PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
Intemational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 13/00, 13/10, 13/14 Al

(11) International Publication Number:

(43) International Publication Date:

WO 96/20448

4 July 1996 (04.07.96)

(21) International Application Number: PCT/US95/16233

(22) International Filing Date: 22 December 1995 (22.12.95)

(30) Priority Data:

08/362,987 Uus

23 December 1994 (23.12.94)

(71) Applicant: SOUTHWESTERN BELL TECHNOLOGY RE-
SOURCES, INC. [US/US]; 9505 Arboretum Boulevard,
Austin, TX 78759 (US).

(72) Inventors: ADAMS, Thomas, L., 1751 Wild Horse Creek
Road, St. Louis, MO 63005 (US). CHORLEY, Will, R.;
251 Ries Road, Ballwin, MO 63021 (US). CUNETTO,
Philip, C.; 808 Kentridge Court, Ballwin, MO 63021 (US).
DOHERTY, James, M.; 110 Hollybush Court, Ballwin,
MO 63021 (US). LEMAY, John, E.; 2161 Hickory Drive,
Chesterfield, MO 63005 (US). MUELLER, Stephen, M.;
1348 Autumn Woods Circle, Ballwin, MO 63011 (US).
PAROLKAR, Satish; 2315 Westpar Drive, Chesterfield, MO
63017 (US). SCHROEDER, Thimothy, P.; 2142 Terrimill
Terrace, Chesterfield, MO 63017 (US). SLATEN, Charles,
B.; 337 Forest Grove Court, St. Charles, MO 63304 (US).

(74) Agents: GREENBLUM, Neil, F. et al.; Greenblum & Bemnstein,
PLC, 1941 Roland Clarke Place, Reston, VA 22091 (US).

(81) Designated States: AU, CA, JP, KR, NZ, SG, European patent
(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: FLEXIBLE NETWORK PLATFORM AND CALL PROCESSING SYSTEM

(57) Abstract

A flexible network platform (10a) and call processing
system are disclosed. The call processing system includes
a particular call processing architecture and a resource
managing system. An OAM & P subsystem (94) and
systems for performing data provisioning (92) and service
creation are each provided. The call processing system may
include a call processing mechanism for performing call
processing in accordance with defined service logic, and
call processing resources connected to the call processing
mechanism. The call processing resources are designed so
that any service logic unit may be linked to any particular
event that might occur in connection with the call processing
system. A resource managing system (428) is also disclosed
for assigning resources in response to a request made
by the call processing system for a specified capability.
The resource managing system receives the request for a
specified capability and allocates a logical resource object
that identifies a particular resource that will support the
specified resource capability.

10 yai.)
”
PAOVISIONING & |/ o OAM &P
SERVICE CNEATION m 1 | WORSSTATION
| ]
i §0
DATABASE oAMP

LINK
YOICE PROCESSOR SWITCH LAYER
MESSAGE DISTRIBUTOR { 120a | MESSAGE DISTRIBUTOR
54 T T 104 108
YOICE PROCESSOR SWITCH
LINK DRNER M LINK DRAVER 1
YOICE PROCESSOR

1} & 96




applications under the PCT.

AM
AT
AU
BB
BE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG
SI
SK
SN
Sz
™D
TG
TJ

UA
UG

vz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam




WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

FLEXIBLE NETWORK PLATFORM AND CALIL PROCESSING SYSTEM
SUMMARY OF THE INVENTION
1. Field of the Invention

The present invention relates to a telecommunications
network and a platform which controls the telecommunications
network by managing call processing within the
telecommunications network and handling other functions such
as the assignment of resources, signalling and switching.

2. Discussion of Background Information

Over the years, telecommunications networks have vastly
improved in their ability to enable network users to receive
what is termed "personalized services." These services are
personalized in that they are oriented toward the
user/subscriber instead of the network in general; that is,
the user can decide which network service or services he or
she wishes to subscribe to, as opposed to the user getting,
and paying for, all services that the network provides.

One type of network that is particularly well suited for
the provision of personalized services is the intelligent
network. Intelligent networks centralize service-related
intelligence in special nodes located in the
telecommunications network. The intelligent network is well
suited for telecommunications systems providing personalized
services since it allows the setting up and management of
network services that require sizable data and call handling
resources.

An article by Sadaba (Telefonica de Espana) entitled
"Personal Communications in the Intelligent Network," British
Telecommunications Engineering, Vol. 9, August, 1990, pages
80-83, notes the importance of intelligent networks with
respect to personalized services. The article generally
describes (at pages 82-83) the concept of intelligent
networks, and notes that intelligent networks treat all calls
individually, dependent upon several parameters and variables.
The article further explains that several entities are
involved in the control of a call, and that switching
functions are clearly separated from the control functions.
The article states that separation of the switching functions
from the control functions allows the resulting network to be

- SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

- -

more flexible in the way that it handles telecommunications
functions, such as numbering, charging, routing, subscriber
location, network management and service creation.
Accordingly, intelligent networks have been deemed important
in providing for flexibility in network management, service
creation, and provisioning in telecommunications networks.
Intelligent networks have been embodied in various forms,
including well-known versions such as IN/1, IN/2 and IN/1+,
as well as the advanced intelligent network (AIN) releases.
A particular AIN architecture is described by Roger K. Berman
and John H. Brewster in an article entitled "Perspectives on
the AIN Architecture," IEEE Communications magazine, February
1992, pages 27-32. In that article, a particular AIN release
1 architecture is described at pages 28 and 29. The physical
systems and interfaces included in the AIN architecture are
shown in Fig. 1 of the article.

The article further discloses, in an appendix at page 31,
more detailed information about an AIN release 1 call model.
The AIN release 1 call model is described as comprising two
components, including a basic call model (BCM) and a
connection view (CV). The BCM provides a generic model of
current call processing for basic two-party calls and
describes when in call processing AIN switch capabilities can
be utilized. The CV describes how service logic of a stored
program control can access the AIN switch capabilities to
influence call processing and the switch. The CV provides a
generic view of call processing resources in the AIN switch
to the SCP/adjunct, which view is independent of the switch

vendor implementation, representing the essential
characteristics of call processing resources needed by service
logic, and hides the <critical details of technical

complexities of the resources from the service logic.

While the specifics of the AIN release 1 architecture
allow for a certain amount of flexibility in the use of
different switches, e.g., by hiding the physical details and
technical complexities of the resources from the service
logic, the AIN architecture is limited in many respects.
Particularly, there is some room for improvement in the

ability of a network platform to provide a wide range of

CHRSTITIITF SHFFT MRINF 28)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-3-

personalized services, change the resources used by the

platform,

quickly create and deliver services, and provide

OAM&P capabilities.
3. Definitions

The following terms are defined in order to provide a
better understanding of the present invention as described

herein.

Aggregate resource capability:

A resource capability that represents more than one
basic capability.

Alarm factors:

The input states associated with a managed object
which caused the object’s summary state to take on
its current value. If all problems listed in the
alarm states are resolved, the managed object’s
summary state will return to CLEAR.

Application layer:

The application layer comprises all classes whose
objects generically participate in call processing,
including, e.g., the leg, session, event manager,
event handler and application components.

Application component:

A basic unit of service function. Services are
built using application components.

Basic capability:

Call

Fundamental units of equipment functionality. A
basic capability cannot be decomposed into other
capabilities. Some examples of basic capabilities
could be playing tones, and recognizing DTMF
digits.
processing stack:
A hierarchy of objects that interact with each
other to implement call processing. From bottom to
top for a given active call, the stack comprises
one or more logical resources, one or more
channels, one or more virtual terminals, one or
more legs, a session, and at the top of the
ierarchy, a set of event managers, event handlers

and application components that are utilized to

SUBSTITIITE SHEET (RIILF 78)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

- -

execute various service logic wunits (service
program) .

Call processing virtual machine:
The software environment within which the flexible
platform services run, consisting of generic call
components and application components. A

Capability:
A capability is any function that a piece of
equipment can perform. Some example capabilities
are playing tones, making voice calls and playing
announcements.

Channel:

An object in the call processing stack that manages
a path resource and a set of logical resources
(which may be empty) associated with that path
resource. A channel may also keep track of basic
capabilities and resource capabilities supported by
the resources that it is managing.

Event handler:

An object that appears in the event manager of a
session. Each event handler waits for a particular
event to occur, where the event is of a certain
type and has a particular reference channel and
reference leg. If an event occurs with respect to
reference channel and reference leg, the event
handler starts execution of the specified service
logic unit assigned to it.

Event manager:

An object in (or associated with) a session that
contains event handlers for that session. It may
be arranged as an array, indexed by event type, of
event handler lists.

Generic call components:

Software objects, comprising, e.g., sessions, legs,
VTs (virtual terminals), channels and VUs (virtual
users), that are used to represent the dynamic
states of calls, and other information including
how many calls are involved, what resources are
being used, and so on.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

Input state:

The set of states which serve as the input to one
or more functions used to calculate the output
states of a managed object. These states are
communicated to the objects via the state
distributor.

Intermediate model domain:

Leg:

Link

Managed object representation of objects existing
in the real-time domain (RTD) and logical groupings
of those objects.

The application layer object that represents a
party to a call. The leg manages both information
about a single party in a call and the VT (virtual
terminal) object associated with that party’s call.
The leg may also perform other functions.

layer:

The software in the platform host that manages the
communications link which connects physical
resources to the host. The 1link layer passes
messages between physical resources and the logical
resource objects with which they are associated.

Logical resource:

An object in the call processing stack that
represents one or more resources, e.g. hardware,
software, firmware, etc. The logical resource may
perform functions such as translating commands from
higher layers into bit streams understandable by
the resources it represents. Other functions that
a logical resource might perform include
translating reports from the resources it
represents into calls to reporting methods that are
present in the higher layers of the software.

Managed object:

A collection of a set of input states, a set of
output states, a set of functions which calculate
the output states from the input states, and a set
of functions which this collected entity can
perform. This collection of information within the

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-——-

managed object may be used to represent either a

physical or 1logical entity within the platform
system.

Output states:

Path:

The set of states which provide a consolidated view
of the information feeding into a managed object.
The output state is defined by a function using one
or more of the managed objects of the input state
of the managed object as parameters. The input
states are communicated to that particular managed
object via a state distributor.

Any medium that supports the transfer of
information from a user located on the network to
the platform, from the platform to a user on the
network, or from one user on the network to another

user on the network. Some example paths could
include a voice path, or a data path.

Path resources:
A logical resource object that represents a
resource that supports a path.

Platform:

The control component of a communications system
infrastructure which manages the communication
processes and handles assignment of resources, and
other functions such as signalling and switching.

Presentation domain:

Applications used to present the object in the
intermediate model domain (IMD) to an external
system (e.g., an application program within an
OAM&P work station).

Real-time domain (RTD):

Those components of the platform which directly
support call processing, e.g., resources, channels,
virtual terminals, and so on, as well as OAM&P
specific objects which interact in real time with
the «call control object that supports call
processing.

Reference channel:

SHRSTIIVITE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-7

The channel with reference to which an event
occurs. The reference channel is not necessarily
the same as the channel which produced the event.
For example, an internal offer connection event is
produced by a channel on the incoming side of a
call. However, its reference channel is an
unspecified channel and some leg on the outgoing
side of the call. If a session receives an event
with a particular reference leg and a particular
reference channel and it contains an event handler
for that event, with the particular reference leg
and particular reference channel, it starts

‘executing that particular corresponding event

handler. The reference channel for an event is
contained in a virtual terminal (VT) associated
with the reference leg for that same event.

Reference leg:

The leg with reference to which an event occurs.
The leg is not necessarily the same as the leg
which produced the event (which may be called the
originating leg). For example, an internal offer
connection event may be produced by a leg on the
incoming side of a call. But its reference leg may
be some leg on the outgoing side of a call. If a
session receives an event with a particular
reference 1leg and reference channel, and it
contains an event handler that corresponds to that
event, reference leg, and reference channel, it
will start executing that event handler. The
reference leg for an event is associated with a VT
that contains the reference channel for the same
event.

Resource capability:

A capability that represents one or more basic
capabilities.

Resource layer:

In the context of a flexible network platform, as
disclosed herein, the resource layer may ccmprise
all 1logical resource, channel, and VT (virtual

SIRSTITITF SHFFT (MNTF 28)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-8-

terminal) classes. With respect to a given call,
the resource layer may comprise a set of objects

within those classes that are participating in that
active call.

Scratch variable:

Each event handler has a collection of scratch
variables. If the event handler is considered to
be a virtual machine for executing services, the
scratch variable serves as its memory and register
space. The scratch variables are used to perform
calculations and store data that needs to be
conveyed from one application component to another
during execution of service logic.

Service logic unit (SLU):
The body of service logic that an event handler
executes. A service logic unit may be simply
called a service unit. A service may be composed
of one or more (usually more) service logic units.

Sessions:
The software object to which all legs in a call
attach themselves. A session transmits event
reports from channels via legs to the event handler
assigned to handle those events.

Singular resource capability:
A resource capability that represents only one
basic capability.

State distributor:
A component of a platform OAM&P subsystem that
provides a communication mechanism by which
multiple processes may be concurrently informed of
changes in the state of the platform.

State information client:
A process which initiates certain actions when
notified by the state distributor of a change in
the value of a specified state.

State information server:
A process which monitors or maintains a specific
state and communicates information about that state
via the state distributor.

SURSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

Summary state:

A state used to describe the state of a managed
object. The summary state may include terms such

as CLEAR, MINOR, MAJOR, CRITICAL, INITIALIZING or
UNKNOWN.

Universal information network (UIN):

A network that deals not only with voice-based
personalized services, but handles services
handling/using other types of media including audio
and video, as well as text information.

Virtual synchrony:

A property of a distributed system under which each
recipient of a set of events receives those events
in the same order that would be produced if the
event happened everywhere at the same time. A
virtually synchronous system will not guarantee
that distributed events occur at the same time, but
only that they will be ordered (i.e., set into
motion) at all recipients as if they had occurred
synchronously.

Virtual terminal (VT):

An object in the call processing stack that manages
a set of channel objects associated with a single
user.

Virtual user (VU):

An entry in the database that stores persistent
data about a subscriber to platform services. Such
data may include, for example, the name, address
and subscribed services of that user. Originating
callers who have not subscribed to any originating
services may be associated with a virtual user
entry which corresponds to a default origination
service.

SUMMARY OF THE INVENTION

In view of the above, the present invention, through one

or more of its various aspects and/or embodiments, is thus

presented to accomplish one or more objectives and advantages,

such as those noted below.

It is an objective of the present invention to provide

CHIDOTITIITE CUrTr /Mvn = any



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-10~-

a universal information network platform that is flexible, and
that can aid in the performance of several functions
including: call processing and service execution; database
maintenance; service creation; service and user data
provisioning; OAM&P; and switching, routing and translation.

It is a further objective of the present invention to
provide a network component that can provide a wide range of
telecommunications services.

It is a further objective of the present invention to
provide a universal information network platform that is
flexible and that can be easily expanded or modified to be
able to provide different services.

It is yet a further objective of the present invention
to minimize the amount of time it will take from definition
to delivery of a particular service. Another objective of the
present invention is to reduce the complexities of integrating
services or service modifications into the network, so that
less skill is needed to develop new services.

A further objective of the present invention is to reduce
the amount of resources needed to provide a wide range of
telecommunication services. In addition, the present
invention strives to provide service application programs that
can perform call processing in accordance with defined service
logic, without having to handle hardware allocation and
deallocation directly.

It is yet a further objective of the present invention
to provide a mechanism for interfacing service control to
other hardware and software resources, without limitations as
to the resource type. Therefore, it is an objective to
provide a system that will not have limitations on the ability
to integrate different types of resources into the service
providing platform. For example, there should be no
limitation on the type of vendors or the type of technologies
used in order to implement resources utilized by the service
providing platform.

It is yet a further objective of the present invention
to provide an OAM&P system that will work in connection with
a flexible network platform, where the OAM&P system gathers
and maintains information about the state of various entities

 SHRCTITIITE SHEET (RIBE 98)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-11-

within the flexible network platform, and makes that
information easily accessible.

It is yet a further objective of the present invention
to provide an OAM&P system that gathers and maintains
information about the states of various entities within the
call processing mechanism of a platform, without adversely
affecting the platform’s ability to perform call processing.
It is an objective to provide such an OAM&P state information
gathering system which does not require the call processing
system to take an active part in gathering and maintaining
such state information.

It is yet a further objective of the present invention
to provide a flexible managed object hierarchy which presents
information in a certain standard way to OAM&P information
clients (including information about what information is
provided, where further information may be obtained, and what
actions the clients may take with respect to that particular
state information). Thus, it is an objective of the present
invention to allow the introduction of new types of managed
objects without requiring changes to the architecture or
configuration of information clients that may call upon
information from the managed objects.

A further objective of the present invention is to
provide a flexible network platform which will allow new
service provisioning and modification to be quickly and easily
delivered. A further objective of the present invention is
to provide such a flexible network platform which allows
services to execute in an asynchronous environment, but to
allow service logic to be programmed in a sequential fashion
without the need to handle asynchronous events.

It is a further objective of the present invention to
provide service logic that can be interpreted in a threaded
fashion in order to allow services to be modified and added
to extended data interfaces without the need to recompile or
halt the system. A further objective of the present invention
is to provide a threaded interpretative service logic
mechanism which does not trade speed of execution for
flexibility.

It is a further objective of the present invention to

SUBSTITUTE SHEET (PULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-12~

provide a call processing virtual machine which does not
assume a call model or any template into which service logic
must fit. It is an objective to provide a call processing
virtual machine within which a platform will allow any piece
of service logic to be associated with any particular event
that would be seen by the platform.

It is a further objective of the present invention to
separate service software from resource layer software, so
that the service software need not know the particulars about
the physical resources connected to the platform.

The present invention is directed to a flexible network
platform, and to various subsystems that may be provided in
connection with a flexible network platform. 1In accordance
with one aspect of the invention, a telecommunications
services network platform is provided for controlling the
processing of calls in accordance with one of a plurality of
defined services. The network platform may include a call
processing system for performing call processing in accordance
with defined service logic, and call processing resources
connected to the call processing system.

The resources may include at least one media processor
and a switching system for routing information among the at
least one media processor and entities connected to the
telecommunications network. The switching system is connected
to a telecommunications network, to the call processing
system, and to the resources.

The call processing system may be provided with session
means for representing an active call with a session object,
and means for forwarding external events associated with the
active call to the session object. In addition, a mechanism
may be provided for creating an initial event handler object,
which has a particular method, variables, and values for the
variables. A further mechanism may be provided for
registering the initial event handler object with the session
object. The initial event handler object is associated with
a particular event type, a party of an active call, and a
communication path used by the party.

The session object receives the particular event and
includes a mechanism for calling an event handler method

QIRSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-13-

within the initial event handler object. The method of the
initial event handler object performs several functions in
accordance with variables set forth in the initial event
handler object. The variables may include a service logic
unit identifying variable, and the several functions may
include commencing execution of a service logic unit.

A mechanism may also be provided for registering
additional event handler objects in response to requests by
application components being executed within a service logic
unit. Each additional event handler object corresponds to a
service logic unit.

In accordance with another aspect of the present
invention, a resource managing system may be provided for
assigning resources for use in performing call processing by

"a call processing system. A resource is assigned in response

to a request made by the call processing system for a
particular capability. The resource managing system includes
a mechanism for receiving a regquest made by the call
processing system for a specified capability. A plurality of
logical resource objects are defined, each logical resource
object comprising a mechanism for translating generic resource
commands made by the call processing system into a form
compatible with actual resources coupled to the call
processing system. A further mechanism may be provided for
correlating which 1logical resource object supports each
capability within a set of capabilities that may be requested
by the call processing system. In addition, a mechanism is
provided for allocating a 1logical resource object that
supports the specified capability.

The above-listed and other objectives, features and
advantages of the present invention will be more fully set
forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is further described in the

detailed description which follows, by reference to the noted
plurality of drawings, by way of non-limiting examples of
preferred embodiments of the present invention, in which like
reference numerals represent sim.lar parts throughout the
several views of the drawings, and wherein:

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-14-

Fig. 1 illustrates an overall network view of a flexible
network platform;

Fig. 2 illustrates a particular example of a network
physical architecture within which a flexible network platform
can be utilized;

Fig. 3 illustrates a flexible network platform 10 which
is connected to a telecommunications network 16 through an
access tandem office 42;

Fig. 4 1illustrates a 1local exchange interconnection
physical network architecture;

Fig. 5 is a block diagram illustrating a particular
example of the hardware architecture that forms a flexible
network platform;

Fig. 6 is a block diagram which illustrates an example
embodiment of the host computer complex;

Fig. 7 1is a block diagram representing a platform
software architecture in relation to the platform hardware
architecture of Fig. 5;

Fig. 8 illustrates a particular embodiment of platform
call processing architecture in relationship to the rest of
a flexible network platform;

Fig. 9 illustrates a data transformation process which
may be performed between a flexible network platform and a
database;

Fig. 10A is a block diagram representing a resource
translation of generic commands into device-specific commands;

Fig. 10B is a block diagram demonstrating a resource
translation of device-specific reports into generic reports;

Fig. 11 is a block diagram demonstrating the relationship
between basic and resource capabilities and singular and
aggregate resource capabilities;

Fig. 12 is a flow diagram which illustrates a resource
broker method;

Fig. 13 is a flow chart representing steps that may be
performed during resource management in responding to
capability requests by the application layer;

Fig. 14 is a flow chart representing the setting up of
an originating side of a call processing stack in response to
receipt of an incoming call;

CIRCTITIIT CHEET /DINE 98\



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-15-

Fig. 15 is a flow chart representing the starting of an
origination service once the originating side has been set up;

Fig. 16 is a flow chart representing the setting up of
a terminating side of a call processing stack once the
originating service has been started in accordance with the
process of Fig. 15;

Fig. 17 is a flow chart representing the offering of a
connection to a party on the network, after the terminating
side has been made in the process of Fig. 16;

Fig. 18A is a flow chart representing the general steps
performed in accepting an offered connection;

Fig. 18B is a flow chart representing the steps that are
performed in performing an escape service;

Fig. 19 is a flow chart representing the steps that may
be performed in completing a terminating side on the call
processing software right before a call is actually placed on
the network;

Fig. 20 is a block diagram representing objects that are
present after a call origination portion of a call has been
completed;

Fig. 21 is a block diagram representing the objects
present within the call processing software after an outgoing
leg has been created;

Fig. 22 is a block diagram representing the various
objects that are present within the call processing software
after disconnect handlers have been created in relation to the
incoming and outgoing legs;

Fig. 23 1is a block diagram representing the various
objects that are present within the call processing software
after an AC (application component) has been executed which
Creates another disconnect handler for the incoming leg;

Fig. 24 is a general block diagram of the OAM&P portion
of a flexible network platform;

Fig. 24A illustrates a managed object;

Fig. 24B illustrates a managed object in relation to its
input and output states;

Figs. 25 and 26 are graphic representations of various
subsystems of the flexible network platform in relation to the
managed object hierarchy of the OAM&P subsystem;

SURSTITUTE SREET (RULE 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-16-

Fig. 27 is a diagram which represents a service
provisioning system in relation to the parts of the platform
carrying the service logic;

Figs. 28A-28K are block diagrams representing several
different types of database objects that may be used to
represent provisioning data in a persistent manner in the
flexible network platform;

Figs. 29A-29F are illustrations of several types of graph
objects which may be used in connection with a graphics-based
service creation environment;

Fig. 30 represents an example graph that may be created
in a graphics-based service creation environment;

Fig. 31 illustrates an example expander subgraph;

Fig. 32 illustrates an example node window; and

Fig. 33 illustrates an example edge window.

DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS
A. The Network Architecture

Referring to the drawings now in greater detail, Fig. 1
provides an overall network view of a flexible network
platform 10. The flexible network platform 10 is connected
to a telecommunications network 16. Together, flexible
network platform 10 and network 16 form a communications
system infrastructure 8. Flexible network platform 10 is the
control component of communications system infrastructure 8.
Flexible network platform 10 is provided with features which
allow it to manage various aspects of the communications
system infrastructure 8, such aspects including, e.g.,
switching, signalling, and assigning peripheral resources to
implement advanced telecommunications services. Network
platform 10 may comprise a universal information network (UIN)
platform that provides not only voice-based personalized
services, but also provides services dealing with different
types of media information, including, e.g., data and video
information. Network platform 10 is preferably capable of
exchanging messages, as well as controlling the exchange of
such messages, with the various nodes in network 16. Network
platform 10 may be connected, either directly or indirectly,
to one or more nodes provided within network 16. Network
platform 10 also may be connected simultaneously to one or

SHRSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-17-

more nodes of another network separate and independent from
network 16 illustrated in Fig. 1.

Network platform 10 will typically comprise several
subsystems for performing functions including: call
processing; database maintenance, control and management;
service and user data provisioning; service creation; OAM&P
(operations, administration, maintenance and provisioning);
and network functions such as routing, translation and
switching.

Fig. 2 illustrates a particular example of a network
physical architecture within which a flexible network
platform, such as the one shown in Fig. 1, can be utilized.
In the network physical architecture illustrated in this
figure, two flexible network platforms 10a and 10b are
provided. A first network platform 10a is connected to two
nodes of a telecommunications network, including first and
second central office switches 12a, 12b. A second network
platform 10b is connected to a node which comprises a cellular
switch 14. Each of the nodes specifically shown in Fig. 2
is coupled to a telecommunications network 16 which may, e.g.,
provide a public switched telephone network (PSTN). Each of
the network platforms 10a, 10b is connected to its respective
network nodes (central office switches 12a, 12b, and cellular
switch 14) via one or more communications 1links 18, which
provide the necessary connection between each network platform
and the network node to which it is connected. By way of
example, such communications links 18 may comprise digital
trunks and/or analog subscriber lines. The present invention
does not place any limitation on the types of communications
links that extend between network entities and network
platform 10. The links can use various types of transmission
media including, e.g., two-wire open lines, twisted pair
lines, coaxial cable, optical fiber, satellites, terrestrial
microwave, and radio transmission. Additionally, if physical
lines are used, the types of lines used may be switched
connections or permanent lines. The types of communication
link protocols may also vary. The diagram shown in Fig. 2
shows a particular impiementation of a flexible network
platform 10 provided in accordance with the present invention.

CIIDCTITINT MICTT /DINE o\



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-18~-

Other implementations and physical network architectures are
possible. For example, signalling system 7 (SS7) nodes using
the Transaction Capabilities Application Part (TCAP), and
underlying protocols of the same, may be utilized.

In accordance with a particular aspect of the present
invention, the flexible network platform 10 is loosely coupled
to the network. This makes it possible to introduce new
services or to customize existing services while modifying
only a minimum number of nodes within the network. Rather
than utilizing existing network switches to trigger calls to
the platform via control messages (e.g., signalling system 7
(ss7)), flexible network platform 10 may be configured to
terminate lines and trunks, and thus be capable of switching
calls that require platform services to the platform. With
this approach, there are several manners in which the flexible
network platform may be placed within a telecommunications
network. For example, the flexible network platform may be
connected in the form of a tandem interconnection, a local
exchange interconnection, and/or an off-network
interconnection. Fig. 3 illustrates a tandem interconnection,
and Fig. 4 illustrates a local exchange interconnection.

In Fig. 3, a flexible network platform 10 is connected
to a telecommunications network 16 through an access tandem
office 42, using standard trunk interfaces 44. For example,
the standard trunk interfaces may comprise MF trunks. With
this physical network architecture, platform services are
available on an area-wide basis, e.g., a LATA-wide basis. 1In
this configuration, the flexible network platform 10 is
configured so that no subscriber lines terminate directly on
the flexible network platform 10. Services may be "addressed"
by dialed numbers (DNs) with a conventional dialing plan in
accordance with a service access strategy which is further
described below.

Fig. 4 illustrates a 1local exchange interconnection
physical network architecture. With this architecture, each
of a plurality of flexible network platforms 10a, 10b is
connected to a respective node in telecommunications network
16, the node comprising a local exchange or office. The

connection may be made via standard trunks 44. No subscriber

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-19-

lines are terminated directly to the flexible network
platforms 10a, 10b. With this physical network architecture,
there will be a slightly shorter call setup delay in
utilization of services provided by the flexible network
platforms 10a, 10b. Such a configuration may be beneficial
where the flexible network platforms are providing services
only to customers which are based within the associated local
exchanges. Difficulties may arise with this configuration in
receiving automatic number identification (ANT) on terminating
calls that are originating outside of the home local office,
since existing trunk signalling to the local exchange does not
normally carry ANI information.

Depending upon which services are provided by the
flexible network platform, it may be desirable or even
necessary to place the flexible network platform outside of
the public network. The precise topology of the physical
network architecture may vary and need not resemble either of
the architectures shown in Figs. 3 and 4.

In order for a call to have access to the services
provided by the flexible network platform, a particular
service access strategy may be utilized. In this regard, the
services may be accessed by addressing the services with the
use of dialed numbers (DNs), or, alternately, some other
method of addressing. Subscribers may be terminated on the
platform or may be hot-lined to the platform. 1In any event,
it may be beneficial to provide some sort of direct user
dialing to the platform in order to control calls. For
example, direct wuser dialing to the platform may be
facilitated via an integrated voice/data interface, where the
data channel is used as a call control signalling channel
between the user and the platform.

With the service access strategy utilizing dialing plan
access DNs routed to the platform, it may have the ability to
address certain components of the flexible network platform,
such as a service (independent of a subscriber), a subscriber
(providing access to an array of services provisioned for that
subscriber), and/or a specific service for a specific
subscriber.

By using a dialing plan service access strategy, services

CIRCTIMAT CHELT /N E 9R)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-20-

may be accessed using dialed numbers (DNs). More
particularly, originating services (which are services
provided on behalf of the caller) may be accessed by DNs; and
terminating services (i.e., services provided on behalf of the
called party) may be accessed by DNs. In this regard, the
service subscriber’s advertised DN routes directly to the
flexible network platform 10 and the addressed service is
performed by the flexible network platform on behalf of the
terminating party. Terminating services (i.e., services
performed on behalf of the terminating/called party) may also
be accessed by call forwarding to the platform from the
service subscriber’s normal DN.

The special triggering capabilities of the Network Access
Point (NAP) defined in the AIN architecture could be utilized
to provide screening functions prior to routing calls to the
platform. By providing this feature, the flexible network
platform may efficiently provide additional originating
screening services.

There is a wide array of physical layer interface
standards which may be utilized by the flexible network
platform in communicating with its associated
telecommunications network. By way of example, the physical
layer interface standard utilized may comprise standard
digital trunks using MF signalling, signalling system 7,
and/or ISDN PRI (primary rate ISDN).

B. Platform Hardware Architecture

Fig. 5 is a block diagram which illustrates a particular
example of the hardware architecture which may be utilized to
form a flexible network platform in accordance with the
present invention. A host computer complex 22 is coupled to
a number of other devices via an interconnection network 20.
Data devices include a platform switch 24, a plurality of
peripherals (including a voice peripheral 26 and a data
peripheral 28), and several work stations. The several work
stations may include a provisioning work station 30, a service
creation work station 32, and an OAM&P work station 34. The
interconnection network (ICN) 20 forms a control path between
host computer complex 22 and each of the various devices to

which it is connected. Each peripheral that is provided in

SHBSTITITF SHFET (RINF 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-21-

the platform, including, e.g., voice peripheral 26 and data
peripheral 28, is shown as being connected to a platform
switch 24 via a voice/data path 46, so that any voice, data,
or other needed information may be routed to the
telecommunications network via the platform switch. Host
computer complex 22 has the primary duty of performing call
processing functions and executing services in connection with
such call processing. Host computer complex 22 calls upon the
various peripherals such as the voice peripheral 26 and data
peripheral 28 along with the platform switch 24 in order to
execute the appropriate services. Provisioning work station
30 may be provided in order to allow entry, retrieval, review
and editing of service data as it pertains to the subscribers
of the various platform services. Service creation work
station 32 may be provided to allow the creation and
modification of services delivered to host computer complex
22. OAM&P work station 34 may provide a user interface
through which persons can monitor the performance of the
components of the flexible network platform. It provides a
unified view of the platform’s behavior and a common point of
control over its operation. Flexible network platform 10 is
connected to telecommunications network 16 via communication
link 18, which are coupled to platform switch 24.

Platform switch 24, host computer complex 22, and
peripheral processing units 26 and 28 together form a core
platform system which controls the performance of services.
While particular peripheral processing units are illustrated
in Fig. 5, including a voice peripheral 26 and a data
peripheral 28, other types of peripheral processing units may
be provided depending upon the type of functions to be
performed by the network platform. In addition, the flexible
network platform 10 may include more than one platform switch
in order to increase the capacity of switching for the overall
network platform 10. In the alternative, other variations may
be made to the hardware architecture of the flexible network
platform 10, as long as the general functionality of each
component remains in the hardware architecture. For example,
host computer complex 22 may be expanded to have a platform
switch integrally provided therein, and to include an

SUBSTITUTE SHEET /RIRE 28)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-22-

interconnection network facility for coupling the host
computer complex to the other components of the overall
flexible network platform 10.

By way of example, host computer complex 22 may be
implemented with the use of a dual SPARC 20 host computer.
Platform switch 24 may comprise, e.g., a SUMMA SDS-1000
switch. That switch has 1limited functionality to
connect/disconnect link channels and to perform signalling
interface processing. ICN 20 may comprise an Ethernet network
and/or may be capable of transmitting information using the
Internet TCP/IP protocol. Voice processing unit 26 may
comprise a dialogic board provided within a PC running
appropriate voice processing software that interfaces with the
board. Each of the provisioning 30, service creation 32, and
OAM&P 34 environments may be implemented with software in a
different work station computer, or may be all run on the same
computer system with a user interface for switching between
the various environments.

Fig. 6 is a block diagram of an example embodiment of the
host computer complex 22 shown in Fig. 5. Host computer
complex 22 is shown together with interconnection network 22
and a plurality of (n+k) media processors 50. Each of the
media processors 50 is connected to interconnection network
(ICN) 20. Host computer complex 22 comprises two host
computers, including host-A 36a and host-B 36b, as well as two
power supplies including power supply A 40a and power supply
B 40b. Each of the power supplies 40a, 40b is connected to
each of the host computers 36a, 36b. Each of the host
computers 36a, 36b is connected to a dual-ported RAID array
38.

The hardware architecture of the flexible network
platform provided in the present invention preferably is
equipped so as to maintain system reliability. In this
regard, the host computer complex 22 may be configured that
it supports open system interfaces, such as UNIX, or
communicates with UNIX via Ethernet or TCP-IP protocol. 1In
addition, reliability may be further ensured by the use of
redundancy in the hardware architecture. In this regard,

various hardware components may be replicated. For example,

QIRCTITINE CHELT /DI E 90\



b

-

WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

_23_

as shown in Fig. 6, more media processors 50 are provided than
necessary; whereas only "n" media processors may be needed at
a particular time, an additional number "k" is provided, thus
utilizing "n+k" sparing in order to ensure the reliable use
of media processors 50. Other redundancies of the hardware
architecture include the use of two separate host computers,
a first host computer 36a being the hot or active host
computer, while the other host computer 36b is in a warm
standby state. 1In addition, two separate power supplies 40a
and 40b are provided, and each may be used for either one of
the host computers 36a, 36b, in order to provide the necessary
redundancy in the event that one of the power supplies fails
to operate properly. Another example of reliability achieved
by redundancy in the hardware is the use of a dual-ported RAID
array 38. 1In the event that one of the ports of RAID array
38 fails, either host 36a, 36b may use the other port. Other

inherently fault tolerance hardware may be utilized. For
example, a switch such as the SUMMA 4 switch may be provided
which is inherently fault tolerant. The interconnection

network 20 may be provided with multiple links between the
various devices in order to protect against link failure.

Depending upon the particular environment of the flexible
network platform, a NEBS-compliant (Network Equipment Building
Standard) physical hardware architecture may be employed in
order to implement the platform. This may be required, e.q.,
if the flexible network platform is going to be employed in
a central office environment.

With reference to the example embodiment shown in Fig.
6, it is noted that the dual-ported RAID array 38 may comprise
a RAID array provided by Array Technologies. Each of the host
computers may, e.g., be implemented with the use of a SPARC
20 host computer. It is noted that reliability concerns
revolve around two main issues, including hardware failure and
data protection. With regards to data protection, a complete
set of the data of the flexible network platform is duplicated
within the RAID array 38. Additionally, the set of data is
duplicated within the RAM of each host computer 36a, 36b, as
represented by mirrored system disks 52a, 52b, as shown in
Fig. 6.

SURSTITINTE QueeT /o - 2o



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-24-

In connection with the redundant hardware architecture
of the flexible network platform, e.g., as illustrated in Fig.
6, several software mechanisms may be provided in order to
assure the proper operation of the various redundant systems.
For example, a software mechanism can be provided within the
software system of each host computer in order to ensure that
only one host computer can access data from the mirrored
systems disk 52 at a particular time. In addition,
interconnection network 20 may be provided with a dual
connectivity to the various software entities within each host
computer. Thus, if a link to a particular software module or
entity fails, the system allows for a reconnection with
another link within interconnection network 20. Additionally,
the software within each host computer may be provided with
a mechanism for detecting the failure of a media processor (or
other peripheral processing units connected to the system) for
taking the processor out of service. The mechanism would then
accordingly reroute traffic to another media processor which
is properly functioning. When the media processor is
repaired, it is then in a state for reintegration with the
system. A mechanism may be provided for detecting the change
of state of the media processor so that media processor will
then be available for use the next time a capability is
requested by the call processing software that calls upon use
of that media processor.

In the event a host is still processing but cannot
process calls, a switchover mechanism may be utilized, which
may be triggered with the use of OAM&P work station 34 as
shown in Fig. 5. The switchover mechanism will notify the
other properly functioning host 36b that it is to become the
primary host, and then cause the first host computer 36a to
terminate its execution. It will further take steps to ensure
that the first host computer 36a will not come back as the
primary access host computer.

In addition, a mechanism may be provided, in connection
with the OAM&P architecture hierarchy, or other appropriate
software, to monitor for failure of the non-active host, e.g.,
the second host computer 36b. If failure is detected, the
non-active host will then be shut down and fixed. The

SUBSTITUTE SHEET (RINE 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-25-

switchover mechanism may be implemented by what is called
"fail over software" provided within the platform systenmn.
Data protection is another significant issue that will
affect the reliability of the platform system. In accordance
with a particular embodiment of the present invention, the
database of the platform may be stored in an ORACLE database,
e.g., a system 7 ORACLE database or other versions thereof.
The types of data that may be stored in the database include
service data which is provided on a per-user basis, system
data (including information such as which media processors are
connected to the platform at a particular time), and service
logic (in the form of service logic units (SLUs)). The ORACLE
system has a transaction mechanism which prevents the
corruption of data when it is being placed into the database.
When a particular unit of data is being forwarded to the
database, either all of the data goes in, or none goes in.
In order to protect the data, another process that may
be performed is the periodic backing up of data in the system
so that the backup data can be used in the event of data
corruption. If there is a breakdown or corruption of data,
the uncorrupted data which is stored in a backup storage may
be used.
C. The Platform Software Architecture

Fig. 7 is a block diagram which provides a software view
of an exemplary flexible network platform 10. The main
elements depicted in Fig. 7 include platform switch 24, host
58, ICN 20, voice and data peripherals 26, 28, and OAM work
station 34. An outboard database 54, which may be in the form
of disk storage, is coupled to the platform host 58. A
resident database 56 is maintained within the RAM of host 58,
and the data within the resident database corresponds
precisely with that of the outboard database. On the software
level, platform host 58 includes platform software 60, a
distributed process environment 62, and operation system
software 64. Similarly, voice processing unit 26 comprises
voice software 66, a distributed processing environment 68,
and operating system software 70. Data processing unit 28
comprises data softiare 72, a distributed processing

environment 74, and operating system software 76. OAM work

QURSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-26-

station 34 comprises OAM software 78, a distributed processing
environment 80, and operating system software 82.

The software architecture of the system illustrated in
Fig. 7 contributes to the open nature of the overall system.
The database, which resides in the resident database 56 as
well as outboard database 54, may comprise a relational
database. It may utilize systems such as the ORACLE or SYBASE
relational database systems. The distributed processing
environment provided within each of the computing devices of
the platform 10 may be implemented using ISIS. The
distributed processing environment is provided in order to
simplify building of distributed applications. ISIS provides
this function and provides a standard extension to UNIX; and
thus allows for multi-threading within a process. The
operating system 64 of the platform host 58 preferably
comprises an operating system which is somewhat vendor-
independent in its compatibility with other software and
hardware systems. A UNIX system V operating system may be
utilized for this purpose. A distributed processing
environment is also provided within each of the peripherals
26, 28 and 34, which are connected to ICN 20. The distributed
processing environment 58, 74, and 80 provided within each of
those respective peripherals may also be implemented with
ISIs.

C.1 The Run-Time Environment

The run-time system may be defined as all application and
hardware independent functionalities within the platform
software that is necessary to execute the applications of the
flexible network platform. Many of these requirements are
commercially available for a general purpose computing
operating system such as UNIX.

Because of the need for high throughput of the flexible
network platform, it may be necessary to process multiple
requests concurrently. This concurrent execution of requests
may require the use of priority scheduling.

The run-time environment preferably uses a multi-
processing environment so that tasks may be handled
concurrently. That 1is, processes (operating system
abstractions/units of concurrency) are run concurrently and

IIMCTITIAT CUTTT /DIN T 22)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-27-

thereby simultaneously handle various tasks. Some example
tasks to be implemented or performed by separate processes may
include call processing related to the call processing stack;
OAM data collection/presentation; communication between
various hardware elements; arbitration between active and
standby hosts; and logging of events and measurements.
C.l.a The Database
Fig. 9 illustrates a data transformation process that may
be performed by the flexible network platform according to the
present invention. The particular transformation process
shown is an exemplary embodiment. Data that is utilized by
the platform software 60 is transformed into database objects
84 through the use of an object interface 88. By creating
database objects 84, the data may be stored and later
retrieved, thus allowing persistence of the data. The
database objects are then transformed via an ORACLE relational
SQL interface 90 into database objects in an ORACLE relational
database format 86. When the host system is initialized, all
database objects are obtained from an outboard database
storage. The data being stored in the database includes user
data, service logic, and service data. A background function
may be provided within platform software 60, so that whenever
a change is made to a database object 84, within resident
database 56, that same change is written (i.e., persisted) in
outboard database storage 54.
C.1.b Distributed Operating System Environment
In accordance with one particular feature of the present
invention, the platform may be implemented with the use of a
distributed operating system environment. The distributed
operating system environment may be created with ISIS. The

goal of using a distributed operating system environment is
to allow communication between processes on different
processors, and to make such communication transparent to the
developer as to where the process is running (i.e., across
physical boundaries). ISIS is provided with a process
reliability mechanism which ensures process reliability by
allowing process groups to be called. When a client requests
a process group, if a particular process within the process
group 1is faulty, or fails to respond, then ISIS will

SURSTITINF SHEET /R E 97\



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-28-

transparently re-route the request to another process within
the same process group.

c.2 The Flexible Network Platform Call Processing
Architecture

Fig. 8 illustrates the call processing architecture as
it relates to the other components of the flexible network
platform 10. Software running on the host computer 58 ties
various components of the platform hardware together, as shown
in Fig. 8.

A host computer 58 is shown as being connected to a
provisioning and service creation environment 92, an OAM&P
work station 94, an outboard database 54, a voice processor
96, and a platform switch 98.

Call processing software is provided within host computer
58, and includes an application layer 100, a resource layer
102, and a link layer 104. Each of these layers of software
can communicate with database 56, as well as with OAM&P
software 105. Resident database 56 is coupled to provisioning
and service creation environments 92 and is also coupled to
outboard database 54. OAM&P software 105 is connected to
OAM&P work station 94. The three-layered body of software is
collectively coupled to a multi-media processor, which is
shown in Fig. 8 as a voice processor 96, and is further
connected to a platform switch 98. Platform switch 98 is
connected to a telecommunications network 16.

The top two layers of the three-layered body of call
processing software, including application layer 100 and
resource layer 102, form a call processing stack, otherwise
referred to as a call stack. Among the various functions
performed by each of these layers, call processing application
layer 100 represents each active call by allocating a number
of call processing objects, including a session object 106,
and a number of leg objects 108a, 108b. A leg object is
allocated for and represents each party to the call
corresponding to the session object 106. Each leg passes
commands and reports between the resource 1layer 102 and
application layer 100, and manages various aspects of a
virtual terminal which resides within resource layer 102.

Resource layer 102 contains several objects including

CIMCTININT CULTT /DINE %8\



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-29-

logical resource objects 110a, 110b, channels 112a, 112b, and
virtual terminals (VTs) 114a, 114b. A logical resource object
110 corresponds to each resource type and is assigned for each
resource capability that is to be called upon by the
application layer as it executes its service logic. The
logical resource objects (otherwise referred to as the LRs)
serve to hide the details of the device-specific commands and
reports which are generated by the resources themselves and
forwarded by the link layer 104 to the resource layer 102 and
application layer 100.

A channel object 112 is provided and is formed by a
collection of logical resources. Each channel object 112 is
associated with a single communications path that is presently
connected to platform 10. Channels 112 manage the allocation
and release of logical resource objects 110. They also send
commands from the higher layers to the logical resources which
are provided with the facilities to respond to those commands.
A virtual terminal (VT) 114 is formed by a set of one or more
channels 112. VTs 114 manage the allocation and release of
channels. Taken together, logical resources 110, channels
112, and virtual terminals 114 isolate objects in application
layer 100 so that application layer 100 does not have to
concern itself with the details of hardware allocation,
deallocation, and control. This isolation serves to greatly
simplify service programming and minimizes the chance that
existing services will be affected when hardware changes are
made.

Each session 106 contains a number of event manager
objects 116. One event manager object 116 is provided for
each type of event session 106 might expect to receive. Events
are typically received via legs 108, and handled by an event
handler object. Each event manager 116 contains a list of
event handler objects 118 set aside to handle unique events.

A session 106 represents a particular active call being
processed by the call processing stack. The session 106
groups all event types that it may encounter for the
particular active call which it represents. Each event type
is represented by an event manager 116 provided within session
106. Each event manager 116 points to event handlers 118

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

=30~

within a list of event handlers, and identifies each event
handler in accordance with a reference channel and a reference
leg, i.e., in accordance with a reference communication path
and a particular party to the active call. The event manager
also responds to a request to execute a particular event
handler corresponding to a particular event, and calls an ev
method within that event handler. Each of the event handlers,
located within the 1list of event handlers 118, performs
several functions in executing its ev method. The ev method
is a common procedure shared among all of the event handlers,
which extracts information from scratch variables provided
within the event handler object, performs several functions
and starts an SLU (service logic unit) that is associated with
a particular event handler. The service logic unit associated
with that particular event handler is referred to in one of
the scratch variables, and was specified by the call
components that originally created that particular event
handler. Once the event handler begins executing its ev
method, it interprets the SLU, thereby executing the SLU. The
event handler object interprets the SLU in a threaded
interpretative manner. Each SLU is made up of a plurality of
application components. Each application component is
identified within an SLU by data which will persist in a
database of the flexible network platform. Each application
component of an SLU is executed by way of the ev method within
the event handler object.

