the kernel are merely exemplary
and are intended to provide an understanding of the nature
and character of the invention as it is claimed.

In accordance with the present invention, the principle
abstraction for the framework is the cell. A cell is defined as
a domain of execution and a collection of strands, where each
strand is a stream of programmable machine instructions
executable by the kernel of the operating system. For pur-
poses of the following description, a domain of execution is
also referred to as the context of the cell and a strand is also
referred to as a task.

The context of a cell is comprised of one or more memory
segments. Each segment is a range of physical memory
addresses, which are defined by a starting address and a
length. The framework of the present invention supports dif-
ferent types of memory segments as shown in FIG. 4.

Permanent segments are allocated to a cell and therefore
are accessible to any of the strands associated with the cell.
Permanent segments may be used for storing data, code (i.e.,
a strand’s machine instructions) or memory mapped hard-
ware interfaces. Permanent segments cannot be sent in mes-
sages, but are retained when the currently executing strand of
the cell suspends.

In contrast, a transient segment is accessible to the strand,
which is running in the cell, and to the cell. In other words,
each strand has predefined memory requirements for its tran-
sient segments. When the strand is launched, the transient
segments are allocated for the strand. Thus, the transient
segments are accessible to the strand. As will be more fully
explained below, the framework supports different types of
transient segments, such as an input message segment, a
scratch segment, an assigned segment, and a register segment.

An overview of the framework, including the cell abstrac-
tion concept and its interrelationships, are further discussed in
relation to FIG. 5. Each cell can execute only one strand at a
time. Strand, 22 is currently running in Cell, 20. It is pro-
cessing an input message 24, which is made up of one or more
transient segments. Strand, 22 may use one or more scratch
segments 26 to process the input message 24. A scratch seg-
ment is a temporary memory space of sufficient size to be
used by the strand when processing the input message.
Strand; may also access an assigned segment 28. An assigned
segment is a specified transient segment used to gain access to
available resources, such as device registers. Lastly, Strand,
may access one or more permanent segments. For instance,
the encapsulated data segment 30 contains static data used by
the strand.

20

30

35

40

45

50

55

60

65

4

Celly 32 is currently not executing a strand. However, it
may begin execution of a strand some time after it is granted
access to an input message received from Strand; 22 of Cell
20. In FIG. 5, Strand,, 34 is shown being launched in Cell.
When a strand in the cell is launched, the cell receives access
to the message segment(s) that make up the input message.
Again, the strand may require scratch segments to process the
input message. In addition, an interrupt strand may be run
immediately upon receipt of an interrupt. Thus, the execution
of'a strand may be interleaved with the execution of interrupt
strands.

A cell interfaces to its external world (e.g., to other cells or
the underlying hardware) only through the substrate. For
purposes of this discussion, the substrate is defined as the
operating system, the device drivers, and the underlying hard-
ware of the system. Exemplary cell interfaces are illustrated
in FIG. 6. First, the kernel of the operating system launches
Strand; 22 of Cell , 20. At this time, the strand is given access
by the kernel to its input message segment(s) and scratch
segment(s). Next, Strand; 22 uses a Send interface 36 to send
some of its transient segments to Strand,, 34 of Cell; 32. As a
result, Cell ; loses access to the segments transmitted by the
strand.

After further execution of the strand, Strand; of Cell,
addresses an exception condition through the use of a Throw
interface 38. The interface terminates execution of the strand
and initiates execution of a Handler function. When execution
of Strand; of Cell , terminates, the kernel removes access to
all of the transient segments remaining in Cell ;. If Strand; of
Cell , had not terminated via the exception condition, it would
have reached the end of its strand. In this case, the Terminat-
eStrand interface 39 terminates the execution of the strand
and removes access to any transient segments still accessible
to the cell. One skilled in the art will readily recognize that the
separation kernel of the present invention will be designed
and implemented within the above-described framework.
Data structures that define and describe the strands and cells
in the above-described framework are further discussed in the
Appendix.

An introduction to the separation principle is provided in
relation to FIGS. 7-11. FIG. 7 shows a cell 40 and two of its
operations, Fiberlnit 42 and FiberNext 44. Again, the cell
represents an execution domain. Moreover, the cells are the
components of the system to be separated.

