Office de la Propriete Canadian CA 2648874 A1 2007/11/22

Intellectuelle Intellectual Property
du Canada Office (21) 2 648 874
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2007/05/14 (51) CLInt./Int.Cl. GO6F 9/44(2006.01),
(87) Date publication PCT/PCT Publication Date: 2007/11/22 GO6F 17/00(2000.01)
: : - _ (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2008/10/03 MICROSOFT CORPORATION. US
(86) N° demande PCT/PCT Application No.: US 2007/011545
) o o (72) Inventeurs/Inventors:
(87) N° publication PCT/PCT Publication No.: 200//133741 GANGULY, SHUVABRATA, US:
(30) Priorité/Priority: 2006/05/15 (US11/383,455) THORNTON, ANDREW J., US;

WIEDERHIRN, JOHN F., US;
RAY, KENNETH D., US

(74) Agent: SMART & BIGGAR

(54) Titre : LANCEMENT D'UN HYPERVISEUR A L'AIDE D'UN SYSTEME D'EXPLOITATION S'TEXECUTANT
(54) Title: LAUNCHING HYPERVISOR UNDER RUNNING OPERATING SYSTEM

200
I Launch Root
l Operating System 201
ROOT OPERATING SYSTEM
1
2 1/—\\ Discover
. Physicaé \
esource(s
2118
N
Launch

Hypervisor

Identify Physical
Resource(s) To

Hypervisar 212

» HYPERVISOR

2217
/_,/

Virtualize Physical Resource(s) To
Operating System

231 Create Virtual Machine

For Root Operating System

f Initialize Virtual Machine instance
232 With State Information Of

Pnysical Resource(s) Received
233\‘,\
214—, | Resume Operation
© In Virtual Machine

From Operating System

Resume Operating System
In Virtual Machine

(57) Abréegée/Abstract:

The launching of a hypervisor after there Is already a running operating system. The operating system itself may launch the
hypervisor. The running operating system may be used Instead of the hypervisor to discover the physical resources running on the
computing system. Other operating systems or operating system instances may be launched after the hypervisor Is operational.

B
.
'
e
SSonEeAN S f
o w'eute?s'e \
BTN .
. M "c‘-'-.h:-:{\: . L~
.
.

A7 /7]
o~

W .
(l an a dH http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC
OPIC - CIPO 191

CA 02648874 2008-10-08

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

(43) International Publication Date
22 November 2007 (22.11.2007)

International Bureau

(51) International Patent Classification:

GOG6F 9/44 (2006.01)

(21) International Application Number:

(22) International Filing Date:

PCT/US2007/011545

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

11/383,455

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

GOG6F 17/00 (2006.01)

14 May 2007 (14.05.2007)

15 May 2006 (15.05.2006) US

(10) International Publication Number

WO 2007/133741 Al

One Microsoft Way, Redmond, Washington 98052-6399

(US). WIEDERHIRN, John, F.; c/o Microsoft Corpora-

tion, International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). RAY, Kenneth, D.; c/o Mi-

crosoft Corporation, International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every

English

English

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
Fl, GB, GD, GE, GH, GM, GT, HN, HR, HU, 1D, IL, IN,

IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,

LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,

MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, P1, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 7ZM, Z W.

(72) Inventors: GANGULY, Shuvabrata; c/o Microsoft Cor- (84) Designated States (unless otherwise indicated, for every

poration, International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). THORNTON, An-
drew, J.; c/o Microsoft Corporation, International Patents,

200

(54) Title: LAUNCHING HYPERVISOR UNDER RUNNING OPERATING SYSTEM

Launch Root
l ‘ Operating System . 2— 207

ROOT OPERATING SYSTEM

211A

214

woO 2007/133741 A1 UM D000 AR 0 0 00 F0 0

211B

N\ Discover

Physical
Resource(s)

™

i Launch
Hypervisor

Identify Physical
Resource(s) To

Hypervisor 212

231

232

233
Resume Operation

In Virtual Machine

» HYPERVISOR

221

Virtualize Physical Rescurce(s) To
Operating System

Create Virtual Machine
For Root Operating System

A L e mintte bl

Initialize Virtual Machine instance
With State Information Of
Physical Resource(s) Received
From Operating System

—

R Resume Operating System

In Virtual Machine

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(57) Abstract: The launching of
a hypervisor after there is already
a running operating system. The
operating system itself may launch
the hypervisor. The running operating
system may be used instead of the
hypervisor to discover the physical
resources running on the computing
system. Other operating systems
or operating system instances may
be launched after the hypervisor is
operational.