The event handler object will not again be used once it
is assigned a particular service logic unit and begins
execution of the same. Thus, if the same event is expected
at another point during execution of a service, a different
event handler will be created to handle that event, even if
the reference leg and reference channel corresponding to the
event are the same as those for a previous event handler
object. This allows the call processing software to assign,
for each and every event that is expected to occur, a
separate, independent (and potentially different) service
logic unit for interpretive execution by the event handler.

While an event handler is dropped once its service logic
unit is executed, the corresponding event manager for each

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-31-

event type provided for within the session object need not be
dropped.

When an event handler object is created, e.g., by a leg
object or by an application component (during execution of an
SLU), the creator of the event handler object communicates
with the session object 106, and instructs the session object
to register this event handler for this event type. The
session will then check to see if there is already an event
manager (EM) existing for that event type. If there is an EM
already existing for that event type, the session object will
instruct the event manager to register the event handler
object. The event manager registers the event handler object
in accordance with the event handler object’s reference
channel and reference leg.

Each of the SLUs may be identified by a unique non-zero
positive integer, and may be specified as such in one of the
variables of each event handler object, so that the event
handler object will cause execution of that particular SLU.
All event handlers which have completed their interpretation
of an SLU are detached from their associated session and
destroyed. New event handler objects are Ccreated, e.g., by
a leg, during some portion of a call setup, or by an
application component either during a call setup or during
execution of a service. By way of example, if a programming
language such as C++ is utilized to create the software that
forms the call stack, the various objects, including the event
handler objects, may be created by calling a constructor.

When an event occurs, it is reported to the session. If
an event occurs and it is an external event, it is reported
to the session via the various call components within the
resource layer 102, i.e., via a logical resource 110, its
associated channel 112, and its associated virtual terminal
114. Virtual terminal 114 then reports the event to session
106 via its associated leg 108. Session 106 will then take
the particular event, along with its reference leg and
reference channel information, and pass the same to the
appropriate event manager 116 for that event type. The event
manager 116 will then use the reference leg and reference
channel information to find the particular event handler that

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-32-

is supposed to handle that particular event. The event
manager then tells the event handler to start execution of its
ev method.

A link layer 104 is also depicted in Fig. 8 and includes
a plurality of message distributors 120, including a voice
processing message distributor 120a and a switch message
distributor 120b, as well as a plurality of 1link drivers
(including a voice processor link driver 122a and a switch
link driver 122b). Link drivers 122 may perform standard
device driver functions in accordance with software that is
typically provided by the vendors of the resources coupled to
the platform. The message distributor may comprise a set of
objects provided to facilitate communication between the
resources and the higher 1level software. Each message
distributor takes messages and either creates an object to
handle the message or sends the message to an existing object.
The information from that object will then be handled by the
appropriate logical resource and will be forwarded up to the
session via the appropriate call components within the
resource layer and application layer. For outgoing
information, the message distributor will transfer messages
from logical resources to the appropriate resources via link
drivers 122.
D. The Application Laver

With respect to a given call, a set of objects is
allocated within application layer 100 to represent the call
itself and the parties involved. That set of objects will
include a session object 106, at least one leg object 108, at
least one event manager object 116, a list of event handler
objects 118, and various application components (AC). Session
106 forms the central object in application layer 100. A
session 106 is an object to which all legs 108 to the call
attach themselves, and each leg 108 attached is controlled by
the session 106. The session 106 also dispenses information
regarding events, from the resource layer 102, through a leg
108, to an event handler object 118 assigned to respond to
that event occurrence. Simply stated, the session 106 is an
object that represents the active call and the legs 108 are
objects that represent the various parties to any given

CIMCTITINT CUTTY /DINE a0\



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-33 -

session 106. The leg object 108 manages information about the
party represented and also controls and manages a virtual
terminal object 114 associated in the resource layer 102.

Each session 106 contains a leg list 511 (shown in Fig.
20), which keeps track of the identity of legs 108 associated
with a particular session 106. The session 106 also contains
an event manager object 116. An event manager 116 is an
object in the session 106 that contains the identification of
all event handlers 118 for the session 106 and all anticipated
events that may possibly occur at any given point during a
session. To maintain order, event managers 116 are provided
and each event manager handles all events of a given type.
The event handler 118 is an object associated with a
particular event within event manager 116 that waits for a
particular predetermined event to occur, e.g., an external
origination event on a predetermined reference channel and
reference leg.

If such a predetermined event occurs, the event handler
118 is commanded to start executing a specific service logic
unit (SLU or service unit) 404. A service logic unit 404 is
a body of logic within the resident database 56 that will be
executed upon the occurrence of an event. Conversely, an
event is an occurrence during a call that causes the execution
of a service logic unit 404. Events are known, predetermined,
and anticipated by the session 106. Each event is identified
as having a particular reference leg and reference channel.
An event can either be an external event or an internal event.
An external event is an event generated in telecommunications
network 16 external to platform 10. An internal event is an
event which is generated by platform software 60. Some
examples of external events are: receiving a disconnect
signal from the network; failing to receive an answer signal
from the network; and an origination signal (trunk seizure)

from the network. Some examples of internal events are:
offering a connection; and internally instructing a
disconnect.

When an event occurs, and the occurrence is communicated
to session object 106, session 106 then passes the event
along with information identifying the event to an appropriate

CIMCTITINT SHEET (RULE 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-34-

event manager object 116 which will determine which event
handler corresponds to the event that has just occurred. Once
event manager 116 has identified the specific event handler
118 that corresponds to the event, event manager 116 will then
pass the event to those event handlers 118 related to the
identified event (of which there may be one, many or no such
event handlers). Each event handler 118 that receives an
event will then execute its designated service logic unit 404,
which is a body of 1logic made up of a plurality of
instructions known as application components (ACs). Service
logic units 404 are stored in the flexible platform system as
unique, non-zero, positive integers, for example, the default
originating service 1is stored as ID 100, pending
connection/disconnect is stored as ID 1004, etc. In addition
to AC’s, service logic units 404 may contain scratch variables
501 (shown in Fig. 20) that are assigned values either to
serve as memory and register space, or to perform calculations
and store data, depending upon the particular requirements of
the designated AC. Following execution of a first AC in a
particular SLU, event handler 118 will then execute the next
AC in the service logic unit until all ACs have been executed.
An AC is executed in application layer 100 until a command,
e.g., proceedToNext, is encountered. When proceedToNext is
encountered, the event handler object 118 is notified of the
completion of execution of the current AC, sets its pointer
on the next AC in the service unit being run, and executes.
The service programs are written and designed, in

general, to support telecommunications applications. A
service logic unit comprises a plurality of application
components with zero-to-plural associated parameters. A

service logic unit is essentially a collection of precompiled
routines executed upon the occurrence of some predetermined
triggering event. The use of SLU’s increases the flexibility
of the system software without significantly sacrificing
processing speed. Service Logic Units 404 may be written, for

example, in an application-oriented language, using a

preprocessor similar to the C preprocessor. Such an
application oriented language may be created which enables
simple flexibility without undue complexity. The service

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-35-

creation language may be provided with statements that may be
introduced with minimal effort, giving the service programmer
access to additional system capabilities as they become
available (e.g., voice recognition). This could be done by
preventing programming statements from altering the behavior
of existing language statements; thus, services which do not
require the new capabilities continue to run without change.

A service, one or more SLU’s 404 executed cooperatively
to provide a set of communications capabilities, is delivered
as a single package, and is executed in an asynchronous
environment. That is, events occur at arbitrary times and the
service logic 404 must be prepared to handle these events
without errors, no matter when they occur. Since asynchronous
applications are typically more difficult to develop than
synchronous ones because of the inability to anticipate when
events might occur, the application-oriented language hides
this asynchronism within individual language statements. The
service programmer may thus write in a sequential programming
style, the language ensuring that all relevant synchronous
events are handled correctly. This is a considerable
simplification for service development.

Service programs executed within the application layer
are executed in a threaded interpretive mode. Thus, service
programs and their data both appear as data to the application
layer 100. This allows services to be modified and/or added
through standard data interfaces without the need to recompile
or even halt the system. While typical interpretative systems
must sacrifice speed of execution for flexibility, the
flexible platform of the present invention pays a very small
price in speed of execution for the flexibility gained by
interpretation of the SLUs. The threaded interpretative mode
is employed so that the service program controls execution of
a series of compiled modules, application components, which
are executed at compiled speed. The sequences of precompiled
machine code are what is actually executed giving excellent
performance results.

As previously noted, the flexible platform has been
designed to maintain flexibility, and therefore, the call
stack does not assume a call model, i.e., a template into

SUBSTIIOTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-36~-

which service logic must fit, in contradistinction to other
call processing systems. The call stack allows any piece of
service logic to be associated with any event. The service
logic associated with an event can be changed even while a
service is running, thus altering the way in which a service
responds to that event.

Instead of a call model, the flexible platform employs
generic call components, software objects used to represent
the dynamic state of calls. These generic call components
have defined relationships to each other so as to ensure a
degree of consistency in the execution of services programs.
Service logic units may be easily shared and released, and may
freely interact with each other. Referring to Fig. 8, the
generic call components provided in the exemplary embodiment
include session objects 106, leg objects 108, virtual
terminals (VTs) objects 114, channel objects 112, the virtual
user (VU) objects (not shown). The session objects 106 and
leg objects 108 have heretofore been discussed in detail, the
virtual terminal 114 objects and channel objects 112 will be
discussed with regard to the resource layer below.

E. The Resource Laver

Resource layer 102 comprises one arrangement of objects
which manages the connection of paths and resources to generic
call components that are within application layer 100. The
arrangement of objects within resource layer 100 comprises
virtual terminals 114, channels 112, and logical resources
110. A virtual terminal 114 is provided for each leg object
108; thus, a virtual terminal-leg object pair is provided to
represent each party to a call (which is represented by
session 106). Each virtual terminal 114 manages a set of
channels 112 for its corresponding 1leg 108, and passes
messages between each of its channels 112 and its
corresponding leg 108.

One or more channels 112 may be assigned to a VT 114,
whereby each channel 112 represents a particular path of
communications to a party to the present active call
represented by session 106. Each channel 112 manages a set
of logical resources 110 associated with a particular path.
Each particular set of logical resources will include at least

SUBSTITUTE SHEET (RINE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-37-

one logical resource representingvthe path, which may be,
€.9., a voice path established through platform switch 9s8.
Each channel 112 manages a plurality of logical resources 110,
but each logical resource 110 is associated with only one
channel 112. However, a single resource may be associated
with a plurality of channels as long as a Separate LR
represents each association with a channel.

Logical resources 110 translate commands from the higher
layer objects 106, 108, 114, 112 into physical resource
commands understandable by the respective resources they
represent. Logical resources 110 also translate reports from
the resources represented into calls to the higher layer
objects 106, 108, 114, 112,

In addition to these generic call components (including
VTs, channels, and LRs), resource layer 102 also includes a
resource broker 414 which keeps track of resource types
Supported by logical resources 110. If a particular resource
type is needed on a particular channel 112 in order to provide
a8 resource capability needed for a service, broker 414 will
determine whether a logical resource 110 has already been
allocated to the particular channel 112 or whether it shoulad
be allocated by monitoring the logical resources 110 managed
by the channel 112 and determining whether the existing

logical resources 110 can accommodate the requested
Capability.

E.1 Resource Management

Resource layer 102 manages resources by isolating the
service 1logic within application layer 100 from the
complexities of resource allocation and deallocation. In
order to accomplish this, techniques are used for classifying
a@ Tresource according to its capabilities, together with
mechanisms that use those classifications to present
application layer 100 with a view of its platform resources
based upon the capabilities of (i.e. the functions performed
by) the resources, rather than what specific type of equipment
is used to provide a capability. In addition, techniques are
used for encapsulating the allocation and deallocation of
resources to present application layer 100 with a common,
simplified view of the allocation/deallocation process in

,“mmm Mo - aa.



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-38~

order to reduce the duplication of code and increase the
reliability of the application layer software.

As generally stated above, a logical resource 110 is an
object that represents a resource. In creating resource layer
102, a logical resource class may be defined for each generic
category of resources that might be connected to platform 10.
From each generic category, subclasses may be defined that
represent different vendors’ implementations of that generic
class of resource.

Fig. 10A is a block diagram representing, by way of
example, a resource translation of generic commands into
device-specific commands. As shown in Fig. 10A, an LR class
416 is defined for a particular generic category of resource
in platform 10, i.e., a voice path resource class. From a
generic resource class 416, subclasses 418, 420 may be derived
representing different vendors’ implementations of the
resource class. More particularly, in the specific example
shown in Fig. 10A a brand X trunk LR 418 and a brand Z trunk
LR 420 may each be defined as a subclass of a trunk LR class
416. Trunk LR class 416 may define a method for offering a
call. When that method is called in a brand X trunk LR object
418, brand X commands are sent to a corresponding brand X
trunk card 422. When the method is called in a brand Z trunk
LR object 420, brand Z commands are sent to the corresponding
brand Z trunk card 424. The service processing software that
calls the method however, sees no difference in the two
subclasses because both trunk LR’s 418, 420 invoke the same
generic method in trunk LR class 416.

Fig. 10B is a block diagram which demonstrates a resource
translation of device-specific reports into generic class
reports. This figure shows how the method described in Fig.
10A works for reports coming from the resource to platform 10.
A brand X trunk LR object 418 receives reports from its brand
X trunk card 422, and translates them into calls to methods
in its associated channel object. The brand Z trunk LR object
420 operates in a like manner in reporting from its brand Z
trunk card 424.

As mentioned above, application layer 100 is isolated
from the resources by resource layer 102. Application layer

QIRSTITIITE SHEET (RULE 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-39~

100 requests allocation of resources by making a request for
one or more capabilities, such as playing tones, recognizing
DTMF digits, making or accepting calls, etc. 2 requested
resource capability may be a basic capability which defines
a fundamental unit of equipment functionality, or it may be
a combination of basic capabilities. LR’s 110 may be
organized by their channel objects 112 by maintaining two
tables keeping track of capabilities. One table keeps track
of basic capabilities, and the other keeps track of resource
capabilities. The tables may be configured so that each entry
in the basic capability table contains a basic capability
value and a pointer to an LR supporting the basic capability.
Similarly, each entry in the resource capability table may
contain a resource capability value and a pointer to an LR
supporting the resource capability. As a new LR 110 is
allocated to the channel 112, a record is made in each table
related to the LR’s capabilities and a pointer to its
location. Application layer 100 has no direct knowledge of
specific LR’s 110; it knows only that channels 112 have LR’s
with certain sets of capabilities. When application layer 100
issues a command to a channel 112, the channel looks in its
basic capability table for an LR with a basic capability
needed to support the requested action. If no such basic
resource is found, a "lack capability" message is sent back
to the service. Because the basic capability could not be
supported by the channel 112, the service will add the desired
functionality to the channel 112 by issuing an "add
capability" command directly to channel 112.

Capabilities are added to the architecture because
similar pieces of equipment from different vendors do not
operate in exactly the same way. For example, a given service
A may require both the digitized and synthesized voice
resources available from vendor X’s voice processing
equipment. Assume further, vendor Y makes similar voice
Processing equipment but only with the digitized voice
resource. For service A to operate as desired, it must
allocate vendor X’s equipment for voice processing. If a
service B required only a digitized voice resource, vendor Y's
equipment would be allocated to support service B. Thus, in

SUBSTITUTE SHYET mm £ 28\



WO 96/20448

10

i5

20

25

30

35

PCT/US95/16233

-40~-

order to properly allocate resources to support a given
service, each individual service must know each resource
supported by each vendor’s product.

To tie specific services to specific vendor resources is
a tremendous burden on service designers, especially when new
technology arises or a new vendor resource is to be used. 1In
the case of a newly integrated resource to the platform, it
would be necessary for the service designer to update all
services that may be associated with that new resource.
Because one of the design goals of the present invention is
to simplify the design of services and to isolate them as much
as possible from the resources, services allocating their own
resources is not a good idea.

Rather than allocating resources directly, service
programs in the flexible program ask for certain capabilities.
For example, the service may ask for a digitized voice
capability and a synthesized voice capability. If one LR 110
can handle both these capabilities, resource broker 414 will
inform the channel 112 making the reguest that a single LR 110
satisfies both requests and that LR would be allocated to the
service program through the requesting channel. If two LR’s
are required, two LR’s will be allocated to the service
program in a manner similar to the allocation of the single
LR. In either case, the service logic remains the same.

Figure 11 shows a block diagram, by way of example,
demonstrating the relationship between basic and resource
capabilities and the relationship between singular and
aggregate resource capabilities. Capabilities, the things
that resources can do, can be divided into two different
classes. A basic capability is the smallest unit of LR
functionality. It represents a set of actions and behaviors
that could be provided by a single resource. Some example
basic capabilities include providing a voice path, playing
tones, performing DTMF collection, and synthesizing voice.

Fig. 11 illustrates a basic capability of providing a voice
path which is provided by a voice path resource 426. A
resource capability is a set of one or more basic capabilities
provided by a single unitary device. For example, one
resource capability could be a basic voice capability 428, as

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-4]1-

shown in Fig. 11, which represents the basic capabilities of
providing a voice path 430 and playing a tone 432.

The two separate classes of capabilities are desired
because some resources support more than one capability. a
service may require an LR 110 that supports a particular mix
of basic capabilities. In the flexible platform system, this
is done by requesting the resource capability that represents
a combination of basic capabilities. Thus, this is an
efficient way to identify all such combinations without
binding service 1logic into a fixed relationship with a
particular resource’s configuration. Furthermore, an ordering
mechanism, within the resource broker 414, is implemented by
mapping out the LR’s and the resource capabilities they
support so that the resource best suited for a given resource
capability may be identified and therefore allocated to the
service.

Resource capabilities may also be divided into two
subclasses. Figure 11, as mentioned above, shows a block
diagram, by way of example, demonstrating the differences
between a singular and aggregate resource capability. A
singular resource capability represents a single basic
capability. Every basic capability has a corresponding single
resource capability, for example, bcVoicePath 426 may also
referred to as rcVoicePath; bcSynthVox (not shown) may also
referred to as rcSynthVox (not shown); etc. An aggregate
resource capability represents more than one basic capability,
for example, rcBasicVoice 428 represents both rcVoicePlay 430
and rcTonePlay 432.

The resource layer 102 supports several media for the
transfer of information from the user to the platform 10, from
the platform 10 to a user, or from one user to another user.
Each medium is called a path 412, and is characterized by the
information carried, not the physical medium on which the
information is carried. For example, voice paths carry trunk
signalling and voice information; pager paths carry pager
signals; and signalling paths carry out-of-band signalling
information. An LR 110 associated with a resource that
supports a path 412 is known as a path resource 410.

Like the path 412, the channel 112 is an object that

SHRSTITVTF SHFFT RINF 9%)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-42-~

manages a path resource object 410 and a set of other LR
objects 110 that generate and receive information via the path
resource 410. A channel 112 must have, at a minimum, a path
resource 410. The type of channel 112 is the same as the type
of its path 412, for example, a channel 112 which manages a
voice path is a voice channel. Channels 112 are the means
through which services and users interact. Over the lifetime
of a channel 112, services may ask the channel 112 to add and
remove capabilities, but the path characterization always
remains.

The virtual terminal 114 is an object that owns and
manages the channels 112 associated with a single user, in
which the user may be associated with as many channels 112 as
needed to represent that user. The virtual terminal 114 is
also used for releasing capabilities, which can be
accomplished in two ways: a full release or a partial
release. In a full release, the VT 114 directs the channel
112 to release all of its capabilities, and after release, to
delete itself. In a similar manner, a VT 114 may do a full
release of its associated channels 112. In a partial release,
all capabilities except required capabilities (called "sticky
capabilities") are released. A sticky capability is a
capability that can be released only by a full release, which
may be made, e.g., when the service has been completed and all
capabilities are no 1longer necessary. When specific
capabilities are released from a service, a partial release
is issued.

Because requests for capabilities are issued by AC’s that
need them, and more than one AC may need the same capability,

it becomes tricky to determine when to release them. The
resource broker 414 economizes the allocation of resources by
reusing LR’s 110 already owned by the channels 112. The

larger the set of owned LR’s 110, the more likely it is that
an already owned LR 110 will be reused. If capabilities are
both requested and released by every AC, the opportunities for
reuse of LR’s 110 are reduced and the number of allocations
and releases that must be processed is increased. Another
solution is to let AC’s request capabilities as needed and
wait until some predetermined time to release them. The only

SURSTITUTE SHEET (RILE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-43-

problem is that if the predetermined time is before the end
of the call, not all capabilities will be viable candidates
for release. Thus, sticky capabilities and partial releases
give a way to control what is released and what is retained.

To determine whether an LR 110 may be properly released,
the channel 112 must keep track of the basic capabilities and
resource capabilities of its associated LR’s, as described
above in the Resource Management section. It should be
remembered that an LR 110 may support more than one resource
capability, and that ACs may issue more than one capability
request to a channel 112 for a particular capability. This
can result in a channel allocating an LR to support several
capabilities. Thus, an LR 110 should not be released until
every capability it supports has been completely released by
the service. To ensure that no capability or LR 110 is
prematurely released, the tables within each channel 112 are
consulted before release.

E.2 The Resource Broker

As noted earlier, services have no direct knowledge of
LR’s 110 owned by channels 112. The services know only of
capabilities. Therefore, to have resources allocated to a
service, the service must present an "add capability" request
to the channel 112.

The resource broker 414 keeps track of which resources
support which resource capabilities and manages the allocation
of the logical resources for objects known as resource owners,
i.e., objects (e.g., channels 112) that contain pointers to
LRs 110. Figure 12 shows a flow diagram illustrating, by way
of example, steps that may be performed by a resource broker
upon receiving an "add capability" request from an executing
service and allocating a logical resource to a resource owner
to satisfy the request. Before a resource capability is
allocated, a channel 112 (which serves as a resource owner)
receives a capability request from an executing service.
Channel 112 calls the resource broker 414 and indicates the
resource capability requested with reference to itself. The
resource broker 414 tries to obtain a resource 110 which
supports the requested resource capability.

The resource broker 414 may comprise a static list (read

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-44-

into the database at initialization) that has information

recorded into three fields: logical resource (LR) type;
resource capability type; and preference. The preference, an
integer from the set, for example, {-1, 1, 2, 3,...}, is used

by the broker when several different LR’s support the same
resource capability to determine which resource is the best
to support the capability request. The higher the preference
numeral, the higher the preference. The special value -1
identifies LR types that are never allocated by the broker
414, but about whose capabilities it must know, for example,
incoming trunks. The broker becomes involved only if the
ILR’s 110 associated with a particular channel 112 do not
support the requested resource capability. For example, when
a resource capability request is made by the executing service
434, the resource broker first checks the resources already
owned by the client channel 436. If one of those resources
supports the request capability, the resource broker reports
a reference to that resource back to the resource owner 438.
If the resource owner doesn’t already own the resource which
satisfies the request, the resource broker tries to allocate
a resource of the type that appears first in the resource
broker’s table of resources supporting the requested
capabilities 440. If the resource cannot be allocated 442,
the resource broker tries the next resource type in the
resource broker 1list 444. Eventually, one of the resources
will succeed in satisfying the capability request or all will
have failed, resulting in no more resource types to try. If
the allocation succeeds, the resource broker reports back to
the resource owner, e.g., channel 112, with a reference to the
allocated resource 446. If the allocation fails, the resource
broker reports back to the client channel 112 that the
allocation has failed 448.

E.3 Simplified Allocation, Deallocation, and

Use of Resources

As stated above, the flexible platform system was
designed, inter alia, to simplify the task of writing services
by isolating them from resources. The resource layer 102,
made up of a plurality of channels 112, each with sets of
resources 110 included, relieves service writers and designers

SUBSTITUTE SHEET (RULE 26)




WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-45-

of worrying about how to organize and manage resources 110.

