
(12) United States Patent 
White et al. 

USOO7689997B2 

(10) Patent No.: US 7.689,997 B2 
(45) Date of Patent: Mar. 30, 2010 

(54) 

(75) 

(73) 

(*) 

(21) 

(22) 
(65) 

(63) 

(51) 

(52) 

(58) 

METHOD FOR ALLOCATING MEMORY TO 
TASKS WITHOUT EXCEEDING 
PREDEFINED MEMORY REQUIREMENTS 

Inventors: Peter Duncan White, Fountain Hills, 
AZ (US); Conan Brian Dailey, 
Scottsdale, AZ (US); Hua Chen, Tempe, 
AZ (US); Pamela Tam Carmony, 
Tempe, AZ (US); Jennifer Lynn 
Amstutz, Fountain Hills, AZ (US); 
Keith Michael Hines, Phoenix, AZ 
(US); Francis Gregory Sydnor, Jr., 
Scottsdale, AZ (US) 

Assignee: General Dynamics C4 Systems, Inc., 
Scottsdale, AZ (US) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 1637 days. 

Appl. No.: 10/866,564 

Filed: Jun. 10, 2004 
Prior Publication Data 

US 2004/O268356A1 Dec. 30, 2004 

Related U.S. Application Data 
Continuation of application No. 09/443,597, filed on 
Nov. 19, 1999, now Pat. No. 6,772,416. 
Int. C. 
G06F 9/46 (2006.01) 
G06F 3/00 (2006.01) 
U.S. Cl. ....................... 718/104; 711/170: 718/100; 

71.9/312 
Field of Classification Search ................. 711/145, 

711/150, 152, 105,170, 713/164: 718/102-104, 
718/106, 107, 108, 100; 71.9/312 

See application file for complete search history. 

ALOCATION OF MEMORY 

References Cited 

U.S. PATENT DOCUMENTS 

(56) 

5,504.814 A * 4/1996 Miyahara ....................... T26/4 
5,559,980 A * 9/1996 Connors et al. ............. T11 100 
5,574,912 A 11/1996 Hu et al. 

(Continued) 
OTHER PUBLICATIONS 

John Rushby, Design and Verification of Secure System, 8' Sympo 
sium on Operating System Principles, Dec. 14-16, 1981, vol. 15, No. 
5, pp. 12-21. 
A Guide to Understanding Covert Channel Analysis of Trusted Sys 
tems, National Computer System Principles, Nov. 1993, 
XP-002192422. 

(Continued) 
Primary Examiner Lewis A Bullock, Jr. 
Assistant Examiner—Charles E. Anya 
(74) Attorney, Agent, or Firm—Ingrassia Fisher & Lorenz, 
P.C. 

(57) ABSTRACT 

A computer-implemented system (90) is provided that sup 
ports a high degree of separation between processing ele 
ments. The computer-implemented system (90) comprises a 
plurality of cells (92) residing on the computer-implemented 
system, where each cell (92) includes a domain of execution 
(94) and at least one processing element (96); a separation 
specification (99) that governs communication between the 
processing elements (96); and a kernel (98) of an operating 
system that facilitates execution of the processing elements 
(96) and administers the communication between the pro 
cessing elements (96) in accordance with the separation 
specification (99), such that one processing element (96) can 
influence the operation of another processing element (96) 
only as set forth by the separation specification (99). In par 
ticular, the separation specification provides memory alloca 
tion, remote procedure calls and exception handling mecha 
1SS. 

11 Claims, 7 Drawing Sheets 

  

  

  

  

  

  

  



US 7.689,997 B2 
Page 2 

5,574,914 
5,729,710 
5,841,869 
5,890,189 
5,893, 159 
6,199,181 
6,292,874 
6,314,501 

U.S. PATENT DOCUMENTS 

A 11, 1996 
A 3, 1998 
A 11, 1998 
A * 3, 1999 
A * 4, 1999 
B1 3, 2001 
B1* 9, 2001 
B1* 11/2001 

Hancock et al. 
Magee et al. 
Merkling et al. 
Nozue et al. ................ T11 100 
Schneider ................... T11 150 
Rechefet al. 
Barnett ....................... T11 153 
Gulicket al. ............... T11 153 

6,691.298 B1* 2/2004 Russo et al. ................ 717/1OO 
OTHER PUBLICATIONS 

Setrlimit (2), Red Hat Linux/I386 5.2 Man Page, Jul 23, 1993, 
XP-002192423. 
ISA H et al. Multi-threading Architecture for Multilevel Secure 
Transaction Processing, May 1999, pp. 1-15. 
Wahbe etal, Eficient Sofiware-Based Fault Isolation, Aug. 1993, pp. 
203-216. 