CA 02648874 2008-10-08

WO 2007/133741 Al

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

| 1
LAUNCHING HYPERVISOR UNDER RUNNING OPERATING SYSTEM

BACKGROUND

[001] One of the primary functions of an operating system 1s to iﬁterface with
physical resources on a computing system. A typical operating system might guard
against accessing the physical resources in an inappropriate manner. For example, when
one application is using a particular segment of memory, the operating system may protect
that segment of memory from being altered by another application managed by that same
operating system. Otherwise, the applications might not function as expected. Such
access guards are often based on the assumption that the operating .syst'em is the only
operating system running on the computipg system.

[002] However, sometimes it can be advantageous to run multiple operating systems
on the same computing system. In that case, the implicit protections in each operating
system to ensure safe operation with resources may no longer be sufficient. An operating
system may not be able to control the accessing of the same physical resources by another
operating system, and may not even have a mechanism for becoming aware of the
existence of that other running operating system.

[003] A hypervisor is a software layer that is configured to be interposed between one
or more runmng operating systems and protected physical resources (such as processors,

I/O ports, memory, interrupts, etc.). The hypervisor functionally multiplexes the protected

physical resources for the operating systems, and manifests the resources to each operating
system in a virtualized manner. For instance, as a simple example, suppose that there are
two operating systems running on a computing system that has one processor and 1

Gigabyte (GB) of Random Access Memory (RAM). The hypervisor may allocate half of

the processor cycles to each operating system, and half of the memory (512 Megabytes

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

2
(MB) of RAM) to each operating system. Furthermore, the hypervisor may provide a

virtualized range of RAM addressed to each operating system such that it appears to both
operating systems that there is only 512 MB of RAM available.

[004] When the operating system attempts to communicate with a physical resource
and vice versa, the hypervisor performs appropriate buffering and transformations to allow
each operating system to experience its environment as though it was the only operating
system running on the computing system. Furthermore, the hypervisor does this 1s a

manner that the physical resources on the computing system may be shared by multiple

operating system instances while still being protected.

[005] Traditionally, hypervisors are launched prior to runming an operating system.
This allows the hypervisor to start the operating system in a virtual machine by presenting
a virtnalized view of the physical resources. In order to immediately start the operating
system in the virtual machine, the hypervisor includes extensive code for discovering the
physical resources and their essential characteristics. Since physical resource discovery is
done before there are any running operating systems, the operating system cannot be relied

upon 1In this discovery process. Accordingly, the code for discovering physical resources

1n a hypervisor may be quite complex.

SUMMARY
1006] Although the principles of the present invention are not limited to the
embodiments summarized in this brief summary, some embodiments described herein
relate to the launching of a hypervisor after there is already a running operating system.
Although not required, the running operating system may be used instead of the hypervisor

to discover the physical resources running on the computing system. Thus, if desired, the

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

3
hypervisor may rely on the operating system to discover the resources, rather than having

to have code that performs the same functionality.

[007] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor 1S

it intended to be used as an aid in determining the scope of the claimed subject matter.

DRAWINGS
[008] To further clarify the above and other advantages and fegtures of the present
invention, a more particular description of the invention will be rendered by reference to
specific embodiments thereof which are illustrated in the appended drawings. It is
appreciated that these drawings depict only typiéal embodiments of the invention and are

therefore not to be considered limiting of its scope. The invention will be described and

explained with additional specificity and detail through the use of the accompanying

drawings in which:

[009] Figure 1 illustrates a computing environment in which embodiments of the

present invention may be employed;

[010] Figure 2 illustrates a flowchart of a method for launching a hypervisor using a
running operating system;

[011] Figure 3 illustrates a flowchart of a method for launching additional operating
system 1nstances;

[012] Figure 4A illustrates a configuration in which a root operating system, in the

absence of a hypervisor, is 1 direct communication with physical resources of the

computing system;

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

4
[013] Figure 4B illustrates a configuration in which the operating system has

launched a hypervisor to act as an intermediary between the operating system and the
physical resources;

[014] Figure 4C illustrates a configuration in which additional operating systems
have been launched and supported by the hypervisor; and

[015] Figure 5 illustrates a flowchart of a method for transporting the operating

system to the environment of the hypervisor.
DETAILED DESCRIPTION

[016] In accordance with embodiments of the present invention, a hypervisor may be
launched after there is already a running operating system. The running operating system
may be used instead of the hypervisor to discover the physical resources running on the
computing system. Other operating system instances may be launched after the hypervisor
is operational. A general c;omputing environment in which the principles of the present
invention may be practiced }»vill first be described with respect to Figure 1. Then, further
details regarding embodiments of the present invention will be described with respect to
subsequent figures.