Figure 13 shows an example of a simple resource
allocation. Assume that a service is operating and (s.1301)
requires the ability to both play and recognize voice signals.
A (s.1302) request for resource capability is made, e.gqg.,
rcPlayRecognize, to (s.1303) the reference channel through
which the service is operating. At this point, assume
(s.1304) the channel has no logical resource able to perform
the desired capability. The resource broker inquires of the
requesting channel (s.1305) which logical resources it has
previously obtained. The resource broker asks each of these
which capabilities they support. "rcPlayRecognize" will not
be represented (s.1304), therefore the resource broker
continues by looking in its own resource list (s.1306) for a
logical resource that supports "rcPlayRecognize." The
resource broker finds such a resource, which we will call

DigVoxLR (s.1306). The resource broker allocates a DigVoxLR
(s.1307). The DigVoxLR, as part of its allocation obtains all
hardware resources needed to support it (s.1308). Once all

of these have been allocated, the DigVoxLR reports back
(s.1309) to the resource broker that its allocation is
complete. The resource broker informs the regquesting channel
(s.1310) that it now has a logical resource that can support
rcPlayRecognize and passes the address of DigVoxIR back to the
channel.

The resource broker checks the requesting channel for its
owned logical resources before allocating a new one to improve
the efficiency of hardware allocation on the platform. In the
previous example, DigVoxLR might be able to support a DTMF
digit collection capability, "rcDtmfCollect," in addition to
rcPlayRecognize. If the requesting channel had earlier
obtained DigVoxLR in order to support rcDtmfCollect, it would
already have a resource that supports rcPlayRecognize. Rather
than obtain a second one, the resource broker determines that
the DigVoxLR already owned by the requesting channel can be
used to support rcPlayRecognize as well.

Another example relieving service designers of managing
resources is when a service wants to tear down a channel. The

service simply sends a command to release the channel 112

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-46-

specifying the full release and then waits for a confirmation
that all channel 112 resources 110 have been deallocated.
Because the service programs do not keep track of which
resources 110 have been allocated, or even know how to handle
them, it is only necessary that the service program inform the
channel 112 that the capabilities are no longer required and
the resources providing those capabilities should be
deallocated.

When deallocating resources 110, the platform treats
basic capabilities and resource capabilities differently.
Basic capabilities keep track of what a channel 112 can do,
while resource capabilities keep track of what resources 110
channel 112 has obtained and must yet release. When a channel
112 is waiting for a logical resource 110 to finish releasing,
the logical resource entry for that particular LR is kept
current in the resource table, but dropped in the basic
capability table. This keeps the logical resource 110 from
being used while it is being released.

There is a similar relationship between service logic and
VT’s 114. The VT 114 enables service writers and designers
to not concern themselves with writing code to organize and
manage channels 112. Similar to the way the service logic can
release capabilities in channels 112, the service logic need
only issue a full release command to a VT 114 and then wait
for VT 114 to issue a confirmation call when all of the VT’s
114 associated channels 112 have been deallocated.

Services can also create multi-channel VT’s with a single
VT request. Besides supervising simplified channel
management, VT’s 114 provide a useful abstraction for modeling
multi-media services. The VT’s 114 are important to support
integrated voice and data and other multi-media services
through a single object that gathers all user media into one
bundle.

All these functions are implemented by a complex state
machine within the VT 114 and channel 112. Encapsulating
these mechanisms in the resource layer 102 frees service
writers of the need to implement similar mechanisms on their
own. These facilities provide a framework within which an
interface with considerable flexibility can be designed within

SURSTITUTE SREET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-47-

channels 112, VT’s 114 and services. For example, VT
configurations need not be known by a service ahead of time.
A service can start off with a VT, with no associated
channels, and it can later add and release channels 112 of any
sort, as required by the particular service program. Once a
set of channels 112 has been associated within a VT 114, the

VT 114 can add and release capabilities through its associated
channels 112.

F. An Exemplary Call Walkthrough Procedure

The exemplary platform call processing architecture
disclosed herein can be better understood by walking through
the platform call processing architecture as a call is placed
from an originating party to a terminating party. Figs. 14-
18B illustrate several of the main steps the call processing
software will perform in handling a call, including setting
up an originating side (Fig. 14), starting an originating
service (Fig. 15), making a terminating side (Fig. 16),
offering connection (Fig. 17), accepting the offered
connection (Fig. 18A), and executing an escape service (Fig.
18B). This walkthrough refers to certain events, event
handlers, and terminology. However, the specifics referred
to in this walkthrough should not be construed as in any way
limiting, as variations may be made to various aspects of the
call processing architecture without detracting from the
flexible and versatile nature of the same.

Fig. 14 is a flow chart representing, by way of example,
the establishment of an originating side of a call processing
software in response to receipt of an incoming call. A call
is made by party A from a telephone to party B (5.1401). The
call arrives at the network platform on the platform trunk
(s.1402). A platform switch sends an indication of the call’s
arrival on the platform to the host computer (s.1403). A
message distributor associated with the particular platform
trunk creates a 1logical resource (s.1404). The 1logical
resource creates a channel; the channel creates a virtual
terminal; the virtual terminal creates a leq; and the leg
Ccreates a session.

Once the originating call sets up the originating side
of the call, the originating service begins. Fig. 15 is a

SURSTITHTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-48-

flow diagram representing, by way of example, the starting of
an origination service once the originating side has been set
up. According to the diagram the 1leg checks with the
subscriber databases (s.1501) to identify the caller (s.1502).
If originating party A is not a subscriber, a default user
identification is selected with its default service
identification (s.1503). The originating leg creates an event
handler for execution upon the occurrence of a call from off
the platform (s.1504). The default service identification is
copied into the event handler (s.1505), to be executed upon
event occurrence. The handler is then associated with the
appropriate event in the event manager (s.1506). The
originating leg now lets the session know about the call
origination from party A (s.1507), which looks through the
event manager to find the event handler associated with the
external origination event (s.1508). The default service is
then executed by the event handler (s.1509).

If the originating party A is a subscriber, the
appropriate user identification for party A is selected along
with its particular originating service identification
(s.1510). As with the default service, the originating leg
creates an event handler for execution upon the occurrence of
a call from off the platform (s.1511). The user service
identification is copied into the event handler (s.1512), to
be executed upon event occurrence. The handler is then
associated with the appropriate event in the event manager
(s.1513). The originating leg now lets the session know about
the call origination from party A (s.1514), which 1looks
through the event manager to find the event handler associated
with the external origination event (s.1515). The particular
originating service subscribed to by party A is then executed
by the event handler (s.1516).

Now the originating side is set up and the originating
event has caused either an originating service (in this case,
a default originating service) to begin executing. Fig. 16
is a flow diagram representing, by way of example, the
creation of a terminating side of a call processing stack once
the originating service has been started in accordance with
the process of Fig. 15. One of the primary functions of the

SUBSTITOTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

40—

default originating service described herein is the creation
of a terminating leg to accommodate party B. As shown in Fig.
16, the service creates a terminating leg in step s.1601 and
attaches it to the session in step s.1602. The terminating
leg checks the subscriber database to identify the receiving
party’s subscribed services (s.1603) and finds the appropriate
service identification (s.1604). The terminating leg creates
an event handler for execution upon the occurrence of an
internal software indication of offering connection of the
originating 1leg to the terminating leg (s.1605). The
receiving party’s subscribed service identification is copied
into the event handler (s.1606), and the handler is associated
with the appropriate event within the event manager (s.1607).
This completes the procedure for making the terminating leg.

A next procedural area in the sample call is the method
for offering connection from party A to party B. As mentioned
above, the offering may be an internal event from the platform
software, although that is not absolutely necessary.

Fig. 17 is a flow diagram representing, by way of
example, the steps related to offering connection to a
terminating party after the terminating leg has been created
in the manner set forth in Fig. 16. The originating leg lets
the session know that an offer of connection is being made by
party A (s.1701). Another event handler, related to a
disconnect by the originating party before party B answers,
is created by the user or default service currently executing
(s.1702). The executing service copies a predetermined
service identification into the created handler (s.1703) and
assigns the handler to an appropriate event within the event
manager (s.1704). The executing service creates another
handler (s.1705), this time for an internal disconnect event
generated by the platform software on the terminating side of
the call, copies a predetermined service identification into
the event handler (s.1706), and assigns the event handler to
a specific event in the event manager (s.1707). While not
necessary, the service identifiers for the external disconnect
event and the internal disconnect event may be the same. This
is one of the tremendous advantages of the present invention,
that service logic is modular and, therefore, reusable for a

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

~50-

plurality of events. If desired by the service designer, any
event may be associated with any service logic, making the
service more flexible and service design easier. The service
logic creates an internal connection offering event on the
terminating leg to trigger the appropriate event handler to
continue the call preparation routine (s.1708). '

Fig. 18A is a flow diagram representing, by way of
example, the general steps performed in accepting an offered
connection. Now that the call has been offered, it is now
appropriate for the terminating leg to accept the offer of
connection. The executing service may record the time of the
call (s.18A01) for the purposes of billing, etc. The
executing service creates an event handler to respond to an
internal disconnect event on the originating side and copies
a predetermined service identification into the handler
(s.18A02). The event handler is assigned to an appropriate
event within the event manager (s.18A03). Then a message, or
some other service dependent action, will be presented to the
originating party for an appropriate response (s.18A04).

The service may be designed so that it awaits a response
which is referred to as an escape. An escape takes the user
from the message portion of the call to the desired party or
service. Fig. 18B is a flow diagram representing, by way of
example, the steps that may be performed in preparing the
session for an escape service. Before party A can be
connected with party B, the platform satisfies itself that
party A has the ability to transmit an escape to activate
party B’s subscribed service. Thus, while party A waits for
its call to be answered, the executing service plays ringing
to the originating side (s.18B01). At the same time, the
service plays a null message on the originating side (s.18B02)
that is undetectable by the caller, but allows the platform
to determine which resources must be allocated to complete
transmission of the call. The null message is then received
by the platform, which determines whether the originating
channel can support the service (s.18B03), e.g., digit
collection. If the originating side can support digit
collection, an indication is sent to the session, and the call
proceeds by playing the service message and awaiting the entry

CIMCTINMIIT CUTTT /DN r as\



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-51~-

of escape digits (s.18B04). If the originating side cannot
support digit collection, the channel must communicate with
the resource broker to find and allocate an appropriate
logical resource to the channel for digit collection
(s.18B05). Once allocated, a confirmation indication is sent
to the session, and the call proceeds by playing the service
message and awaiting the entry of escape digits (s.18B04).
Upon the entry of escape digits, the originating party’s
desired service is performed (s.18B06), e.g., connection to
party B.

While the above description was provided to familiarize
the reader with a generalized platform routine, the following
call walk-through, shown in Figs. 8 and 20-23, will refer to
various specific events, event handlers, and service
identifications for the purpose of explanation, and should not
be construed as in any way limiting.

In the present scenario, an originating phone call is
made from non-subscribing party A to subscribing party B. The
call from A is routed through a general telephone system until
a central office switch routes the call to the platform switch
98 of the flexible platform 10. A call origination report is
input to the switch message distributor 120 associated with
the line or trunk 450 on which the call arrived. The message
distributor 120 creates a logical resource object 502, see
Fig. 20, to handle the report, naming it, for example,
IncTrkLR. This object represents the hardware of the incoming
call to the flexible platform 10, and for the duration of the
call, all reports from and commands to the line or trunk 450
go through IncTrkLR 502.

Figure 20 shows a block diagram representing, by way of
example, the creation of objects building the sample session
of the example from signal arrival on the platform to
immediately following call origination. After the creation
of IncTrkLR 502, the logical resource object creates a channel
object 504, named, for example, IncVChannel. Channel object
IncVChannel 504 in turn creates a virtual terminal object 505,
for example, IncVT. The IncVT object then creates a leg
object 508, for example, Incleg. Finally, the 1leg object
Creates a session object 510, for example, TheSession.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

io

15

20

25

30

35

-52-

TheSession 510 acts as a managing object for all of the legs
in the call.

Upon creation of TheSession object 510, the originating
side of the call stack is in place. Control is then returned
to IncTrkLR 502 to call IncVChannel’s reportOrig method. The
reportOrig method is a confirmation message to succeeding
objects in the object hierarchy that the reporting object has
been created. This reporting method is also a way of
identifying the originating call. IncVChannel’s reportOrig
in turn calls IncVT'’s reportOrig method, which calls Incleg’s
reportOrig method.

IncLeg 508 now checks the subscriber database 56 (see Fig
8) for a record whose key is the calling party’s number (A’s
telephone number). Since it was assumed that A was not a
subscriber of the flexible platform, no such record will be
found. 1Instead, the flexible platform system will retrieve
a default user identification record to enable the call to
proceed. Incleg 508 retrieves the record for a default user,
for example, DefaultOrigUID. This record is referred to as
a virtual user record, for example, IncVU. The record is also
associated with a default originating service, for example
service ID 100 or service logic unit (SLU) 100. As will be
seen, this particular SLU creates a leg for the terminating
(called) party, i.e., party B, and adds it to the same
session, i.e., TheSession, as the originating call.

IncLeg 508 creates an event handler 514 for an external
origination event 506, for example, EXT_orig. The event
handler 514 is associated with a reference leg 516, for
example, IncLeg, and a reference channel 518, for example
IncVChannel. The event handler 514 will be called, for
example, EXT_OrigEH. IncLeg 508 then copies a service logic
unit 520 to be executed, e.g., service ID 100, into the event
handler 514 and tells TheSession 510 to add the event handler
514 to the session’s event manager 512, thus registering
EXT OrigEH 514 with TheSession d1. EXT_OrigEH 514 has scratch
variables 501 that are predetermined, for example, scratch
variable 0 is set the by creating leg, Incleg, to a value
equal to the number called by A, e.g., called_number. Thus,
if an external event, e.g., EXT orig 506, occurs, the event

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-53-

manager 512 will inform event handler EXT_OrigEH 514 to
execute the ID 100 service 520 defined therein.

Note that TheSession 510 includes a leg list 511 to keep
track of the parties to TheSession’s call, which at this time
includes only the originating leg, IncLeg. Also note that the
event manager 512 is a list of anticipated and predetermined
events 506. However, at this point in the call, only one
event 506, EXT orig, is anticipated.

The system at this point will remain idle until an event
occurs attempting to establish communication between party A
and party B. To get things moving, IncLeg 508, as
representative of the calling party, notifies TheSession 510
of the external event, signifying a call from outside of the
platform to inside the platform. To process the event, IncLeg
passes the external origination event of the call origination,
EXT_orig 506, plus identifying itself and IncVChannel as the
reference leg 516 and reference channel 518, respectively.
TheSession passes the external origination event to the event
manager which handles events of this type, and that event
manager further passes the event to event handler 514. Since
the event 506 is a member of the list, the event manager 512
accesses event handler 514 to respond. Since EXT OrigEH, for
example, is invoked by an external origination event 506, and
the call from outside the platform to within the platform
occurs over reference leg 516 and reference channel 518, the
event manager 512 accesses the event handler 514. The event
handler 514 then executes the service logic unit 520
associated with EXT OrigEH, in this example, the default
originating service ID 100.

In a service logic program employed as an originating
service by the flexible network platform, a first declared
scratch variable, scratch variable 0, may be defined as, for
example, called number. This is important because originating
leg 508, as the creator of the event handler, sets the scratch
variable 0 in EXT OrigEH 514 when the object was created, and
now every originating service must assume that the leg 508
will set all scratch variables 501 this way.

By way of example, assume:

ID 100

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

40

45

-54 -

make_leg AC

create new leg [terminating leg];
attach new leg to session;
assign scratch variables;

new leg check subscriber data for called party’s
service identification;

retrieve service identification;

new leg create event handler for internal offer of
connection on terminating leg;

copy service identification, e.g., ID 10000, into
event handler;

register event handler with session;
proceedToNext.
offer_connection AC

create event handler for external disconnection on
originating line;

copy service identification, e.g., ID 1004 into
event handler;

register event handler with session;
initialize scratch variables;

create event handler for internal disconnection on
terminating leg;

copy service identification, e.g., ID 1004 into
event handler;

register event handler with session;
initialize scratch variables;
create offer of connection event in terminating leg

[executes service ID 10000].

Part of nearly every user service, e.g., the default
origination service ID 100, and generally the first action,
is an application component (AC) known as, for example,
make leg AC. When the event handler 514 begins running ID 100
service logic unit 520, the event handler indicates the
make_ leg AC as the initial AC for execution. The make_leg AC
is stored as one or more opcodes, an integer value identifying
a particular compiled module of code, to be executed along
with several associated parameters. In general, the
parameters associated with the executing opcode must be
decoded and passed to the opcode while it is being executed.
When the opcode has been executed, the event handler will
execute the next opcode in the AC by identifying its opcode,
as before. This continues until the executing AC is finished
by invoking a completion statement, for example,
proceedToNext. This passes a completion code to indicate the
complete execution of the AC. The event handler will then
execute the next AC in the executing SLU.

Figure 21 is a block diagram representing, by way of
example, building of the objects within the call processing

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-55-

software as a result of the execution of the make_leg AC of
the default service. The execution of the make_leg AC creates
a new leg called, for example, OtgLeg 608, attaches it to
TheSession 510, and assigns predetermined scratch variables
associated with a newly created leg. 1In attaching the OtgLeg
608 to TheSession 510, the session’s leg list 511 is updated
to include Otgleg as a party to TheSession. OtgLeg 508 looks
in the subscriber database 56 (see Fig. 8) for a record whose
key is the same as the value, for example, scratch variable
0, e.g., called_number. Since it has been assumed that party
A called party B, a subscriber, a record exists with the value
called_number in the subscriber database. The record
retrieved is identified as the terminating party’s virtual
user record and called, for example, otgVu. OtgVU also
contains the service unit ID of called party B’s terminating

service. For example, ID 10000 could be the service
identification number. This is an aspect of the platform’s
flexible modular code design. Because services are stored

according to an identifying number, two services cannot use
the same number identifier. However, different event handlers
may access the same services, in response to the same or
different events, simply by calling the service identification
number.

Upon creation, OtglLeg 608 creates an event handler 614,
for example, INT _OffConnEH, for an internal offer connection
event 606, for example, INT _off_conn. The reference leg 616
for the event handler 614 is defined here as OtglLeg. However,
the reference channel 618 is defined as NULL, because no
channel has as of yet been created which is associated with
OtgLeg 608. This enables event handler 614 to be activated
by an internal offer connection event 606 no matter what
reference channel it is passed through, so long as the
reference leg 608 is Otgleg. The offer connection event 606
is considered an internal event because the occurrence comes
from the flexible platform software, not from some device
outside of the flexible platform.

Otgleg 608, the terminating leg, copies ID 10000 service
620 into event handler INT OffConnEH 614 and registers the
event handler 614 with TheSession 510. Note that the



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-56-

originating side and the outgoing leg have been created, and
that, at this point of the phone call, the external
origination event handler 514 is still executing default
originating service ID 100’s make_leg AC on behalf of caller
A, represented by the incoming leg. INT_OffConnEH 614 sits
idly waiting for an internal offer connection event 606 with
reference to Otgleg 608. When this event occurs, the event
handler 614 will begin executing the ID 10000 SLU 620.

The event handler has executed each AC of service ID 100
and now reaches a proceedToNext instruction. The event
handler executes the proceedToNext method of the make_leg AC
along with its SUCCESS completion code. The handler informs
the platform that it has successfully completed the make_ leg
AC, points to the offer_connection AC of the ID 100 SLU 520,
the next AC in the service logic, and begins executing it.
The AC is executed by Incleg 508 offering the calling party’s
call to the called party’s service location. The parameters
identify the leg to which connection is offered, e.g., Otgleg
608, and the leg and channel from which connection is being
offered, i.e., EXT OrigEH’s reference Leg 516, i.e., IncLeg
and reference channel 518, i.e., IncVChannel 518.

Figure 22 shows a flow diagram representing, by way of
example, the arrangement of the objects of the call processing
software as a result of the offer_ connection AC. An event
handler for an external disconnect event 706 is created by the
offer_connection AC on reference leg 716, e.g., IncLeg and
reference channel 718, e.g., IncVChannel. An external
disconnect being a disconnection of the call by the
originating party prior to the terminating party answering.
The event 706 is called, for example EXT disc and the handler
714 is called, for example, EXT DiscEH,,.. The service ID 720
for event handler 714 is defined by offer_connection AC to be,
for example, 1004 and then registered with TheSession 510.
The ID 1004 service 720 is a background service responsible
for handling a disconnect from the originating party while
waiting for the terminating party to answer. No internal
disconnect handler has been created for the incoming side
because there has been no connection to the outgoing side that
might generate such an event.

SUBSTITUTE SHEET (RIILE 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-57=-

The ID 1004 service 720 is executed upon the occurrence
of an external disconnect event 706. Because this particular
service is a background service, the offer connection AC must
initialize the event handler’s scratch variables 701. For
example, scratch variable 0 is set to the address of the AC
to be called when the invoke statement of ID 1004 service 720
is executed by the handler 714, e.g., the leg class’s static
ac_entry method; scratch variable 1 is set to the ID of an AC
to be executed upon leaving the background service 720, e.g.,
olc e disc AC, an offer leg connection AC that handles an
external disconnect on behalf of the offer_ connection AC;
scratch variable 2 is set to the address of an object that
should execute the AC whose ID appears in the invoke
statement, e.g., IncLeg; and after the scratch variables of

the background service have been initialized, the
offer_connection AC sets background parameter scratch
variables specific to the olc_e disc AC, e.g., scratch

variable 3 is set to the address of EXT_OrigEH 514, the event
handler that created EXT DiscEH,,. 714.

The AC offer_connection creates another event handler
1714 that responds if and when an internal disconnect event
1706, e.g., INT_disc, is generated by the software with
reference to any channel in reference leg 1716, e.g., OtglLeg.
This handler 1714 is referred to, e.qg., as INT_DiscEH,,. The
service ID 1720 assigned by the offer connection AC to the
handler 1714 is, for example, ID 1004, the same service
associated with EXT DiscEH,_  714. As alluded to above, the
service identifiers for the external disconnect event and the
internal disconnect event may be the same. This reusable code
in the software enables the service designer to associate any
event with any service logic, thus, making the service more
flexible and service design easier. This handler is also
registered with TheSession 510. Note that an external
disconnect handler has not been created for the outgoing side
because there is no connection, at this time, to the outgoing
side that might produce such an event. As noted above, the
ID 1004 service 720, 1720 is a background service that
requires the creating AC to initialize the service scratch
variables 701, 1701. The initialization is the same, except

SUBSTITUTE SHEET /mmir 9%\



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

40

-58-

scratch variable 1 of scratch variables 1701 is set, for
example, to the ID of the AC to be executed after an internal
disconnect event 1706, e.g., olc_i_disc AC.

Note that there are now several predetermined events 506,
606, 706, and 1706 anticipated by the flexible platform
software and it is not obvious from where the next event will
occur. The originating party has done everything possible to
get things started, but, as of yet, there is no sign of a
terminating party. Originating service handler EXT_OrigEH 514
is executing the offer_connection AC and terminating service
event handler 614, INT OffConnEH, is awaiting an internal
offer connection event 606 to get itself started. The final
responsibility of the offer_connection AC is to trigger
INT _OffConnEH 614 by creating an internal offer connection
event 606 for any channel in OtglLeg 616 and sending it to
INT _OffConnEH 614 via the event manager in TheSession 510.

At this point, default originating service ID 100 has
been fully executed. Any further creating, maintaining, or
terminating of the present call is accomplished through the
event handlers registered, or to be registered, in TheSession
510. The call now proceeds from TheSession’s event manager
512 to INT OffConnEH’s execution of service logic unit ID
10000. Note that the execution of the offer_connection AC
EXT_OrigEH is not complete because the internal offer of
connection event occurred before the offer_connection AC
executed a proceedToNext statement. The offer_ connection AC
will not complete until either the internal disconnect event
or the external disconnect event that it registered for
occurs. The passing of the internal offer connection event
606, the reference 1leg 616, and reference channel 618
parameters triggers INT_OffConnEH 614, thus constituting an
acceptance of the offered connection.