* cited by examiner 



U.S. Patent Mar. 30, 2010 Sheet 1 of 7 US 7.689,997 B2 

CELL SECMENT 

u1)\s 
PERMANENT TRANSIENT 

/1 u17 N. 
SHARED SINCLE REGISTERS ASSIGNED SCRATCH MESSAGE 

FIC 4 

  



U.S. Patent Mar. 30, 2010 Sheet 2 of 7 US 7.689,997 B2 

STRAND 

HANDLE 

FIBERNEXT 

  

  



U.S. Patent Mar. 30, 2010 Sheet 3 of 7 US 7.689,997 B2 

FIBERNEXT 

BERINIT FI ()2 FIBERNEXT 
SYSTEM(MCA) FIBERINIT () ) 

FIBERNEXT 

FIBERINIT () ) 
52 

FIC. 8 

62 

64 MCA STATE MCA STATE, 

-are ugly- E -uc, MCA XCELLID-E-MCA CELLID 
FIBER FIBER FIBER FIBER 

FIBERNEXT FIBERNEXT 
SCAB SCAB2 SCA SCA 

FIC 10 FI C. 11 

  

  

  

  

  



U.S. Patent Mar. 30, 2010 Sheet 4 of 7 US 7.689,997 B2 

MCA' 

CANNOT 
COMMUNICATE 

FIC. 12 

  



U.S. Patent Mar. 30, 2010 Sheet 5 of 7 US 7.689,997 B2 

9. 
92 

S 

NCAPSULATED 
DATA \) 

SCRATCH \ 

MESSAGE 2 
ASSIGNED 

STRAND 

96 

HANDLERh 

98 99 

FIC. 14 

STRAND 

LAUNCH 

ASSIGNED 

HANDLER 

HANDLE FI C. 15 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
    

  

  

  



U.S. Patent Mar. 30, 2010 Sheet 6 of 7 US 7.689,997 B2 

STRAND 

LAUNCH 

ASSIGNED 

HANDLER FI C. 17 
HANDLE 

  

  

    

    

  

  

  



U.S. Patent Mar. 30, 2010 Sheet 7 Of 7 US 7.689,997 B2 

ALLOCATION OF MEMORY 

FIC. 18 

RELEASING THE MEMORY SPACE 

FIG. 19 

  

  

  

  

  

  

    

  

  

  

  

  

  

    

  

  

  

  

  

  

  



US 7,689,997 B2 
1. 

METHOD FOR ALLOCATING MEMORY TO 
TASKS WITHOUT EXCEEDING 

PREDEFINED MEMORY REQUIREMENTS 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. application Ser. 
No. 09/443,597 filed Nov. 19, 1999 now U.S. Pat. No. 6,772, 
416. 

BACKGROUND OF THE INVENTION 

1. Technical Field 

The present invention relates generally to using the sepa 
ration principle to design a kernel of an operating system, and 
more particularly, the present invention relates to a kernel that 
applies the separation principle to memory allocation, remote 
procedure call and exception handling mechanisms. 

2. Discussion 
Separation is an extremely important property in the con 

struction and analysis of secure systems. If two logical enti 
ties A and B (for example, two pieces of Software) are sepa 
rate, then separation means that there is no way for A to 
influence the operation of B, and vice versa. If the operation 
of A is important to the Security of a system, the separation of 
A and B means that the operation of B can be ignored when 
evaluating how A Supports the security of the system. If A and 
B are not separate, so that B could influence the operation of 
A, then both A and B must be considered in evaluating how A 
Supports the security of the system. The necessity of evaluat 
ing A and B increases the difficulty and cost of the security 
evaluation, and usually yields a lower assurance of security. 
Thus lack of separation yields the combination of higher cost 
and lower assurance. 

Complete separation (no influence between A and B) 
yields a conceptually clean system. Incomplete separation 
can still be very good if there are a Small (e.g. one, two, or 
three) number of known influence paths between A and B, and 
these paths have low bandwidth and/or are difficult to use. 
Incomplete separation is unacceptable in a high assurance 
system when it results from the inherent complexity of the 
system, and the resulting inability to analyze the possible 

Separation is a principal that has been investigated for the 
construction of secure systems for some time. The idea 
behind separation can be described with the assistance of 
FIG.1. A system is sometimes implemented as a set of sepa 
rate physical devices, with the devices interconnected by 
physical wires. In FIG. 1, if it is important to the security of 
the system that box does not directly intercommunicate with 
box, then one need only look at the arrangement of the 
physical boxes and wires to determine the truth of this prop 
erty. 

It is often the case that the same system will be imple 
mented in one physical box, but with logical entities (e.g. 
Software processes) performing the same functions as the 
physical boxes of FIG. 1. This new implementation may 
result from increasing miniaturization of components, or the 
increasing memory and processing power available within on 
processor platform. This new implementation of the same 
system is depicted in FIG. 2. The tasks are performing the 
same functions and are interconnected in the same way as the 
boxes of FIG.1. If it was important before that box does not 
directly intercommunicate with box, then it is still important 
that task does not directly intercommunicate with task. 

5 

15 

25 

30 

35 

2 
Analyzing the system of FIG. 2 may not be as easy as it was 
in FIG.1. The reason for the increasing difficulty of analysis 
is shown in FIG. 3. 
The problem is that all of the tasks communicate with the 

operating system, thus the operating system becomes a means 
whereby information can be transmitted between tasks, and 
tasks can influence each other even when not permitted by the 
communication policy of the operating system. FIG.3 shows 
tasks influencing task by means of operating system mecha 

0 nisms. A standard example of this is memory allocation. If all 
of the tasks allocate memory from a shared pool of resources, 
then tasks could allocate all of the memory. When task runs 
and attempts to allocate memory, it will receive a failing 
return from the operating system. This failing return could 
encode a “1” transmitted from tasks to task. If tasks then 
releases some memory, when task runs, it will try to allocate 
Some memory again, this time receiving a successful return 
from the operating system. This successful/failure return 
from the operating system was never intended to be used as a 
communication channel, nevertheless a good hacker can 
make use of it in this way. In other words, the problem is that 
the other software (e.g., other tasks and the operating system) 
can now influence the operation of the task under analysis, 
and thus the task under analysis cannot be analyzed in isola 
tion. 

