发明名称
一种可以阻断热冷桥的保温板及其制备方法

摘要
本发明涉及一种建筑用材领域，尤其涉及一种可以阻断热冷桥的保温板及其制备方法。目前用于外墙的保温材料不够理想，本发明采取如下技术方案：其原料重量配比份数比例如下：水泥 40-45 份，可分散胶粉 8-35 份，纤维素纤维 0.1-0.5 份，聚苯颗粒 10-15 份，粉煤灰 20-25 份，膨胀珍珠岩 5-10 份，轻钙 1-5 份，重钙 1-5 份，保温材料 10-15 份，膨胀玻化微珠 20-50 份。将所述原料进行三次干拌，一型。具有如下有益效果：具有良好的阻燃性能，不燃烧，保温性能良好，粘结性好，强度高，由于成板状，施工使用方便，价格合理，与建筑同寿命，适用于各种建筑外墙墙面使用，具有良好的经济效益和社会效益。
1. 一种可以阻断热冷桥的保温板的制备方法，其特征在于：其原料重量配比份数比如下：水泥 40-45 份；可分散胶粉 8-35 份；纤维素纤维 0.1-0.5 份；聚苯颗粒 10-15 份；粉煤灰 20-25 份；消泡剂 5-10 份；轻钙 1-5 份；重钙 1-5 份；保温材料 10-15 份；膨胀玻化微珠 20-50 份。

2. 如权利要求 1 所述的一种可以阻断热冷桥的保温板的制备方法，其特征在于：所述纤维素纤维是木质纤维素或硅酸铝纤维。

3. 如权利要求 1 所述的一种可以阻断热冷桥的保温板的制备方法，其特征在于：所述水泥是 525 矿渣水泥。

4. 如权利要求 1 所述的一种可以阻断热冷桥的保温板的制备方法，其特征在于：将所述原料进行三次布料，一次成型。

5. 如权利要求 4 所述的一种可以阻断热冷桥的保温板的制备方法，其特征在于：在所述成型的板材外表喷涂保温涂料。

6. 如权利要求 5 所述的一种可以阻断热冷桥的保温板的制备方法，其特征在于：保温涂料是包含有机硅乳液 35%；热反射空心微珠 16%；二氧化钛 10%，空心碳酸钙 7%，水镁石 6%，叶蜡石 5%；膨胀玻化微珠 4%，水 17%。

7. 一种可以阻断热冷桥的保温板，其特征在于：采用权利要求 1-6 任一所述的制备方法制备的保温板。
说明书

一种可以阻断热冷桥的保温板及其制备方法

技术领域：
[0001] 本发明涉及一种建筑用材领域，尤其涉及一种可以阻断热冷桥的保温板及其制备方法。

背景技术：
[0002] 墙体保温是建筑物节能降耗的必要措施，目前用于外墙的保温材料不够理想，尤其是涉及节能、环保、防火、保温等领域更是无法完全满足各种需要，现在多数的保温材料一般导热系数高，保温，防火性能差，并且存在施工操作不易的不便之处。
[0003] 目前常用的建筑围护结构的保温体系，多采用聚苯乙烯泡沫板、保温砂浆、聚氨酯硬泡以及玻璃棉、岩棉等绝热保温材料。名称为“高强度耐火植物纤维复合保温板及其生产方法”，申请号为200410000789.7的中国专利申请，公开了一种耐火保温板的组分及其制备方法，主要的绝热保温材料为膨胀珍珠岩。该已有技术的缺点是：1、已有技术的配方中直接使用了硅酸钠水溶液和有机硅憎水剂，这两种原料都是很强的水溶液，与珍珠岩等混合搅拌后混合料的水分比较大，使成型之后的干燥脱水阶段温度要求较高，干燥时间也较长，增加了产品的成本。2、硅酸钠和有机硅憎水剂都是碱性很高的材料，使产品的碱性也很高，作为建筑保温体系的外层，容易受潮返碱，影响外墙面的美观，同时也容易使其外层的钢丝保护网生锈，使玻纤网老化而失去增强作用。3、硅酸钠水溶液作为粘合剂，成膜之后的耐水性较差，容易被浸湿和浸水，影响产品的强度和耐候性。4、膨胀珍珠岩作为主要的保温材料，由于矿砂石在气化膨胀中，结晶水的溢出使珍珠岩是开孔的颗粒结构，极易粉碎形成粉末，强度很低，使产品强度降低，而且又容易吸收水汽，吸水后产品的保温性能大大降低。5、制备产品的搅拌过程中，由于珍珠岩极易破碎形成粉末，搅拌时间不能过长，但搅拌时间过短，又造成胶液与珍珠岩不能充分混合，会有相当数量的珍珠岩表面未能充分被胶液包裹，从而影响产品的强度，容易破损和折断。6、保温板表面粘附一层玻璃纤维网，单面玻纤网并不能完全保证产品不出现断裂破损，因为造成断裂的外力是不确定的。