[017] Computing systems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices, appliances, laptop computers,
desktop computers, mainframes, distributed computing systems, or even devices that have
not conventionally considered a computing system. In this description and in the claims,
the term “computing system” is defined broadly as including any device or system (or
combination thereof) that includes at least one processor, and a memory capable of having

thereon computer-executable instructions that may be executed by the processor. The

memory may take any form and may depend on the nature and form of the computing

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

J .
system. A computing system may be distributed over a network environment and may

include multiple constituent computing systems.

1018} Referring to Figure 1, in its most basic configuration, a computing system 100
typically includes at least one processing unit 1'02 and memory 104. The memory 104 may
be physical system memory, which may be volatile, non-volatile, or some combination of
the two. An example of volatile memory includes Random Access Memory (RAM).
Examples of non-volatile memory include Read Only Memory (ROM), flash memory, or
the ike. The term “memory” may also be used herein to refer to non-volatile mass storage
such as physical storage media. Such storage may be removable or non-removable, and
may include (but is not limited to) PCMCIA cards, magnetic and optical disks, magnetic

tape, and the like.

[019] As-used herein, the term “module” or “component” éan refer to software
objects or routines that execute on the computing system. The different components,
modules, engines, and services described herein may be implemented as objects or
processes that execute on the computing system (e.g., as separate threads). While the
system and methods described herein may be implemented in software, implementations
in hardware, and in combinations of software and hardware are also possible and

contemplated.

[020] In the description that follows, embodiments of the invention are described
with reference to acts that are performed by one or more computing systems. If such acts
are implemented in software, one or more processors of the associated computing system
that performs the act direct the operation of the computing system in response to having
executed computer-executable instructions. An example of such an operation involves the

manipulation of data. The computer-executable instructions (and the manipulated data)

may be stored in the memory 104 of the computing system 100.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

6
[021] Computing system 100 may also contain communication channels 108 that

allow the computing system 100 to communicate with other computing systems over, for
example, network 110. Communication channels 108 are examples of communications
media. Communications media typically embody computer-readable instructions, data
structures, program modules, or other data in a modulated data signal such as a carrier
wave or other transport mechanism and include any information-delivery media. By way
of example,-and not limitation, communications media include wired media, such as wired
networks and direct-wired connections, and wireless media such as acoustic, radio,
infrared, and other wireless media. The term computer-readable media as used herein
includes both storage media and communications media.

[022] Embodiments within the scope of the present invention also include computer-
regdable media for carrying or having computer-executable instructions or data structures
stored thereon. Such computer-readable media can be any available media that can be
accessed by a general purpose or special purpose computer. By way of example, and not
Iimitation, such computer-readable media can comprise physical storage and/or memory
media such as RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other maénetic storage devices, or any other medium which can be used to
carry or store desired program code means in the form of computer-executable instructions
or data structures and which can be accessed by a general purpose or special purpose
computer. When information is transferred or provided over a network or another

communications connection (either hardwired, wireless, or a combination of hardwired or

wireless) to a computer, the computer properly views the connection as a computer-
readable medium. Thus, any such connection is properly termed a computer-readable

medium. Combinations of the above should also be included within the scope of

computer-readable media.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

7
[023] Computer-executable instructions comprise, for example, instructions and data

which cause a general purpose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of functions. Although the
subject matter has been described in language specific to structural features and/or
methodological acts, it is to be understood that the subject matter defined in the appended

claims 1s not neceésaﬁly limited to the specific features or acts described herem. Rather,
the specific features and acts described herein are disclosed as example forms of
implementing the claims.