Therefore, it is desirable to provide a high-grade separation 
between processing elements in a system. This high-grade 
separation permits the system designer to establish high 
assurance secure systems by allowing each processing ele 
ment to be analyzed in isolation. To achieve high-grade sepa 
ration, the present invention applies the separation principle 
to the design a kernel of an operating system. More specifi 
cally, the kernel incorporates memory allocation, remote pro 
cedure call and exception handling mechanisms in Such away 
that Supports the separation concept. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention will hereinafter be described in con 
40 junction with the appended drawing figure(s), wherein like 

45 

50 

55 

60 

65 

numerals denote like elements, and: 
FIG. 1 is a diagram depicting a box and wire model for a 

typical system architecture; 
FIG. 2 is a diagram depicting a task model that may reside 

on a physical device in a typical system architecture; 
FIG. 3 is a diagram depicting the task model that is Sup 

ported by an operating system in a typical multi-tasking 
architecture; 

FIG. 4 is a diagram illustrating the different types of 
memory segments Supported by the framework of the present 
invention; 

FIG. 5 is a diagram illustrating the cell abstraction concept 
of the present invention; 

FIG. 6 is a diagram illustrating the interaction between 
cells in accordance with the present invention; 

FIG. 7 is a diagram depicting a single cell and two cell 
operations in accordance with the separation principle of the 
present invention; 

FIG. 8 is a diagram depicting a multiple cell abstraction 
system; 

FIGS. 9-11 illustrate the fundamental relationships and 
equations that define the separation specification of the 
present invention; 

FIGS. 12 and 13 illustrate the first and second separation 
axioms, respectively, in accordance with the separation speci 
fication of the present invention; 



US 7,689,997 B2 
3 

FIG. 14 depicts a separation kernel that Supports a high 
degree of separation between processing elements in a com 
puter-implemented system in accordance with the present 
invention; 

FIGS. 15-17 illustrate various operations of a strand in a 
cell in accordance with the present invention; 

FIG. 18 illustrates a method for allocating memory in 
accordance with the present invention; and 

FIG. 19 illustrates a method for performing remote proce 
dure calls in accordance with the present invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The present invention generally relates to designing a ker 
nel of an operating system in accordance with the separation 
principle. A framework for designing the separation kernel is 
set forth below. It is to be understood that this framework, the 
Subsequent description of the separation principle and its 
application to the design of the kernel are merely exemplary 
and are intended to provide an understanding of the nature 
and character of the invention as it is claimed. 

In accordance with the present invention, the principle 
abstraction for the framework is the cell. A cell is defined as 
a domain of execution and a collection of strands, where each 
Strand is a stream of programmable machine instructions 
executable by the kernel of the operating system. For pur 
poses of the following description, a domain of execution is 
also referred to as the context of the cell and a strand is also 
referred to as a task. 
The context of a cell is comprised of one or more memory 

segments. Each segment is a range of physical memory 
addresses, which are defined by a starting address and a 
length. The framework of the present invention supports dif 
ferent types of memory segments as shown in FIG. 4. 

Permanent segments are allocated to a cell and therefore 
are accessible to any of the strands associated with the cell. 
Permanent segments may be used for storing data, code (i.e., 
a strand’s machine instructions) or memory mapped hard 
ware interfaces. Permanent segments cannot be sent in mes 
sages, but are retained when the currently executing strand of 
the cell Suspends. 

In contrast, a transient segment is accessible to the strand, 
which is running in the cell, and to the cell. In other words, 
each Strand has predefined memory requirements for its tran 
sient segments. When the strand is launched, the transient 
segments are allocated for the Strand. Thus, the transient 
segments are accessible to the strand. As will be more fully 

10 

15 

25 

30 

35 

40 

45 

explained below, the framework supports different types of so 
transient segments, such as an input message segment, a 
Scratch segment, an assigned segment, and a register segment. 
An overview of the framework, including the cell abstrac 

tion conceptand its interrelationships, are further discussed in 
relation to FIG. 5. Each cell can execute only one strand at a 
time. Strand 22 is currently running in Cell 20. It is pro 
cessing an input message 24, which is made up of one or more 
transient segments. Strand 22 may use one or more scratch 
segments 26 to process the input message 24. A scratch seg 
ment is a temporary memory space of Sufficient size to be 
used by the Strand when processing the input message. 
Strand may also access an assigned segment 28. An assigned 
segment is a specified transient segment used to gain access to 
available resources, such as device registers. Lastly, Strand 
may access one or more permanent segments. For instance, 
the encapsulated data segment 30 contains static data used by 
the strand. 

55 

60 

65 

4 
Cell 32 is currently not executing a strand. However, it 

may begin execution of a strand Some time after it is granted 
access to an input message received from Strand 22 of Cell 
20. In FIG. 5, Strand 34 is shown being launched in Cell. 
When a strand in the cell is launched, the cell receives access 
to the message segment(s) that make up the input message. 
Again, the strand may require Scratch segments to process the 
input message. In addition, an interrupt strand may be run 
immediately upon receipt of an interrupt. Thus, the execution 
of a strand may be interleaved with the execution of interrupt 
Strands. 
A cell interfaces to its external world (e.g., to other cells or 

the underlying hardware) only through the substrate. For 
purposes of this discussion, the Substrate is defined as the 
operating system, the device drivers, and the underlying hard 
ware of the system. Exemplary cell interfaces are illustrated 
in FIG. 6. First, the kernel of the operating system launches 
Strand 22 of Cell 20. At this time, the strand is given access 
by the kernel to its input message segment(s) and scratch 
segment(s). Next, Strand 22 uses a Send interface 36 to send 
some of its transient segments to Strand 34 of Cell, 32. As a 
result, Cell loses access to the segments transmitted by the 
Strand. 