By way of further example, assume:

ID 10000

proceedToNext [terminates offer_ connection AC].
record time AC

proceedToNext.
reg_for_i_disc AC

create event handler for an internal disconnection
on the originating 1leg;

register event handler with session;

initialize scratch variables;

SUBSTITUTE SHEET mm F 7%)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

40

-59-

proceedToNext.

initialization AC
initialize number to call;
proceedToNext.

play_message AC
allocate resources for service support;
proceedToNext.

mlr AC

call number to call;
proceedToNext.

The ID 10000 service 620 begins with, for example, a
record_time AC, which records the current time into a scratch
variable. This variable can be employed as a reference point
for billing and other vital statistics, etc.

Because the outgoing side has accepted the offered
connection-through TheSession’s activation of the appropriate
event handler for an offer of connection, it would be possible
for the outgoing side to generate an internal disconnect event
1706 within a reference leg and reference channel, e.qg.,
IncLeg and IncVChannel, respectively. The record time AC’s
proceedToNext statement causes INT_OffConnEH 714, for example,
to reg_for_i disc AC, an AC that registers the originating leg
and channel as the reference leg 1716 and channel 1718 for
internal disconnect events 1706. Figure 23 shows a flow
diagram representing, by way of example, the objects of the
call processing software following the execution of the
reg_for_i disc AC. The figure shows that this AC creates an
event handler 814 for executing a given SLU upon occurrence
of an internal disconnect by the platform software on the
originating side of the call, for example, INT DiscEH,, . 814,
and registers it with TheSession 510. The new event handler
814 is set to execute, for example, the ID 1005 background
service 820. The handler 814 must deal with internal
disconnect events 1706 within reference leg 816 and reference
channel 818, e.gq., IncLeg and IncVChannel. The scratch
variables 801 for INT DiscEH,, 814 must be initialized because
service ID 1005 820 is another background service. For
example, scratch variable 0 is set to the address of the event
handler class’s static ac_entry method; scratch variable 1 is
set to the ID of the tear down AC, the AC that tears down one
leg of a disconnected call; scratch variable 2 is set to the
address of the object that will execute the tear_down AC,

SUBSTITUTE SREET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-60-

e.g., INT _OffConnEH 614; and scratch variable 3 is set to the
value stored in svc_start by the record_time AC, e.g., to
calculate the duration of the call if INT DiscEH,. is invoked.

Notice that INT_DiscEH,,. 814 has been added to the same
event 1706 as Int_DiscEH,, 1714 and that these event handlers
are marked to execute two different services. This is an
added benefit of the present invention in that two identical
events execute different service logic depending upon the
reference leg and reference channel of occurrence defined by
the event handler. This simplifies for the system designer
the arrangement of events, enabling a system in which the
events control the sequence and execution of service logic.

The reg for_i disc AC’s proceedToNext statement causes
INT_OffConnEH 614 to execute, for example, an initialization
AC that sets user-specific data for the call. In a simple
call service of this example, assume only one item is read,
e.g., the number at which the subscriber may be reached, "To
reach party B, press ’1’." The number read is clearly not the
same as the subscriber’s telephone number, but the numerical
representation required to access the subscriber’s service.

Before proceeding with this particular outgoing call, the
service may want to perform an additional preparatory function
to assure itself it has the ability to collect the digits
requested above. Thus, in making the call, a background
service, e.g., escape service, is triggered to play ringing
to the originating party and monitor the originating line for
an escape. An escape occurs when the originating party
presses a key on his or her phone keypad designated as an
escape digit for the service. For example, if a message is
read, "For connection to party B press ‘1’," the digit "1" is
an escape digit. If the service sees an anticipated escape
digit, the escape service performs its programmed escape
action on behalf of the terminating service. Thus, the escape
service must be able to collect DTMF digits from the monitored
incoming channel as soon as the originating call starts.

In order for the flexible platform to read escape digits
from the originating call, the system must satisfy itself that
the originating call has DTMF capabilities. Before making its
call, service ID 10000 assures itself that the resources

QURSTITITE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-61~-

required to produce and collect DTMF digits are available and
ready on the originating channel. 1In this configuration, for
eXample, the digit collecting capability is supported by the
same hardware that supports the capability for playing voice
messages, therefore, the digit collecting capability is
obtained by playing a null message via, e.g., a play msg AC
on the originating channel. The originating party does not
hear the null message, but the necessary resources are
obtained and made ready to use for both voice message playing
and digit collection. The resource layer allocates a logical
resource suitable to perform the capability in a manner
commensurate with that set forth above in the section
describing the resource manager. Thus, if the hardware that
supports playing voice messages did not support digit
collection, another logical resource object would be appended
to IncVChannel through the resource broker 414 (see Fig. 8).
Another alternative is to initialize the system through a
software setup macro with an appropriate code.

Finally, the proceedToNext statement within the play msg
AC causes INT_OffConnEH 614 to execute, e.g., mlr AC,
represented by a call statement within the program for the ID
10000 service 620. The mlr AC has parameters including, for
example, the number to be called; the leg on which the call
is to be made, e.g., the reference leg for the service, e.g.,
OtgLeg; the leg and channel monitored for escape while the
call is being made, e.g., the reference leg and channel of the
originating call for the service, i.e., Incleg and
IncVChannel; and a set of three parameters that are updated
if and when the originating call is answered, e.gq.,
ans_channel set to the ID of the channel in the reference leg
that answers, ans_number set to the network address of the
station represented by ans_channel, and ans_type set to a
character code, determined by the service itself, used to
convey information about the characteristics of the answering
station. While these parameters may appear to complicate a
simple phone call, it should be remembered that the mlr AC can
make a call to more than one network address at the same time.
Thus, it is important to know precisely which station has
answered and where to find its channel.

STRSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-62-

Figure 19 is a general diagram of how generic call
components are added or accessed by the service. The
remaining generic call components for the terminating side,
e.g., OtgVT, OtgVChannel, and OtgLR, may be created by the
service, as needed, in a like manner. In the figure, the
service is executing an AC for making the call. The AC asks
(s.1900) the reference leg, e.g., Otgleg, (s.1902) if it has
an associated virtual terminal. Since it does not, (s.1903)
Otgleg will respond that it does not, and the AC will have
OtgLeg allocate a virtual terminal, e.g., OtgVT. OtglLeg will
then (s.1904) confirm the allocation to the AC. Likewise,
(s.1905) the AC will call OtgVT to (s.1906) inquire whether
has a channel, and (s.1907) if not, direct it to allocate one,
e.g., OtgVChannel. The allocation will be (5.1908) confirmed
by OtgVT. Finally, (s.1909) the service running will require
certain capabilities to provide the desired service. As
discussed with regard to Fig. 13, the channel receiving the
capability regquest, e.g., OtgVChannel, will allocate the
appropriate logical resources to enable the service to perform
its desired functionality. The method of Fig.19 could also
be used, for example, for adding a new path to an existing
session, because the present channel cannot transmit along
medium now additionally desired by the service.

G. Data Provisioning

Each service uses a set of data as it executes, including
subscriber data. This data is input by a process called
provisioning. More specifically, the data includes data on
a per-subscriber basis, referred to as subscriber data, and
data that applies to all subscribers, which may be referred
to as system data.

A service executing on the flexible network platform may
be provided with a data model, i.e., a model representing the
way it expects to see certain data elements, including the
subscriber data and the system data. Provisioning places such
data into the system in accordance with the data model.

Whenever a new service is developed, a provisioning
application will typically be developed. The provisioning
application comprises a user interface, a data model
component, and a communications component. 1In order to reduce



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-63-

the time needed to develop a new provisioning application, it
is desired that various parts of the provisioning application
be standardized so that it may be re-used. Accordingly, it
is desired that the communications code be re-used, i.e.,
standardized. In addition, it would be beneficial if the data
model component of the provisioning application could be
standardized so it could be re-used. It is not an easy task
to standardize the data model component, since the data model
typically needs to be changed for each service. For example,
in prior provisioning application systems, if one service
needs paging information and another service does not need
paging information, the data model will need to be changed.
In any event, even if the data model and the communications
component were configured so they would not need to be changed
for each new provisioning application, there still need to be
changes in the user interface.

In one aspect of the present invention, a provisioning
application base is provided, which comprises both a
standardized data model component and a standardized
communications component. Fig. 27 shows the relationship
between a provisioning system 132 and a service platform 130.
Service platform 130 is shown as having service logic 134, and
a service data model having data objects 136. Service
platform 130 is coupled to provisioning application 132 via
a transmission medium 138, which may be any appropriate
transmission medium. User interface software 140 is provided
within provisioning system 132, and is connected to a data
model component 142, as well a communications component 144.
User interface 140 is coupled to data model 142 and
communications component 144 via an applications program
interface (API) 148. API 148, data model 142 and
communications component 144 together form what is known as
a provisioning application base 146, i.e., portions of the
provisioning system which have a standardized structure and
can be re-used when introducing new provisioning applications.

The provisioning application base is standardized because
it does not have any service-specific models built into it,
and can hence support provisioning applications for any
services.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-84 -

Referring to Fig. 27, the upper layer of the software
(user interface 140) depicted in provisioning system 132 may
be called the provisioning application layer, and can be
either graphical or text-based.

Provisioning base 146 sends and retrieves data to and
from platform 130 with the use of communications component
144. Provisioning base 146 further stores data within a data
repository provided by data model component 142. Such data
may be accessed by a provisioner using user interface 140 in
order to edit provisioning data. Provisioning base 146 also
has an API 148 to application user interface 140 in order to
allow user interface 140 to get and set data in the repository
of data model 142, and further provides an API 148 to user
interface 140 to allow a provisioner to control the sending
and retrieving of data by communications component 144 to and
from platform 130.

User interface 140 may present service specific screens,
templates, or prompts to the user so that the user may view
and edit data. In addition, user interface 140 may instruct
provisioning base 146 via API 148 to retrieve data so that
user interface 140 may present that data to the provisioner
for modification. User interface 140 may further instruct
provisioning base 146, via API 148, to send data to platform
130 that this application has modified. User interface 140
may modify data that is stored within data model 142 by using
an API call. Another function of user interface 140 may be
to enforce proper semantic relationships between data
elements.

Provisioning base 146 1is standardized by creating a
service data model used by platform 132 which is made up of
a set of types of data object structures. The data object
structures are then combined in different ways in order to
gather service data. In other words, services data structures
or models are built using certain combinations of the set of
data object structures. The data model component 142 within
provisioning system 132 is configured in accordance with the
overall set of types of data object structures that will be
utilized by platform 130. Data model 142 is configured to
handle each data object structure within the set on a per-

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-55=-

data-object basis, and does not need to respond in any unique
manner to different combinations of data object structures in
accordance with a particular service. Accordingly, data model
142 can be standardized so that it contains no service-
specific knowledge, and requires changes only when a new data
object is introduced or an existing data object is modified.

User interface 140 allows service specific applications
to be developed for each service. Such service specific
applications can be developed using any development
environment that is appropriate for the target platform and
that is capable of making API calls to provisioning base 146.

User interface 140 should be configured so that it knows
which data objects are needed for a particular service
provided by platform 130. For example, suppose there is data
within platform 130 that is stored in accordance with a
particular service data model, and provisioning system 132 is
to be used to change that data in accordance with a
provisioning application that already has been built. Since
user interface 140 already knows which data objects need to
be pulled from platform 130, it can call such data objects by
using a function call utilizing keys for the objects that it
wants, each key indicating the particular object that it
wants. An API call is made to communications component 144
to send a request to platform 130 with a 1list of keys to
particular data objects that are wanted. The platform 130
will look up and retrieve the appropriate data objects and
send them back via transmission medium 138 in the form of a
provisioning protocol representation.

The provisioning protocol allows the data objects to be
easily sent over transmission medium 138. The provisioning
protocol entails encoding, in ASCII format, the data objects
and transferring them in a serial fashion.

Provisioning system 132 then reads the protocol utilizing
communication components 144, and recreates the objects in
memory on the provisioning side.

In the provisioning system illustrated in Fig. 27, there
are only a fixed number of data types which have a certain
defined structure. In addition, the data model comporent
deals with each data type in the same way each time a data

SUBSTITUTE SHEET (RULE 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-66-

object type is dealt with. Moreover, the encoded data object
types can be transmitted and then recreated on the
provisioning side 132, or may be transmitted back to platform
132 and retrieved on that side.

The API (application program interface) comprises a set
of functions by which the user interface 140 can act on the
database, i.e., by performing functions such as putting data
within a repository of data model component 142, extracting
data from the data repository, and communicating with platform
130 via communications component 144.

User interface 140 is the component of provisioning
application 132 that knows which objects are in the data
model.

Provisioning base 146 may be implemented in C++ on a PC
computer. API 148 may be implemented, e.g., with a shared
library or a dynamic link library (DLL), and API 148 may
comprise functions exported by the DLL. User interface 140
may be written in an appropriate development environment, such
as a PC development environment capable of making DLL calls.
Examples include Borland C++, Microsoft Visual C++, Digitalk
Small Talk/V, Microsoft Visual Basic, and Microsoft Access.

The basic data structure/data model of provisioning base
146 includes two main types of application layer data,
including service data and virtual user data. Both of these
types of data are modifiable by user interface 140. In
accordance with a particular embodiment, only one abstract
data type is provided that holds virtual user data, and that
is called a virtual user object. There are several abstract
data types that may contain service data, including data types
for class data objects called «case, collect digits,
initialize, MLR, page, play announcement, play collect, record
message, screening, and TOD (time of day).

The data for a particular service may consist of an
arbitrary number of objects, in any particular combination of
these types of objects. These objects may be stored in the
platform and may be accessed via the provisioning interface
which is formed by transmission medium 148 and the
provisioning protocol described above. The objects may be
accessed via keys. The key for a particular service data

SURSTITIE SHEFT MINE 98)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-67 -

object may include information such as user ID, graph ID and
data number. The key for a particular virtual user object may
be indicated by a user 1ID. The keys are used when a
provisioning system 132 sends and retrieves data to and from
platform 130.

When provisioning base 146 retrieves objects from
platform 130, it does so at the request of user interface 140.
Typically user interface 140 will request that all data
objects corresponding to a particular service and user be
retrieved at one time. When those data objects are returned
to the provisioning base 146, they are available to user
interface 140 for display and editing.

Each service data type/data object may be formed with a
hierarchal tree structure so that the data organization in the
provisioning base 146 which forms data model component 142 can
be thought of as a forest of object trees. Each root object
is associated with its key (which may also be referred to as
a label). User interface 140 can obtain and set data within
data objects by referencing them in API calls referring to
their labels.

API function calls may be provided in four general
categories, including configuration, communications, access
and data positioning. cConfiguration API calls are used to set
provisioning base parameters that affect subsequent API calls.
Communications API functions are used to tell provisioning
base 146 to send or retrieve data to or from a platform 130.
Access functions are used by user interface 140 to get and set
data in data model component 142, and thus are used to get and
set data without the need to transmit data between
provisioning system 132 and platform 130. Data positioning
functions are used to set the context for subsequent API
calls.

User interface 140 may reference objects in the
provisioning base data model component 142 in many different
ways. In accordance with one particular referencing
mechanism, provisioning base 146 may keep a pointer (referred
to as a DP) to a "current" data object. Access and data
positioning API calls may implicitly act on the object pointed
to by DP. For example, if DP points to a screening object,

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-68~

an API call (e.g., get entry 1list) will get the network
address list and the screening object pointed to by DP. 1In
order to utilize this referencing technique, a collection of
API calls may be provided which allows user interface 140 to
"*move" DP within data model 142.

User interface 140 may include a graphical user interface
(GUI) application provided within an wupper layer of
provisioning system 132. An example of such a GUI application
will now be described. This example is not intended to limit
the type of user interface 140 that may be provided within
provisioning system 132. Once the service is designed, a
specification, including a particular set of data objects, is
formed that constitutes the data to be used by the service.
That data is formed in accordance with semantic rules for
relaying the data elements and information regarding default
of data values, if there are any. User interface 140 will
preferably be implemented so that it can create a complete set
of data required by a new subscriber which is new to a
particular service, and can edit existing data for current
subscribers.

There are four basic types of actions that a user needs
to perform when driving a provisioning application. Those
actions include the initiation of actions (e.g., with the use
of buttons), the editing of text strings (which may be done
with the use of a text edit box), the editing of lists (which
may be done with an editable list control), and the setting
of options (e.g., with check boxes). A typical provisioning
application may only need these standard controls in order to
perform its provisioning functions. The user interface may
be designed to have a common service unit ID which may be used
as part of a key to request data object trees. Such a service
unit ID may be hard-coded into the application so that it does
not need to be supplied by the user every time a new
provisioning application is created. The screens may be
designed so that they project some type of view of the data
objects belonging to the service, so the set of data numbers
which are also part of the key to request data will be hard-
coded into the created application. The only variable
information used in requesting service data from the platform

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

_69_
is the user ID.

After issuing a retrieve operation, assuming the retrieve
was successful, user interface 140 may assume that the data
now resides in the data model components 142 and is available
for access via API 148. User interface 140 may now use API
148 to request data strings necessary to fill its lists, text
boxes and check boxes. When this is completed, user interface
140 may relinguish control and wait for user input. After
changes are made to the data, user interface 140 may make API
calls in order to update data model component 142.

Eventually, a send operation will be requested by the
provisioner, at which time provisioning base 146 will
determine which objects have been modified, and will create
and send a protocol string to platform 130 in order to update
the modified data within platform 130.

If data for a particular subscriber that is new to the
service is created, the provisioning application may use API
148 in order to clear out the existing data in the
provisioning base data model component 142, and build "from
scratch" using API 148 the minimum data objects trees required
by the service and send them to platform 130. This must be
done because platform 130 does not store any form or template
for a particular service.

User interface 140 may be designed in a manner different
to that described above. For example, user interface 140 may
be designed so that the service provider can perform service
provisioning together with data management. This would be
allowed by provisioning base 146 since it is generic enough
to allow any number of a variety of application views into the
platform data. Moreover, provisioning base 146 does not have
to be the only layer below the application software. The
application, which includes user interface 140, may manage
data, some of which is held within platform 130, and some of
which may be held in other databases. The application
software may be designed to present an integrated view, and
interact with the appropriate databases as needed.

Figs. 28A-28K illustrate various types of data objects
that may together form a data model for a platform 130 such
as that shown in Fig. 27. The various data objects

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-70-

illustrated in those Figures include two sets, a first set
comprising service data objects, and the second set comprising
a virtual user data object. The second set, a virtual user
data object, shown in Fig. 28K.

Various instances of each of these provisioning objects
illustrated in these various figures are stored by
provisioning base 146, within a data model repository provided
within data model component 142, as shown in Fig. 27. Each
instance of a particular provisioning object is referred to

by a key. A key for a service data object includes
information such as a platform ID, a user ID, a service unit
ID, and a data number. The virtual user data object is

identified by a key including information such as a platform
ID and a user ID. The user interface portion of provisioning
system 132 may get and set various portions of the various
data objects by using API calls provided within API interface
148 of the provisioning system 132 as shown in Fig. 27. 1In
order to access these various portions of the data objects,
a pointer (which may be referred to as data pointer - DP) is
kept at a particular node of each data object. User interface
140 may then move the pointer (DP) using an API call to
another node within each data object.

Each of the data objects shown in Figs. 28A-28K includes
a plurality of nodes which form a data object. Rectangles
with rounded corners represent nodes to which a DP can be
pointed. Rectangles with nodes which are in the form of a
rectangle represent atomic nodes, and therefore have no
structure within or below them. These nodes represent basic
data types. Dashed rectangles indicate where a set of nodes
may be accessed by a single API get call when the DP is
pointed to the root node of the database object. This allows
an API call to access data from particular nodes within the
hierarchy of each database object.

Referring back to Fig. 27, when user interface 140 of
provisioning system 132 uses a get command to get a complete
list, it will then add, delete and/or modify data within that
list. As such information is added, deleted or modified, user
interface 140 will invoke an API call to dispatch the
corresponding entity in the data model. However, when this

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-71-

is performed, user interface 140 preferably does not store its
own copy of the data, modify the same as the user edits the
data, and then sends the revised data back to the data
repository. Rather, user interface 140 will modify data
within provisioning base 146 directly, as the user makes
changes on the screen. If certain data is not modified at
all, it is only used to fill in the fields of user interface
140 and is then discarded. That is, non-changed data will not
be re-sent to the data repository within provisioning base 146
when the data is returned on execution of a get call.

Fig. 28A illustrates a case database object 204 which is
used for storing case labels utilized by service logic units
of the network platform of the present invention. Case
database objects 204 include the following fields: case type,
value, and completion code. Each case database object 204
comprises one or more case entries 226(1) - 226(N). Each case
entry comprises a plurality of nodes/fields, including a case
type field 228(n), a value field 230(n), and a completion code
field 232(n). The case type field may include information in
the form of a short that specifies how the contents of the
value field 230(n) are to be interpreted. A case type field
228 (n) may include a numerical value, e.g., 1 representing a
long, and 2 representing a network address. Each value field
230(n) is a character containing a string representation of
the case label to which this record corresponds. By way of
example, the character string "123" represents the case label
123. The completion code field 232 (n) may be a short whose
value is the completion code that is to be returned when a
parameter that matches the value within the value field is
passed to an AC that has been passed this particular case
database object 204 as an entry in a case data list object.
Each of the dashed rectangles Al-A3 indicates sets of data
items that may be accessed via a single API get call when a
data pointer is directed to the root node of case database
object 204. Dashed rectangle Al represents a get entry list
call which causes the complete list to be retrieved for use
by user interface 140, including the case type, value type,
and completion code for eac: case entry 226(1)-226(N) of case
database object 204. Dashed rectangle A2 represents a get

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-72-

entry API get call, which will provide all of the fields of
a particular entry to user interface 140. Dashed rectangle
A3 represents an API get call which provides all of the values
230(1)-230(N) and completion codes 232(1)-232(N) of the case
entries 226(1) - 226(n) to user interface 140.

Fig. 28B represents a collect digits database object 206,
including a number of digit field 234, a collect time field
236, a re-enter symbol field 238, and an eos symbol field 240.
A dashed rectangle D1 is shown as encompassing all of these
children nodes, and represents an API get call which allows
user 140 to get all of the collect digits data, including each
of the fields 234, 236, 238, and 240.

Number of digits field 234 represents a short whose value
is the maximum number of digits to be collected by a
particular service component (i.e., an AC) to which the data
is passed. Collect time field 236 represents a short whose
value represents the number of seconds allowed for the
collection of the digits. Re-enter symbol field 238 is a
character whose value is the key pad character (e.g., *) that
may be entered to throw away any digits already selected and
to start collection over again. The field may be left empty.
The eos symbol field 240 represents a character whose value
is the key pad character (e.g., #) that may be entered to
terminate collection before expiration of the amount of time
specified by collect time field 236. This field may be left
empty as well.

Fig. 2B8C represents an initialize database object 208,
having a plurality of initialized entries 242(1)-242(N). For
each initialize entry 242(n), there is an index field 244 (n),
a type field 246(n), and a value field 248(n). The index
field 244 (n) represents an entry number which is a short that
uniquely identifies the initialize entry object of which it
is a member. Each type field 246 (n) represents a short that
specifies how the data in the value field 248(n) is to be
interpreted. Some example values that may be placed within
the type field 246(n) include integer values such as 1
(representing a long), 2 (representing a network address), 3
(representing a database pointer), and 4 (representing a
string). The value field 248(n) 1is a character field

CIIDOTITITF Arvrry srem = ass



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-73-

containing a string representation of data (e.g., "123"
represents the integer 123).