In FIG. 8, several cells have been combined into a system
50 that is referred to as the Multiple Cell Abstraction, where
each individual cell is referred to as a Single Cell Abstraction
(SCA). Each cell has its own Fiberlnit and FiberNext opera-
tions, whereas the system as a whole has an Init 52 and Next
54 operation. Since the cells serve as the Fibers of the system,
the names for the cell level operations are Fiberlnit and
FiberNext. The names Init and Next are reserved for the
system level operations.

There are several choices for defining the relationship
between these cell operations. For instance, the Next opera-
tion (advancing the system state) could correspond to a
FiberNext operation (advancing a cell state) on every cell at
once, thereby implying multiprocessing of the cells. On the
other hand, the Next operation could correspond to a FiberN-
ext operation on only one cell or on some subset of the cells.
There are similar design choices for the Init and Fiberlnit
operations. The separation specification of the present inven-
tion defines the Next operation to advance a cell state only one
cell at atime and the Init operation to initialize the cell state of
all the cells at once. Therefore, the system state advances one
cell at a time, but the initialization of the system is not com-
plete until all of the cells are ready to run.

US 7,689,997 B2

5

FIG. 9 depicts this design choice for the separation speci-
fication of the present invention. In this figure, the Next,
operation 62 is being performed on the system, where the
Nextg operation is the Next operation performed on Cell,.
The state of the system before the Next operation is shown as
MCA State, 64. MCA State, 64 includes Cell , in state SCA
66, Cell; in state SCA, 68 and Cell in state SCA -, 70. The
state of the system after the Next operation is shown as MCA
State2 72, where Cell, is in state SCA ,, 74, Celly is in state
SCAj, 76 and Cell. is in state SCA ., 78. The Next, opera-
tion at the system level corresponds to selecting a cell and
advancing the state of that one cell.

FIG. 9 further illustrates that performing Next; on MCA,
achieves the same result as taking Fiberz 80 of MCA,| to yield
SCAj, 82, and then performing FiberNext 84 on SCAg. In
this case, Celly is selected by the Fiber, operation. Perform-
ing the FiberNext operation upon Cell; advances the state of
Celly. In equation form, this is:

Fiberz(Nextg(m))=FiberNext(Fiberz(m))

FIG. 10 is a commuting diagram, which is a diagrammatic
form of the above equation. The internal cells of MCA have
been hidden from the external world and can be observed only
through the Fiber operation. This equation can be further
shortened to:

FiberyNextz=FiberNext-Fiberp

In this short form, the variable m has been dropped. In addi-
tion, the equation is between two functions, rather than the
value of the functions at an arbitrary input. The symbol
denotes function composition.

The final form of this relationship is shown in FIG. 11. In
this figure, the functions Next, and Fiber; have been uncur-
ried into Next and Fiber. This means that the function Next,
is related to Next by the equation Nextz(m)=Next(m, B) for
Celly. In general, NextX is related to Next by the equation
NextX(m)=Next(m, x) for any cell X. Since Next; was
changed to Next, and Fiber; was changed to Fiber, the CellID
parameter is no longer contained in the subscript of the opera-
tor, so this must be made explicit in the domain of the Next
and Fiber functions. This is why MCA is combined with
CellID in the product MCA X CellID. The equations corre-
sponding to FIG. 11 are given as follows:

Fiber(Next(m, ¢))=FiberNext(Fiber(m, c))

Fiber-Next=FiberNext-Fiber

In simple terms, what these fundamental equations are
saying is that when the system state is advanced by one step,
the change in the system state corresponds to a change in the
state of one of'its cells, as identified by the Fiber function. If
you look at the system state before advancing it one step and
again after advancing it one step, then there will be a unique
cell ¢, which accounts for this advance in the state of the
system. This cell ¢ accounts for the advance in the state of the
system by advancing its own single cell state by one step.