After further execution of the strand, Strands of Cell 
addresses an exception condition through the use of a Throw 
interface 38. The interface terminates execution of the strand 
and initiates execution of a Handler function. When execution 
of Strands of Cell terminates, the kernel removes access to 
all of the transient segments remaining in Cell. If Strands of 
Cell had not terminated via the exception condition, it would 
have reached the end of its strand. In this case, the Terminat 
eStrand interface 39 terminates the execution of the strand 
and removes access to any transient segments still accessible 
to the cell. One skilled in the art will readily recognize that the 
separation kernel of the present invention will be designed 
and implemented within the above-described framework. 
Data structures that define and describe the strands and cells 
in the above-described framework are further discussed in the 
Appendix. 
An introduction to the separation principle is provided in 

relation to FIGS. 7-11. FIG. 7 shows a cell 40 and two of its 
operations, FiberInit 42 and FiberNext 44. Again, the cell 
represents an execution domain. Moreover, the cells are the 
components of the system to be separated. 

In FIG. 8, several cells have been combined into a system 
50 that is referred to as the Multiple Cell Abstraction, where 
each individual cell is referred to as a Single Cell Abstraction 
(SCA). Each cell has its own FiberInit and FiberNext opera 
tions, whereas the system as a whole has an Init 52 and Next 
54 operation. Since the cells serve as the Fibers of the system, 
the names for the cell level operations are FiberInit and 
FiberNext. The names Init and Next are reserved for the 
system level operations. 

There are several choices for defining the relationship 
between these cell operations. For instance, the Next opera 
tion (advancing the system state) could correspond to a 
FiberNext operation (advancing a cell state) on every cell at 
once, thereby implying multiprocessing of the cells. On the 
other hand, the Next operation could correspond to a FiberN 
ext operation on only one cell or on Some Subset of the cells. 
There are similar design choices for the Init and FiberInit 
operations. The separation specification of the present inven 
tion defines the Next operation to advance a cell state only one 
cell at a time and the Init operation to initialize the cell state of 
all the cells at once. Therefore, the system state advances one 
cell at a time, but the initialization of the system is not com 
plete until all of the cells are ready to run. 



US 7,689,997 B2 
5 

FIG.9 depicts this design choice for the separation speci 
fication of the present invention. In this figure, the Next 
operation 62 is being performed on the system, where the 
Next operation is the Next operation performed on Cell. 
The state of the system before the Next operation is shown as 
MCA State 64. MCA State 64 includes Cell in state SCA 
66, Cell in state SCA 68 and Cell, in state SCA 70. The 
state of the system after the Next operation is shown as MCA 
State2 72, where Cell is in state SCA 74, Cell is in state 
SCA, 76 and Cell, is in state SCA. 78. The Next opera 
tion at the system level corresponds to selecting a cell and 
advancing the state of that one cell. 
FIG.9 further illustrates that performing Next on MCA 

achieves the same result as taking Fiber 80 of MCA to yield 
SCA, 82, and then performing FiberNext 84 on SCA. In 
this case, Cell is selected by the Fiber operation. Perform 
ing the FiberNext operation upon Cell advances the state of 
Cell. In equation form, this is: 

Fiber(Next(m))=FiberNext(Fibert(m)) 

FIG. 10 is a commuting diagram, which is a diagrammatic 
form of the above equation. The internal cells of MCA have 
been hidden from the external world and can be observed only 
through the Fiber operation. This equation can be further 
shortened to: 

Fiber-Next=FiberNextFiber 

In this short form, the variable m has been dropped. In addi 
tion, the equation is between two functions, rather than the 
value of the functions at an arbitrary input. The symbol 
denotes function composition. 
The final form of this relationship is shown in FIG. 11. In 

this figure, the functions Next, and Fiber, have been uncur 
ried into Next and Fiber. This means that the function Next 
is related to Next by the equation Next(m) Next(m, B) for 
Cell. In general, NextX is related to Next by the equation 
NextX(m)=Next(m, x) for any cell X. Since Next was 
changed to Next, and Fiber, was changed to Fiber, the CellID 
parameter is no longer contained in the Subscript of the opera 
tor, so this must be made explicit in the domain of the Next 
and Fiber functions. This is why MCA is combined with 
CellID in the product MCA X CellID. The equations corre 
sponding to FIG. 11 are given as follows: 

Fiber(Next(n,c))=FiberNext(Fiber(m, c)) 

Fiber-Next=FiberNextFiber 

In simple terms, what these fundamental equations are 
saying is that when the system state is advanced by one step, 
the change in the system state corresponds to a change in the 
state of one of its cells, as identified by the Fiber function. If 
you look at the system state before advancing it one step and 
again after advancing it one step, then there will be a unique 
cell c, which accounts for this advance in the state of the 
system. This cell c accounts for the advance in the state of the 
system by advancing its own single cell State by one step. 
The operators Init and Next are specified to be the con 

structors of the MCA. This means that all possible MCA 
states are the result of system initialization and the advance 
ment of the system state one step at a time by the Next 
operation. This specifies that the system cannot land in any 
“unspecified’ states that might not satisfy the security con 
straints of the system. There is a similar constraint upon the 
SCA that states that any SCA must be the result of a Fiber 
operation on an MCA. Since the MCA is constrained to be in 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
valid states, as constructed by Init and Next, this constrains 
the SCAS to be in valid states resulting from taking a Fiber of 
a valid MCA. 