The initialize database object 208 may be stored as a
sparse array. Unlike the case database object 204 (where each
item must have the same type), all of the initialize entries
242 (n) of an initialize database object 208 need not be of the
same type. It is noted that each of the value fields 248(n),
represented by a rectangle having rounded corners, may serve
as a root node for another data object, including another
initialize database object 204. A dashed rectangle C1 is
shown around each of the value fields 248 (n), and represents
an API get call for getting the value list. This API get call
may be limited so that it is valid only if all of the
initialize entries have the same type as represented in the
type field 246(n), and if that type is either a 1long, a
network address, or a character string.

Fig. 28D illustrates an MLR database object 210. A
plurality of MLR entries 250(1)~-250(N) are provided within the
MLR database object 210. Each MLR entry 250(n) has a
plurality of fields, including a network address field 252 (n),
a ring length field 254(n), and an MLR type field 256(n).
Each network address field 252(n) is a string containing a
directory number called by a service corresponding to the MLR
object or MLR service compenent (i.e., AC). A ring length
field 254(n) is a short representing the amount of time the
network address is to be rung before assuming that there is
no answer. An MLR type field 256(n) is a character field that
may be used for any purpose.

A service component (AC) that may accept a database
pointer to an MLR database object 210 may be the MLR AC, which
simultaneously offers calls to all network addresses in the
MLR database object 210. If the MLR list within the MLR
database object 210 is empty, the MLR AC will exit with a
completion code "MLR no answer."

Fig. 28E illustrates a play announce database object 212,
having a plurality (1-N) of message ID fields 258 (n). All the
message ID fields 258 (n) may be provided to the user interface
140 of provisioning application by using an API get call
represented by a dashed rectangle El1 as shown in Fig. 28E.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-74~

Message ID fields 258(n) may be arranged in the form of
an array of N shorts, each representing a single message ID.
The message IDs may identify recorded messages that may be
played by an AC in the order in which their IDs appear within
the array.

Fig. 28F illustrates a page database object 214, which
includes a network address field 260, a retries field 262 and
an interval field 264. Each of these fields may be provided
to the provisioning user interface 140 by the use of an API
get call, as represented by the dashed rectangle F1l. The
network address field 260 may be in the form of a string
containing a directory number to be called by a page AC. The
page retries field 262 is provided in the event that if a
pager does not answer, the service may try to page again.
Accordingly, this field is a short that specifies the maximum
nunber of such attempts. The page interval field 264 may be
a short whose value is the number of seconds to wait between
page retries.

Fig. 28G illustrates a play collect database object 216.
The play collect database object 216 includes a plurality of
message ID fields 266 (n) that may be similar in structure and
content to the message ID fields 258(n) provided in the play
announce database object 212 as shown in Fig. 28E. In
addition, play collect database object 216 may include fields
such as a number of digits field 268, a collect time field
270, a re-enter symbol field 272, and an eos symbol field 274.
The number of digits field 268 may be in the form of a short
whose value is the maximum number of digits to be collected
by an AC to which the data is passed. Collect time field 270
may represent a short whose value is the amount of time
allowed for collection of the digits. Re-enter symbol field
272 may be a character whose value is the keyboard character
(e.g., *) that may be entered to throw away any digits already
collected and start collection over again. This value may be
left empty. The eos symbol field 274 may be a character whose
value is the key pad character (e.g., #) that may be entered
to terminate collection before expiration of the amount of
time indicated in collect time field 270. Each of the fields
268, 270, 272, and 274 may be collected together as indicated

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-75-

by dashed rectangle G1 which represents an API get call that
may be called by user interface 140 of the provisioning
system. The complete list of message IDs 266 (n) may be called
by an API get call as indicated by the dashed rectangle G2.

Fig. 28H illustrates a record message database object
218. This database object includes a time out max field 276,
a time out silent field 278, a time out tail field 280, and
an eorc symbol field 282. Time out max field 276 may be a
short whose value is the amount of time allowed for a voice
message recording session. Time out silent field 278 may be
a short whose value is the amount of time allowed for a silent
period after a recording session is activated. Time out tail
field 280 may be a short whose value is the amount of time
allowed for a silent period after a voice message or part of
a voice message is recorded and before expiration of the value
indicated in the time out max field. The eorc symbol field
282 is a character whose value is a key pad character (e.gq.,
#) that may be entered to terminate a voice recording before
expiration of the amount of time indicated in the time out max
field 27s.

Each of these fields may be called together by using an
API get call as indicated by dashed rectangle H1.

Fig. 28I illustrates a screening database object 220.
This database object includes a plurality of network address
fields 284 which may be in the form of an array. Each network
address field 284(n) may be a string containing a directory
number against which calls are to be screened. A dashed
rectangle Il represents that an API get call may be utilized
to provide the data for all of the network address fields
284(1)-284(N) of a particular screening database object 220
to the user interface 140 of the provisioning system 132 as
shown in Fig. 27.

Fig. 28J illustrates a time of day database object 222.
Each time of day database object 222 may have a plurality of
time of day entries 286(1)-286(N). Each time of day entry
286 (n) may be provided with a plurality of child nodes/fields,
including a start day field 288(n), a start hour field 290(n),
a start minute field 292(n), an end day field 294 (n), an end
hour field 296(n), an end minute field 298(n), and a time

SIRSTITIITF SHEFT (RN E 28)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-76-

value field 300(n). Start day field 288(n) may be a short
integer representing a particular day in the week. Each start
hour field 290(n) may be a short representing a starting hour,
i.e., a starting hour variable which may be indicated by a
portion of the platform software that calls this database
object. Start minute field 292(n) may be a short integer
representing a starting minute. End day field 294(n) may be
a short integer representing the particular day of the week
as an end variable. End hour field 296(n) may be a short
representing an ending hour; end minute field 298 (n) may be
a short representing an ending minute in the form of an
integer. Time value field 300(n) may be a short used to
identify its time of day entry object 286(n).

An API get call may be provided which is accessible by
the user interface of the provisioning system 132 as shown in
Fig. 27, and that API get call may allow all entries to be
provided to the user interface as indicated by dashed
rectangle J1.

Fig. 28K represents a virtual user database object, which
comprises virtual user data. The various fields provided
within that database object include a PIN field 301, an
originating service field 304 and a terminating service field
306. The originating service is a service that is to be
executed whenever the identified user places an originating
call. The terminating service field 306 may be a short
representing a particular terminating service to be executed
for the identified user.

Each of the above-described database objects, which
include service data and virtual user data, may be called upon
by various entities within a flexible network platform
software 60, e.g., as shown in Fig. 7. However, these
particular database object structures are exemplary, and are
not intended to limit the structures of the database objects
that may be utilized in a provisioning system in connection
with a flexible network platform.

H. The Platform OAM&P Software System

Fig. 24 1illustrates a flexible network platform 10

including a host computer complex 22 and several items
connected thereto, including a call processing system 320, a

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-77-

switch 322, a voice processing unit 324, a graphic user
interface (GUI) 316, and a plurality of operations support
systems 318a, 318b. Call processing system 320 may be
provided within the same host computer as the platform OAM&P
software system 330.

Platform OAM&P software 330 is shown as comprising a
state distributor 308, a presentation domain 310, an
intermediate model domain 312, and a real-time domain 314.
Presentation domain 310, intermediate model domain 312, and
real-time domain 314 together form a managed object
information engine. The managed object information engine is
produced, in part, by a managed object compiler 342. OAM&P
subsystem 330 has three different execution domains, which are
indicated as presentation domain 310, intermediate model
domain 312, and real-time domain 314. Real-time domain 314
comprises those components of the system which directly
support call processing, indicated by call processing system
320, as well as OAM&P specific object which interact in real
time with call control objects which form part of call
processing system 320. Such OAM&P specific objects may
comprise external processes called "cloud" processes such as
the processor monitor process 332, which monitors the state
of call processing system 320, a switch device process 334
which keeps track of the state of switch 322, and a voice
processor device state process 336 which keeps track of the
state of voice processing units 324.

Presentation domain 310 comprises applications that are
used to present the objects in the intermediate model domain
312 to an external system, which may be a graphical user
interface 316, or an operations support system 318a, 318D,
e.g., a Bellcore NMA systenmn.

Intermediate model domain 312 comprises managed objects
326 and transient objects 328, which together form a managed
object hierarchy. Managed objects 326 (as well as transient
objects 328) comprise object representations of objects
existing in the real-time domain 314 and logical groupings of
those objects.

State distributor 308 is a communication mechanism for

simultaneously informing multiple processes of changes in the

SIRSTTTIE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-78-

states of various aspects of a system. States may be
represented by objects called bound variables which can take
on as a "value" any of a large set of supported types,
including basic types, instances of other classes and arrays
or 1lists of basic types or objects. The processes may
communicate via state distributor 308, and such processes may
be classified as either state information servers or state
information clients. A state information server will generate
(i.e., report) a transition with a state distributor 308, and
a state information client will register a transition with
state distributor 308. State distributor 308 will then
maintain a state history (indicating the present state) for
every state information server of the system

A state information server is any process which monitors
or maintains a specified state. When the state changes, the
state information server informs state distributor 308 of that
change. This is done by generating a transition with state
distributor 308.

A state information client is any process which initiates
certain actions when notified of a change in the value of a
specified state. For a process to become a state information
client process for a specified state, it must register a
transition with state distributor 308. In order to register
a transition with state distributor 308, the state information
client process will specify what event the client is
registering for, and what function will be performed when a
particular state changes. An example command for registering
a transition could be as follows:

rT (platform, PH, *, summary)

It is possible for a process to be both a state
information server and a state information <client.
Additionally, multiple processes can be registered for the
same state transition.

A command rT(platform, PH, *, summary) may be indicated
by a particular process in order to register a particular
transition with that process, making that process an
information client. The thing that is being registered for
is a particular managed object or process (in this case, a
managed object called "platform"), of a particular class (PH

SUBSTITUTE SHEET (RINLF 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-7 Q-

standing for physical class), of a particular instance (*
indicating all instances of that particular class). The type
of state information, i.e., the type of event being registered
for, includes the summary state information. Accordingly,
when a transition is registered for by a particular process,
the process will indicate the process group, its class/type
identifier, its instance identifier, and its name (i.e., type
of event being registered for).

The command rT(*,*,*,summary) will register the present
process to receive all of the summary states from all of the
classes/types within each process group and instances of those
classes/types. In this manner, all of the summary state
information of all the managed objects will be presented to
the process that has registered that transition.

The system may be implemented so that there is no
persistence implemented in state distributor mechanism 308.
When a particular state information server or state
information client process terminates, all the registrations
and current state information will be removed. This
information needs to be rebuilt when the platform is booted
up.

The presentation domain contains the application software
including graphic user interface (GUI) software 338, and 0SS
interface application software 340a, 340b, which is used to
present the objects that are present in intermediate model
domain 312 to an external system, such as a GUI system 215 or
an OSS system 318a, 318b.

OAM&P subsystem 330 is formed with a managed object
hierarchy. All of the managed objects 326, 328 which are
present in intermediate model domain 312 share certain key
characteristics which enable them to create an extremely
flexible model. An object compiler 342 is provided for
creating executable code for each managed object in order to
allow a developer to concentrate on the managed objects rather
than the environment in which they are created. State
distributor 308 is used for inter-object communication, and
thus provides distribution capabilities as well as "virtually
synchronous" updates to all objects using a particular state,

i.e., registered to receive a particular state as a state

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-80-
information client.

While each managed object 326 models a different aspect
of the whole system, they each contain characteristics common
to all managed objects. Each object has a set of input states
that it receives from state distributor 308, a set of output
states that it sends to state distributor 308, and a set of
functions that it will perform. 1In addition, each managed
object will contain a logic definition which will define the
output states as a function of the input states to that
managed object.

In other words, each managed object is created by
specifying, among other things, its output states, its input
states, a list of functions that it can perform, and a set of
logic defining how its output states will be determined as a
function of its input states. Once that information is
specified in creating a particular managed object, managed
object compiler 342 will generate code for each created
object. The generated code will register that managed object
with state distributor 308 for its input state, and will
evaluate the new output state of the managed object based upon
its input state. In addition, the generated code will
generate, to state distributors 308 the object’s output state
transition, and will create answers to information requests
the managed object may receive. That information will include
the managed object’s attributes (which include the output
states, the input states, and the alarm factor of the managed
object), sub-components (i.e., all of the other managed
objects which are state information servers for one or more
input states of the present managed object), and what the
present managed object can do (i.e., the 1list of functions
which this particular managed object can perform). Another
type of code which is generated by managed object compiler 342
is code for performing the list of functions that the managed
object can perform.

The functions that each managed object can perform will
include at least three basic functions, i.e., the ability to
respond to the three basic gqueries including: what are your
attributes, what are your sub-components, and what can you do.
Other functions may include the ability to cut off power to

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-81-

a component of the system corresponding to that managed
object, and rebooting the complete platform system.

Each managed object may be configured so that it has a
distinguished output state known as a summary state. This
state may be used to describe the overall state of the managed
object, e.g., information indicating the managed object as
CLEAR, MINOR, MAJOR, CRITICAL, INITIALIZING, or UNKNOWN.
Other information that may be included with the summary state
is a list of "alarm factors." The alarm factors are the
input states which caused the summary state to take on its
current value. For example, if the input states of a certain
object are file system 1, file system 2, and file system 3,
and the state of file system 1 is 0% available, while the
states of file system 2 and file system 3 are each 40%
available, the summary state of the managed object may be
MAJOR. The alarm factors would include file system 1 only,
because file system 2 and file system 3 are not contributing
to the summary state being MAJOR rather than CLEAR.

Each time the summary state of a managed object changes,
it may be logged into a system log. By doing this, the system
log can be searched to determine the state of the managed
objects at a previous time.

Fig. 24 illustrates a particular example managed object
hierarchy of managed objects 326 and 328. A root managed
object 354 represents the overall platform, and has input
states which are forwarded from the output states of managed
objects corresponding to the resource group 356, voice
resources 358, physical processor 360, and a logical processor
362.

Logical processor 362 has as its input state an output
state of a processor monitor process 332 which is in real-time
domain 314. Physical processor managed object 360 has input
states which comprise an output state of a RAID managed object
364, and an output state of a voice processors managed object
366. RAID managed object 364 has input states which comprise
output states of managed objects representing several RAID
subsystems and components including a RAID disk managed object
368 and a RAID fan managed object 370.

Voice processors managed object 366 has as 1its input

SUBSTITUTE SHEET (RULE 28)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-82-

state output states of TranVoice processor transient objects
328. TranVoice processor managed objects 328 have as their
input states output states from a voice processor monitor
process 336, which is in real-time domain 314.

Fig. 24A illustrates the general structure of an
exemplary managed object 344 as it is described when it is
built. Managed object 344 includes information such as output
states 346, input states 348, a list of functions that it can
perform 350, and logic 352 that it would perform in converting
input states to output states. As noted above, managed object
compiler 342 takes this information and generates code so that
managed object 344 can perform all of its functions, register
with the state distributor 308 for its input state, evaluate
and determine its new output state(s), and generate to state
distributor 308 output state transition(s).

Fig. 24B gives a different view of the managed object 344
of Fig. 24A, graphically indicating its logic 352 and how it
acts upon input states in order to determine an output state.
The managed object 344 shown in Fig. 24B has two input states
I1 and I2 and a single output state which is a summary state.
In this case, the 1logic may be that the summary state
indicates the worse of the summary states from the input
states I1 and I2.

Fig. 25 illustrates the relationship between a managed
object hierarchy 354 and various other components of a
flexible platform, including a call processing system 320,
voice processing units 324, and a switch 322, as well as a
plurality of OAM&P work stations 319. Managed object
hierarchy 354 comprises a plurality of managed objects
arranged in a particular hierarchal form, including a root
platform managed object 355. A call processing system managed
object 356 and a call processing resource managed object 358
each have output states that form input states to platform
managed object 355. Call processing resource managed object
358 has input state(s) which comprise the output states to a
switch managed object 362 and a voice resources managed object
364. Voice resources managed object 364 has input states
which comprise output states of a voice processor 1 managed
object 366 and a voice processor 2 managed object 368. A

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-83-

process which monitors the activity of the voice processing
units 324 is shown as indicating a current error state. That
is detected by voice processor 1 managed object 366 since it
has registered a transition as an information client for that
particular state (or state information including such an error
state). That information can be determined by a user using
one of OAM&P workstations 319 in a number of ways.

An error condition is detected by a monitoring process
(not shown) which monitors one or more states of voice
processing units 324. That error condition is reported to the
OAM&P sub-system by generating (i.e., reporting) a transition
to the state distributor. Voice processor 1 object module 366
is then notified of the error state, since it has registered
to receive the state of voice processing unit 324 via the
state distributor. The output state of voice processor 1
managed object 366 will then change according to the change
in its input state. That output state forms an input state
of voice resources managed object 364, and accordingly will
change its output state, which will in turn cause call
processing resources managed object 358 and platform managed
object 355 to change their respective output states.
Accordingly, OAM&P work stations 319 can detect a change in
the output state of platform managed object 355, indicating
an alarm condition due to there being an error in voice
processing units 324.

An OAM&P work station 319 may also directly view the
attributes of a particular managed object. Therefore, OAM&P
work station 319 may ask voice processor 1 managed object 366
about its attributes, sub-components, and functions that it
can perform. The attributes of that managed object will
include the output states, the input states, and alarm factor
for that managed object. Accordingly, voice processor 1
managed object 366 may be viewed directly in order to
determine that there is an error within voice processing units
324. That managed object may then have functions it can
perform or that can be directly invoked by an OAM&P work
station 319. For example, OAM&P work station 319 may desire
to switch from one voice processing unit which is faulty to
another voice processing unit. It may be one of the functions



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-84 -

of voice processor 1 managed object 366 to send a system reset
command to a particular voice processing unit 324, and that
function may be invoked by an OAM&P work station 319. This
process, of directly communicating with a particular managed
object within managed object hierarchy 354, is shown in Fig.
26.

Since each managed object can respond to requests and
explain its attributes, sub-components and functions, this
information need not be replicated in the user interface of
the OAM&P work station. The presentation within the work
station can obtain this information from the managed object
by simply starting with a distinguished managed object known
as the root and recursively asking each child/branch object,
"what are your sub-components?" Accordingly, it is possible
to create a "default user interface" which only knows how to
display the managed object and its relation to other managed
objects, but has no information specific to the managed object
hierarchy provided within a particular situation, other than
how to access the root object and the other objects once they
are identified. The user interface could then query the root
object, construct an object graph, and calculate the graph
without any implementation-specific information.

Each managed object in the managed object hierarchy of
the OAM&P subsystem is either transient or static. Static
objects are fixed at compile time and instantiated upon
startup of the managed object software. Transient objects are
managed objects which are instantiated as a result of a state
transition from the real-time domain. This transition is
processed by a managed object which will be a hierarchal
parent of the newly created (transient) object. Upon receipt
of the state transition, the parent instantiates the transient
object and links it to the managed object hierarchy by adding
the transient object to its 1list of sub-components and
registering for the output states produced by the transient
object. The state distributor is used to communicate
instantiation messages. Therefore, the necessary transient
objects may be created well after the real-time domain has
sent the creation messages, and such transient objects may be
created even upon restarting the managed object software after

ﬂmm AT = ame



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-85—
abnormal termination.

Transient objects are useful where there is uncertainty
in the number of components of a system. A particular
flexible platform may be equipped differently with network
connections, voice processors, etc., and thus cannot be
prepared to handle any type or number of components connected
to the platform system. In order to provide OAM&P state
information for such items which will vary in number, the
managed object hierarchy may be modified at each system
installation, by developing specialized static managed objects
that represent different components, or a single managed
object may be created which can represent multiple components
as a single managed object. Another way of handling such a
situation is with the use of transient objects which may be
created by a parent managed object.

In other words, the flexible network platform may have
more than one instance of a hardware type. For example, there
may be a plurality of media processors that are used as
peripheral processing units, and that number may vary from
platform to platform. A transient object template may be
created which has information which pertains to the transient
object that could be created for each instance, including
output states, input states, a list of functions the transient
object can perform and logic indicating what effect the input
states will have on the output states of the transient object.
In addition, the transient object template will have a
transient create function associated therewith. A monitor
process monitors the media processors and therefore knows the
number of media processors which are connected. Accordingly,
that media processor monitor process will look at the hardware
and decide how many media processors are connected and invoke
a create transient object function for each media processor
for which a transient object is needed. The managed object
hierarchy shown in intermediate model domain 312 in Fig. 24
illustrates a transient object template 328a, as well as
transient objects 328b and 328c which were created using
transient object template 328a. Each transient object
corresponds to a particular voice processing unit among voice
processing units 324 that are connected to the platform.

SUBSTITUTE SHEET MRINE 98)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-86-

I. Service Creation Environment

A flexible network platform 10 (e.g., as shown in Fig.
1) may have a service creation environment associated
therewith, in order to allow services to be developed for use
with the platform. A service creation environment will
preferably have a high degree of intelligence about the target
platform and to some extent, about the target network in which
the application being created will be executed. A goal is to
provide a service creation environment which decreases the
amount of knowledge that the programmer has to have about the
particular system and thus decreases the amount of effort
expended by the programmer. This requires specialized support
in order to bridge the gap between the programmer’s general
knowledge and the specifics concerning network platform and
network involved. In this regard, a service creation
environment may be provided which is an integral part of the
core flexible network platform. The flexible network platform
10, e.g., as illustrated in Fig. 1, is intended to be a
programmable service node which allows service programming to
be done as efficiently as possible, efficiency being defined
in terms of time and the 1level of expertise required to
design, write and implement service programs. A service
creation environment may be created which allows a user to
create services using a text environment, a graphical
environment, or a hybrid graphical/text systenm. A hybrid
graphical/text system can be considered more user-friendly in
that it will allow programmers with less specific knowledge
to create services. The reason for having text as part of the
system is because when you have high points in the hierarchy
of creating a program, graphic representations of the service
are helpful; however, when you get lower in the hierarchy in
representing various parts of the service on a lower level,
the graphics are less valuable and the textual representations
of the program are more helpful.

An exemplary graphical service creation environment
system will now be described. The particular embodiment
disclosed below uses visual programming as opposed to text-
based programming, and point-and-click programming as opposed
to mainly keyboard typing. However, a hybrid combination of

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-87-

these elements may be preferable.

A special service creation environment will preferably
comprise hierarchal diagrams, since as service logic diagrams
grow, they become increasingly difficult to comprehend unless
there is a mechanism to represent them in hierarchal form.
In order to achieve the goal of creating a program
representation that allows quick assimilation of the logic,
the programming tool may be configured so that it supports
hierarchal representations, along with a powerful navigation
capability to move through the hierarchy while mentally
following the execution path. It may further be preferred or
desirable to incorporate a service provisioning function
within the service creation environment since the service
logic will define the data relationship that will be needed
for the created services.

The flexible network platform disclosed herein may write
service programs in a specialized application-oriented
language. The primitive statements of the language are called
application components (ACs). The flexible network platform
may be configured so that it executes a machine readable
version of its program. A service creation environment may
be provided which allows service programs to be expressed in
human readable format and to be expressed mainly graphically,
rather than in texts. Programming consists of drawing, as
well as typing (at lower levels). The resulting program is
called a service graph. That graph is then "compiled" in the
service creation environment, and the resulting machine-
readable version of the program may be downloaded to the
flexible network platform where it can be executed.

Because the programming environment may be tailored to
a particular application domain, not only is the language
customized, but specialized data objects may exist that all
programs interact with. These include a session, which
represents the current call, and leg, which represents users
on the call. These and other data objects are visible in the
service program of the flexible network platform, and the
service creation environment may create programs utilizing
these objects.