[024] Figure 2 1llustrates a flowchart of a method 200 for a running operating system
to launch a hypervisor. In this‘ description and in the claims, a “hypervisor” is a software
layer that 1s configured to be disposed between one or more running operating systems and
protected physical resources. The hypervisor functionally multiplexes the protected
physical resources for the operating systems, and manifests the resources to each operating
system 1In a virtualized manner. Thus, the hypervisor acts as a special kind of abstraction
layer between the operating system and the physical resources of the computing system.
[025] For mstance, as a simple example, suppose that there are two operating systems
running on a computing system that has one processor and 1 Gigabyte (GB) of Random
Access Memory (RAM). The hypervisor may allocate half of the processor cycles to each
operating system, and half of the memory (512 Megabytes (MB) of RAM) to each
operating system: Furthermore, the hypervisor may provide a virtualized range of RAM
addressed to each operating system such that it appears to both operating systems that

there is only 512 MB of RAM available. When the operating system attempts to

communicate with a physical resource and vice versa, the hypervisor performs appropriate

buffering and transformations to allow each operating system to experience its

environment as though it was the only operating system running on the computing system.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

8
[026] Unlike conventional hypervisor configurations, embodiments of the present

invention permit the hypervisor to be launched after the operating system has been
launched, even if the operating system has already discovered the physical resources of the
computing system. The operating system that starts the hypervisor passes information
representing the state of the discovered physical resources to the hypervisor. Thus, the
hypervisor need not have separate code to discover the physical resources of the
computing system.

[027] Once the operating system launches the hypervisor and passes to the hypervisor
information regarding the discovered physical resources of the computing system, the
operating system may pause execution and pass control to the hypervisor. The hypervisor
could then set up a virtual machine instance to handle future access requesis to any
protected resources of the computing system’s physical resources. The virtual machine
instance 1s initilglized with state that is consistent with the operating system’s concept of
the protected physical resources. When this is accomplished, the operating system
resumes in the virtual machine environment. In the virtual machine environment,
however, the operating system interfaces with the physical resources indirectly through the
hypervisor, rather than directly with the physical resources. The change is transparent to
the operating system since the virtual machine that ?s dedicated to communication with the
operating system honors the information the operating system had previously discovered
about the physical resources.

[028] In some cases and for some of the protected physical resources, it may not be

possible for the operating system to discover a protected physical resource without the use

of the hypervisor, and then interface later indirectly with- that same protected physical

resource through the hypervisor in a transparent manner. In that case, the operating

system may be configured to understand that it might later be operating through a

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

9
hypervisor, and to thus ignore any of the physical resources that cannot later be virtualized

in a transparent manner. For instance, the operating system loader may be configured to
inform other operating system components not to use particular protected physical
resources.

[029] Referring back to Figure 2, the method 200 begins when the root operating
system is launched (act 201). A “root” operating system is the operating system that
launches the hypervisor, as contrasted with operating systems that may be launched afier
the hypervisor is operational. Figure 4A illustrates a configuration 400A. at this stage of
operation in which the operating system 401 communicates directly 404 with the physical
resources 402 of the computing system in the absence of a hypervisor.

[030] The root operating system then performs several acts that are illustrated in the
left column of Figure 2 under the column header “ROOT OPERATING SYSTEM”. For
Instance, the root operating system discovers at least one physical resource (act 211A).
Operating systems typically have instructions that discover the physical resources of the
computing system that are executed soon after launching the operating system. Referring
to Figure 4A, for example, the operating system 401 djséovers physical resource state 403.
Discovering physical resources of a compu.lting system can be a complex task.

[031] In order to resume the operating system in the state before the launch of the
hypervisor, the operating system captures the state of the physical machine prior to the
launching the hypervisor. In éne embodiment, the captured state includes the state of all
the physical processors and the physical APICs. The physical processor state inclu.des:

1. General purpose registers.
2. Floating point and XMM registers.

3. Control registers (CRs).

4. Debug registers (DRS)

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

10
5. Instruction Pointer (RIP), Stack Pointer (RSP) and Flags Register

(RFLAGNS).
6. Segment state for CS, DS, SS, ES, FS, GS aﬂd TR segments including the
segment bases, limits and access rights.
7. The Global Descriptor Table Register (GDTR), Interrupt Descriptor Table
Register (IDTR) and Local Descriptor Table Register (LDTR).
| 8. Certain model specific registers (MSRs) which includes KermelGsBase,
Star, Lstar, Cstar, Sfmask, SysenterCs, SysenterEip, SysenterEsp and ApicBase MSRs.