The operators Init and Next are specified to be the con-
structors of the MCA. This means that all possible MCA
states are the result of system initialization and the advance-
ment of the system state one step at a time by the Next
operation. This specifies that the system cannot land in any
“unspecified” states that might not satisfy the security con-
straints of the system. There is a similar constraint upon the
SCA that states that any SCA must be the result of a Fiber
operation on an MCA. Since the MCA is constrained to be in

20

25

30

35

40

45

50

55

60

65

6

valid states, as constructed by Init and Next, this constrains
the SCAs to be in valid states resulting from taking a Fiber of
a valid MCA.

In sum, the system under consideration is the Multiple Cell
Abstraction (MCA). The elements of the system to be sepa-
rated are the cells as represented by the Single Cell Abstrac-
tion (SCA). The relationship between the system and its cells
is given in several forms by the above-described fundamental
equations. These fundamental equations in turn serve as the
basis for the separation specification of the present invention.
(SCA). The relationship between the system and its cells is
given in several forms by the above-described fundamental
equations. These fundamental equations in turn serve as the
basis for the separation specification of the present invention.

The separation specification is further defined by two sepa-
ration axioms. FIG. 12 depicts a First Separation Axiom,
which sets forth the communication policy between cells.
Since the communication policy references the concept of a
cell, it is logical that the statement of the communication
policy should reference the definitions of the Next and Fiber
functions. Indeed, one of the purpose for separating the sys-
tem into cells is to restrict communication within the system.
Accordingly, FIG. 12 describes an equation stating that cell
SCA, can influence cell SCA only if cell SCA, is permitted
to communicate with cell SCA , by the communication policy
enforced by the kernel. The communication policy is alterna-
tively recited by the following equations:

- Communications (X, y) = Fiber,(MCA) =
Fiber,(Next,(MCA)) Fiber,(MCA) # Fiber,(Next,(MCA)) =

Communicates (x, y)

In this case, the second equation (i.e., the contrapositive form
of'the first equation) states that if the fiber of cell y changes as
the result of advancing the state of cell x, it must be the case
the x is permitted to communicate with y. In its positive form,
the equation states that if cell x cannot communicate with cell
y, then whenever the state of cell x is advanced, there is no
change in the state of y. A particular consequence of this
communication policy is that cell x can send messages to y
only if cell x has permission to communicate with y.

The Second Separation Axiom is depicted in FIG. 13. It
should be noted that this diagram is not a commuting dia-
gram. This diagram depicts the following equations:

SCA|, = Fiber,(MCA;) SCA,x = Fiber,(MCA,)
SCAyy = Fiber,(MCAy) SCAyy = Fiber,(MCAz)
SCA’ |, = Fiber,(MCA’|) SCA’,x = Fiber,(MCA’,)
SCA'y(, = Fiber,(MCA'|) SCA’, = Fiber,(MCAj)
(Fiber,(MCA\) = Fiber,(MCAy)) = > [
((Fiber,(MCA,) = Fiber,(MCAz)) = >
(Fiber,(Nexix(MCA)) = Fiber,(Nexty(MCA2))))]
Fiber,(Next,(MCAL)) # Fiber,(Next,(MCA2)) = > (Fibery(

MCA)) # (Fiber,(MCA)(Fiber,(MCA, # Fiber,(MCA3))

In accordance with these equations, if an action by cell x
(e.g., advancing the state of the SCA for cell x) is going to
change the state of cell y, then the change in the state of y

US 7,689,997 B2

7

depends only on the states of x and y. Without this axiom, an
unknown cell could affect the state of y. For instance, if x
changes v, it could do so by copying everything from a third
cell z into the SCA of y. The purpose of this axiom is to
prevent “undesirable” connections between cells such as z
andy.

Accordingly, the first equation states that if x has the same
fiber in two different system states MCA, and MCA,, and y
has the same fiber in MCA | and MCA,,, then y has the same
fiber after advancing the state x in both MCA, and MCA,.
The contrapositive form of this equation (i.e., the second
equation) may be more revealing. It says that if advancing x
causes a change in the state of y, then the change must have
resulted from either a change in the state of x or a change in
the state of y.