A service graph may be provided within a service creation

SHRSTMINT QuEEY foiii £ 464



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-88-

environment which consists of nodes, which represent each of
the service creation application components, and edges that
represent transitions from one node to the other. The
execution logic is represented by a graph rather than a
straight line seguence of ACs because, in general, the ACs may
complete their execution with any one of several possible
outcomes (which may be referred to as completion codes). The
particular outcomes which occur will determine which AC to
execute next. Hence, each node in the graph must have an
outgoing edge for every possible outcome of the AC represented
by the node. The edges may be configured so that they are
more than mere indications of the order of execution of the
nodes. The service programmer may specify on an edge
information that will be used by an AC to which the edge
terminates.

The service graph may execute in a separate execution
environment, or within a virtual machine provided by the

software on the network platform. This environment may
include a set of variables that can be written to and read by
the ACs in the graph. Some of the variables are called

environment variables, which are given values by the system
prior to the beginning of execution of the graph, and they are
typically used as read-only variables. They provide the ACs
in the graph references to the session-related objects. For
example, the environment variables include references to the
session that this graph is executing in, the 1leg that
originated the event that triggered execution of this graph,
the even itself, the ID of the subscriber on whose behalf this
graph is executing, and so on.

The remainder of the graph variables are called scratch
variables, and are left uninitialized as the graph begins
execution. These variables provide a mechanism by which one
AC can pass a value to another AC. The use of these variables
is determined by the service programmer. The scope of the
scratch variables and the environment variables is the full
graph.

ACs will typically require parameters. The parameters
to an AC are specified by the service programmer on the edges
leading to that AC node. These parameters are passed into an

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-89~

AC via environment or scratch variables. An AC may use its
parameters for input, output or for both input and output
purposes.

In order to program with the graph system, a user will
lay out the particular AC nodes to execute and interconnect
them with edges that specify the sequence of the execution,
and the user will then specify the AC parameters on every
edge. The service creation environment should support these
functions as well as support the programmer in managing the
environment variables and scratch variables. The service
creation environment may include standard file manipulation
capabilities, such as saving, loading and printing a draft.
An editor may be provided in order to allow manipulation of
source files, which are in the form of graph diagrams. Such
editing capabilities may include graph navigation abilities
to particular nodes in the graph, the ability to cut and paste
portions of graph and other editing functions.

A specific embodiment of a service creation environment
will now be described in relation to the particular embodiment
of a flexible network platform disclosed herein. The service
creation environment may be implemented on an Apple Macintosh
in a Smalltalk programming environment. More specifically,
the Macintosh may comprise a Macintosh IIcx, or a IIfx, with
a 19-inch monitor. The Smalltalk programming environment may
comprise Digitalk’s Smalltalk VMac Ver 1.2.

The service creation environment may be configured so
that it allows a basic graph structure to be built by point
and click techniques. In addition to nodes and edges, a
number of other objects may be placed on the graph to aid the
programmer in producing a graph that is easy to understand,
and such additional objects will be described below.

In order to display graphs in a hierarchal fashion, most
graphs will take the form of a tree. The top level is
referred to as the main graph, or the top level graph.
Besides nodes and edges, the top level graph can contain
objects (called expanders) which represent hidden (sometimes
collapsed) subgraphs. Those expanders can be opened to
display the subgraph they contain. The subgraph may in turn
contain expanders, with no limits as to the degree of nesting

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-90-

in subgraphs. Each subgraph is displayed in its own window,
and multiple windows can be opened at any time.

A service graph may be displayed and manipulated in the
service creation environment as a tree of subgraphs rooted in
a top level graph. The hierarchal representation is for
display purposes only. The machine readable form of the graph
as it executes in a flexible network platform has no notion
of hierarchy inherent in it. Of all of the objects that
appear on a displayed version of a graph, only nodes, edges
and parameters will survive the machine version that the
flexible network platform will execute.

The service creation environment may use a number of
graph objects that can appear on the graph to have a
particular type of visual appearance in order to aid the
creation of a service program.

Fig. 29A illustrates a node 900, which may be used to
represent a platform executable statement. Displayed with
node 900 is its type 902 (which represents the executable AC
which it represents), along with its number 904. All nodes
are numbered and display their number as shown in Fig. 29A.
Incomplete nodes, i.e., nodes which do not have outgoing edges
for each of their completion codes, may have a dark box (not
shown) around them.

Most node types require parameters, and the parameters
to a node are specified on edges coming into the node.

A few node types require provisioning data for their
execution, in addition to parameters. For example, an AC may
use a particular type of list stored in a network platform
database when it executes, so that it can look up a particular
number within that list and pass the same to the AC as a
parameter.

This information is placed in data objects which are
populated through the user/system data provisioning system,
and are non-visible in the service creation environment.
Nodes that require data may be displayed with a dog-ear corner
(not shown).

Fig. 29B illustrates an edge 906. Edges represent the
flow of execution from one node to another, and represent

programming which occurs by specifying AC parameters therein.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-91-

Each edge 906 will have a "from number" 908 representing the
number of the node from which the edge is coming, and a
completion code 910 which represents the completion code of
the node from which the edge is coming that will trigger the
transition that present edge 906 represents. Edge 906 also
displays a number representing the node to which the edge is
peinting by a "to number" 912. Edge label 907 will optionally
include node parameters that the program has specified. Until
all required parameters have been specified, the edge label
may be provided with an indicator to indicate that this is the
case, e.g., by placing a dark underline (not shown) underneath
edge label 907.

Comments may be used within a graph and are indicated by
free form text. Any object can have a comment except for a
connector and a joint graph objects. The service creation
environment may be designed so that comments can be placed and
moved anywhere on the graph, and so that comments are
considered relative to the object that it is associated with.
If an object is moved, its comments may automatically move to
maintain the same relative position with respect to the
object. Comments may automatically be projected back onto the
graph if their new relative position would have moved them off
the graph.

Fig. 29C illustrates a connector graph object 916 which
may represent other nodes in the graph. Connectors 916 allow
the graph to be displayed more cleanly by eliminating the need
for edges that span a large distance in the graph. Edges can
be constructed to connectors but not from connectors.
Connectors cannot be created for nodes in other subgraphs,
only for nodes in the current subgraph. This is Dbecause
connectors are not for the purpose of creating edges that span
subgraphs, but merely simplify the display of a single
subgraph. Each connector may include a connector type 918
(which by definition is equal to the type of the node
represented by this connector), and a connector number 920
(which by definition 1is equal to the type of the node
represented by this connector).

Fig. 29D illustrates an expander 922 which is a single
object which represents complete subgraphs hidden "below"

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233
-92~
them. Expander 922 is wused to provide a hierarchal
representation of a graph. Edges can be seen going into

expanders and coming out of expanders. This occurs when the
"from" node and the "to" node are in different levels of the
hierarchal representation.

Fig. 29E illustrates a ghost object 924. Ghost objects
924 provide context information for edges that span hierarchy
levels. When viewing one end of a spanning edge (either the
"from" node or the "to" node) ghosts are used to represent the
node at the other end in order to provide context information
for the complete edge. A ghost object 924 may include a graph
name 926, an edge name 928, and parameters 930.

Fig. 29F illustrates a joint object 932 that can be
placed on edges to allow routing of edges through the graph
as needed. A joint such as that illustrated in Fig. 29F
carries no information.

Fig. 30 illustrates a fragment of a typical graph 934
with various types of graph objects marked thereon. Among the
various graph objects illustrated in the graph 934 of Fig. 30,
an expander 936 is shown which is labeled "allow call."
Expander 936 has an incoming edge 938 and an outgoing edge
940.

Fig. 31 1illustrates an expander subgraph 942 which
represents the "allow call" expander 936 shown in Fig. 30.
A first ghost 944 and a second ghost 946 are shown to
respectively indicate where incoming edge 938 is coming from,
and where outgoing edge 940 is going to.

In expander subgraph 942, as shown in Fig. 31, hatch
marks are provided at the top of "make leg-40" node 948 to
indicate that this node is an entry point to the subgraph,
i.e., it has an incoming edge from a node outside of the
subgraph. Hatch marks are also provided on the bottom of a
"play_anncmnt-50" node 950 in order to similarly indicate that
this node is an exit point of the subgraph, i.e., that this
node has an outgoing edge which terminates to a node outside
of this subgraph.

Many of the graph objects may be "opened," the term
"opened" meaning different things for different types of
objects. For example, a node may be opened in order to cause

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-93=-

a window 952 as shown in Fig. 32 to be opened to display
information about that node. The window illustrated in Fig.
32 corresponds to a "play collect" node. Most of the fields
provided in this window are informational, and no input should
be required by the programmer. A notes field is provided
which can be used for any detailed comments as desired. If
this node uses data from a database (not parameters) this
field can be used to document the data and its relationship
to data used by other nodes. This information can then be
made available to a provisioning application designer.

An edge may be opened, e.g., by opening an edge window
954 as shown in Fig. 33. 1In this window, parameters to ACs
may be specified. Therefore, an edge window 954 will most
likely always eventually be opened, and user information will
be input by that window. The service creation environment may
be configured so that it automatically opens an edge window
whenever an edge is created.

Mnemonics 999 for the parameters of the "to" node appear
on the left side of the parameter 1list edit box 956.
Variables are available as parameters appear in a graph
variables list box 958 which is shown at a right side of edge
window 954. The service creation environment may be
configured so that clicking on the variables in graph
variables box 958 will copy a variable’s name to the
highlighted parameter slot 957 in parameter list box 956, and
increment the present highlighted parameter to the next
parameter slot below the highlighted parameter slot 957. 1In
this edge window 954, the point-and-click style of programming
is shown as being heavily used. The programmer does not have
to re-type variable names. The mnemonics 999 on the left of
the parameter list box 956 make it clear how many parameters
are required.

Other graph objects may be opened in order to open up
different types of information. For example, an expander may
be opened to thereby open a graph window on the subgraph of
the expander. A comment may be opened to open a text edit
window on the comment’s text. A ghost object may be opened
thereby opening the graph of the node of the "other" end of
the edge represented by the ghost. A ghost, as noted above,

SUBSTITUTE SHEET (RULE 26)



WO 96/20448

10

15

20

25

30

35

PCT/US95/16233

-94-

indicates an edge into and out of a subgraph. By opening a
ghost, the programmer can quickly view the graph on the other
end, thereby completing the context of a spanning edge. The
service creation environment may be provided with a searching
system that is similar to that provided by text editing
systems. For example, the service creation environment may
provide a find menu item which brings up a finder window that
allows the programmer to search for graph objects within a
user-defined search space that match a user defined search
key. The search space may consist of subgraphs to search,
types of objects to search for, and an object attribute to
base the search on.

In order to navigate a graph, several shortcut methods
may be used to jump to other subgraphs or to other places in
the current graph in order to follow the logic of the program,
or to view sections of a graph related to the currently viewed
portion. By way of example, a mechanism may be provided to
allow double-clicking on an expander in order to open a window

on the expander'’s subgraph. By using this, edges can be
"followed" into an expander. 1In addition, a shortcut key
(e.g., "p") may be used to open a window on the parent graph

of the current graph. This, together with the ability to open
a window in the expander subgraph, will allow a user to
navigate up and down the graph hierarchy. A ghost may be
double clicked in order to open the graph containing the other
end of the edge represented by the ghost. Using this feature,
the logic on both ends of a spanning edge can be viewed.
Another feature could include the ability to double-click a
connector node in order to scroll the graph to its
corresponding real node and highlight that node. This would
allow the programmer to quickly jump to the portion of the
graph where the execution logic continues.

When graphs execute, they may have a number of available
scratch variables for temporary storage of pointers, network
addresses, and/or other values. Initially, these variables
may be given generic names. A mechanism may be provided to
allow the programmer to maintain and edit a data dictionary
and define alias names for these variables. Later, when

parameters are specified on edges, these alias names can be

CHROTIMITYE cnrey /man v any



WO 96/20448 PCT/US95/16233

10

15

20

25

30

35

-95-

placed in the menu of legal variable names to chose from.

By providing a data dictionary window, this would allow
the programmer to create, delete, or change an alias name.
Changing an alias name may result in a global substitution of
the new name for the old name on all edges where the old name
is used as a parameter. Deleting an alias name could cause
edges that have that variable as a parameter to become
incomplete. Accordingly, the programmer should be warned
before deleting this alias. A finding mechanism (if provided)
may be used to find those edges that were rendered incomplete
as a result of the deletion.

Routing and Translation

The resource broker may be provided with a mechanism for
performing routing and translation. Translation consists of
translating an address to particular equipment and routing
consists of determining a particular 1location for the
equipment. A given address is routed and translated to
provide a particular type of equipment at a particular
location.

There are many different ways in which routing and
translation can be performed, and it is not necessary that the
routing and translation mechanism of the flexible network
platform be provided within the resource broker.

The present disclosure describes many different objects
in the context of an exemplary embodiment platform software
architecture that may be provided in a flexible network
platform. 1In describing the objects, which include objects
such as session objects and logic resource objects, specific
definitions are provided regarding the encapsulation and
modularity of each object. Those definitions are provided to
illustrate a specific implementation of the platform software
architecture, but they are not intended to be rigidly
interpreted. The present invention does not preclude the use
of other similar objects that may happen to have different
encapsulation and modularity characteristics.

Further, while the invention has been described with
reference to preferred embodiments, it is understood that the
words which have been used herein are words of description,

rather than words of limitation. Changes may be made, within

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

-96-

the purview of the appended claims, without departing from the
scope and spirit of the invention in its aspects. Although
the invention has been described herein in reference to
particular means, materials and embodiments, it is understood

5 that the invention is not to be limited to the particulars
disclosed herein, and that the invention extends to all
equivalent structures, methods, and uses, such as are within
the scope of the appended claims.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

-97 -
WHAT IS CLAIMED IS:

1. A telecommunications services network platform for
controlling the processing of calls in accordance with one of
a plurality of defined services, said network platform
comprising:

a call processing system for performing call
processing in accordance with defined service logic; and

call processing resources connected to said call
processing system;

said resources comprising:

at least one media processor; and

a switching system, connected to a
telecommunications network, to said call processing system and
to said resources for routing information among said at least
one media processor and entities connected to said
telecommunications network;

said call processing system comprising:

session means for representing an active call with
a session object;

means for forwarding external events associated with
said active call to said session object;

means for creating an initial event handler object
by specifying a particular method to be called in relation to
said initial event handler object, several variables, and
values to be placed within the variables, and means for
registering said initial event handler object with said
session object, said initial event handler object being
associated with a particular event which is identified by an
event type and a communication path associated with the
particular event;

said session object comprising means for receiving
the particular event and for calling up said particular method
within said initial event handler object;

said platform further comprising means for carrying
out said particular method within said initial event handler
object and for performing functions in accordance with the
variables of said initial event handler object, the variables
of said initiai event handler obiect including a service logic

unit identifying variable, said functions including commencing

SUBSTITIVE SHFET /RN F 28)



WO 96/20448 PCT/US95/16233

-98-

execution of a service logic unit;

said platform further comprising means for
registering additional event handler objects in response to
requests made by application components while being executed
within a service logic unit, each additional event handler
object corresponding to a service logic unit.

2. The telecommunications services network according
to claim 1, wherein the particular event is further identified
by a party of the active call associated with the particular
event.

3. The telecommunications services network platform
according to <claim 1, further comprising means for
representing an originating party to said active call by a leg
object, said leg object being associated with said session.

4. The telecommunications services network platform
according to claim 3, wherein said leg object further
comprises said means for creating an initial event handler
object.

5. The telecommunications services network platform
according to claim 1, wherein said means for registering
additional event handler objects comprises means for
registering an event handler object to a service logic unit,
whereby one particular service logic unit can be executed by
more than one event handler object.

6. The telecommunications services network platform
according to claim 1, comprising a plurality of event handler
objects associated with a plurality of events, said plurality
of events all being of the same event type.

7. The telecommunications services network platform
according to claim 1, comprising means for interchangeably
associating a plurality of predetermined service logic units
with any of a plurality of predetermined events.

8. The telecommunications services network platform
according to claim 7, wherein each said service logic unit
comprises one or more application components and a
predetermined number of variables.

9. The telecommunications services network platform
according to claim 7, wherein each said service logic unit
comprises data interpreted by said call processing system.

CIMCTITINNT CULTT /DN r 2o\



WO 96/20448 PCT/US95/16233

=00

10. The telecommunications services network platform
according to claim 7, wherein each said service logic unit
comprises a plurality of application components, each
application component identifying a pre-compiled procedure
that can be executed in a threaded interpretive fashion by an
event handler assigned to the service logic unit.

11. The telecommunications services network platform
according to claim 1, further comprising an OAM&P system for
gathering and maintaining information about the states of
entities within said platform, said entities comprising one
or more of said resources and one or more objects within said
call processing system, said OAM&P system comprising:

a hierarchy of managed objects, each managed object
having input states, output states and a defined 1logical
relation among said input states and said output states,
managed objects, which have output states that form the input
states of other managed objects, comprising state information
servers, and managed objects, which have input states that are
formed by output states of other managed objects, comprising
state information clients;

a state distributor system;

means for registering one or more specified managed
objects with said state distributor system so that said one
or more specified managed objects will receive at least one
specified output state as an input state, said one or more
specified managed objects thereby each becoming a state
information client;

means for responding to a change in an output state
of a managed object and for sending a transition indicating
the output state change to said state distributor system;

said state distributor system comprising means for
identifying state information clients registered for an output
state change and for notifying the identified state
information clients of the output state change;

wherein managed objects which comprise state
information servers need not have information concerning all
state information clients that are registered to receive their
output states, and wherein said hierarchy of managed objects
may thus be easily modified.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

=100~

12. The telecommunications services network platform
according to claim 11, wherein said state distributor system
comprises means for representing states by objects which can
take on as a value any of a large set of supported types.

13. The telecommunications services network platform
according to claim 12, wherein said large set of supported
types includes basic types, instances of other classes, and
lists of basic types or objects.

14. The telecommunications services network platform
according to claim 1, further comprising an OAM&P system for
gathering and maintaining information about the state of
entities within said platform, said entities comprising one
or more of said resources and one or more objects within said
call processing system, said OAM&P system comprising:

a hierarchy of managed objects, each managed object
having input states, output states, and a defined logical
relation among said input states and said output states;

means for creating a managed object using a first
high level programming language, by specifying input states
of each managed object, output states of each managed object,
and a logical relation between the output states and input
states for each managed object;

means for compiling managed objects specified in
said first high 1level programming language into code
represented in a second high level programming language; and

means for compiling the code represented in said
second high level programming language into a lower level
code;

thereby allowing a developer to create managed objects
using said first high level programming language so that the
developer may concentrate on defining the logic between input
and output states.

15. The telecommunications services network platform
according to claim 14, wherein said lower level code comprises
executable machine code, and wherein said second high level
programming language comprises C++ or a later version thereof.

16. The telecommunications services network platform
according to claim 1, further comprising an OAM&P system for
gathering and maintaining information about the states of

QIRSTITIITE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

-101-

entities within said platform, said entity comprising one or
more of said resources and one or more objects within said
call processing system, said OAM&P system comprising:

a hierarchy of managed objects, each managed object
having input states, output states, and a defined logical
relation among said input states and said output states;

means defining one or more objects templates, each
defined object template having a defined logical relation
among input states and output states, and thus representing
a basic structure to be utilized in creating transient
objects; and

means for instantiating one or more transient
objects at run time of the OAM&P system as a function of the
types and amount of each type of resources used by said
platform.

17. A resource managing system for assigning resources
for use in performing call processing by a call processing
system, a resource being assigned in response to a request
made by said call processing system for a capability, said
resource managing system comprising:

means for receiving a request made by said call
processing system for a specified capability;

means defining a plurality of 1logical resource
objects, each logical resource object comprising means for
translating generic resource commands made by said call
processing system into a form compatible with actual resources
coupled to said call processing systemn;

means for correlating which logical resource objects
support each capability within a set of capabilities that may
be requested by said call processing system; and

means for allocating a logical resource object that
supports said specified capability.

18. The resource managing system according to claim 17,
further comprising means for confirming said allocation to
said call processing system.

19. The resource managing system according to claim 18,
wherein said request represents a plurality of different
capabilities required by said call processing system; and
wherein

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

~102-

said means for confirming comprises means for
confirming said allocation only after all said plurality of
different capabilities have been allocated.

20. The resource managing system according to claim 17,
wherein said means for correlating comprises means defining
an array.

21. The resource managing system according to claim 20,
wherein said array comprises a plurality of entries, each of
said entries comprising a logical resource type and a resource
capability.

22. The resource managing system according to claim 21,
each said entry further comprising a preference indication,
said system further comprising means for determining which
said logical resource type supports said request in accordance
with said preference indication, if more than one logical
resource satisfies said specified capability.

23. The resource managing system according to claim 22,
wherein each said logical resource type has as many entries
in said array as it has resource capabilities that it
supports.

24. The resource managing system according to claim 17,
wherein said request comprises a communication path
designation for coupling said allocated resource to said call
processing system.

SUBSTITUTE SHEET (RULE 26)



WO 96/20448 PCT/US95/16233

/29
8
10 —
- 16
NETWORK
PLATFORM
NETWORK
ARCHITECTURE
10 f'“ 12 10b
NETWORK CENTRAL OFFICE NETWORK
PLATFORM SWITCH PLATFORM
|

|

18 : 18~
|
[

12 LAY
CENTRAL OFFICE [ I T
SWITCH SWITCH




WO 96/20448 PCT/US95/16233

2/29
'/'|6
B— 0
44E E)o
@— TANDEM OFFICE
LOCAL OFFICES
FIG. 3
u = 10a
I —_
u = 10b
= ~ = |/
B
LOCAL OFFICES

FIG. 4



PCT/US95/16233

WO 96/20448

Y20

WHIHdIY3d

G 914 v1va 7
. 9
TWYIHdINId
I0A
z/ i o
NI
[ |
XT1dH0)
M M ¥31NdH0) zuwﬁ,m_ )
43 WY0 ONINOISIAOYd 150H
ve/ m N g bt 8l
NOILVIY)
DY
15/ Ny

9l



WO 96/20448 PCT/US95/16233

Y/2¢
n + k SPARING
-~ A i
=) =50
MP [ ] [ ] L ]
(MEDIA PROCESSOR) P FIG. 6
=
N
~ 40a ~ 40b 2
POWER-A POWER-B
| >< '

HOST-A 3a HOST8 I
8/523 [ 64/‘5% 36b
= =

38




PCT/US95/16233

WO 96/20448

5eg

_ _
- 0 50 50
Y/ o
! 140 i 140 ° o o 340
om\. E\ wo\
T MS M
gL - |_WvO 1~ | vva 99 /| 1ioA
bg— 81— 1
NI
"
HOLIMS
o] WYO411d L
|\4
0l 8§ S w1 M Y
\@ HY041V1d = '
95

L 9ld
:\@



WO 96/20448

PCT/US95/16233
C/eq
10 94
92 404 =
PROVISIONING & |/ O~ OAM & P
SERVICE CREATION : 1 | WORKSTATION
e SLU's SLU's
| A\ 8 18 —
APPLICATION EM | LIST OF EVENT HANDLERS ‘ﬂ/—— i
LAYER m
0 M| LIST OF EVENT HANDLERS
108a 106
~— han \”8
[ L6 J—q Session LEG\ ‘l\mb
N
| 142 | 14b~ 6: RESOURCE
a4 Vi LAYER
l12al LIRSS 102
CHANNEL || cHaNNEL ---| REROURCE L. T cuamwer T—
DATABASE YT S N ITTY
110al 11022 110b
Y TR = 110b2
T L s/ A [
1200
— AN . LINK
YOICE PROCESSOR ™ SWITCH LAYER
MESSAGE DISTRIBUTOR | 1202 | MESSAGE DISTRIBUTOR
36 | | 105
VOICE PROCESSOR |~ SWITCH
LINK DRIVER 122a LINK DRIVER \mb
9
%
PLATFORM SWITCH
YOICE
VOICE PROCESSOR PORTS
54 \96 450
FIG. 8 oy



PCT/US95/16233

WO 96/20448
7/29
—88 —9%
OBJECT ORACLE RELATIONAL
IF L st
60 LI 86
A N 4
PLATFORM Jt " DATABASE || DATABASE OBJECT 1N ORACLE
SOFTWARE/HOST 1] OBJECTS [’  RELATIONAL DB FORMAT
COMMAND, METHOD, OR IMPLEMENTS
FROM CHANNEL OBJECT
(COMMAND TO OFFER CALL)
A/4|6 \
VOICE PATH RESOURCE YOICE PATH RESOURCE
BRAND X TRUNK RESOURCE BRAND Z TRUNK RESOURCE_[~
418 420
y
A BRAND X TRUNK CARD BRAND Z TRUNK CARD
n 424
CALL TO METHOD IN
CHANNEL
/4|v6 \
YOICE PATH RESOURCE YOICE PATH RESOURCE
/1L BRAND X TRUNK RESOURCE BRAND 7 TRUNK RESOURCE_[~
418 1 420
| BRAND X TRUNK CARD BRAND LTRUNK CARD |~
i 424

FIG. 10B



WO 96/20448 PCT/US95/16233
Y2

RESOURCE CAPABILITY/
AGGREGATE RESOURCE CAPABILITY

BASIC CAPABILITY/ 428
SINGULAR RESOURCE CAPABILITY BASIC VOICE RESOURCE
YOICE PATH RESOURCE YOICE PATH RESOURCE TONE PATH RESOURCE
~
REQUEST FOR CAPABILITY | 434
FROM CHANNEL
i
LIST OF RESOURCES AND
CAPABILITIES IN RESOURCE | 43,
BROKER: STATIC TABLE FOR
LOOK-UP
p 438
IDENTIFY LOCATION OF
RESO&’E“QCIEE%‘T"E'SD B LR TO CHANNEL
LOOK AT FIRST
RESOURCE IN LIST 440
446
REQUESTED IDENTIFY LOCATION OF
| RESOURCE FOUND? LR TO CHANNEL

LOOK AT NEXT | 444
LIST ENTRY

RESOURCE
LAST IN LIST?