发明内容：
[0004] 发明目的：为了提供一种高效、节能、防火保温板，它具有环保和显著的保温和防火效果。
[0005] 为了达到如上目的，本发明采取如下技术方案：其原料重量配比份数比如下：水泥40-45份；可分散胶粉8-35份；纤维素纤维0.1-0.5份；聚苯颗粒10-15份；粉煤灰20-25份；消泡剂5-10份；轻钙1-5份；重钙1-5份；保温材料10-15份；膨胀玻化微珠20-50份。
[0006] 本发明进一步技术方案在于：所述纤维素纤维是木质纤维素或硅酸铝纤维。
[0007] 本发明进一步技术方案在于：所述水泥是525矿渣水泥。
[0008] 本发明进一步技术方案在于：将所述原料进行三次布料，一次成型。
[0009] 本发明进一步技术方案在于：所述成型的板材外表喷涂保温涂料。
[0010] 本发明进一步技术方案在于：保温涂料是包含有机硅乳液35%；热反射空心微珠
16%；二氧化钛10%，空心碳酸钙7%，水镁石6%，叶蜡石5%；膨胀玻化微珠4%，水17%。

[0011] 采用技术方案任一所述的制备方法制备的保温板。具有如下有益效果：用这种方法制成的产品具有良好的保温效果；A级防火，对墙体基础要求不高，保温层牢固，不会出现龟裂、空鼓、脱落和/或裂缝，施工费用低廉，装饰效果好，无环境污染，与建筑同寿命，能够大面积推广使用，是一种无毒害，无污染，绿色环保的装修材料，适用于建筑外墙保温，屋面保温。由于三次布料，还可以阻断热桥冷桥，由于其表面喷涂有保温材料，使其保温性能与憎水性能更强于传统的保温材料，由呈板块状，可以解决传统的施工难题与运输难题！

[0012] 总之，本发明具有良好的阻燃性能，不燃烧，保温性能好，粘结性好，强度高，施工使用方便，价格合理，与建筑同寿命，适用于各种建筑外墙墙面使用，具有良好的经济效益和社会效益。

具体实施方式：

[0013] 下面对本发明的实施例进行说明，实施例不构成对本发明的限制。

[0014] 实施例1：

[0015] 本发明采取如下技术方案：其原料重量配比份数比如下：525矿渣水泥40份；分散胶粉8份；纤维素纤维0.1份；聚苯颗粒10份；粉煤灰20份；消泡剂5份；轻钙1份；重钙15份；保温材料10份；膨胀玻化微珠20份；三次布料，一次成型。在所述成型的板材外表喷涂保温涂料。保温涂层是包含有机硅乳液35%；热反射空心微珠16%；二氧化钛10%，空心碳酸钙7%，水镁石6%，叶蜡石5%；膨胀玻化微珠4%，水17%。

[0016] 实施例2：

[0017] 本发明原料重量配比份数比如下：水泥45份；分散胶粉35份；木质纤维素0.5份；聚苯颗粒15份；粉煤灰25份；消泡剂10份；轻钙5份；重钙5份；保温材料15份；膨胀玻化微珠50份。根据所述原料进行三次布料，一次成型。在所述成型的板材外表喷涂保温涂料。保温涂层是包含有机硅乳液35%；热反射空心微珠16%；二氧化钛10%，空心碳酸钙7%，水镁石6%，叶蜡石5%；膨胀玻化微珠4%，水17%。

[0018] 实施例3：

[0019] 本发明原料重量配比份数比如下：水泥42份；分散胶粉25份；硅酸铝纤维0.3份；聚苯颗粒13份；粉煤灰8份；消泡剂3份；轻钙3份；重钙3份；保温材料13份；膨胀玻化微珠25份。根据所述原料进行三次布料，一次成型。在所述成型的板材外表喷涂保温涂料。保温涂层是包含有机硅乳液35%；热反射空心微珠16%；二氧化钛10%，空心碳酸钙7%，水镁石6%，叶蜡石5%；膨胀玻化微珠4%，水17%。

[0020] 以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解，本发明不受上述实施例的限制，上述实施例和说明书中描述的只是说明本发明的原理，在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进，这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。