To implement a separation kernel, the designer must
choose features that support the intended applications and
implement those features in a way that conforms to the above-
described separation property. In accordance with the present
invention, a computer-implemented system 90 that supports a
high degree of separation between processing elements is
shown in FIG. 14. The computer-implemented system 90
comprises a plurality of cells 92, where each cell includes a
domain of execution 94 and at least one processing element
96. A kernel 98 facilitates execution of the processing ele-
ments and administers the communication between the pro-
cessing elements in accordance with a separation specifica-
tion 99. The separation specification 99 governs
communication between the processing elements, such that
one processing element can influence the operation of another
processing element only as set forth by the separation speci-
fication.

A preferred implementation of the kernel and its separation
specification has selected several features that are required by
the applications of the kernel and can be made to fit the
separation principle. First, memory allocation is a selected
feature because the intended applications are required to pro-
cess many kinds of data which often require added memory
resources to efficiently process the data. Since the applica-
tions require time-shared access to hardware resources, the
hardware resources are allocated as memory mapped seg-
ments to the cells in a way that preserves the separation
property. Second, remote procedure call procedure is a
selected feature because many intended applications require a
communications mechanism beyond a simple send-message.
The remote procedure call is a communication mechanism in
which information is provided to a server, the server pro-
cesses the information and returns a result, and the processing
continues in the same context that existed before the service
was invoked. Third, exception handling is a selected feature
because the intended applications are required to be robust
with respect to exceptions. Since exceptions can be handled
locally with assurance that the direct cause of the exception is
local, exception handling is also improved by the separation
principle. Each of these selected features (i.e., memory allo-
cation, remote procedure calls and exception handling) is
further described below.

A memory allocation mechanism in the separation kernel
of'the present invention is understood in relation to the opera-
tion of a strand as shown in FIG. 15. At strand launch time, a
strand is allocated the memory it requires according to its
predefined memory requirements. The strand memory
requirements are constant for that strand, in that they are the
same each time the strand is launched. The strand receives
two kinds of transient segments upon strand launch: message
segments and non-message segments. Message segments are
segments, which have been sent by some other strand to the

20

25

30

35

40

45

50

55

60

65

8

strand being launched. It is the existence of this message that
causes the strand launch. Non-message segments are the
other transient segments, which are described by the pre-
defined memory requirements for the strand.

As the strand executes, it undergoes interactions with the
kernel. If the strand elects to send some of its transient seg-
ments as part of an input message to another strand, then
access to the transient segments is lost at this point. Thus, the
strand can lose access to transient segments as it executes, but
it cannot gain access to any more transient segments as it
executes.

In order to achieve separation within the kernel, the allo-
cation of transient segments for a strand obeys the following
properties: (1) before strand launch, the strand has access
only to the permanent segments of the cell; (2) transient
memory requirements for a strand are a function of the strand,
and thus are known at compile time; (3) the kernel does not
launch the strand until there is sufficient memory to satisfy all
of the memory requirements for the strand; (4) transient seg-
ments that are non-message segments are initialized before
allocation; (5) as the strand executes, it can lose memory
segments (e.g., by sending a message), but it cannot allocate
any more segments; and (6) strand termination causes all
transient segments to be released by the kernel. From these
properties, it may be concluded that after strand termination,
the strand has access only to the permanent segments of the
cell and each time a strand runs, the amount of memory
available is the same, as specified by the predefined memory
requirements for the strand. FIG. 18 illustrates a method for
allocating memory by a separation kernel in accordance with
the above-described principles.

As a result, a strand sees exactly the same amount of
allocated memory each time it runs. Thus, there is no covert
channel stemming from the amount of allocated memory.
This eliminates the typical memory allocation covert channel
that results from the ability of one process to cause resource
exhaustion.

However, there may be still one covert channel if the
memory addresses of the allocated transient segments are
visible to the strand as it executes. In this case, it may be
possible to manipulate the addresses of the available memory
segments to communicate information to a strand to be
launched. This channel can be eliminated if the underlying
hardware supports address translation. In this case, the strand
would see the allocated segments at the same logical address
each time it runs. Thus, the strand would have the same
amount of allocated transient memory, at the same address,
every time it runs.