N 442

ALLOCATION FAILS | 448

FIG. 12



WO 96/20448 PCT/US95/16233

9/29
SERVICE
NEED PlayRecognize
S.1301 CAPABILI
v
REQUEST FOR FIG. 13
5.1302 | RESOURCE CAPABILITY
rcPlayRecognize
.1304
\ Y §.1305
6 1303 CHANNEL ¥ > RESOURCE
: (NoCapablelR's) <_|_ 5.1310 BROKER
CONFIRN
5.1308 ALOC '
1307 L?l% LHRgUGH TABLRE;
- : oxRecognizelR | 5 [306
Dighox(R 1< DighoxLR WILL SATISFY
REQUEST
CONFIRM ALLOCATION 3
5.1309
RESOURCE MANAGEMENT
CALL MADE BY
5.1401 DTy )
I
CALL ARRIVES ON
51402 PLATFORM TRUNK
I
PLATFORM SWITCH SENDS
5.1403 | INDICATION OF CALL ARRIVAL
T0 HOST COMPUTER
T
MESS?(?EI msma'uroa
ASSOCIATED WITH
5.1404 | THE PARTICULAR PLATFORM FIG. 14
TRUNK CREATES A LOGICAL
RESOURCE
1
LOGICAL RESOURCE CREATES A
CHANNEL: CHANNEL CREATES
$.1405 | VIRTUAL TERMINAL: VIRTUAL
TERMINAL CREATES LEG: LEG
CREATES SESSION
1
CALL ORIGINATION
5.1406 SIDE COMPLETE




WO 96/20448

5.1501

LEG CHECKS THE
SUBSCRIBER DATABASE |
FOR PARTY A's IDENTITY

5.1503

5.1504

5.1505

5.1506

5.1507

5.1508

5.1509

PCT/US95/16233
j0/2Y
5.1502
1§
PARTY A A Y
sussc}msfa
N
DEFAULT USER I.D. FIND USER ID; FIND
SELECTED; SERVICE ID SERVICE ID# ASSOCIATE | S.1510
100 SELECTED WITH USER ID [ID x]
I |
LEG CREATES EVENT LEG CREATES EVENT
HANDLER FOR CALL HANDLER FOR CALL | S.1511
ORIGINATION EVENT ORIGINATION EVENT
l I
SERVICE ID 100 COPIED SERVICE ID x COPIED INTO
INTO EVENT HANDLER EVENT HANDLERFOR | 51512
FOR EXECUTION UPON EXECUTION UPON
OCCURRENCE OCCURRENCE
I [
SESSION REGISTERS SESSION REGISTERS
EVENT HANDLER WITH EVENT HANDLERWITH | 51513
EVENT MANAGER EVENT MANAGER
I |
LEG LETS SESSION KNOW LEG LETS SESSION KNOW
ABOUT EXTERNAL ABOUT EXTERNAL | 51514
ORIGINATION EVENT ORIGINATION EVENT
| |
SESSION LOOKS AT EVENT SESSION LOOKS AT EVENT
MANAGER AND FINDS MANAGER AND FINDS L1515
EVENT HANDLER EVENT HANDLER :
ASSOCIATED WITH EVENT ASSOCIATED WITH EVENT
l l
EVENT HANDLER EVENT HANDLER
EXECUTES SERVICE EXECUTES SERVICE | S.1516
ID 100 ID x

FIG. 15



WO 96/20448

5.1601

5.1602

5.1603

5.1604

5.1605

5.1606

5.1607

SERVICE EXECUTED BY
EXTERNAL ORIGINATION
EVENT HANDLER CREATES
TERMINATING LEG

I

TERMINATING LEG
ATTACHED TO SESSION

TERMINATING LEG CHECKS

SUBSCRIBER DATABASE FOR

PARTY B's IDENTIFICATION
(TERMINATING SERVICE)

I

FIND USER ID; FIND
SERVICE D# ASSOCIATED
WITH USER [ID 10000]

TERMINATING LEG CREATES
AN EVENT HANDLER FOR
OFFERING CONNECTION OF
A-T0-B

SERVICE ID 10000 COPIED
INTO EVENT HANDLER

I

SESSION REGISTERS
EVENT HANDLER WITH
EVENT MANAGER

FIG. 16

5.1701

5.1702

5.1703

5.1704

5.1705

5.1706

5.1707

PCT/US95/16233

TERMINATING LEG LETS
SESSION KNOW OF
OFFER OF CONNECTION
TO B FROM A

I

EVENT HANDLER CREATED BY
SERVICE BEING EXECUTED
FOR A DISCONNECTION BY

PARTY A BEFORE PARTY
B ANSWERS

I

COPY SERVICE ID 1004
INTO EVENT HANDLER

I

SESSION REGISTERS EVENT
HANDLER WITH EVENT
MANAGER

I

ANOTHER EVENT HANDLER
CREATED BY EXECUTING
SERVICE FOR AN INTERNAL
DISCONNECT GENERATED BY
SYSTEM SOFTWARE ON THE
TERMINATION SIDE; COPY
SERVICE ID 1004 INTO EVENT
HANDLER

I

SESSION REGISTERS EVENT
HANDLER WITH EVENT
MANAGER

I

SERVICE CREATES AN INTERNAL
CONNECTION EVENT ON
TERMINATING LEG TO ACTIVATE
THE OFFER CONNECTION
EVENT HANDLER

FIG. 17




WO 96/20448 PCT/US95/16233

/2/24q

RECORD TIME . 18A0I
"OF CALL

EXECUTINIG SERVICE FI G . 1 8 A

CREATES EVENT HANDLER
FOR INTERNAL DISCONNECT . 18A02
ON ORIGINATING SIDE; '
SERVICE 1D 1005 COPIED
INTO EVENT HANDLER

EVENT RANDLIR

H

EVENT MANAGER | - 18AO3
|

MESSAGE BY SERVICE:
"FOR PARTY B 5. 1804
PRESS '™

PLAY RINGING FOR
ORIGINATING SIDE | S 18B0I

FIG. 18B

PLAY NULL MESSAGE
THROUGH ORIGINATING | . 18802
SIDE LEG & CHANNEL

. 18B03
N

ORIGINATING
CHANNEL SUPPORT
CAPABILITY OF
DIGIT C07LLECT ION

GO TO RESOURCE
BROKER AND
Y ALLOCATETHE | 5 |8B0S
APPROPRIATE
S. 18804 RESOURCE

WAIT FOR
ESCAPE |«
DIGIT

PERFORM SERVICE
INDICATED BY | 5. 18B06
ESCAPE DIGIT




WO 96/20448 PCT/US95/16233

}3/2_6/‘
EXECUTING
SERVICE / Ac | 1900
GALLLEG ] 5.1902
” 5.1903
YOU HAVE ALLOCATE
AVIRTUAL VIRTUAL
TERHINAL TERMINAL
T 51904
CONFIRN WITH AC
5.1905
CALL VIRTUAL TERMINAL
5.1906 1907
DO
YOU HAVE ALLOCATE
A CHANNEL CHANNEL

CONFIRM WITH AC

@ 5.1909

FIG. 19




WO 96/20448 PCT/US95/16233
14 /249
510
//—508 THE SESSION
] Leg List 15l
Incleg IncLeg
/305
IncVT
504 512
EVENT MANAGER 514
I
IncYChanne ’ 2506\ BXT_Orig — g{
fi
- ﬂg-\~n&nmﬁﬁgﬁmhg
IncTrkLR \~Fﬁyuwmmh
ncVChanne
52o\~service ID: 100
501t Scratch Variables -
F I G .2 O (0) : called_number
/HO
//-508 THE SESSION
: 5l 608
IncLeg Leg List - /7~
IncLeg Otgleg
7 305 Otgleg
IncVT
504 — 512
EVENT MANAGER 514
Inc¥Channel } 2506 ~_ X Org s —— g{
_Orig
IncTrklR - 606— INT, OffConn .\\ g:g :~reference Leg : Incleg
nein — reference channel :
520 IncVChanne
N Service D : 100
301 ~{-Scratch Variables :
(0) : called_number
FIG. 21 INT_OffConn€H | 614
616 ~_ reference Leg : |/
618 ~ Otgleg
~— reference channel :
620~ NULL

—~ Service ID = 10000




PCT/US95/16233

WO 96/20448

15/29

H3d1Q 1X3 (¢ H3duQ 1x3 (¢
U (7 Ul (7
P 3 ) (f sIp 1 o]
Anua He:337 (g Aiua e::897 ()
Sajqelie) Pleds o “S2GELIRA DIRDS I
P01 : @) @ids P01 : I Mwsas -
juseyypuy [~ 07L oy |0
: |suueyd U | * |auuey) U
00001 aromwizs o Sapuy |81 Bndg [8ILI
TINN Vs : 897 duasp | 3 : 897 ualapal
: [3uueyd 8%%&1(29 ol My psig TN 911 O\ sIgIN] N-91LI
Ve a7 duasepal 919 v
b9 H3uueo NI
Jaquina™pajes : () d .
- sa)qeuiep PIeIs 1 |o¢ / / NN G _ .l._
00i: g dmias ol
. [Juuey)pou) 0Z5 ST S \\ 90L
s s s \ [ [
LT R L I __MQ% N - 205 -7
Uy Ix3 ™
s/ EETTOTETE I I
Us —1~ bos -
wy
331810 505/
da1810 8| 7
J ] )51 897 i
809 s — . Y,
NOISS3S 3H1 80S
ols —~




PCT/US95/16233

WO 96/20448

16/29

H

1p 7))o ()
Anua "e::8a7 (g
-SIRUEA YIDS |0
vo0I - QI S, )

muEw 1X3 (€
U (7

Eu_:w 1X3 (¢
MPUIT

1P 1 ))o (|
Anua e:3ay (g

-SIIGELEA YIBDS I~/
VOOl - Qradmas o

Je)S DIAITS (g
HIuuodyo Juf (7
umop Jea) ()
Aiyua
dezafpuey Juaag (g)
'53|qeuie) (yens
5001 : Q1 xasas

[auuey)pou|
 [aUueY VR

dapu|
: Baj duasepa |

H>SI NI

|

- 108
018

"~ 818
918

puvelp s -
: ; . |auuey) uIyRI |
00001 - qf d1asas 09 Sapuy 811 305 ~-81LI
. TN Ve » : 83 o | 3 : 83 3uasR)a .
L s STV NS0 1X3 A Yuzsign Ll -
e “uw_olu_;émhlffo i kI8
b9 HIUUo)o INI
J
Jaquinu-paje> : (g) [ 4
: s9|qeLIe) yo3eadg /
001 : qI w3 Ad
[QuuBy) Y| I INI 90L1
! [uueyd DU — 901
w:u__w”uw_ DUIIYR) / i 0 e o [ 909 gyl
H38u0™ X3 o U0 N T Tres
80 |X3 ~
. \—
905 | [uuey)pou)
4B J YIDVNVH INIAT .
_t = €¢ DI
Us {1}
1Y)
— da1810 505/
T Sopyj dapu
809~ 1§ —" i1 807 ~
NOISS3S 3H1 80§




WO 96/20448

PCT/US95/16233

= STATE
L, DISTRIBUTOR

{ 1
GRAPHICAL
USER
INTERFACE 210
OBJECT
COMPILER

354
INTERMEDIATE MODEL DOMAIN 312 | 362
REAL-TIME DOMAIN 314
334 BE Ao
PROCESSOR PROCESSOR
MONITOR DEVICE
332 STATE
\
| ] i \
| ! [ \
i 1 i
CX) [ ] VOICE
PROCESSING
UNITS
CALL- PROCESSING SWITCH X%
320 n oy
10

FIG. 24



WO 96/20448

16/29

FIG .24A

MANAGED OBJECT

344

OUTPUTSTATES —]
INPUT STATES ~ ——
LIST OF FUNCTIONS  —\
LOGIC (i+0)

— 346
— 348

350

~— 352

FIG. 24B

SUMMARY

PCT/US95/16233



PCT/US95/16233

WO 96/20448

19/2.9

m_M.L

-
|7
1
PN 998
] (TvossDosd)  (TH0SsH0N i
g h 2I0A u ﬁ 1I0A 40v3
|1
STUN0STY
g Ano _ HOLIMS 7
9 195
$3UN053Y
o ONISS)0Yd NISS3044
L1 m
85¢
|~
WYY |1 < WY04LV1d

§5¢

95¢

HOLIMS
>
L1
|1
PR

SLINN
1 ONISSTI0¥d 1DI0A
|1
V./.I..
vd
A vie—"
P ONISS3)04d-TIV)
e
e
= 1 OO

org —*




PCT/US95/16233

WO 96/20448

20/29

6l <

NN

AN N NN N N N N NN

89¢ 99¢ ANVHWO0)
{ g.ﬁwmuoi zomuoi :ww_
S_o> 1104 e

SM

31 l\t

§34n0S3Y
mc_o> Aﬁ —E_Sw
%

§14N0S3Y
ONISS1)0Y4d
1)

WY011Y1d

§§¢

£
150H

ONISS3)0¥d

1Y)

A

BN N N N N NIV N TN

|
1

HLIMS

443

SIIND
ONISSII0¥d 3D10A

————

150H
ONISSDIO0H-TTY)




PCT/US95/16233

WO 96/20448

2// 2.9

£l

SNOILWIINAWKO) | )

—, O
100K VLYQ 3DIAY3S
mm_‘\\\
L JID07 DIAY3S
L¢ 9ld

byl
T30W VIVG

Wl
V] )

8yl

JIVIYIINI
LEN)

or1—"

(el

- 9l




WO 96/20448

PCT/US95/16233

228(1)
\\ yd l
—h
caselype
value compCode value compCode LY
1 [ | I
\ X \ \
~ 230() () N B30(N) \232(N)
206
LCollectDlglts F|G 28B
Bl nuleglts collectTume reenterSym eosSym

\234 \236 \ 138 240/

Init Entry

index

440)  246()




WO 96/20448

250()

PCT/US95/16233

250(N)

_—

D2

ringlen

—h

MirType

Wi

S

ringlen

MirType

netAddr

- 254()

261

netAddr

D3

\

.y
254(N)

\\*256(N)

N252()

202 PlayAnnc

—

msgID

—A

msglD
1

258(1)

FIG. 28E

-

258(N)

!

16

3?&00

214

—

netAddr

retries interval

‘—L FI

i
2607

PlayCollect

»

numDigits

collectTime

reenterSymﬁ

eosSym

|
260~

)]
264~

FIG. 28F

FIG. 28G

\ 268

Nmoom” -

RecordMsg

y

msgID

oo Oi msglD |
]

]
266(1)

218

FIG.

266(N)—"

28H

R

= | timeQutMax

timeQutSilent

timeQutTail

eorcSym

1 -

N7

N8 280~

18—



WO 96/20448 PCT/US95/16233

2404

() i 281

netAdddr | ® ® @ | netAddr | —
1 \
o

284 284(N)

122

T0D Entry

startDay

88() — startHour
U startMin
9() =~ endDay
140~ endHour

294(1 - endMin
298() —

startDay

286(1)
_.4/ I

2860~ startHour
290 = startMin
LU endDay
194~ endHour
2968~ endMin
198(N)—

timeValue timeValue
300() — 300N)—

PINLI origService | | termService u

| \ |
3027 347 306”7




WO 96/20448

2S/27

900

type - number
90— 904

FIG. 29A
»a— 906
9(& 9|0\ | ~n

(&{ FromNumber - CompetionCode - ToNumber
Parameters —

| 914

FIG. 29B

918 920 916

FIG. 29C

~m

Expander Name

FIG. 29D

94

932
Graph Name _/
Edge Name

Parameters

FIG. 29E FIG. 29F

PCT/US95/16233



WO 96/20448

PCT/US95/16233
2¢/29
start - 0 / 934
0 - success- 10
net addr— userDN
<userid>-»V_0l
Get the subscriber's

user ID.

get_user_id- 10

/ 10 - user-found - 20
integer variable— syc_indicator

10 - user-not-found - 30

if- 20

20 -not-zero - 40 20-zero- 10
938 net addr —» userDN

<userid>—»V 0|
Allow Call 936 ’

50 - success - 30 } 940 CC get_user_id- 07>

finish - 30




WO 96/20448 PCT/US95/16233

z 7/49

______ L —
Call Intercept

| ]
: |
| if - 20 - not-zero 942
| session—»SESSION : e
| virt userid > USER_ID l

| <leg>-»EV_ORIG_LEG |

= — = —

948
leg - 40 -

make_|

40 - success - 150
leg »EV_REF_LEG
channel »EV_REF_CHAN

950
play_annemnt-50 |/

l’-‘_——"_—/—_'l

| Call Intercept
| finish - 30 - success |



WO 96/20448 PCT/US95/16233

2829

=— e ee—o—————9
|
~ Name SysUserflag:

play_collect - 10 i Edges To
start - 0 - success it
~_Completion Codes get_col_digits - 30 - no-digits
[success - 0 I nx -
success - 0 i
~ Edges From
play_collect - 10 - success 0] | %L
3
3]
Notes
it
3

g
FIG. 32



WO 96/20448

PCT/US95/16233

XY

%\

~ From Node

play_collect - 10

~ To Node

Parameters
@® Show
OHide

play_col_digits - 30

Comp Code | success

-

Parameter List f 36

[EV_ORIG_LEG , T+
999 leg [EV_ORIG_LEG | i
\{ C!"!""eEi EV_ORIG_CHAN \ 951
<digits> (the_digits
O
Clear Al
Comment
<
O

FIG. 33

 Graph Variables

958

BUILDER
EVENT
EV_ORIG_CHAN
EV_ORIG_LEG
EV_REF _CHAN
EV_REF_LEG
NULL

SESSION
the_digits
THIS
USER_ID

V 0l

V_02

[
OO
o

V 05

—— — —

<<<<<<<<<<<<<<<

[ N A A iy P, P
Aww—ccmﬂo\mbww—ec

|<
N

[

)

954
./




INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/16233

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 13/00, 13/10, 13/14
US CL :395/650,700; 379/80,84,90
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/650,700; 379/80,84,90

Documentation scarched other than minimum documentation to the extent that such documents are included in the ficlds searched
MICROSOFT PRESS COMPUTER DITIONARY

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US, A, 5,193,110 (JONES ET AL) 09 MARCH 1993, COL.1,] 1-2, 5-10, 17-
LINE 52-COL.2, LINE 2, COL.3, LINE 64-COL.4, LINE 21, 19, 24
COL.5, LINE 6-30, COL.5, LINE 52-COL.6, LINE 19

X,P | US, A, 5,434,920 (COX ET AL) 18 JULY 1995, COL.3, LINE| 3-4
3-44

X E US, A, 5,495,484 (SELF ET AL) 27 FEBRUARY 1996, 11-13, 16
COL.7, LINE 10-28, COL.7, LINE 16-63

X US, A, 5,367,473 (CHU ET AL) 22 NOVEMBER 1994, | 20-23
COL.12, LINE 34-54

@ Further documents are listed in the continuation of Box C. D See patent family annex.

. Special gories of cited d T hmdeubulbedlﬂcrlhcinlcmniomlﬁlingdmorpﬁoﬁly
date and not in coaflict with th= application but cited to understand the

*A° document defining the generul state of the art which is not considered principle or theory underlying the inveation
to be part of particular relevance
ope . . . . . X document of particular relevance; the claimed invention cannot be
E earlicr document published on or afier the intemational filing date Py ‘novelor‘ < be Ly od 10 involve an inveative stcp
L document which may throw doubts oa priority claim(s) or which is whea the documeat is taken alone
::"-lb mabl(l: ::cml;anon date of another citation or other - d of . relevance: the clai aveation be
considered o involve an inventive step when the document i
*0* document referring 10 an oral disclosure, use, exhibition or other combined with onc or more other such d such binati
means being obvious o a person skilled in the art
P document published prior to the interuatioaal filing date but ater than =g+ document member of the same patent family
the prionty date claimed
Date of the actual completion of the international search Date of mailing of the international search report
02 APRIL 1996 18 APR 1995
Name and mailing address of the 1ISA/US uthorized officer
Commussioner of Paients and Trademarks N ( w7
Box PCT Vb
Weshingwon, D.C. 20231 ALVIN OBERLEY \)(/N A
Facsimile No.  (703) 305-3230 lephone No. (703) 305-9716

Form PCT/ISA/210 (sccond sheet)(July 1992)«



INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/16233

Box II1 TEXT OF THE ABSTRACT (Continuation of item 5 of the first sheet)

The technical features mentioned in the abstract do not include a reference sign
between parentheses (PCT Rule 8.1(d)).

NEW ABSTRACT
A flexible network platform (10a) and call processing system are disclosed. The
call processing system includes a particular call processing architecture and a
resource managing system. An OAM & P subsystem (94) and systems for
performing data provisioning (92) and service creation are each provided. The call
processing system may include a call processing mechanism for performing call
processing in accordance with defined service logic, and call processing resources
connected to the call processing mechanism. The call processing resources are
designed so that any service logic unit may be linked to any particular event that
might occur in connection with the call processing system. A resource managing
system (428) is also disclosed for assigning resources in respond to a request made
by the call processing systéfh specified capability. The resource managing system
receives the request for a specified capability and allocates a logical resource object
that identifies a particular resource that will support the specified resource
capability.

Form PCT/ISA/210 (continuation of first sheet(2))(July 1992)«



INTERNATIONAL SEARCH REPORT

International application No.

COL.6, LINE 64-COL.7, LINE 13, COL.7, LINE 17-48

PCT/US95/16233
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y,E US, A, 5,491,820 (BELOVE ET AL) 13 FEBRUARY 1996, 1-2, 5-10

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