In sum, the system under consideration is the Multiple Cell 
Abstraction (MCA). The elements of the system to be sepa 
rated are the cells as represented by the Single Cell Abstrac 
tion (SCA). The relationship between the system and its cells 
is given in several forms by the above-described fundamental 
equations. These fundamental equations in turn serve as the 
basis for the separation specification of the present invention. 
(SCA). The relationship between the system and its cells is 
given in several forms by the above-described fundamental 
equations. These fundamental equations in turn serve as the 
basis for the separation specification of the present invention. 
The separation specification is further defined by two sepa 

ration axioms. FIG. 12 depicts a First Separation Axiom, 
which sets forth the communication policy between cells. 
Since the communication policy references the concept of a 
cell, it is logical that the statement of the communication 
policy should reference the definitions of the Next and Fiber 
functions. Indeed, one of the purpose for separating the sys 
tem into cells is to restrict communication within the system. 
Accordingly, FIG. 12 describes an equation stating that cell 
SCA can influence cell SCA, only if cell SCA is permitted 
to communicate with cell SCA, by the communication policy 
enforced by the kernel. The communication policy is alterna 
tively recited by the following equations: 

- Communications (x, y) = Fibery (MCA) = 

Fiber, (Next, (MCA) Fiber, (MCA) # Fiber, (Next, (MCA) = 
Communicates (x, y) 

In this case, the second equation (i.e., the contrapositive form 
of the first equation) states that if the fiber of celly changes as 
the result of advancing the state of cell X, it must be the case 
the X is permitted to communicate withy. In its positive form, 
the equation states that if cell X cannot communicate with cell 
y, then whenever the state of cell x is advanced, there is no 
change in the state of y. A particular consequence of this 
communication policy is that cell X can send messages to y 
only if cell X has permission to communicate with y. 
The Second Separation Axiom is depicted in FIG. 13. It 

should be noted that this diagram is not a commuting dia 
gram. This diagram depicts the following equations: 

SCA 1 = Fiber (MCA) SCA2x = Fiber (MCA2) 
SCA1 = Fibery (MCA) SCA2 = Fibery (MCA2) 
SCA = Fiber (MCA) SCA2x = Fiber (MCA2) 
SCA1 = Fibery (MCA) SCA'2 = Fibery (MCA) 

(Fiber (MCA) = Fiber (MCA2)) = > 

((Fibery (MCA) = Fibery (MCA2)) = > 

(Fibery (Next, (MCA) = Fibery (Next (MCA2))))) 

Fibery (Next, (MCA)) + Fibery (Next, (MCA2)) = > (Fiber.( 

MCA) + (Fiber, (MCA2))V(Fibery (MCA1 + Fibery (MCA2)) 

In accordance with these equations, if an action by cell X 
(e.g., advancing the state of the SCA for cell X) is going to 
change the state of cell y, then the change in the state of y 



US 7,689,997 B2 
7 

depends only on the states of X and y. Without this axiom, an 
unknown cell could affect the state of y. For instance, if X 
changes y, it could do so by copying everything from a third 
cell Z into the SCA of y. The purpose of this axiom is to 
prevent “undesirable' connections between cells such as Z 
andy. 

Accordingly, the first equation states that if X has the same 
fiber in two different system states MCA and MCA, and y 
has the same fiber in MCA and MCA, theny has the same 
fiber after advancing the state x in both MCA and MCA. 
The contrapositive form of this equation (i.e., the second 
equation) may be more revealing. It says that if advancing X 
causes a change in the State of y, then the change must have 
resulted from either a change in the state of X or a change in 
the state of y. 

To implement a separation kernel, the designer must 
choose features that Support the intended applications and 
implement those features in away that conforms to the above 
described separation property. In accordance with the present 
invention, a computer-implemented system 90 that Supports a 
high degree of separation between processing elements is 
shown in FIG. 14. The computer-implemented system 90 
comprises a plurality of cells 92, where each cell includes a 
domain of execution 94 and at least one processing element 
96. A kernel 98 facilitates execution of the processing ele 
ments and administers the communication between the pro 
cessing elements in accordance with a separation specifica 
tion 99. The separation specification 99 governs 
communication between the processing elements, such that 
one processing element can influence the operation of another 
processing element only as set forth by the separation speci 
fication. 
A preferred implementation of the kerneland its separation 

specification has selected several features that are required by 
the applications of the kernel and can be made to fit the 
separation principle. First, memory allocation is a selected 
feature because the intended applications are required to pro 
cess many kinds of data which often require added memory 
resources to efficiently process the data. Since the applica 
tions require time-shared access to hardware resources, the 
hardware resources are allocated as memory mapped seg 
ments to the cells in a way that preserves the separation 
property. Second, remote procedure call procedure is a 
selected feature because many intended applications require a 
communications mechanism beyond a simple send-message. 
The remote procedure call is a communication mechanism in 
which information is provided to a server, the server pro 
cesses the information and returns a result, and the processing 
continues in the same context that existed before the service 
was invoked. Third, exception handling is a selected feature 
because the intended applications are required to be robust 
with respect to exceptions. Since exceptions can be handled 
locally with assurance that the direct cause of the exception is 
local, exception handling is also improved by the separation 
principle. Each of these selected features (i.e., memory allo 
cation, remote procedure calls and exception handling) is 
further described below. 
A memory allocation mechanism in the separation kernel 