Referring to FIG. 16, the separation kernel of the present
invention also implements a remote procedure call mecha-
nism. During the execution of the strand, the Strand; may
makes a remote procedure call 92 to Strand in the target cell
(i.e., Cellg). As part of the remote procedure call, some of the
transient segments of the source strand are sent to the target
strand. At this point, these transmitted segments become inac-
cessible to the source strand and accessible to the target
strand. These transmitted segments constitute the parameters
of the remote procedure call.

When the target strand is launched, the target strand only
gets access to the input transient segments and the permanent
segments of the target cell. Since there are no additional
memory segments to allocate, it can be concluded that there
are sufficient resources to execute the remote procedure call.
In other words, the remote procedure call cannot fail on
account of insufficient resources. The kernel is designed to
ensure that internal kernel resources will be sufficient to pro-
cess the remote procedure calls, so that no resource exhaus-

US 7,689,997 B2

9

tion covert channel is provided by the kernel itself. Therefore,
it is not possible for the remote procedure call to fail on
account of insufficient resources within the kernel.

In FIG. 16, the target strand terminates using the normal
strand termination mechanism. The target strand returns a
value 94 to the calling strand. In addition, the transmitted
segments are made inaccessible to the target strand and made
once again made accessible to the source strand. This means
that before and after the remote procedure calls the same set
of segments are accessible to the source strand. If the target
strand is terminated for any other reason, the remote proce-
dure call mechanism causes a return to the source strand, and
thus guarantees a return from the remote procedure call.

During its execution, the target strand is prohibited from
sending the transmitted segments as part of a send message.
Thus, the segments remain available to be returned to the
source strand. Furthermore, the target strand can make a
remote procedure call of its own. To do so, the target strand
retransmits one or more of the transmitted segments to
another target strand. When this additional remote procedure
call is completed, the re-transmitted segments are returned to
the target strand.

It should also be noted that the remote procedure call
mechanism does not allow recursive calls, i.e. calls to strands
in a cell that is already part of the remote procedure call stack.
In addition, the remote procedure call mechanism also does
not permit a call to a cell that already has an executing strand,
thereby preserving the property that only one strand of a cell
can run at any one time. This is an important property to
prevent re-entrant code. Re-entrant code can cause various
runtime errors. FIG. 19 illustrates a method for performing
remote procedure calls in accordance with the above-de-
scribed principles.

Lastly, the separation kernel of the present invention imple-
ments an exception handling mechanism. During the execu-
tion of a strand, the strand may generate an exception. As will
be apparent to one skilled in the art, the exception may be
caused by a variety of conditions, including a divide by zero
or an invalid address condition (i.e., an address that is not
within one of the segments accessible to the strand). The
strand can raise an exception intentionally by calling the
Throw() interface as shown in FIG. 17.

The kernel in turn processes the Throw() interface by trans-
ferring control to the exception handler of the cell. The kernel
also passes the cause of the exception in a register to the
exception handler. The exception handler runs in the same
context as the strand that incurred the exception. Therefore,
the exception handler has access to the same permanent and
transient segments as the strand that incurred the exception.

The exception handler has the option of attempting to
resume processing of the strand that incurred the exception or
terminating the execution of the strand. In FIG. 17, it is
assumed that the exception handler resumes processing of the
strand that incurred the exception. Thus, the strand completes
execution and then terminates.

Each strand has a maximum exception count. When the
strand incurs a number of exceptions equal to the maximum
exception count, the strand is terminated by the kernel. Thus,
there is no way to get stuck in a loop of exceptions, which in
turn causes, more exceptions. On the contrary, the strand will
be terminated when the maximum exception count is reached.

As a result of the above-described exception handling
mechanisms, exceptions are confined to the cell that contains
the strand that incurred the exception. Accordingly, the
exception handling mechanism enhances the separation prop-
erty by providing exception handling that is separate between
cells.

20

25

30

40

45

50

55

60

65

10

The foregoing discloses and describes merely exemplary
embodiments of the present invention. One skilled in the art
will readily recognize from such discussion, and from accom-
panying drawings and claims, that various changes, modifi-
cations, and variations can be made therein without departing
from the spirit and scope of the present invention.