[032] The physical Local APIC state may includes:

1. Local APIC ID

2. In-Request-Register (IRR)

3. In-Service-Register (ISR)

4. ‘Task Priority Register (TPR)
[033] In addition some other aspects of the hardware may be provided to the
hypervisor as boot parameters when the hypervisor is launched. These might include:

1. Present and potential logical processors, including those that may be hot-

plugged at runtime

2. Whether hyperthreading is enabled or disabled in the BIOS

3. Present Physical RAM ranges — system physical address ranges that are

populated with RAM at the time the hypervisor is booted

4. Physical nodes (including those that have no associated resources at boot

time but may be populated at runtime)

S. Memory access ratios between physical nodes

6. Addresses of certain hardware features that the hypervisor must access (e.g.

the power management timer)

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

11
[034] The operating system also launches the hypervisor (act 211B) that is to be

interposed between the operating system and the physical resources. For instance,
referring to Figure 4B, the hypervisor 405 is interposed between the root operating system
401 and the physical resources 402. As part of this launching, the operating system
provides state information for at least the physical resources to be protected to the
hypervisor (act 212). This state information includes all the information that a hypervisor
would need to discover the relevant state of the protected physical resources that are to be
guarded by the hypervisor. In one embodiment, the state information might include the
capture state described above. At the very least, the state information includes at least an
identification of the corresponding physical resources.

[035] Also, as part of the launch, the operating system passes control to the
hypervisor. The hypervisor then performs acts as illustrated in the right column of Figure
2 under the heading “HYPERViSOR”. In particular, the hypervisor then performs tasks
necessary to virtualize the protected physical resources of the computing system to the root
operating system (act 221).

[036] For instance, the hypervisor may create a virtual machine instance for the root
oﬁerating system (act 231). Referring to Figure 4B, block 421 repres.ents a virtual
machine instance for the operating sfstem 401. Once mitialized and operational, the
virtual machine instance 421 will serve as a proxy for the physical resources 402 for the
operating system 401. The virtual machine instance 421 will receive service requests from
the operating system 401 for the physical resources, and will perform appropriate
transformations and buffering of the requests depending on the state information

accessible to the virtual machine instance 421. The virtual machine instance 421 will then

cause the hypervisor 405 to request the appropriate service from the physical resources

402. The virtual machine instance 421 will potentially also report back the results of the

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

12
request to the operating system 401 with appropriate transformations and buffering as

needed.

[037] The virtual machine instance 421 will behave differently depending on the state
information accessible to the virtnal rﬁachine instance. The hypervisor honors the state
information that the operating system 401 has already discovered regarding the physical

resources 402. Accordingly, the hypervisor 405 initializes the virtual machine instance
421 with at least some of the state information provided by the operating system (act 232).
For instance, the hypervisor 405 may initialize the virtual machine with the capture state
provided by the operating system. In this manner, the. virtual machine instance 421 1is
initialized w.ith state consistent with the information representing the physical resources
detected by the operating system. The operating system is then resumed in the virtual
machine environment (act 233 and act 214). In this envirc;nment, as seen in Figure 4B,
instead. of the operating system 401 interfacing directly with the physical resources 402,
the physical resources 402 are virtualized for the operating system 401 through the use of

the virtual machine instance 421 and the hypervisor 405. Since the state information used

oy the virtual machine 421 is consistent with the state information discovered by the

operating system 401, the change is transparent to the operating system 401 is some
embodiments.

[038] In one embodiment, the virtualization is provi;:led via a virtual processor
abstraction which emulates the behavior of the physical processor. Similarly it provides a

virtual APIC which emulates the behavior of the physical APIC. This is achieved as

follows:

1. The state of the virtual processor is initialized to the captured state of the

physical processor.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

13
2. The state of the virtual APIC is initialized to the captured state of the

physical Local APIC.

3. The hypervisor installs intercepts to prevent the operating system from
accessing privileged physical hardware resources. For example, the guest physical address’
where the local APIC was previously located prior to launching the hypervisor is marked
as not present so that all accesses to the local APIC are trapped into the hypervisor.