of the present invention is understood in relation to the opera 
tion of a strand as shown in FIG. 15. At strand launch time, a 
Strand is allocated the memory it requires according to its 
predefined memory requirements. The Strand memory 
requirements are constant for that strand, in that they are the 
same each time the Strand is launched. The strand receives 
two kinds of transient segments upon Strand launch: message 
segments and non-message segments. Message segments are 
segments, which have been sent by Some other Strand to the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
Strand being launched. It is the existence of this message that 
causes the strand launch. Non-message segments are the 
other transient segments, which are described by the pre 
defined memory requirements for the strand. 
As the strand executes, it undergoes interactions with the 

kernel. If the Strand elects to send some of its transient seg 
ments as part of an input message to another strand, then 
access to the transient segments is lost at this point. Thus, the 
Strand can lose access to transient segments as it executes, but 
it cannot gain access to any more transient segments as it 
eXecuteS. 

In order to achieve separation within the kernel, the allo 
cation of transient segments for a strand obeys the following 
properties: (1) before strand launch, the strand has access 
only to the permanent segments of the cell; (2) transient 
memory requirements for a strand area function of the Strand, 
and thus are known at compile time; (3) the kernel does not 
launch the strand until there is sufficient memory to satisfy all 
of the memory requirements for the Strand; (4) transient seg 
ments that are non-message segments are initialized before 
allocation; (5) as the strand executes, it can lose memory 
segments (e.g., by sending a message), but it cannot allocate 
any more segments; and (6) Strand termination causes all 
transient segments to be released by the kernel. From these 
properties, it may be concluded that after Strand termination, 
the strand has access only to the permanent segments of the 
cell and each time a strand runs, the amount of memory 
available is the same, as specified by the predefined memory 
requirements for the strand. FIG. 18 illustrates a method for 
allocating memory by a separation kernel in accordance with 
the above-described principles. 
As a result, a strand sees exactly the same amount of 

allocated memory each time it runs. Thus, there is no covert 
channel Stemming from the amount of allocated memory. 
This eliminates the typical memory allocation covert channel 
that results from the ability of one process to cause resource 
exhaustion. 

However, there may be still one covert channel if the 
memory addresses of the allocated transient segments are 
visible to the strand as it executes. In this case, it may be 
possible to manipulate the addresses of the available memory 
segments to communicate information to a strand to be 
launched. This channel can be eliminated if the underlying 
hardware Supports address translation. In this case, the strand 
would see the allocated segments at the same logical address 
each time it runs. Thus, the strand would have the same 
amount of allocated transient memory, at the same address, 
every time it runs. 

Referring to FIG. 16, the separation kernel of the present 
invention also implements a remote procedure call mecha 
nism. During the execution of the Strand, the Strand may 
makes a remote procedure call 92 to Strands in the target cell 
(i.e., Cell). As part of the remote procedure call, some of the 
transient segments of the source Strand are sent to the target 
Strand. At this point, these transmitted segments become inac 
cessible to the source Strand and accessible to the target 
Strand. These transmitted segments constitute the parameters 
of the remote procedure call. 
When the target Strand is launched, the target Strand only 

gets access to the input transient segments and the permanent 
segments of the target cell. Since there are no additional 
memory segments to allocate, it can be concluded that there 
are sufficient resources to execute the remote procedure call. 
In other words, the remote procedure call cannot fail on 
account of insufficient resources. The kernel is designed to 
ensure that internal kernel resources will be sufficient to pro 
cess the remote procedure calls, so that no resource exhaus 



US 7,689,997 B2 
9 

tion covert channel is provided by the kernel itself. Therefore, 
it is not possible for the remote procedure call to fail on 
account of insufficient resources within the kernel. 

In FIG. 16, the target strand terminates using the normal 
Strand termination mechanism. The target Strand returns a 
value 94 to the calling strand. In addition, the transmitted 
segments are made inaccessible to the target Strand and made 
once again made accessible to the source strand. This means 
that before and after the remote procedure calls the same set 
of segments are accessible to the Source strand. If the target 
Strand is terminated for any other reason, the remote proce 
dure call mechanism causes a return to the Source Strand, and 
thus guarantees a return from the remote procedure call. 

During its execution, the target Strand is prohibited from 
sending the transmitted segments as part of a send message. 
Thus, the segments remain available to be returned to the 
Source Strand. Furthermore, the target Strand can make a 
remote procedure call of its own. To do so, the target strand 
retransmits one or more of the transmitted segments to 
another target strand. When this additional remote procedure 
call is completed, the re-transmitted segments are returned to 
the target Strand. 

It should also be noted that the remote procedure call 
mechanism does not allow recursive calls, i.e. calls to strands 
in a cell that is already part of the remote procedure call stack. 
In addition, the remote procedure call mechanism also does 
not permit a call to a cell that already has an executing strand, 
thereby preserving the property that only one strand of a cell 
can run at any one time. This is an important property to 
prevent re-entrant code. Re-entrant code can cause various 
runtime errors. FIG. 19 illustrates a method for performing 
remote procedure calls in accordance with the above-de 
scribed principles. 