APPENDIX

The data structures that define and describe the strands and
cells in the previously described framework are central to the
cell abstraction concept, the separation specification, and the
implementation of a separation kernel. Therefore, these data
structures are defined to permit a better understanding of how
the separation kernel may be implemented in accordance with
the present invention.

Cell Descriptions

All of the information in the cell descriptor is static infor-
mation about the cell. There are four items in the cell descrip-
tor:

PermanentSegmentList: The segments that are perma-
nently allocated to the cell. All the strands of the cell get
access to these segments when they run. These segments
would typically contain the code and cell state informa-
tion for the application represented by the cell. Perma-
nent segments can be restricted to a single cell or can be
shared between more than one cell. The permanent seg-
ment list described the access mode to the segment
(some combination of read, write, and execute) desired
by the cell.

Handler: The address of the exception handler for the cell.

SendMap: The set of cells to which this cell can send
messages. This regulates the operation of the kernel
Send() and Wait() interfaces.

ShareMap: The set of cells with which this cell can share
permanent segments.

Cell State

The cell state is dynamic information about the cell. It is
maintained as a map from CellID to CellState, where Cell-
State is one of Idle, Running, or Waiting. This mapping is
called the CellStateMap.

Strand Descriptor

All of the information in the strand descriptor is static
information about the strand. There are seven items in the
strand descriptor:

CellID: The identifier of the cell that contains the strand.
This can be used to look up the cell descriptor of the cell
containing the strand.

ProcessorMode: Either foreground or background. If the
mode is foreground, the cell is run with interrupts
enabled. If the mode is background, the cell is run with
interrupts disabled. A background cell can be used to
implement a device driver strand, which requires access
to hardware resources without fear of interrupt from the
hardware.

EntryPoint: The address of the StrandEntryPoint function.

StackPointer: Where to begin the stack when the StrandEn-
tryPoint is run. The stack pointer must point at an
address within a permanent segment of the cell of the
strand, or to an assigned segment required by the strand
in the SDAssignedSegmentl.ist. The kernel table
builder, not the kernel itself, enforces this restriction.

Priority: The priority of the strand.

ScratchSizeMap: The scratch memory requirements of the
strand. There are four sizes of scratch segments: Tiny,

US 7,689,997 B2

11

Small, Medium and Large. The scratch size map defines
how many of each of these scratch segments sizes are
required by the strand.

SDAssignedSegmentList: The assigned segments required

by the strand.

Assigned segments are used to share scarce resources
between strands. The strand descriptors are kept in the
StrandDescriptorTable, which is a total mapping from
StrandID to StrandDescriptor.

Initial Strand

There is a configuration parameter called InitialStrand
used by the kernel. This is static strand information. When the
kernel has completed initialization, it launches the strand
indicated by the InitialStrand configuration parameter.

Resource Availability for a Strand

A concept that comes up repeatedly in the description of
the kernel is resource availability, so it is discussed separately
here to aid understanding of the description of the kernel.

Execution of a strand may require allocation of resources.

The resources that may be allocated are scratch and assigned
segments. Resource availability for a strand means:

There are enough available scratch segments of the sizes
specified in the ScratchSizeMap of the StrandDescrip-
tor.

The assigned segments required by the strand are all avail-
able. This can mean one of the following:

The assigned segments are completely free.

The assigned segments are part of the message to launch
the strand.

The assigned segments have been kept by the strand on
the prior execution of the strand.

Runnability of a Strand

A related concept to resource availability for a strand is the
runnability of a strand. A strand is runnable when:

The resources required by the strand are available.

The strand is not marked blocked.

Strand Startup
When a strand begins, it has several standard arguments,
which are passed to it by the kernel. The parameters are
passed utilizing the registers/stack. The strand must have
sufficient stack space for the stacked parameters along with
any space necessary for local data. The variables that are
initialized with their values and available for a strand to use
when it starts are as follows:
SourceStrandID is the ID of the strand, which sent the
message.
Command is a 32-bit message from the sending cell.
ScratchSegmentList is a structure consisting of the number
of scratch segments along with each segment’s address
and size.
Message is a structure consisting of the number of message
segments along with each segment’s address and size.
Depth represents the level of nested Remote Procedure
Calls (RPC) that this strand is being started within. A
length of zero means that the strand is being started by a
Message_Send call. A length which is greater than zero,
represents the number of nested RPCs.