[039] After the hypervisor is launched, the hypervisor may launch additional
operating systems, either instances of the same operating system, or instances of different
operating systems. For example, referring to Figure 4C, operating systems 412 and 413
amongst potentially others as represented by the ellipses 414 may additionally be
launched. Figure 3 illustrates a flowchart of a method 300 for virtualizing physical
resources to the additional operating systems as well. When an additional operating
system is to be launched, the hypervisor first launches a corresponding virtual machine
instance (act 301), through which the operating system is then launched (act 302). The
hypervisor uses the corresponding virtual machine instance to virtualize the physical
resource(s) to the corresponding additional operating system (act 303).

[040] When each operating system performs discovery of the physical resources upon
starting up the operating system, the various requests for information are intercepted by
the cormresponding virtual machine instance. Instead of finding out the actual state
information associated with the physical resources, the corresponding virtual machine

provides virtualized state information to the operating system.
[041] Sometimes, the operating system that launches the hypervisor may be in a
different environment type. For instance, perhaps the operating system is operating in 32-

bit mode, whereas the hypervisor to be launched is to operate in 64-bit mode, or vice

versa. Similarly, the operating system and the hypervisor may be operating in different

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

14
paging modes. Some embodiments of the present invention allow the operating system to

launch the hypervisor even if the operating system and hypervisor are operating in
different environments.

[042] Figure 5 illustrates a flowchart of a method 500 for the operating system to
enter the environment of the hypervisor in preparation for launching the hypervisor. From
act 201 of Figure 5 in which the operating system is launched, the operating system first
renders 1nactionable any non-maskable interrupts (act 501), and masks any maskable
interrupts. Non-maskable interrupts may be rendered inactionable in a number of different
ways. After all, when the operating system is in transition to the hypervisor operating
environment, care should be taken to ensure that no interrupts or exceptions occur before
the 1mutial state of the hypervisor is loaded. If an interrupt or exception occurs after leaving
the operating system environment but before entering the hypervisor environment the
processor will probably not be able to handle the interrupt or exception since tﬁere 1S no
interrupt descriiator table or a stack. Most exceptions can easily be avoided since they are
software initiated. Maskable hardware interrupts can inhibit during this process by clearing

the IF bit in the RFLLAGS register.

[043] Non-maskable interrupts (NMlIs) can be inhibited by either of the two

mechanisms:

[044] - 1. Self deliver an NMI and do not execute an IRET instruction: This can be
achieved by temporarily modifying the NMI handler address in the operating system’s
interrupt descriptor table to point to a different handler. Then an NMI can be delivered to
the current processor. This will cause the processor to jump to the address provided as the
NMI handler. In the NMI handler, we can restore the original NMI handler address and

continue. This will effectively mask further NMIs since on the x86 architecture NMlIs are

masked after an NMI is received until an IRET instruction is executed.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

15
[045] 2. Always run with a valid interrupt descriptor table (IDT) and stack: This can

be achieved by creating a temporary IDT and stack. The temporary page tables can map
the temporary IDT, the NMI handler and stack at their original virtual addresses and their

respective physical addresses. This ensures that if an NMI arrives when the processor 1S

running with the temporary page tables it will be correctly delivered to the handler.

[046] Once the interrupts are masked or otherwise rendered inactionable (act 501), a
temporary virtual machine instance is created (act 502). The operating system then
initializes the temporary virtual machine instance with an instruction that causes an
intercept (act 503). An intercept is a transfer of control from the operating system to the
hypervisor. .When the temporary virtual machine instance is resumed (act 504), the virtual
machine instance executes the instructions that causes the intercept, and the intercept 1s
thus generated (act 505). Consequently, the temporary virtual machine instance starts
executing using the hypervisor state (act 506), thereby causing the operating system to
continue operation in hypervisor mode (act 507). The operating system may then launch
the hypervisor. Optionally, the temporary virtual machine instance may be destroyed (act
508), since it was only needed to put the operating system into the hypervisor mode
necessary to launch the hypervisor. ,

1047] Accordingly, embodiments of the present invention permit a hypervisor to be
launched even after there is already a running operating system present on the computing
sysiem. In some embodiments, the operating system may launch the hypervisor even if
the operating system and hypervisor are in different environments.