Lastly, the separation kernel of the present invention imple 
ments an exception handling mechanism. During the execu 
tion of a strand, the Strand may generate an exception. As will 
be apparent to one skilled in the art, the exception may be 
caused by a variety of conditions, including a divide by Zero 
or an invalid address condition (i.e., an address that is not 
within one of the segments accessible to the strand). The 
Strand can raise an exception intentionally by calling the 
Throw() interface as shown in FIG. 17. 
The kernel in turn processes the Throw() interface by trans 

ferring control to the exception handler of the cell. The kernel 
also passes the cause of the exception in a register to the 
exception handler. The exception handler runs in the same 
context as the strand that incurred the exception. Therefore, 
the exception handler has access to the same permanent and 
transient segments as the Strand that incurred the exception. 

The exception handler has the option of attempting to 
resume processing of the Strand that incurred the exception or 
terminating the execution of the strand. In FIG. 17, it is 
assumed that the exception handler resumes processing of the 
Strand that incurred the exception. Thus, the strand completes 
execution and then terminates. 

Each Strand has a maximum exception count. When the 
Strand incurs a number of exceptions equal to the maximum 
exception count, the Strand is terminated by the kernel. Thus, 
there is no way to get stuck in a loop of exceptions, which in 
turn causes, more exceptions. On the contrary, the strand will 
be terminated when the maximum exception count is reached. 
As a result of the above-described exception handling 

mechanisms, exceptions are confined to the cell that contains 
the strand that incurred the exception. Accordingly, the 
exception handling mechanism enhances the separation prop 
erty by providing exception handling that is separate between 
cells. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
The foregoing discloses and describes merely exemplary 

embodiments of the present invention. One skilled in the art 
will readily recognize from Such discussion, and from accom 
panying drawings and claims, that various changes, modifi 
cations, and variations can be made therein without departing 
from the spirit and scope of the present invention. 

APPENDIX 

The data structures that define and describe the strands and 
cells in the previously described framework are central to the 
cell abstraction concept, the separation specification, and the 
implementation of a separation kernel. Therefore, these data 
structures are defined to permita better understanding of how 
the separation kernel may be implemented in accordance with 
the present invention. 
Cell Descriptions 

All of the information in the cell descriptor is static infor 
mation about the cell. There are four items in the cell descrip 
tOr: 

PermanentSegmentList: The segments that are perma 
nently allocated to the cell. All the strands of the cell get 
access to these segments when they run. These segments 
would typically contain the code and cell State informa 
tion for the application represented by the cell. Perma 
nent segments can be restricted to a single cell or can be 
shared between more than one cell. The permanent seg 
ment list described the access mode to the segment 
(some combination of read, write, and execute) desired 
by the cell. 

Handler: The address of the exception handler for the cell. 
SendMap: The set of cells to which this cell can send 

messages. This regulates the operation of the kernel 
Send() and Wait() interfaces. 

ShareMap: The set of cells with which this cell can share 
permanent Segments. 

Cell State 
The cell state is dynamic information about the cell. It is 

maintained as a map from CellID to CellState, where Cell 
State is one of Idle, Running, or Waiting. This mapping is 
called the CellStateMap. 
Strand Descriptor 

All of the information in the strand descriptor is static 
information about the strand. There are seven items in the 
Strand descriptor: 

CellID: The identifier of the cell that contains the strand. 
This can be used to look up the cell descriptor of the cell 
containing the Strand. 

ProcessorMode: Either foreground or background. If the 
mode is foreground, the cell is run with interrupts 
enabled. If the mode is background, the cell is run with 
interrupts disabled. A background cell can be used to 
implement a device driver Strand, which requires access 
to hardware resources without fear of interrupt from the 
hardware. 

Entry Point: The address of the StrandEntry Point function. 
StackPointer: Where to begin the stack when the StrandEn 

tryPoint is run. The stack pointer must point at an 
address within a permanent segment of the cell of the 
strand, or to an assigned segment required by the strand 
in the SDAssignedSegmentList. The kernel table 
builder, not the kernel itself, enforces this restriction. 

Priority: The priority of the strand. 
Scratch.SizeMap: The scratch memory requirements of the 

strand. There are four sizes of Scratch segments: Tiny, 



US 7,689,997 B2 
11 

Small, Medium and Large. The scratch size map defines 
how many of each of these Scratch segments sizes are 
required by the strand. 

SDAssignedSegmentList: The assigned segments required 
by the strand. 

Assigned segments are used to share scarce resources 
between strands. The strand descriptors are kept in the 
StrandDescriptorTable, which is a total mapping from 
StrandID to StrandDescriptor. 
Initial Strand 

There is a configuration parameter called Initial Strand 
used by the kernel. This is static strand information. When the 
kernel has completed initialization, it launches the strand 
indicated by the Initial Strand configuration parameter. 
Resource Availability for a Strand 
A concept that comes up repeatedly in the description of 

the kernel is resource availability, So it is discussed separately 
here to aid understanding of the description of the kernel. 

Execution of a strand may require allocation of resources. 
The resources that may be allocated are scratch and assigned 
segments. Resource availability for a strand means: 

There are enough available scratch segments of the sizes 
specified in the Scratch.SizeMap of the StrandDescrip 
tOr. 