Exception Handling

Exception processing allows a strand to transfer control to
the exception handler specified in the cell descriptor for the
cell. This feature is similar to a jump and should be used to
handle cases where abnormal conditions arise.

The exception code is the only parameter passed to the
exception handler by the currently running strand. The excep-

—

0

20

25

30

35

40

45

50

55

60

12

tion code should contain the error code that resulted in the
exception. Preferably, the system reserves the first 32 excep-
tion codes (0—>31) for current and future growth. Each cell is
free to use the other exception codes as needed.

What is claimed is:

1. A method of allocating memory for a first task and a
second task in a computer-implemented system, where the
tasks are executed by an operating system residing on the
computer-implemented system, comprising the steps of:

providing predefined memory requirements for the first

and second tasks, the predefined memory requirements
include a permanent memory component and a transient
memory component, wherein the memory requirements
are a function of the respective tasks and are determined
at compile time;

allocating a memory space for the first task according to the

predefined memory requirements associated with the
first task, the transient memory component being acces-
sible to the first task only during execution of the first
task;

executing the first task only when the memory space avail-

ableto the firsttask at least meets the predefined memory
requirements for the first task and preventing the first
task from receiving an additional memory space that
exceeds the predefined memory requirements for the
first task;

allocating additional memory to the second task without

exceeding its predefined memory requirements by:
transmitting, by the first task, a portion of the transient
memory component to the second task; and

upon transmission of the portion, releasing access to the

portion by the first task wherein the second task receives
additional components without performing an alloca-
tion of additional memory.

2. The method of claim 1 further comprising the step of
initializing the portion of the transient memory component
prior to the step of allocating a memory space for the first task.

3. The method of claim 1 wherein the step of allocating a
memory space for the first task further includes the steps of:

assigning at least one logical address for accessing the

memory space associated with the first task, whereby the
first task accesses the memory space using the logical
address;

requesting allocation of the memory space using the logi-

cal address for the memory space;

translating each logical address for accessing the memory

space into a corresponding physical address; and
allocating the memory space for the first task using the
physical addresses.

4. A method for providing separation between a plurality of
cells in a computing system, the method comprising the steps
of:

allocating a predefined amount of memory having a first

permanent component and a transient component in a
first cell to a first task in the first cell, wherein the
allocation is based on the first tasks memory require-
ments which are a function of the first task and are
determined at compile time, the first task having access
to only the first permanent component prior to launch
and the transient component comprising a plurality of
segments;

receiving, by the first task, the transient component upon

launch of the first task; and

losing access to each segment that the first task transmits to

a second task in a second cell, wherein the second task
has memory requirements for permanent and transient
components that are a function of the second task and are

prises the step of receiving each segment at a respective same
memory address each time the first task is launched.

US 7,689,997 B2

13

determined at compile time and the transmission of the
segments allows the second task to receive additional
components without performing an allocation of addi-
tional memory.

5. The method of claim 4, further comprising the step of 5

losing access to the plurality of segments when the first task is
terminated such that the first task only has access to the first
permanent component.

6. The method of claim 4, wherein the receiving step com-
10

7. The method of claim 4, wherein the second task has

access to a second permanent component in the second cell,
the method further comprising the steps of:

receiving, by the second task, each segment transmitted by 15
the first task;

launching the second task upon receipt of a received seg-
ment; and

gaining access, by the second task, to each segment that the
first task transmits to the second task such that the sec-

14

ond task only has access to each received segment and
the second permanent component.

8. The method of claim 7, further comprising the steps of:

terminating the second task;

losing access, by the second task, to each received segment

upon termination of the second task; and

regaining access, by the first task, to each received segment

upon termination of the second task.

9. The method of claim 7, further comprising the step of
prohibiting the second task from transmitting each received
segment to another task.

10. The method of claim 7, further comprising the step of
prohibiting the second task from transmitting each received
segment to the first task prior to termination.

11. The method of claim 4, wherein the losing step com-
prises the step of losing access to a message segment of the
plurality of segments that the first task transmits to the second
task.