[048] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to be
considered m all respects only as illustrative and not restrictive. The scope of the

invention 1s, therefore, indicated by the appended claims rather than by the foregoing

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

16
description. All changes which come within the meaning and range of equivalency of the

claims are to be embraced within their scope.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

17
CLAIMS

What is claimed 1s:
1. A computer program product comprising one or more computer-readable

media (104) having one or more computer-executable instructions that, when executed by

one or more processors (102) of a computing system (100), the one or more computer-
executable instructions cause the computing system (100) to perform a method for using a
running operating system to launch a hypervisor, the method comprising:

an act of an operating system (401) launching (211B) a hypervisor (405); and

an act of the launched hypervisor (405) virtualizing (221) at least one physical

resource (402) of the computing system (100) to the operating system (401) that launched

the hypervisor (405).

2. A computer program product in accordance with Claim 1, wherein the one

or more computer-readable media i1s physical memory and storage media.

3. A computer program product in accordance with Claim 1, wherein the one

or more computer-readable media is physical memory media.

4. A computer program product in accordance with Claim 1, wherein the one

or more computer-readable media is physical storage media.

5. A computer program product in accordance with Claim 1, wherein the

computer-executable instructions are further structured such that, when executed by one or

more processors of the computing system, the computing system is caused to further

perform the following:

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

18
an act of the operating system discovering the at least one physical resource; and

an act of the operating system providing state information for the at least one

physical resource to the hypervisor, the state information including at least an

identification of the corresponding physical resource.

6. A computer program product in accordance with Claim 5, wherein the
computer-executable mstructions are further structured such that, when executed by one or
more processors of the computing system, the computing system is caused to further

perform the following:

an act of the hypervisor launching a virtual machine instance for the operating

system,;

an act of initializing the virtual machine instance with state information provided
by the operating system;

an act of the hypervisor resuming the operating system after initializing the virtual
.machine instance; and
after the operating system is resﬁmed, an g:c:t of ;he hypervisor. using the virtual

~machine instance to virtualize the at least one physical resource.

7. A computer program product in accordance with Claim 6, wherein the

computer-executable instructions are further structured such that, when executed by one or
more processors of the computing 'system, the computing system is caused to further
perform the following for each additional operating system launched on the computing

system:.

an act of the hypervisor launching a corresponding virtual machine instance for

each additional operating system;

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

19
an act of launching the corresponding additional operating system after the

corresponding virtual machine instance is launched; and
an act of the hypervisor using the corresponding virtual machine instance to

virtualize the at least one physical resource to the corresponding additional operating

system.

8. . A computer program product in accordance with Claim 1, wherein the
computer-executable instructions are further structured such that, when executed by the
one or more processors of the computing system, the computing system is caused to
further perform the following;:

an act of the launched hypervisor virtualizing at least one physical resource of the

computing system to the operating system that launched the hypervisor.

9. A computer program product in accordance with Claim 1, wherein the
computer-executable instructions further comprising computer-executable instructions
that, when executed by the one or more processors of the computing system, the
computing system is caused to perform the following;

an act of the operating system creating a temporary virtual machine instance;

an act of mitializing the temporary virtual machine instance with an instruction that

generates an intercept;

an act of resuming the temporary virtual machine instance after the act of
initializing;
upon detecting the intercept resultiﬁg from the act of resuming the temporary

virtual machine instance, an act of starting the temporary virtual machine instance to

operate using hypervisor state.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

20

10. A computer program product in accordance with Claim 9, wherein the
computer-executable instructions further comprise computer-executable instructions that,
when executed by the one or more processofs of the computing system, the computing
system is caused to perform the following prior to the creation of the temporary virtual
machine instance:

an act of rendering inactionable any non-maskable interrupts.

11. A computer program product in accordance with Claim 9, wherein the
computer-executable instructions further comprise computer-executable instructions that,
when executed by the one or more processors of the computing system, the computing
system is caused to perform the following after the temporary virtual machine instance 1s
started using the hypervisor state:

an act of launching the hypervisor; and

an act of destroying the temporary virtual machine instance.

12. A computer program product in accordance with Claim 11, wherein one of
the operating system and the hypervisor operates in 32 bit mode, while the other of the

operating system and the hypervisor operators in 64 bit made.

13. A computer program product in accordance with Claim 11, wherein the

operating system and the hypervisor operate using a different paging mechanism.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

21
14. A method (200) for launching a hypervisor (405) using a running operating

system (401) to launch a hypervisor (405), the method comprising:

an act of a hypervisor (405) receiving from a root operating system (401)
information representing a plurality of physical resources (212) detected by the operating
system (401);

an act of the hypervisor (401) launching (231) a virtual machine instance for the
root operating system;

an act of initializing (232) the virtual machine with state consistent with the
information representing the plurality of physical resources detected by the operating
system;

an act of resuming (233) the root operating system such that the root operating

system interfaces indirectly with the plurality of physical resources via the virtual machine

instance that was initialized using the state.