The assigned segments required by the strand are all avail 
able. This can mean one of the following: 
The assigned segments are completely free. 
The assigned segments are part of the message to launch 

the strand. 
The assigned segments have been kept by the strand on 

the prior execution of the strand. 
Runnability of a Strand 
A related concept to resource availability for a strand is the 

runnability of a strand. A strand is runnable when: 
The resources required by the strand are available. 
The strand is not marked blocked. 

Strand Startup 
When a strand begins, it has several standard arguments, 

which are passed to it by the kernel. The parameters are 
passed utilizing the registers/stack. The strand must have 
Sufficient stack space for the Stacked parameters along with 
any space necessary for local data. The variables that are 
initialized with their values and available for a strand to use 
when it starts are as follows: 

SourceStrandID is the ID of the strand, which sent the 
message. 

Command is a 32-bit message from the sending cell. 
Scratch.SegmentList is a structure consisting of the number 
of Scratch segments along with each segment's address 
and size. 

Message is a structure consisting of the number of message 
segments along with each segments address and size. 

Depth represents the level of nested Remote Procedure 
Calls (RPC) that this strand is being started within. A 
length of Zero means that the strand is being started by a 
Message Send call. A length which is greater than Zero, 
represents the number of nested RPCs. 

Exception Handling 
Exception processing allows a strand to transfer control to 

the exception handler specified in the cell descriptor for the 
cell. This feature is similar to a jump and should be used to 
handle cases where abnormal conditions arise. 

The exception code is the only parameter passed to the 
exception handler by the currently running Strand. The excep 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
tion code should contain the error code that resulted in the 
exception. Preferably, the system reserves the first 32 excep 
tion codes (0->31) for current and future growth. Each cell is 
free to use the other exception codes as needed. 
What is claimed is: 
1. A method of allocating memory for a first task and a 

second task in a computer-implemented system, where the 
tasks are executed by an operating system residing on the 
computer-implemented System, comprising the steps of: 

providing predefined memory requirements for the first 
and second tasks, the predefined memory requirements 
include a permanent memory component and a transient 
memory component, wherein the memory requirements 
are a function of the respective tasks and are determined 
at compile time; 

allocating a memory space for the first task according to the 
predefined memory requirements associated with the 
first task, the transient memory component being acces 
sible to the first task only during execution of the first 
task: 

executing the first task only when the memory space avail 
able to the first task at least meets the predefined memory 
requirements for the first task and preventing the first 
task from receiving an additional memory space that 
exceeds the predefined memory requirements for the 
first task; 

allocating additional memory to the second task without 
exceeding its predefined memory requirements by: 

transmitting, by the first task, a portion of the transient 
memory component to the second task; and 

upon transmission of the portion, releasing access to the 
portion by the first task wherein the second task receives 
additional components without performing an alloca 
tion of additional memory. 

2. The method of claim 1 further comprising the step of 
initializing the portion of the transient memory component 
prior to the step of allocating a memory space for the first task. 

3. The method of claim 1 wherein the step of allocating a 
memory space for the first task further includes the steps of: 

assigning at least one logical address for accessing the 
memory space associated with the first task, whereby the 
first task accesses the memory space using the logical 
address; 

requesting allocation of the memory space using the logi 
cal address for the memory space; 

translating each logical address for accessing the memory 
space into a corresponding physical address; and 

allocating the memory space for the first task using the 
physical addresses. 

4. A method for providing separation between a plurality of 
cells in a computing system, the method comprising the steps 
of: 

allocating a predefined amount of memory having a first 
permanent component and a transient component in a 
first cell to a first task in the first cell, wherein the 
allocation is based on the first tasks memory require 
ments which are a function of the first task and are 
determined at compile time, the first task having access 
to only the first permanent component prior to launch 
and the transient component comprising a plurality of 
Segments; 

receiving, by the first task, the transient component upon 
launch of the first task; and 

losing access to each segment that the first task transmits to 
a second task in a second cell, wherein the second task 
has memory requirements for permanent and transient 
components that area function of the second task and are 



US 7,689,997 B2 
13 

determined at compile time and the transmission of the 
segments allows the second task to receive additional 
components without performing an allocation of addi 
tional memory. 

5. The method of claim 4, further comprising the step of 5 
losing access to the plurality of segments when the first task is 
terminated such that the first task only has access to the first 
permanent component. 

6. The method of claim 4, wherein the receiving step com 
prises the step of receiving each segment at a respective same 10 
memory address each time the first task is launched. 

7. The method of claim 4, wherein the second task has 
access to a second permanent component in the second cell, 
the method further comprising the steps of: 

receiving, by the second task, each segment transmitted by 15 
the first task; 

launching the second task upon receipt of a received seg 
ment; and 

gaining access, by the second task, to each segment that the 
first task transmits to the second task Such that the sec 

14 
ond task only has access to each received segment and 
the second permanent component. 

8. The method of claim 7, further comprising the steps of: 
terminating the second task: 
losing access, by the second task, to each received segment 
upon termination of the second task; and 

regaining access, by the first task, to each received segment 
upon termination of the second task. 

9. The method of claim 7, further comprising the step of 
prohibiting the second task from transmitting each received 
segment to another task. 

10. The method of claim 7, further comprising the step of 
prohibiting the second task from transmitting each received 
segment to the first task prior to termination. 

11. The method of claim 4, wherein the losing step com 
prises the step of losing access to a message segment of the 
plurality of segments that the first task transmits to the second 
task. 