15. A method in accordance with Claim 14, further comprising the following

after the hypervisor is running:

an act of launching one or more additional operating systems.

16. A method 1n accordance with Claim 15, further comprising the following

for each of the one or more additional operating systems:

an act of 1itiating a corresponding virtual machine instance to interface with the

corresponding additional operating system.

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

22
17. A computer program product comprising one or more computer-readable

media (104) having thereon the following:
an operating system (401); and
a hypervisor (405) launched by the operating system (401) and configured to

virtualize at least one physical resource (402) of the computing system to the operating

system (401).

18." A computer program product in accordance with Claim 17, wherein the one

or more computer-readable media is physical memory and storage media.

19. A computer program product in accordance with Claim 17, wherein the one

or more computer-readable media is physical memory media.

20. A computer program product in accordance with Claim 17, wherein the one

or more computer-readable media is physical storage media.

CA 02648874 2008-10-08

PCT/US2007/0115435

WO 2007/133741

175

} Old

801
S[auuByn

UONREAIUNWLLION

00}
waysAg bupnduwio)

3[}ejO/-UON

SJlEIOA

20}
(5)108580014

CA 02648874 2008-10-08

WO 2007/133741

e1iA Discover

Physical

2118 Resource(s)

Launch
Hypervisor

Identify Physical
Resource(s) To
Hypervisor

214 Resume Operation
In Virtual Machine

L.aunch Root
Operating System

ROOT OPERATING SYSTEM

212

PCT/US2007/0115435

215

201

HYPERVISOR 991

Virtualize Physical Resource(s) To
Operating System

231 Create Virtual Machine
FFor Root Operating System

Initialize Virtual Machine Instance
With State Information Of
Physical Resource(s) Received
FFrom Operating System

233
1 Resume Operating System
In Virtual Machine

232

FIG. 2

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

3/5

300

Hypervisor Launches

Corresponding Virtual
Machine Instance 307

Launch Additional

Operating System 302

Use Virtual Machine

Instance To Virtualize 303
Physical Resource(s)

CA 02648874 2008-10-08

PCT/US2007/0115435

WO 2007/133741

4/5

XA 4

L

59IN0S9Y

ey
wa)sh
buneisdp

0¥

(s)201n0say [eaisAud

0¥

GOy
6Cr JosiAadA]

4

9ElS
82.N0S9Y

4%
Wia)sA
buneladp

2009

Ll

20/

iy
89IN0SaY]

1oy
WR)SA
Bunessdp

Az
(S)a0.nossy [eaisAud

GOy
J0SIMBUAH

y0y

9)e)S (S)a0inosay [eaisAyd

L0F
wasAg Bunelsdo

800%

vy Ild

0%

(s)aoinossy [eaishud

y0y

5)e1S (S)aainosay |eaisAud

L0F
Wa)sAg buneladp

V007

CA 02648874 2008-10-08
WO 2007/133741 PCT/US2007/011545

5/5
200

Render Unactionable Any

Unmaskable Interrupts - 901

Create Temporary Virtual
Machine instance 202

Initialize Virtual Machine
Instance With An Instruction That 203

Generates An Intercept

Resume Virtual Machine
Instance 2 504
Generate
Intercept 2 505

Virtual Machine

Instance Starts Executing 506
Using Hypervisor State
| 0.S. Continues Operation
In Hypervisor Mode 507
Destroy Temporary

Virtual Machine Instance 508

FIG. 5

201

L.aunch Root
Operating System

ROOT OPERATING SYSTEM

e115 Discover

Physical

2118 Resource(s)

Launch
Hypervisor

ldentify Physical
Resource(s) To 219
Hypervisor

HYPERVISOR 091

Virtualize Physical Resource(s) To
Operating System

231 Create Virtual Machine
FFor Root Operating System

Initialize Virtual Machine instance
With State Information Of
Physical Resource(s) Received
From Operating System

233
214 Resume Operation 1 Resume Operating System
In Virtual Machine In Virtual Machine

232

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - abstract drawing

